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ABSTRACT

In an attempt to understand the dynamical influence of the

earth's topography upon the large-scale motion of the atmosphere,

the system of "shallow water" equations on the rotating earth is

integrated numerically. The model consists of an incompressible,

homogeneous, hydrostatic and inviscid fluid. The "beta-plane"

approximation is used to simplify the model. The fluid is

confined in a channel bounded by two parallel "walls" extended to

the west and east directions. Periodic boundary conditions are

applied to simulate the cyclic continuity of the channel in the

longitude. A circular obstacle of parabolic shape is placed at

the bottom in the middle of the channel. The steady-state solutions

in the absence of the obstacle are used as the initial conditions

of the problem. Five different cases are investigated in detail.

All computations were performed up to 20 days (some cases were run

longer) with a time step of 6 minutes.

The following main results were obtained: (1) Westerly flows

past the obstacle produced a train of long waves on the lee side,

which can be identified as "planetary" waves. On the other hand,

easterly flows are little disturbed by the obstacle and long waves

do not appear; (2) The number of waves produced in the westerly

cases agrees with the number expected from the steady-state Rossby-
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Haurwitz wave formula for various intensities of the zonal flow

past the obstacle.

The results of the present calculations are compared

favourably with those obtained in the early 1950's by Fultz, Long

and Frenzen in the laboratory experiments of the flow past a

barrier in a rotating hemispherical shell. Finally, a theoretical

consideration was given to explain characteristic differences

between westerly and easterly flows past the obstacle observed in

the numerical experiments.



I. Introduction

It has been recognized that the earth's atmosphere is

influenced by the condition of the earth's surface. As far as the

large-scale motion in the atmosphere is concerned, its influence

appears to depend upon (1) the distribution of continents and

oceans and (2) the large-scale topography of the earth's surface.

The first factor may appear as a thermal influence upon the motion

due to the temperature contrast between the air over the lands

and the air over the seas. The second factor, on the other hand,

may be considered as a dynamical nature.

It was discussed by Charney and Eliassen (1949), Bolin (1950)

and others (see References) that mountain barriers of the size of

the Himalayas and the Rockies play an important role in determining

the positions of the semi-permanent high-level troughs and ridges

in the westerlies. Their argument is based on the observation that

certain basic characteristics of the flow patterns at upper levels

in the northern hemisphere do not change essentially from summer to

winter, in spite of the reversal in the thermal contrast between

the continents and oceans.

In an attempt to understand the dynamical influence of mountain

barriers upon the atmospheric flow patterns in a more direct way, a

series of laboratory experiments were conducted at the University of

Chicago (Hydrodynamic Laboratory) by Fultz and Long (1951), Long
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(1952), Fultz and Frenzen (1955) and Frenzen (1955). They

investigated nearly two-dimensional motions of homogeneous fluid

around obstacles in a rotating hemispherical shell using the

apparatus shown in Figure 1. The equipment consists of two

concentric hemispheres of mean radius 10 cm, rotating together

about a vertical axis. The distance between the shells is about

1.6 cm and the space is filled with water up to the equator.

Figure 2 shows a cross section of the spheres with the position of

the obstacle. To produce the effect of a zonal current moving

past the obstacle, the obstacle was moved through the fluid. The

motion of the obstacle was accomplished by attaching it, by a

thin arm, to a shaft within the one used to rotate the spheres.

Rotating the obstacle more slowly than the spheres generates a

relative westerly flow past it, while rotating it more rapidly

generates a relative easterly flow. Observations were made through

a rotoscope, a reversing prism mounted with its optical axis along

the common axis of rotation of the shells. With this device, all

motions of tracer particles in the fluid were seen relative to the

framework determined by the rotation rate of the prism.

Figure 3 shows two schematic sketches of the flow patterns

observed relative to the obstacle. The left picture shows the

pattern in the case of westerly flow and the right picture shows

the pattern in the case of easterly flow. Long (1952) describes
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that "the most striking features of the flow in the presence of this

obstacle are as follows: when a westerly current flows past the

obstacle, the fluid goes into a series of oscillations, extending

around the whole globe, . . . An easterly current, however, does

not oscillate and is little disturbed by the obstacle, . . ."

In this study, a set of three partial differential equations

which govern the motion of fluid past an obstacle is integrated

numerically under prescribed initial and boundary conditions. It

is hoped that such a numerical experiment would aid in our under-

standing of the dynamical effect of large-scale topography upon

the motion of the atmosphere. We are concerned with finite-amplitude

and time dependent motions rather than small-amplitude and steady-

state motions as considered by most of the previous investigators

on this subject. Asai and Nitta (1963) have attempted a numerical

integration of the primitive equations for a barotropic model in-

cluding topography, but they have not integrated the equations long

enough to demonstrate clearly the effects of topography upon the

atmospheric flow patterns.

2. Basic equations and boundary conditions

We consider an incompressible, homogeneous, hydrostatic

and inviscid atmosphere. The motion of this fluid may be described by

the following well-known "shallow water" equations,
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__L k+(2.1)+ Lk- + +- (2-1)

+U(- H)}+ (- )} 0. (2.3)

The two space variables x and y are cartesian coordinates

directing toward the east and the north, respectively. The x-y

plane is the "beta-plane," namely the Coriolis parameter f ,

representing 2wo Sin G , with CA) denoting the angular velocity of

the earth and 9 the latitude, is a function of y only. In (2.1) -

(2.3), LA., I denote the x , y components of the fluid velocity;

_k is the height of the free surface of the fluid; H is the

height of an obstacle which is a function of both x and y ; and

denotes the acceleration due to gravity and , time.

Figure 4(a) shows the domain of integration for (2.1) - (2.3)

which is a fixed rectangular region with sides parallel to the

coordinate axes. The northern and southern boundaries are "solid"

walls. The flow is periodic in the east-west direction with a period

equal to the distance L between the east and west boundaries.

A circular obstacle is placed at the bottom in the middle of the

domain. As seen in Figure 4(b), which is a cross section view of
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the flow, the bottom is flat outside of the mountain region. The top

of the fluid is a free surface.

In summary, the boundary conditions for (2.1) to (2.3) of the

problem are prescribed so that: (1) the y-component of the velocity

vanishes for all time along the northern and southern boundaries;

(2) 1A, iT and f are periodic in the space variable x with a

period equal to the distance between the east and west boundaries.

3. Initial conditions

It is well-known that, in the absence of mountains, Eqs. (2.1)

to (2.3) possess the following stationary solutions

Lk= . Z ( = constnt )

(3.la)

t = O

and f /ax = O and ' /3 = - t / or by

integrating the last equation with respect to y , we have

O(NNO-MM,, - -ONeLO <(3.lb)

where o denotes the value of A at = O.

We are going to use (3.1) as the initial conditions of the

problem in the presence of mountains. This means that the wind

field and the pressure field are not balanced initially over the

mountain regions. Therefore, one expects oscillations to be generated

in the fluid. We can show, however, that the disturbances created in
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that way by the mountain are quasi-geostrophic in nature so long as

-3
the slope of the mountain remains in the order of 10 , as pointed

out by Gambo (1957) and Phillips (1963). The following simple scale

analysis is slightly different from the arguments presented by them

but will demonstrate the same point in question.

By differentiating (2.1) and (2.2) with y and. x, respectively,

and using (2.3), the following well-known potential vorticity equation

is obtained.

"MEMO-MOM I-- _S .(3.2)

5 + f -dt- H - t

where d/dt signifies the material derivative. If we consider a

stationary quasi-geostrophic motion, the contribution from the

first term on the right-hand side of (3.2) is negligible. Therefore,

the time rate of change in the magnitude of the absolute vorticity

should balance approximately with the time rate of stretching of the

fluid column due to the effect of flow passing over the mountains.

The order of magnitude of the left-hand side term may be approximated

by V / f where 3 == 9:/ and V denotes the

characteristic flow speed. The order of magnitude of the divergence

generated by the mountain is V IV H I /f where IVH I

denotes the characteristic slope of the mountain. By equating those
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two terms above, we obtain

or

vH = - Cotafn e (3.3)

where CL is a mean radius of the earth (= 6370 km). Table 1 shows

the critical slope of the "geostrophic" mountain given by (3.3) at

different latitudes for a mean height of the atmosphere L = 8 km.

Table 1. Critical slope of "geostrophic" mountain, in unit of 10-3

9 (o0 N) 20 30 40 50 60 70 80

VH I 3.45 2.18 1.50 1.05 0.725 0.457 0.221

It is seen from Table 1 that with the exception of some parts

of the Himalayas and Andes, the large-scale topography on the earth

induces only the amount of divergence comparable to that of quasi-

geostrophic motions. It is, therefore, reasonable to expect that

the use of the stationary solutions (3.1) as the initial conditions

of the problem in the presence of mountains generates quasi-geostrophic

motions rather than inertia-gravity motions which are characterized

by a large amount of divergence in the flow.
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4. Difference equations

For the purpose of numerical integrations, it is convenient to

rewrite Eqs. (2.1) to (2.3) in divergence form, i.e.

u 2+F2 = C (4.1)

where

(/42

(4.2)

· · ) ·- i'Ha +~t

and

m U= H v--H), l == r-- -H), , = •-H.

Here,7 and 71 denote the x and y components of the specific

momentum, T is the thickness of the fluid above the mountain.

The two-step Lax-Wendroff integration scheme proposed by

Richtmyer (1963) is applied to (4.1). In order to write down the

difference equations, we abbreviate any function P (X, t, ) of

S4 , and L At as where

., , and are integers; 4X , A and 4 t are,

respectively, space and time increments. The two-step difference

equations for (4.1) consist of the following two schemes which are

used at alternate time cycles:



1+1
1) U =

k±hER^I

2+2

Ui 1

where

\ = At /X

+ Qt

L d~r
e

A t

in which

and C-( )

and C are an abbreviation for F ( ••)

- C9+/) I

ffj , ~~

4)1 ̂ ,H

+ 1+ i~- 71
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-t

and similarly for and M

Due to the fact that 2. contains terms at ~ time

step, the first scheme in (4.3) looks as though it is an implicit

procedure. However, if the prediction of (the third

component of 0 ) is done first, then the prediction of the first

and second components 1+ and 7+ , can be made explicitly

by solving the prediction equations for and 1n 1

simultaneously.

If the Q term in (4.3) is ignored, one can show that the

combination of the first and second schemes is convergent as it

and AS (in the case of 4X=41=4S) approach to zero, if

--- (

where is the magnitude of the largest possible flowvelocity

and is the maximum height of the free surface in the fluid

(see Richtmyer, 1963). Stability of the two-step Lax-Wendroff scheme

including the Coriolis term should be referred to an article by

Houghton, Kasahara and Washington (1965).



-11-

Special treatments are made at the northern and southern

boundaries. There, the y-component of the velocity L/ must vanish

for all time, but the x-component of the velocity 1C and the height

it are computed from (4.3). In those equations, /xFr is

evaluated using the centered difference but 61.T is approximated

by the first-order uncentered difference using the grid values on

the boundary and the point next to the boundary point at the same

x-coordinate in the integration domain. The accuracy of this type

of boundary condition can be improved by using a higher-order un-

centered differencing. We have tried the use of the second-order

boundary condition for a similar problem satisfactorily, and the

second-order boundary condition seems to produce a better result

than the first-order boundary condition (as it should be!). How-

ever, for a long-term integration, the computations with the

second-order boundary condition tend to be more unstable than

those with the first-order condition, in the sense that purturbations

on the boundaries sometimes grow with respect to time, though very

slowly. It seems that the use of the first-order condition is not

only satisfactory from the standpoint of accuracy, but also is more

stable, computationally.

5. Numerical data for computations

The integration domain is a rectangular lattice of equal grid

intervals / )( = -== 4S . The sides have lengths of L and W
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in the x and y directions, respectively. The origin of the x and

y coordinates is taken at the center of the domain.

The form of mountain studied here is circular and parabolic

which is expressed by

H (x,) = H t (1- R-2/b 2 ) for o-R.b

S 0 or < R.

where

Ha : the maximum height of the obstacle.

The following numerical values for the parameters in the

problem are used.

L = 72 AS

W = 18 AS

A5 =(2z7ZCLcos 450)/72 = 393.073 kn (51)

6L = mean radius of earth = 6370 km

= 9.8 m/sec2

Fi = 2000 m

^o - 7000 m

Lk = a variable constant whose value is different for the

different cases to be discussed in the next section,
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The time step Z36t = 360 sec was chosen to satisfy the

stability condition (4.4). All five cases are computed up to 20

days or 4800 time iterations. (Some cases have been computed even

longer.)

6. Results of five cases

Case A. Constant , -L == 20 ! /Sec

To investigate the effect of the latitudinal variation of

the Coriolis parameter, in this run we fixed the value of the

Coriolis parameter as the value at 45 N (= 1.0284 x 10 sec ).

The contour patterns of the height deviation from the initial

height field are shown in Figure 5 in a series of four figures

taken at 2, 8, 14 and 20 days. In each figure the abscissa shows

the east-west direction and the ordinate the north-south direction.

The circular obstacle is shown by a circle. The initial wind field

is a westerly flow of velocity 20 m/sec. The contours are drawn

every 50-meter interval. The dashed contours indicate the positive

deviation of height and solid contours the negative deviation. The

heavy solid contours denote zero lines.

At the beginning the flow past the barrier was modified such

that the height of the free surface increases on the windward side

of the mountain and decreases on the lee as seen in the top figure.

This initial phase of the height distortion appears to be common in
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all five cases. However, the subsequent development of the flow

patterns becomes quite different, depending upon the intensity of

the initial zonal flow and the latitudinal variation of the Coriolis

parameter.

It appears that the large depression on the lee has a transient

character and moves around the channel with a nearly constant speed

of a little less than 20 m/sec. On the other hand, the elevation on

the windward side has a stationary character and must therefore be

induced by the forcing due to the mountain. It is of interest to note

that when the traveling low hits the stationary high, as seen in the

fourth figure, it simply lowers the intensity of the stationary high,

but then the traveling low eventually moves out of the region without

much altering the pattern of the stationary high over the mountain.

Case B. Variable 0 , . == ZO I/Sec.

In the rest of four cases, the Coriolis parameter £ is

expressed as

f-2 sin{( 4C95n+ )

where c = 111,111 meters. Now let us see the effect of taking into

account the latitudinal variation of the Coriolis parameter in the

model for the same initial zonal flow of U1 = 20 m/sec, as in Case A.

Of course the initial height field is not identical to the one in

Case A owing to the latitudinal variation of the Coriolis parameter,

but the difference is rather small to be significant in this case.
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Figure 6 shows the contour patterns of the height deviation as

seen in Figure 5. At first glance, it is noticed that the

evolution of the patterns in Case B is remarkably different from

that in Case A. The intensities of the high and the low, after

two days from the start in this case, are stronger than those in

Case A.

It may be worthwhile to point out that at least the early

phase of the evolution of the flow patterns may be explained in

the following manner from the conservation equation of the potential

vorticity (3.2); namely

(6.1)

As the flow currents go over the barrier from the west, the thickness

of the flow -- -H must decrease, and therefore the absolute

vorticity + must also decrease. The decrease of the absolute

vorticity tends to deflect the flow toward lower latitudes. However as

the flow moves to lower latitudes, the flow experiences the decrease

of the earth's vorticity, J . Therefore the reduction of the

relative vorticity becomes less or it may even increase as the flow

moves continuously southeastwards. The increase of relative

vorticity tends to deflect the flow toward higher latitudes. Repeating

the decrease and increase of the relative vorticity sets up the
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generation of waves appearing on the lee side as the sequence of

eddies. It is evident that the latitudinal variation of the

Coriolis parameter is essential in the process of the formation of

this type of long waves which are identified as the planetary waves

as discovered by C. G. Rossby and Collaborators (1939). It is not

likely that the flow patterns eventually settle to an exact

steady state, though the number of waves, which is in between 3 to

4, appears to be unchanged after two or three weeks.

Case C. Variable -- L-- -20 m/sec.

Let us now see what happens in the case of an easterly flow.

Figure 7 shows the evolution of the height deviation field of this

case. The initial phase, as seen in the top figure, is similar to

the ones observed in the westerly cases with the exception of direction

of the flow. The depression on the lee moves out from the area of

the obstacle, just as it did in Case A. However, the intensity of

the depression eventually fades out and the elevation over the

obstacle remains. It is a remarkable feature of the easterly case

that the obstacle does not generate oscillations and the intensity

of the elevation over the obstacle is weak. These findings agree very

well, qualitatively, with those observed in the laboratory experiments

described in the Introduction. It is instructive to apply again the

conservation equation of the potential vorticJty (6.1) to demonstrate

characteristics of the flow patterns of easterlies past the obstacle.
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As the flow currents go over the obstacle from the east, the

thickness of the flow &,-H decreases, and therefore the absolute

vorticity + -f must also decrease. The decrease of the

absolute vorticity tends to deflect the flow toward higher latitudes.

However as the flow moves to higher latitudes, the flow experiences

the increase of the earth's vorticity, f .Therefore, the relative

vorticity must reduce further and the flow will turn more clockwise.

Eventually, the flow will move to lower latitudes and the anticyclonic

curvature of the flow will be reduced. The shape of the flow is

therefore likely to be a loop and the generation of waves is not

likely in the case of easterlies.

Case D. Variable f L. = 40 m/sec.

We shall come back to westerly flow cases again. To investigate

the dependence of the number of waves generated by the obstacle upon

the intensity of the initial zonal current, we take the case of

westerly flow with L =- 40 m/sec. Figure 8 shows the evolution of

the height deviation field similar to the one shown in Figure 6. A

major difference between the results of Case B and Case D is that the

number of waves generated in this case is clearly 2. The result

suggests, therefore, that the number of waves decreases as the

intensity of the zonal current increases and vice versa. To prove

the latter point, the following case was run.
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Case E. Variable , GU = 8 m/sec.

In this case, the intensity of the initial westerly flow was

reduced to 8 m/sec. Figure 9 shows the result of this case. The

first three figures are for the height deviation and the last figure

shows the pattern of the y-component of the velocity at 20 days. It

is seen that the system of highs and lows generated by the obstacle

tends to be localized in this weak westerly flow case, and it is not

clear, at least in the height deviation fields, how many waves are

generated. However, it is seen from the fourth figure which shows

the pattern of the y-component of velocity, that the number of waves

may be somewhere around 5 to 6.

7. Theoretical considerations

In this section, we shall attempt to give some explanations for

several unique features in the numerical results described in the

last section. As we mentioned in section 3, the flows generated by

the obstacle are quasi-geostrophic in character. We can, therefore,

approximate the velocity field V in terms of the height field 4

with the use of the geostrophic wind relationship V/==- -7/KVv ,

where 1/ is the vertical unit vector. We shall consider small

amplitude perturbations superimposed on a constant zonal current

0U . With these as assumptions, we obtain the following linear

equation for the perturbation height . :
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(7.1)

where 2. + , .

A solution which is proportional to COS 7~'- x[ ik(X-Ct)

satisfies both the boundary condition (the y-component of geostrophic

wind vanishes along the northern and southern boundaries) and the

homogeneous part of (7.1), if the phase velocity satisfies the

following frequency equation

kC = -.o - 0---- - (7.2)

which is known as the Rossby-Haurwitz wave formula (see Rossby and

Collaborators, 1939 ; Rossby, 1949; and Haurwitz, 1940a). In (7.2),

Q( = 7t /L and k==27t./LX where L. is the half

wavelength of the disturbance in the y-direction and L.x is the

full wavelength in the x-direction. As we have seen in the evolution

of height deviation fields, only a single mode predominates in the

y-direction in most cases. Therefore, we shall assume that L.1. is

equal to the width of the channel W . In the x-direction, let us

denote Ly to be L /1 where L is the length of the channel

between the east and west boundaries and then j becomes the number

of waves appearing in the channel.
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If we ask for the stationary state C = 0 in (7.2), we can

find the relationship between U. and for given values of

L , / and latitude, e . Expressing to be -W- cos Q

where CL is a mean radius of the earth, the stationary condition

of (7.2) can be written as

_______ _ -.A52)( ( -)-- = ((, -jj/ (7.3)

.Lc cos e 2  L W .

The quantity on the left-hand side of (7.3) is the ratio of the

fluid's relative velocity to the absolute velocity of the obstacle

at latitude 0. We shall refer to this ratio (R as the

kinematic Rossby number after Long, Fultz and Frenzen (loc. cit.).

Since the center of the obstacle is located at 45 N, we chose Q = 45 0

Using the numerical values (5.1) as discussed in section 5, we

calculated the values of R. for various values of as listed in

Table 2(a). On the other hand, in Table 2(b), we show the corresponding

values of Rf for the three westerly cases of UL = 8, 20 and 40 m/sec

and observed number of waves in each case.
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Table 2

(a) Theoretical relation between the number of waves and the

kinematic Rossby number R ( == Z /(W . CO S 5) ) as

computed from (7.3).

(b) Observed relation between P , f and initial westerly speed (L

a. Theoretical b. Observed

iR. __ "ii(m/s)

1 0.200

2 0.125 2 0.122 40

3 0.0769 3-4 0.0611 20

4 0.0500

5 0.0345

6 0.0250 5-6 0.0244 8

7 0.0189

8 0.0147

In Figure 10, the ordinate, j , shows the number of waves

plotted against the various values of the kinematic Rossby number R ,

(abscissa) as shown in Table 2(a). The vertical arrows show the

observed ranges of for a given value of fR as listed in

Table 2(b). The general agreement between the observed and

theoretical values indicates that the waves produced by the obstacle



-22-

are indeed the "planetary" waves of Rossby-Haurwitz type. Long,

Fultz and Frenzen (loc. cit.) found also in their laboratory

experiments discussed in the Introduction, that the observed number

of waves agrees with the numbers expected from the stationary

Haurwitz wave formula (Haurwitz, 1940b). It is interesting to note

a general agreement between the results of the laboratory experiments

and the present numerical experiments in spite of simplifications

introduced in the numerical model.

Next we shall attempt to give an explanation of why the

differences exist between the characteristics of the westerly

and easterly flows past the obstacle as observed in the numerical

experiments. In the steady state, (7.1) reduces to

+ *.-Now&H. (7.4)

The solutions of equations similar to (7.4) have been discussed by

Stewart (1948), Charney and Eliassen (1949), Bolin (1950) and others.

However, these authors studied only the case of LA O0 ,

westerly flows. Here we shall consider a more general case including

S 0 , easterly flows. To simplify the analysis, it is

assumed that the channel is extended to the plus and minus infinity

in the x-direction taking the origin of the coordinate at the center

of the mountian.
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The boundary conditions are that (1) t must vanish at

L= WV/2 and ==-V/2 , and (2) A- remains finite at

C-= C0~o . Because of the condition (1), it is convenient to

expand and H in terms of Fourier series. We set

H (x,)(-/x)cos(2 X
" W

where Op is to be computed and

w/ 2.

Substituting (7.5) into (7.4) we obtain an ordinary inhomogeneous

equation for 0 (X) :

(7.5a)

(7.5b)

(7.6)

where Ar
tUL

This equation with the boundary condition (2) can be solved using

a standard method. Once is computed, , may be expressed

in the following form:

dl~r wpowlmftdommom I

(~c)l
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o0 w/2.

where (X , 'I S, ) is the Green's function which is given as

follows:

Class 1, (" 0 .

(7.8)

The form of the Green's function suggests that (7.7) is a wave-

like solution.

Class 2, 0 < 0.

COS()7 CQ6S( )

-- (7.9)

where the plus sign is for < and the minus is for

The form of the Green's function indicates that (7.7) shows an

exponentially decaying solution.



The case of easterly flows, (L < 0 , falls into Class 2. The

distance ]) defined by

2 -1/2

denotes the horizontal scale in the x-direction for which the Green's
-I

function (7.9) decreases by the factor of e. (=0.3679). To

evaluate the magnitude of ) , let us assume =- |I , which

corresponds to a simple-mode solution in the y-direction. For the

following numerical values,

W i83aS = 313.o 073 K 1X

- . _ . (7.10)

/3 = 6 1,6 5x- x I0S m' sec a (t 5"° )

the values of ) for various intensities of Lk are listed in

Table 3.

Table 3

The values of 3) against various values of U .

UL (m/s) 40 30 20 10

D) (km) 1290 1166 998 743

It is seen from Table 3 that the intensity of perturbation decreases

-I
by a factor of e within a distance of about 1000 km. This result

suggests that the modification of flow, due to the presence of an
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obstacle in easterly flows, affects only the vicinity of the

obstacle which is in agreement with the result of Case C in Section 6.

In the case of westerly flows, L ' O0 , the solution (7.7) falls

into either Class 1 or Class 2 according to

Class 1 (wave type )

S< re (7.11)

Class 2 (decaying type)

where . -- - , the critical modal number which is

derived by setting 07 = 0. Table 4 shows the value of )c for various

intensities of LL and the numerical data (7.10). A relationship

similar to (7.11) was also pointed out by Magata (1957).

Table 4

The critical modal number Yc versus

Yc 1 2 3 4 5

C (/S) 81.9 20.5 9.1 5.1 3.3

The inequality (7.11) indicates that the perturbations whose modal

number is larger than rc are not of wave type, but of exponentially

decaying type. From Table 4, it is seen that for LL = 40 m/sec,

only the perturbations with a single mode in the y-direction are

expected to appear as wave type (as observed in Case A in Section 6).

On the other hand, for (U = 8 m/sec, the perturbations with one,

double and triple modes can appear as wave type solutions, and there-

fore the development of a small-scale pattern in the y-direction can

be expected (as observed in Case D).
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7. Conclusions

The study was made to clarify the dynamical effect of the

earth's topography upon the large-scale motion of the atmosphere.

The model is based upon the barotropic equations in Eulerian form.

The results of the numerical integrations demonstrate that:

(1) The use of the stationary solutions (3.1) as the

initial conditions of the problem yields quasi-geostrophic motions

in the presence of mountains in the model.

(2) Westerly flows past the circular mountain produced a

train of long waves on the lee side of the mountain. If the

latitudinal variation of the Coriolis parameter is neglected (in

the case of the tangent plane approximation), such a train of

waves does not appear.

(3) The characteristics of the long waves found in (2)

are identified as "planetary" waves. The number of waves generated

in the westerly cases agrees with the number expected from the

steady-state Rossby-Haurwitz wave formula for various intensities of

the zonal flow past the mountain.

(4) Easterly flows past the mountain do not generate a train

of long waves. The characteristic differences between westerly and

easterly flows past an obstacle are explained based upon the Green's

function solutions of the steady-state linearized equations of the model.
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The meteorological implications of the present results will

be discussed in a separate article.
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Fig. 1: The rotating hemispherical shells for studying two-dimensional motions of
homogeneous fluid around an obstacle used by Fultz, Long and Frenzen.
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Cross Section of Spherical Shell With Obstacle.

Fig. 2: A cross section view of the shells and the position of the obstacle.



Westerly Case Easterly Case

Fig. 3: Two schematic sketches of the flow patterns observed relative to the obstacle.

Left: Westerly flow case. Right: Easterly flow case. Notice the remarkable differ-

ences between the two patterns. (After Fultz, Long and Frenzen.)
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Constant f, U = 20 m/s

Fig. 5: Evolution of height deviation field for Case A. Time, in days, is

given in upper right corner of each chart. Circular obstacle is indicated

by the circle. Contours are drawn every 50 meter interval.



Variable f, U = 20 m/s

Fig. 6: Evolution of height deviation field for Case B. Notice remarkable

differences between the two Cases A and B.



Variable f, U = - 20 m/s (easterly case)

Fig. 7: Evolution of height deviation field for Case C. Observe remarkable

differences between Cases B and C.



Variable f , U = 40 m/s

Fig. 8: Evolution of height deviation field for Case D. Contours in this

case are drawn every 100 meter interval.



Variable f, U 8 m/s

y- Component of Velocity

Fig. 9: Evolution of height deviation field for Case E. The fourth figure

shows the pattern for the y-component of velocity at 20 days.
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Fig. 10: Number of waves, j , plotted against kinematic Rossby number R

as shown in Table 1(a). Vertical arrows show the observed ranges of (

for a given value of R as listed in Table 1(b).
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