THE DYNAMICAL MORDELL-LANG CONJECTURE

DRAGOS GHIOCA
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF BRITISH COLUMBIA

A linear recurrence sequence $\left\{x_{n}\right\}_{n \geq 1}$ of complex numbers has the property that there exist a positive integer N and constants $c_{1}, \ldots, c_{N} \in \mathbb{C}$ such that, for all $n \geq 1, x_{n+N}=c_{1} x_{n+N-1}+c_{2} x_{n+N-2}+\cdots+c_{N} x_{n}$. It is natural to ask what is the structure of the set $S:=\left\{n \in \mathbb{N}: x_{n}=0\right\}$.

Skolem (in the case each $x_{i} \in \mathbb{Z}$), later Mahler (in the case each $x_{i} \in \overline{\mathbb{Q}}$), and finally Lech (in the general case) answered this question by showing that S is a union of at most finitely many (infinite) arithmetic progressions along with a finite set. It is indeed possible that S contains an arithmetic progression, for example, if $N=3, c_{1}=c_{2}=0$ and $c_{3}=1$, while $x_{2}=0$, then $\{2+3 n: n \geq 0\} \subseteq S$. We sketch briefly the method of Skolem-Mahler-Lech. There exist complex numbers r_{1}, \ldots, r_{m} and polynomials $f_{1}, \ldots, f_{m} \in \mathbb{C}[z]$ such that, for all $n \geq 1$,

$$
x_{n}=f_{1}(n) r_{1}^{n}+\cdots+f_{m}(n) r_{m}^{n} .
$$

The numbers r_{i} are the distinct, nonzero roots of the characteristic equation for the linear recurrence sequence: $x^{N}-c_{1} x^{N-1}-\cdots-c_{N-1} x-c_{N}=0$, while each polynomial f_{i} is not constant only if the corresponding r_{i} is a multiple root of the above equation. We let K be the finitely generated extension of \mathbb{Q} containing each r_{i} and each coefficient of each f_{i}. Then one can show that there exists a prime number p and a suitable embedding $K \hookrightarrow \mathbb{Q}_{p}$ such that each r_{i} is mapped into a p-adic unit, [1]. Furthermore, there exists $k \in \mathbb{N}$ such that $\left|r_{i}^{k}-1\right|_{p}<1$ and so, for each $i=1, \ldots, m$, the function $z \mapsto\left(r_{i}^{k}\right)^{z}$ is analytic on \mathbb{Z}_{p}. Hence, for each $\ell=0, \ldots, k-1$, we let G_{ℓ} be the p-adic analytic function given by

$$
G_{\ell}(z):=\sum_{i=1}^{m} r_{i}^{\ell} f_{i}(k z+\ell) \cdot\left(r_{i}^{k}\right)^{z}
$$

for each $z \in \mathbb{Z}_{p}$, and obtain that, for all $n \in \mathbb{N}, x_{n k+\ell}=G_{\ell}(n)$. Therefore $x_{n k+\ell}=0$ if and only if $G_{\ell}(n)=0$. But, similarly to a nonzero complex analytic function, a nonzero p-adic analytic function does not have infinitely many zeros in a compact set, such as \mathbb{Z}_{p}. So, for each $\ell=0, \ldots, k-1$, either $G_{\ell}(z)=0$ has finitely many solutions in \mathbb{Z}_{p}, and therefore in \mathbb{N}, or G_{ℓ} is identically equal to 0 , and thus $G_{\ell}(n)=$ 0 for all $n \in \mathbb{N}$. This yields that the set $S=\left\{n \in \mathbb{N}\right.$: $\left.x_{n}=0\right\}$ is a union of at most finitely many arithmetic progressions (of ratio k) along with a finite set.

The above argument can be formulated also in a geometric setting. Indeed, for any linear map $\Phi: \mathbb{C}^{N} \longrightarrow \mathbb{C}^{N}$ (i.e., a N-by- N matrix A with complex entries) and any point $\alpha \in \mathbb{C}^{N}$, again one can find a prime number p (together with a suitable embedding into \mathbb{Q}_{p} of α and of all entries of A), a positive integer k, and p-adic analytic maps $G_{\ell}: \mathbb{Z}_{p} \longrightarrow \mathbb{Z}_{p}^{N}, \ell=0, \ldots, k-1$, such that $\Phi^{n k+\ell}(\alpha)=G_{\ell}(n)$ for all $n \in \mathbb{N}$ (note that $\Phi^{n}:=\Phi \circ \cdots \circ \Phi$, where Φ is composed with itself n times). Hence the same reasoning as above regarding the discreteness of zeros for
nontrivial p-adic analytic functions yields that for any (linear) subvariety $V \subset \mathbb{C}^{N}$, the set $S:=\left\{n \in \mathbb{N}: \Phi^{n}(\alpha) \in V\right\}$ is a union of at most finitely many arithmetic progressions along with a finite set. An argument identical with this one yields the same conclusion for automorphisms Φ of \mathbb{P}^{N} defined over \mathbb{C}.

The above extension of the original Skolem-Mahler-Lech method to the geometric setting works since one has explicit formulas for the n-th iterate of a point under an automorphism of \mathbb{P}^{N}. Quite surprisingly, one can extend this p-adic method to any automorphism of an affine variety, [1], and even further to any étale endomorphism Φ of any quasiprojective variety $X,[2]$, even though in these cases there are no explicit formulas for the n-th iterate of a point $\alpha \in X(\mathbb{C})$. Nevertheless, one can show that there exist finitely many p-adic analytic functions G_{ℓ} that parametrize the orbit of α under Φ. Then again we obtain that for any subvariety $V \subseteq X$, the set $S:=\left\{n \in \mathbb{N}: \Phi^{n}(\alpha) \in V(\mathbb{C})\right\}$ is a union of at most finitely many arithmetic progressions along with a finite set. It is natural to ask whether the above conclusion holds for any endomorphism of any variety.

The Dynamical Mordell-Lang Conjecture. Let X be a quasiprojective variety defined over \mathbb{C}, let $V \subseteq X$ be a subvariety, let $\alpha \in X(\mathbb{C})$ be a point, and let $\Phi: X \longrightarrow X$ be an endomorphism. Then the set $S=\left\{n \in \mathbb{N}: \Phi^{n}(\alpha) \in V(\mathbb{C})\right\}$ is a union of at most finitely many arithmetic progressions along with a finite set.

An alternative formulation of this statement is to say that whenever $V \subseteq X$ contains no positive dimensional periodic subvariety periodic under Φ, then the above set S must be finite. The name of this conjecture comes from its connection with the Mordell-Lang Conjecture of arithmetic geometry (now a theorem due to Faltings), which states that the intersection of a subvariety of a semiabelian variety G with a finitely generated subgroup Γ of $G(\mathbb{C})$ is a union of at most finitely many cosets of subgroups of Γ. If Γ is a cyclic group generated by a point $\gamma \in G(\mathbb{C})$, the Mordell-Lang Conjecture reduces to the one stated above applied to the translation-by- $\gamma \operatorname{map} \Phi: G \longrightarrow G$. Also, there are counterexamples to the Dynamical MordellLang conjecture if X is defined over a field of positive characteristic, [3].

There are only a few partial results known for the above conjecture besides the case of étale endomorphisms, [2]; we list some of the cases below:
(1) if $X=\left(\mathbb{P}^{1}\right)^{N}$ and $\Phi\left(x_{1}, \ldots, x_{N}\right)=\left(\varphi_{1}\left(x_{1}\right), \ldots, \varphi_{N}\left(x_{N}\right)\right)$ for some classes of rational maps $\varphi_{i} \in \mathbb{C}(z)$ and some classes of subvarieties $V \subseteq X$, [4], [5]. For each such result, if the conditions on V are milder, then the conditions on the φ_{i} are stricter. For example, the Dynamical MordellLang Conjecture holds for any subvariety $V \subseteq X$ defined over $\overline{\mathbb{Q}}$ if $\varphi_{i}(z)=$ $z^{2}+c_{i}$ for some $c_{i} \in \mathbb{Z}$, for each $i=1, \ldots, N,[4]$. In the opposite direction, the Dynamical Mordell-Lang Conjecture holds for complex curves $V \subseteq X$ if $\varphi_{1}=\varphi_{2}=\cdots=\varphi_{N} \in \mathbb{C}[z]$ is a polynomial with no periodic ramified points, except for the point at infinity.
(2) if $X=\mathbb{A}^{N}, V$ is a complex line, and $\Phi\left(x_{1}, \ldots, x_{N}\right)=\left(f_{1}\left(x_{1}\right), \ldots, f_{N}\left(x_{N}\right)\right)$, where each $f_{i} \in \mathbb{C}[z],[7]$.
(3) if Φ is a generic endomorphism of $X=\mathbb{P}^{N}$ defined over $\mathbb{C},[6]$.
(4) if Φ is a birational polynomial morphism of the complex plane, [8].

Only for the results in (1) one relies heavily on the use of the Skolem-MahlerLech method to find suitable p-adic parametrizations of the orbit of α under Φ. In general, it is very difficult to find such parametrizations since one needs to
find a prime p such that the orbit of α does not meet the ramification locus of Φ modulo p. Heuristically it is even expected that this method might never work for endomorphisms of \mathbb{P}^{N} if $N \geq 5$, [4]. Also, for (2)-(4), the methods of proof do not seem to allow generalizations. So, one would need a new approach to prove the Dynamical Mordell-Lang Conjecture in its full generality. Finally, in [3] it is shown that in the Dynamical Mordell-Lang Conjecture the set S is always a union of at most finitely many arithmetic progressions along with a set T of Banach density 0 . However, proving that T is actually finite seems currently beyond the reach.

References

[1] J. P. Bell, A generalized Skolem-Mahler-Lech theorem for affine varieties, J. London Math. Soc. 73, 2, (2006), 367-379.
[2] J. P. Bell, D. Ghioca, and T. J. Tucker, The dynamical Mordell-Lang problem for étale maps, Amer. J. Math. 132 (2010), 1655-1675.
[3] J. P. Bell, D. Ghioca, and T. J. Tucker, The dynamical Mordell-Lang problem for Noetherian spaces, arXiv:1401.6659.
[4] R. L. Benedetto, D. Ghioca, B. A. Hutz, P. Kurlberg, T. Scanlon, and T. J. Tucker, Periods of rational maps modulo primes, Math. Ann. 355 (2013), 637-660.
[5] R. L. Benedetto, D. Ghioca, P. Kurlberg, and T. J. Tucker, A case of the dynamical MordellLang conjecture (with an Appendix by U. Zannier), Math. Ann. 352 (2012), 1-26.
[6] N. Fakhruddin, The algebraic dynamics of generic endomorphisms of \mathbb{P}^{n}, Algebra \& Number Theory (to appear).
[7] D. Ghioca, T. J. Tucker, and M. E. Zieve, Intersections of polynomial orbits, and a dynamical Mordell-Lang conjecture, Invent. Math. 171 (2008), 463-483.
[8] J. Xie, Dynamical Mordell-Lang Conjecture for birational polynomial morphisms on \mathbb{A}^{2}, arXiv:1303.3631.

