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Summary. Subduction zones are expressed topographically by long linear 
oceanic trenches flanked by a low outer rise on the seaward side and an 
island arc on the landward side. This topographic structure is reflected in 
free air gravity anomalies, suggesting that much of the topography originates 
from dynamical forces applied at the base of the crust. We have successfully 
reproduced the general topographic features of subduction zones by 
supposing that the stresses generated by the bending of the viscous lower 
lithosphere as it subducts are transmitted through the thin elastic upper 
portion of the lithosphere. The trench is due to a zone of extensional flow 
(associated with low pressure) in the upper part of the viscous lithosphere. 

The stresses in the subducting slab are computed using a finite element 
technique, assuming a Maxwell viscoelastic constitutive relation. Various 
dips (10 to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA90") were investigated, as well as depth dependent and non- 
Newtonian (power law, n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 3) viscosities. Observed subduction zone 
dimensions are well reproduced by these models. The effective viscosity 
required at mid-depth in the lithosphere is about 6 x lo2* P. This low value is 
probably due to the stress dependence of the effective viscosity. However, 
these models also show that the topography of the subduction zone depends 
primarily upon the geometry of the subducting slab (dip, radius of curvature 
of the bend) rather than upon' its rheology. Shear stresses beneath the trench 
reach maxima of approximately 50 MPa. An interesting feature of some 
solutions is a dynamically supported bench or platform between the trench 
and island arc. 

1 Introduction 

The large scale topography and free air gravity profiles of subduction zones are nearly 
universal. Virtually every one of the Earth's subduction zones is expressed by a deep linear 
or gently curved trench 1.5-5 km deep, 100-200 km wide, and up to 5000 km in length. 
This trench is flanked by a topographic high which rises 2-4.5 km above the mean level of 
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3 34 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
the seafloor. The high is not as regular as the trench, since it may consist of either conti- 
nental crust or an island arc. Seaward of the trench a low topographic rise, the ‘outer rise’, 
is commonly found. This broad rise crests about 100 lun from the trench axis and is never 
more than zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA500 m high. 

Hayes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Ewing (1970, Fig. 19) plotted 35 projected topographic profiles of subduction 
zones, aligning only the trench axes. This plot, in which vertical and horizontal dimensions 
were not normalized, shows that the different trench profiles roughly define a single, 
universal, curve. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

This similarity of topography also extends to free air gravity anomalies (Hayes & Ewing 
1970; Watts & Talwani 1974). The outer rise is associated with t 50 to t 80 mgal free air 
gravity anomalies, the trench has from - 200 to - 350 mgal anomalies, and the island arc 
or continental margin adjacent to the trench shows t 50 to t 250 mgal anomalies. The width 
of the positive anomaly associated with the continental margins or island arc is about the 
same as the width of the trench. This anomaly is nearly an inverted image of the trench 
anomaly, in contrast to the topographic profile for which the correspondence is less exact. 
Fig. 1 shows these relations schematically. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

H. J. Melosh and A. Raefsky zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Figure 1. Schematic cross section of a typical subduction zone, showing a highly exaggerated outer rise, 
height Wb, with crest posistioned a distance Xb from the outer trench wall’s intersection with the level of 
undeflected seafloor (dashed line). The trench’s depth is wt, total width xt. and the distance from the 
trench axis (the deepest part of the trench) to the outer wall’s intersection with the level of undeflected 
seafloor is xtb. The difference between X t b  and xt/2 is a measure of the trench’s asymmetry. The bench 
which develops for the circular arc velocity profiles is shown schematically, along with the island arc high. 
The topography of a subduction zone is reflected in the free air gravity anomaly profile, sketched above. 
At the bottom of the figure is a cross section of the subduction zone with no vertical exaggeration, 
showing that in reality surface dips are very small and that the deflection of the lithosphere in the trench 
is much less than the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc .  100 km thickness of the lithosphere. This deflection can thus be neglected in 
computing the flow field due to bending of the subducted slab. 
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The similarity of both topographic and free air gravity profiles for nearly all subduction 

zones strongly suggests that a single process acts to produce these features. The existence of 
large free air anomalies further suggests that this process is dynamic: forces generated during 
subduction act on the surface of the Earth to produce the observed topography. 

In this paper we propose that these forces are due to viscous stresses generated by the 
bending of the oceanic lithosphere as it is subducted. The lithosphere is treated as a two- 
layer composite: an elastic layer 15-30 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAkm thick overlies a highly viscous layer 50-80 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAkm 
thick. This model accords with the observations of Walcott (1970), Watts, Cochran zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Selzer 
(1975), Watts (1978) and McNutt & Menard (1978) on the flexural rigidity of the oceanic 
lithosphere for loads of more than a few Myr duration (which is the mechanical time-scale 
for subduction). Beneath the lithosphere the asthenosphere is a layer of especially low 
effective viscosity ( 1019-1021 P) which probably decouples the lithosphere from the mantle 
below (Elsasser 1969). 

As the lithosphere subducts and bends downward, extensional flow in the upper part of 
the very viscous lower layer produces a low pressure zone. This low pressure zone is the 
source of the topographic low that we recognize as an oceanic trench. (Similarly, a high 
pressure zone produces a topographic and free air gravity high.) To see how a low pressure 
zone in the lithosphere results in a trench, first imagine a simplified situation in which 
there is no water in the ocean basin. In this case, the top of the lithosphere must be a surface 
of zero normal (and tangential) forces - a free surface. Since the flow is quasi-static, and 
inertial forces are negligible, the development of a zone of low pressure beneath the crust 
must be compensated by a decrease in thickness of the overlying rock (and associated 
lithostatic pressure) large enough to balance the pressure decrease at depth: 

Ah = AP/pcg  (1) 
where Ah is the increase in the depth of the sea floor, AP is the decrease in pressure at the 
base of the crust, p c  is crustal density and g is the acceleration of gravity. This increase in 
depth insures that there is no net normal force at the surface. When seawater is present the 
effective density of the crust is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( p ,  - pw),  where pw is the density of seawater. Otherwise, 
the results are the same in the presence of seawater as without it. 

This argument relating pressure (or stress) at the base of the crust to topography is 
approximate. It neglects the ability of the elastic part of the lithosphere (the upper 15- 
30 km) to transmit normal forces to moderate distances. The effect of the elastic lithosphere 
is much like a filter: deflections due to normal forces with wavelengths much longer than 
a cut-off wavelength (given by the flexural parameter, a) are transmitted through the litho- 
sphere essentially unaltered. Deflections due to shorter wavelength forces are smoothed and 
averaged (Officer 1974). The observed flexural parameter of the oceanic lithosphere is 
between 40 and 75 km (Walcott 1970; Watts et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAai. 1975; McNutt & Menard 1978). Oceanic 
trenches, characterized by distance scales of 100 km or more, are thus not strongly 
influenced by the elastic part of the lithosphere. 

The elastic lithosphere’s difficulty in supporting loads with wavelengths comparable to 
oceanic trenches is epitomized by the large fibre stresses required to explain the outer rise 
on the basis ofelastic flexure models (Hanks 1971). Much smaller stresses are obtained if it is 
assumed that the outer rise is due to viscous stresses generated in the lower part of the 
lithosphere and transmitted nearly unaltered to the surface (Melosh 1978). Flexure of the 
elastic lithosphere may account for some percentage of the surface deformation, and may 
modify somewhat the deflections due to forces generated at the top of the viscous lower 
lithosphere, but the dominant effects must be due to deep-seated viscous forces. Although 
the elastic lithosphere does bend sharply during subduction, and would certainly develop 
multi-kilobar internal stresses if it were perfectly elastic, the observation of many normal 
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336 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
faults on the outer trench walls (Jones zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al. 1979) and the observed seismicity (Chapple zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& 
Forsyth 1979) suggest that the elastic lithosphere fractures at stress levels less (and perhaps 
much less) than a kilobar. Since much larger surface extensional stresses than this are 
necessary to support the entire outer rise elastically, viscous stresses must make up the 
difference. For example, if the elastic lithosphere can support no more than a few hundred 
bars of differential stress (Chinnery 1964), then less than 10 per cent of the outer rise height 
can be due to elastic bending stresses. In OUT model, such elastic stresses do not need to be 
present at all: the model would work perfectly if the lithosphere were a flexible, but in- 
extensible, sheet. For the purpose of this paper, we assume that elastic bending stresses are 
unimportant. 

This assumption is further supported by the observation of normal faulting earthquakes 
which extend to 70 km depth in the oceanic plate (Kanamori 1971 ; Stewart 1978). Since the 
lower half of a flexed elastic plate 30 km thick is in compression, such events appear to rule out 
flexure of the elastic lithosphere as a major contributor to the topography of the outer rise. 

In this paper we focus on the viscous lower lithosphere. The elastic upper part of the 
lithosphere is treated approximately (it applies a constant velocity boundary condition), 
as is the asthenosphere below (it is treated as a decoupling zone). Forces due to density 
differences are included implicitly, as part of the boundary condition. We thus compute 
the stresses in the subducting lithosphere due to bending alone, and evaluate these stresses 
on its upper surface. We show that these stresses result in a deflection of the lithosphere of 
the correct shape and size to explain the oceanic trench, the outer rise, and part of the island 
arc (which we postulate is due to high pressures developed in the unbending portion of the 
lithosphere and transmitted to the surface through the overlying complex of upper mantle 
and crustal rocks). We aim to explain only the first order topographic features: trench, outer 
rise and island arc, hence we neglect the shorter wavelength response of the elastic litho- 
sphere. Although we thus expect deviations in detail from the results presented in this 
paper, we believe that the general conclusions are correct. 

To implement even this limited goal, we found it necessary to employ numerical 
methods. A finite element code, constructed especially for tectonic problems, is used to 
compute the stresses and deformation in a lithospheric slab subducting at various angles with 
either constant Newtonian viscosity, depth dependent Newtonian viscosity, or constant 
non-Newtonian ( n  = 3) viscosity. 

These complex numerical models are not, however, necessary to obtain an order of 
magnitude estimate of the effective viscosity in the lower lithosphere. The stress on the base 
of the lithosphere zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis given roughly by A P =  2veff6, where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP is a representative strain rate; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
i is approximately the change in velocity of the slab during subduction, u sin 0 ,  divided by 
the lithosphere thickness, H. u is the convergence velocity and 0 the dip of the slab. Since 
the stress APis related to the topography by equation (l), we have zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

H. J. Melosh and A. Raefsky 

Taking Ap = 1.7 gm ~ m - ~ ,  g = 980 cm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs - ~ ,  Ah = 4.5 km, H = 70 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAkm, u = 70 mm yr-', and 
6 = 45', we find qeff = 2 x P. Although this viscosity seems somewhat low for mid- 
depth in a Newtonian lithosphere, a non-Newtonian rheology makes this plausible, since the 
deviatoric stresses near the bend axis reach several hundred bars. 

2 Boundary conditions for the model 

The stresses and flow field in the viscous lower lithosphere can be computed only after 
appropriate boundary conditions are specified. Earthquake locations define the geometry 
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of the downdipping slab after it is subducted. It is reasonable to assume that, in a coordinate 
frame in which the bend zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaxis is fixed, the velocity of the subducted slab is the same as the 
plate before subduction (especially above 700 km where earthquakes attest to the rigidity 
of a portion of the lithosphere). This assumption is supported by the approximate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(c. 10 per 
cent) agreement between subduction rates estimated from seismic moment sums (Davies zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
& Brune 1971) and rates estimated from rigid plate tectonics. The top of the viscous part of 
the lithosphere is thus subject to kinematic, or velocity, boundary conditions. These 
boundary conditions are enforced by the overlying elastic lithosphere. The resistance of the 
elastic lithosphere to compression or extension constrains the velocity to be nearly constant 
and tangent to the surface of the lithospheric slab. The elastic lithosphere imposes this 
constraint by exerting forces on the viscous lower lithosphere. Long wavelength normal 
forces are transmitted through the lithosphere nearly unchanged. These forces are balanced 
by topography on the Earth’s surface. Tangential forces are converted to compressional or 
extensional stresses in the elastic lithosphere. If the shear stress on the base of the elastic 
lithosphere is & zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(x), and the upper surface is free zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(0, = 0), then a stress must appear 
in the elastic layer (see Melosh 1977, for a derivation) 

where T is the thickness of the elastic lithosphere. Once the slab is subducted ox, no longer 
vanishes on top of the elastic lithosphere. Stresses in the elastic lithosphere are thus in- 
determinate after subduction. However, we show below that so long as the elastic litho- 
sphere continues to move at constant velocity, stresses in the viscous lithosphere are 
determined. 

Velocity boundary conditions on one surface of the viscous lithosphere cannot determine 
the stress and velocity fields within it. Other boundary conditions are required. Such 
conditions are supplied by the asthenosphere beneath the lithosphere (we approximate these 
two regions as discrete layers, although they are likely to be gradational in their mechanical 
properties). The asthenosphere is a zone of low viscosity (10”-1021 P) underlying the litho- 
sphere. The stress it exerts on the base of the lithosphere is probably orders of magnitude 
less than the stress developed in the lithosphere at comparable strain rates. The boundary 
condition at the base of the lithosphere is thus well approximated by assuming it is free of 
shear stress and normal stress other than that due to hydrostatic pressure. 

Note that hydrostatic stresses are not included in the following computations: they can 
always be added to the dynamic stresses, however, and do not influence the results in any 
way. The difference in density between the slab and the upper mantle appears as a normal 
force on the surface of the slab. This force must be exerted on the slab in order to maintain 
the assumed geometry. The present approach says nothing about the origin of this force: 
it presumably originates in the dynamics of flow in the mantle outside the slab (Sleep 
1975). The object of this paper is to show that, regardless of such dynamical unknowns, 
the geometry and rheoZogy of the bending slab alone determine the stresses in the slab, 
and hence the topography of the subduction zone. 

The velocity and stress boundary conditions discussed above uniquely determine the 
stress and velocity fields everywhere in the viscous lower lithosphere (Batchelor 1970). It 
is not necessary to know anything about stresses exerted on the subducting slab by gravity, 
by the overthrust slab, or even by flow in the back-arc region: such forces do determine the 
geometry of the subducting slab, but since this is already known from earthquake locations, 
the stresses in the viscous part of the subducting slab can be computed. Thus, kinematic 
boundary conditions derived j?om the observed geometry of the subducting slab completely 
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338 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
determine the stress field zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin the lower lithosphere. This is fortunate for our purposes, since 
we can relate the topography and free zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAair gravity of the subduction zone to the bending slab 
without having to work out the complete dynamics of flow in the mantle. 

Even with these straightforward boundary conditions, and the limited goal of computing 
the stress and velocity fields in the viscous lower lithosphere, the complex boundary shapes 
and possible complex rheology of the lithosphere prevent exact analytic solutions. Melosh 
(1978) solved an approximate analytic model which assumed constant Newtonian viscosity 
and a planar lower boundary. Although the results of that study were encouraging, applica- 
tion to the Earth requires consideration of large dips (up to nearly 90" in the Mariana 
Trench), depth dependent viscosity, and non-Newtonian rheology (Weertman zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Weertman 
1975). These phenomena can only be studied numerically. We thus constructed a finite 
element model of the viscous lower lithosphere, bounded on top by the elastic lithosphere 
(represented by a velocity boundary condition; fxed velocities are applied at each top node 
point), and bounded on the bottom by a stress-free surface representing the asthenosphere. 

Fig. 2 shows examples of the two finite element grids used in this investigation. Both are 
shown for 45' dip and a radius of curvature of 1.85H(H= slab thickness) at the bend axis. 
The grid in Fig. 2(a) is composed of three distinct parts: a horizontal rectangular grid, a 
section of a circle (actually a cylinder in three dimensions) and a rectangular grid dipping at 
45". Plane strain elements are used throughout, so we actually model an infinite length 
trench. The grid in Fig. 2(b) is constructed from an error function deflection described later. 
Its curvature changes continuously, unlike Fig. 2(a) which has zero curvature on the straight 
sections and constant curvature on the circular section. The slab dip and radius of curvature 
in the bend are varied in our calculations. The results depend strongly upon both parameters. 

These grids are constructed so that a line of elements approximates a streamline of the 
flow (we work in a frame of reference fured with respect to the bend so that the flow is 
steady). The grid remains fured while velocity vectors are computed at the node points. It 
is not necessary that the sides of the elements be parallel to streamlines, but accuracy is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

H. J. Melosh and A. Raefsky 

I ! ! !  ! ! ! ! I I 

Figure 2. Finite element grids used in the numerical computations. The radius of curvature in the bend is 
R for both circular arc (a) and error function (b) grids. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 is the angle from the beginning of the bend in (a) 
and s is arc distance from the bend in axis in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(b). A node point is located at the corners of each quadri- 
lateral element. 
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higher if this occurs, especially when variable viscosity is used. Small components of flow 
into or out of the grid boundaries in the bend can develop without leading to serious errors. 

The two grid types are associated with slightly different velocity fields. In both cases the 
velocity boundary conditions are applied so that the velocity vectors are nearly tangent to 
the grid. The simplest choice is to make the velocity vectors precisely tangent to grid 2a: 

horizontal section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 

u , = - v  

circular arc I uy = - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu sin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 
u, = - ucos 

uy = - u sin 6 
dipping section 

ux = - ucos e 

(4) 

where 6 is the dip angle of the slab and 4 is the angle between the beginning of the bend and 
the grid point at which the velocity is evaluated (Fig. 2(a)). u is the net convergence velocity 
in the subduction zone. The derivative of the velocity condition equation (4) is dis- 
continuous at the beginning and end of the bend, leading to trouble when strain rates are 
evaluated (Fig. 3, curve a). We thus employ a smoothed velocity profile in the circular arc 
section (Fig. 3, curve b): 

ux - --JW. (5) 

Dipping Section Horizontal Section 

ARC DISTANCE F R O M  BEND AXIS,  in units of R/sin (012)  

Figure 3. The vertical (downward) velocity component zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuy as a function of arc distance from the bend 
axis. The horizontal velocity component vx is chosen so that the total velocity is constant. Curve (a) 
velocity vectors are tangent to the circular arc grid (Fig. 2(a)). This profile has discontinuous derivatives 
at the ends of the circular arc section. Curve (b) is a smoothed version of profile (a) which has continuous 
derivatives. Curve (c) is the error function profile with velocity vectors tangent to grid (2b). These curves 
refer to a subduction zone with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA10" dip. Curves (a) and (b) are slightly different for higher dips. 
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340 

In order to compare the numerical results directly with the analytical results of Melosh 
(1978) and to study the effect of a slightly different geometry, we also investigate an error 
function velocity profile (Fig. 3, curve c): zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ. Melosh and A. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARaefsky 

v sin 6 
erfc zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(s/s,) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu y - - -  

2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 

v, = - J U G ;  

where s is arc distance from the bend and the cut-off parameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs, is given by 

2R 
s, = - sin (0/2) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

h (7) 

s, is adjusted so that the velocity vectors of equations (4), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(5) and (6) are identical at the 
bend axis (s = 0 or @ = 0/2) for small dips. The grid in Fig. 2(b) is constructed so that the 
sides of the elements are tangent to the velocity vectors (6) imposed on top. 

The bottoms of both finte element grids, Fig. 2(a) and (b), are left free: no shear or non- 
hydrostatic stresses are applied (we do not carry the hydrostatic stresses through the calcula- 
tion: these are implicitly subtracted at the beginning). The nodes at the ends of each grid 
are given the velocity of the corresponding topmost node. The grids are long enough that the 
slight errors induced by this condition do not affect the results (the error is at most 0.01 
per cent of the total velocity). 

3 The finite element model 

We now consider two finite element algorithms for quasi-static non-Newtonian visco- 
elasticity. We used these algorithms to develop a finite element code to model plate 
tectonics. 

The finite element method enables the modelling of complicated problems in geophysics, 
but the resulting equations may involve many thousand degrees of freedom. When the 
problem to be solved is timedependent and non-linear, the cost can be prohibitive. This 
has motivated research directed towards developing more efficient computer algorithms for 
transient non-linear, finite element analysis. 

Basically, there are two general classes of algorithms for time-dependent problems; 
implicit and explicit. Implicit algorithms tend to be numerically stable, permitting large 
time steps, but the cost per step is high and storage requirements tend to increase dramati- 
cally with the size of the mesh. On the other hand, explicit algorithms tend to be in- 
expensive per step and require less storage than implicit algorithms, but numerical stability 
requires that small time steps be employed. 

With the above in mind, a number of recent papers have described new explicit and 
implicit algorithms for quasi-static non-Newtonian visco-elasticity. In particular, we have 
been motivated by the work of Hughes & Taylor (1 978) and Cormeau (1975). 

Non-Newtonian visco-elasticity can be described by the following constitutive equations: 
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where 

We define the following notation: B zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= B(x)  is the strain-displacement matrix, D = D ( x )  

is the matrix of elastic properties, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
K =  IaBTDBdsl 

is the stiffness matrix, FN = F ( ~ N )  is the nodal force vector at time t ~ ,  UN = U(t,) is the 
nodal displacement vector, and UN = ~ ( x ,  tN)  is the stress vector. 

(1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-v) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv 0 

V zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1 -v) 0 

0 0 (1 - 2v) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
H] 

1 -1 0 -+ 1 0 

4 q 0  0 4  

-1 
$P =- (3 I-: 1 

4q 0 0 

The fmite element code we developed contains both algorithms described in the Appendix. 
For the work reported in this paper, we used the implicit algorithm for all linear problems, 
(i.e. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn = l), and the explicit algorithm for all non-Newtonian problems (i.e. n = 3). Note that 
the volume strain, exx + eYv, which would normally have to be treated by a penalty function 
technique for incompressible flow, is handled in a natural way by this code: it remains 
elastic while the shear strains are governed by viscous flow plus elasticity. The pressure field 
is thus never decoupled from the rest of the stress tensor and no problems arise in trying to 
maintain incompressibility. This result is, moreover, closer to reality as well as convenient 
numerically. 

4 Results of the models 

4.1 CONSTANT NEWTONIAN VISCOSITY W I T H  E R R O R  FUNCTION V E L O C I T Y  

PROFILE 

Fig. 4 shows the results of a typical finite element run for a lithosphere subducting at 45' 
dip with a radius of curvature R = 1.85 H ( H =  lithosphere thickness) at the bend axis. 
Grid 2b and boundary conditions (6)  are used in this example. The viscosity is assumed to 
be Newtonian, and is the same in every element. The time dependent calculation is stopped 
after 50 Maxwell times TM ( T ~  = q/G where q is the viscosity and G the rigidity of the lower 
lithosphere), when the viscoelastic transient response of the system has damped out. 

Fig. 4(a) is a plot of the vertical stress uUv on the top of the viscous lower lithosphere. 
This stress is transmitted through the flexible elastic lithosphere and results in surface 
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-0.15 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANEW TON I AN, CONSTANT 

VISCOSITY 
- -0.3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

H. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ. MeIosh and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA .  Raefsky 

I I I I I I I I I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- 4  - 3  -2 I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 I 2 3 4 5 

DISTANCE FROM BEND AXIS, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin units of H 

Figure 4. The graphs in the upper half of this figure (part a) show the vertical stress acting on the base of 
the elastic lithosphere u,,,, and the horizontal stress in the elastic lithosphere a& (which must be present 
to balance shear stresses on its base). The dots on the smooth curves show the location of the centre of 
the element in which the stress was evaluated. These plots refer to the simple error function velocity 
profile with radius of curvature R = 1.85 H ,  dip 45", cut-off sc = 0.8 H .  Constant Newtonian viscosity is 
assumed. Stresses are measured in units of q u / H ,  and compressional stresses increase upward so that the 
u,,,, profde models topography. The outer rise is seen on the right of the figure and the trench and island 
arc form on either side of the bend axis. a:$ is in extension everywhere seaward of the trench axis. 
Distances are in units of the lithosphere thickness, H .  Contour plots in the lower half of the figure show 
pressure ( p  = -(a, + a,)/2) and invariant shear stress (T = (a, - u,)/2) in units of qu/H. Note the region 
of low pressure beneath the trench and high pressure near the island arc. A rise in the contours to the 
right of the trench results in the outer rise. Shear stresses are maximum in the bend axis where they reach 
values comparable to u,,,, in the trench (about 0.4 qu/H, corresponding to c .  500 bars for a 4.5 km deep 
trench). The distance scale of these plots is the same as in the graphs of u,,,, and a:$ above, and there is 
no vertical exaggeration. 
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topography (equation (l)), as noted on the scale to the left of the figure. Features such as 
the outer rise, trench, and island arc appear on this plot. All stresses in the model are scaled 
by the factor qu/H. Also in Fig. 4(a) is a plot of the extensional stress zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu$ in the elastic 
lithosphere (equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(3)). As noted previously, this stress is defined only where the upper 
surface of the lithosphere is free. The sign of this stress agrees with many normal faulting 
earthquake events in the outer trench region (e.g. 1933 Sanriku Earthquake, Kanamori 
1971; 1977 Indonesian Earthquake, Stewart 1978), some of which appear to cut completely 
through the elastic lithosphere. 

Fig. 8(a) shows the direction, magnitudes and sign of the principal stress axes. Lines 
represent extensional stresses, triangles compressional stresses. Note the region of extension 
beneath the trench where the lithosphere is in extending flow. Where the lithosphere 
unbends, shortly after subduction, compressional stresses may be responsible for 
dynamically maintaining some of the topography (and most of the free air gravity anomaly) 
of the island arc. The directions of potential fault planes can be estimated from this diagram. 
Since the bottom of the lithosphere is a free surface, the principal stresses should be either 
parallel or perpendicular to it. Although Fig. 8(a) shows this to be true in most places, 
there are some violations of this rule in the bend axis. This occurs because the stresses in 
the finite element model are evaluated at the centre of each element, not on its surface. 
Thus when stress gradients are high, as in the bend region, the stresses in Fig. 8(a) do not 
adequately represent the surface stresses. The topography on top of the slab, however, is 
not much affected by this approximation: various extrapolation schemes were used to 
relate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuy,, on the surface to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo,,,, at the topmost element midpoints, and less than 1 per cent 
changes were found. 

Fig. 4(b) and (c) is a contour plot of the pressure distribution p zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= -(ul + u2)/2 and 
invariant shear stress T = (ol - u2)/2, respectively. o1 and o2 are principal stresses, using the 
engineering convention that positive stress is extensional. The relationship between bending 
and unbending flow in the subducting lithosphere and the pressure distribution is clearly 
shown in Fig. 4(b), as well as the rise in compression contours that creates the outer rise 
(which is a reflection of the compressional region in the lowermost part of the lithosphere). 
Shear stress in the lithosphere reaches a peak at mid-depth near the bend axis. The 
maximum shear stress is roughly the same size as the pressure deficit under the trench, 
leading to maximum stress values of a few tens of MPa (hundreds of bars). 

The results summarized in Fig. 4(a) refer to a special geometry: dip = 45' and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR = 1.85 H .  

These results can be scaled to any viscosity q, rate of convergence u, and lithosphere thick- 
ness H by the parameter qu/H, but an investigation of the effects of different dips 0 and 
radii of curvature R requires other finite element runs. A number of such runs shows that 
many features of the stress distribution depend primarily upon the cut-off distance s, 
(equation (7)) rather than upon f3 or R alone. Fig. 9 shows that the ratio of rise crest height 
wb, to trough depth, wt, depends almost entirely upon sc/H. Similarly, Fig. 10 shows that 
rise crest width, xb/H,  trench width, xt /H,  and trench zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaxis to outer wall distance, xbt/H, 

depend more upon s,/H than upon dip angle. These figures also show that the finite element 
results agree very well with the analytic results of Melosh (1978). The largest discrepancy is 
in Fig. 9 where the ratio W b / W t  given by the analytical calculation is systematically about 
0.03 too large: the outer rise is too high by about 3 per cent of the trench depth. It is not 
clear whether this is due to the numerical approximations of the finite element code, or to 
the approximation of the analytical model. The effect is small, however, and in this first 
order model we do not consider this disagreement of analytical and numerical results to be 
important. 

Fig. Il(a) and (b) demonstrates the dependence of the trench depth and shear stress 
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upon dip angle and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs,/H: both are important. Note the excellent agreement between the 
trench depths predicted by the analytic and finite element models at 20" dip. The analytic 
model also predicts the rough linear dependence of trench depth on dip angle, for small 
angles. 

The agreement between the analytic and finite element models using low dips, constant 
Newtonian viscosity, and the error function velocity profile are evidence that the finite 
element code works properly. We may apply it with some confidence to situations which 
cannot be modelled analytically. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

H. J. Melosh and A. R a e f s e  

4.2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACONSTANT N E W T O N I A N  VISCOSITY WITH C I R C U L A R  A R C  V E L O C I T Y  

P R O F I L E  

As Fig. 5 shows, this case is similar to the previous one except for one interesting aspect. 
The curvature of the error function velocity profile and grid changes smoothly as distance 
from the bend axis increases. The curvature of the circular arc profile is nearly constant 
(except for the smoothing function, equation 5) in the bend and zero outside. As a result, 
lithospheric material which enters the bend is sharply turned down, rotates as a rigid body 
near the bend axis, then is sharply unbent as it enters the straight dipping section. These 
regions of sharp bending also account for the apparent narrowness and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc. three times greater 
depth of the trench in Fig. 5(a), compared to Fig. 4(a). Stresses in the region of rigid body 
rotation near the axis are low: such motion requires no internal deformation of the litho- 
sphere. This fact accounts for the small flat or bench in Fig. 5(a). The development of this 
bench depends mostly upon dip angle (only a small s,/H dependence is found). As the angle 
of dip increases the bench slope increases (the width is nearly constant at about 0.3-0.5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH 
in our runs with s, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0.8 and 1.6 H and dips between 10 and 90"). This zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsmall bench usually 
dips toward the island arc, giving a local reversal of slope. The nature of the bench is 
reflected by Fig. 5(c), where the shear stress contours show maxima near the ends of the 
curved section with a saddle point in between, where the lithosphere deforms by simple 
rotation without distortion. 

It is difficult to judge whether any of the well-known benches landward of oceanic 
trenches (Hayes & Ewing 1970) are due to this mechanism. Such benches are usually in- 
terpreted as accretionary prisms (Karig 1974), and we know of no evidence that requires 
dynamical support. The actual profiles of subducting slabs (whether they are best approxi- 
mated by the grid of Fii: 2(a) or (b)) are not well enough known to resolve this subtle 
question. We thus leave it as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAan interesting but unproven speculation that a part of the 
topography and gravity anomalies associated with these benches may be of dynamical origin. 
The resolution of this issue could be important for the sedimentary history of the trench, 
since the backward-sloping portion of the bench acts as a sediment trap. Increases of con- 
vergence rate or angle of subduction deepen this trap, so that perhaps correlations between 
these variables and sedimentary history are possible. 

4.3 D E P T H  D E P E N D E N T  N E W T O N I A N  V I S C O S I T Y  

A realistic description of the rheology of the lithosphere must allow its viscosity to decrease 
with depth. In reality, the viscosity probably varies from about 1026P at the base of the 
elastic lithosphere (corresponding to a Maxwell time of a few Myr) to lo2' P or less in the 
asthenosphere. This magnitude of viscosity variation is too great for our numerical methods 
to retain both stability and accuracy, so we report here on the qualitative results of a much 
smaller viscosity variation. We used an error function velocity profile (equation (6 ) )  and 
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1.5 V zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.3 
I I I I I I I I I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

-4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-3  -2 I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 3 4 5 

DISTANCE FROM BEND AXIS, in units of H 

345 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 5. Same as Fig. 4 ,  except that the stresses are plotted for the circular arc profile. Radius of curva- 
ture R = 1.85 H, dip -9 = 45", cut-off sc = 0.8 H, and constant Newtonian viscosity are assumed. Note the 
concentration of shear stress into two maxima, one at the beginning and one at the end of the bend. 
This is reflected by the bench which forms in the u,,,, profiie. The trench which forms in this case is 
narrower and about three times deeper than for the error function profile in Fig. 4 (note the scale 
changes). The stresses in the elastic slab u$\, however, are nearly the same size as those in Fig. 4. 

grid (Fig. 2(b)) dipping at 10 and 45" with a variety ofR (yielding s,/H= 0.4,O.S and 1.2). 
In these runs we allowed the viscosity of the topmost of the five elements in the lithosphere 
to be either 2.5 times or 50 times the viscosity of the lowest element. The viscosities of the 
intermediate elements were determined by linear interpolation of these extremes. Fig. 6(b) 
and (c) shows the pressure and shear stress contours for 45" dip, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR = 1.85H, and 50 times 
viscosity variation: a marked displacement toward the upper (high viscosity) layers is seen. 
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DISTANCE FROM BEND AXIS, in units of H 

Figure 6 .  Same as Fig. 4,  with R = 1.85 H ,  e = 45", sc = 0.8 H ,  and depth dependent Newtonian viscosity. 
The viscosities of the five layers of elements are, from the top down, 50,  37.75, 25.5, 12.75 and 1. An 
error function velocity profiie is applied. Note the concentration of shear stress and pressure contours 
toward the top and the generally lower stress vdues. Otherwise, the uyy profile shows no strong effects 
of the viscosity dependence. Stresses are in units of q o u / H ,  where qo is the viscosity of the topmost 
element. 

Figs 9 and 10 show that the rise crest height/trench depth ratio, the rise crest widths, and 
the trench width are very similar to the analytic and constant viscosity results for all runs. 
Evidently even a 50 times viscosity decrease does not significantly affect the geometry of 
the resulting trench and outer rise. The trench depth and shear stress in Fig. 1 l(a) and (b) 
depend more strongly upon the viscosity variation (when normalized by the topmost layer 
viscosity, qou/H). These results are summarized by a simple rule of thumb: if the viscosity 
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-0.4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASubduction zone topography zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
NON NEWTONIAN, n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-3  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-0,s 

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI I I I I I I 
-4 -3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-2 -1 0 1 2 3 4 

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
DISTANCE FROM BEND AXIS, in units of  H 

Figure 7. Same as Fig. 4, with R = 1.85 H ,  6 = 45’, sc = 0.8 H, and non-Newtonian (n = 3) viscosity. An 
error function velocity profile is applied. The trench is broader, more Ushaped and asymmetric than the 
Newtonian profiles. 0 2 ~  is extensional a considerable distance down the slab. The shear stress contours 
lack the concentrated maximum shown by Newtonian viscosity lithospheres. Stresses are in units of 
q,ffv/H, where qeff is the effective viscosity at the highest shear stress. 

depends linearly upon depth, the effective viscosity of the lithosphere is qeff = q0/2 when the 
viscosity of the topmost elements is more than a few times the viscosity of the lowest 
elements. This rule applies best for the strong, 50 times, viscosity variation. 

4.4 N 0 N -N E W TO N IAN R H EO LO G Y 

An increasing amount of evidence, both theoretical and experimental (Weertman & Weert- 
man 1975) and geophysical (Melosh 1976) suggests that the rheology of the mantle is non- 
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348 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH. J. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMelosh and A. Raefsky zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

FiguIe zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8. Rots (a), (b), (c) and (d) refer, respectively, to the stresses in the lithosphere for Figs 4, 5,  6 
and 7. These plots show the sign, magnitude and directions of the principal stresses in the bending litho- 
sphere. The triangular symbols show the direction of compressional principal stresses, lines represent 
extensional principal stresses, and the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsize of the symbol is proportional to the magnitude of the stress. 
The vertical arrows show the positions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the bend axes. 

Newtonian. The flow law seems to be adequately described as a power law of the form 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAqn is a constant (it is identical to viscosity for n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= l), and u is the second stress 
invariant. A useful way of rewriting equation (1 2) is 

where 

qeff zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 v n / ( J n  - (14) 

is an 'effective' viscosity which is stress dependent. The larger the stress u, the smaller the 
effective viscosity becomes. Large stresses may thus make the mantle more fluid. 

Section 3 discussed the finite element code and the computation of the non-Newtonian 
rheology. Fig. 7 is a plot of the stresses developed in a subducting slab using the error 
function velocity profile (6)  and grid (Fig. 2(b)). The power law is assumed to be n = 3, and 
q3 does not depend upon depth. The general features of Fig. 7 are much like the Newtonian 
viscosity case, except that the trench is somewhat wider than that of the corresponding 
Newtonian rheology (Fig. 5 ) ,  more U-shaped, and more asymmetric. Figs 9 and 10 show the 
remarkable similarity of the non-Newtonian and Newtonian topographic profiles, for dips of 
10 and 45' and s, = 0.80H. Even more remarkable is the dependence of trench depth and 
shear stress on dip angle, Fig. 1 l(a) and (b). The non-Newtonian and Newtonian results are 
virtually identical, once stresses are normalized by qen u/H, where q e f f  is defined as q3/o&ax, 
and urnax is the maximum shear stress (occurring near the bend axis). Dimensional analysis 
indicates that qeR should only depend upon the combination 

u2 sin2 e 
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'. t 
Observed 

0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.5 1.0 1.5 2.0 
Cutoff parameter, S,/H 

Figure 9. Rise crest height divided by trench depth, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwb/wt, is plotted versus cut-off parameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs,/H for 
error function velocity profiles with a variety of dips, non-Newtonian viscosity and depth-dependent 
viscosity. The observed range of wb/wt from Table 1 is also indicated. The value of wb/wt evidently 
depends more upon sJH than dip. The most serious discrepancy between;the numerical results and the 
approximate analytic model of Melosh (1978) is shown in this plot. Note, however, that the discrepancy 
in outer rise height is only 3 per cent of the trench depth. Points resulting from depth dependent 
Newtonian viscosities are indicated by 2.5 X or 50 X symbols, denoting the magnitude of the viscosity 
variation. Key: 0 - 10" dip, Newtonian viscosity; - 45" dip, Newtonian viscosity; - 90" dip, 
Newtonian viscosity; o - 10" dip, n = 3; o - 45" dip,n = 3. 

3 - 0  3'5L 

2 5 x . 5 0 ~  

0 . 5  1.0 1.5 2.0  

Trench axis to outer 

I 

a 

Cutoff parorneter, SJH 

Figure 10. Trench width xt and Xtb and outer rise crest position Xb (see Fig. 1) as a function of s,/H 
and dip for a variety of error function velocity profiles. Note the lack of strong dependence on dip and 
the excellent agreement of analytic and numerical results. Key as in Fig. 9. 

a relation which seems to hold roughly for our calculations, where q7,g = 1.62N, 1.65N 
and 1.37N was found for s, = 0.80H and 0 = 10, 25 and 45'. We assumed q3=  lo-', u =  
4 x lo-' and H = 1 in our computer runs. 

Note that a non-Newtonian rheology with very large n can be approximated by a 
perfectly plastic substance (Paterson 1969, p. 87). It is thus interesting to note that 
Lobkovsky (1976) obtained results very similar to ours in his study of the bending of a 
perfectly plastic lithosphere. Turcotte, MacAdoo & Caldwell (1978) also obtained an 
adequate fit to the outer rise with an elastic-perfectly plastic model. However, both require 
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350 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH. J. Melosh zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand A. Raefsky zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Dip zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAangle,€', degrees zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 11. (a) Shows the trench depth versus dip in units zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof qov/H, or q e p / H  for constant Newtonian, 
depth dependent Newtonian, and non-Newtonian viscosities, respectively. The depth of the trench is a 
function both of dip and sc. The d y t i c  and numerical results are in excellent agreement. Dashed vertical 
lines connect results for depth dependent viscosities with the corresponding constant viscosity results 
(i.e. same sc /H) .  (b) Compares maximum shear stress (in the same units as (a)) to dip and sc. The 
numerical and analytical results do not agree zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAso well for this zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcase, and there is more scatter in the results 
for constant Newtonian, depth dependent Newtonian, and non-Newtonian viscosities. Key: - constant 
Newtonian viscosity; X - non-Newtonian, n = 3; + - depth-dependent Newtonian; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 -analytical 
solution. 

very large stresses (kilobars or more) to support the outer rise, a feature which they share 
with the thin plate elastic flexure models (Hanks 1971). 

Although more work could be done on the non-Newtonian rheology, the similarity of 
these results to the results of a Newtonian rheology (once stresses are correctly normalized) 
makes the graphs reported in Figs 9-1 1 immediately useful for first-order application to the 
Earth. 

5 Discussion 

The preceding finite element analysis shows that neither depth dependent viscosity nor 
non-Newtonian rheology alters the essential results of the analytic model of Melosh (1978). 
The circularsegment velocity boundary condition shows that flats or benches between the 
trench and island arc may owe some of their topography to dynamic forces. 

The principal result of this work is that the first order topographic features of a sub- 
duction zone can be explained by viscous stresses generated in the lower lithosphere during 
subduction. Deviatoric stresses of a few tens of MPa (hundreds of bars) can support the 
outer rise. These results are in substantial agreement with those of Sleep (1975), who studied 
a fluid dynamical model of the entire subduction zone. Our work, however, has shown that 
the stress in the lithosphere and the topography of the subduction zone depend principally 
upon the geometry of the dipping slab and the effective viscosity in the bend region. The 
detailed dynamics of the subduction zone determine this geometry, of course, but it is 
important to realize that once the geometry (dip, radius of curvature) is established, the 
topography of the subduction zone is not very sensitive to the rheology. Study of the 
topography of subduction zones thus gives little data about rheology, except for the 
effective viscosity. 

Table 1 presents numerical data on several trenches from Caldwell et al. (1976). The key 
parameter from this data is the ratio w,/w,, rise crest height/trough depth. The observed 
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range corresponds well (Fig. 9) with a range of cut-off parameters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 0.6-2.OH (for the 
numerical solutions). Fig. 10 shows that this range in sc implies trench widths of 1.4 to 
3.OH, or 100 to 210 km for H= 80 km thick lithosphere. Similarly, the rise crest position 
should range from 35 to about 80 km. Table 1 shows that these ranges are reasonably 
accurate for observed trenches. Note, however, that some quantities (especially the rise crest 
width) are subject to very large uncertainties. Figs 9 and 10 are used to determine the 
lithosphere thickness from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWb/Wt and the trench axis to outer wall distance Xtb. 
Lithospheric thicknesses scatter a great deal, but one must remember that small errors in 
Wb can lead to large errors in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH .  Obviously, careful modelling is required before firm values 
of the lithosphere thickness can be quoted. The thicknesses obtained, however, are not un- 
reasonable for the viscous lower lithosphere. The mean value of c.  50km, when supple- 
mented by a 20 km thick elastic lithosphere, sum to the c .  70 km thickness of old oceanic 
(seismic) lithosphere. 

Effective viscosity is computed using Fig. 1 1, the convergence rates of Minster zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Jordan 
(1 979), and dips of Tovish & Schubert (1978). Lithosphere thicknesses H are taken from the 
previous calculation. Most subduction zones show an effective viscosity qeff between about 
2 x 10” and loz3 P, with a mean of 6 x lo2’ P. This value is lower than most previous 
estimates for mid-depth in the lithosphere (Weertman & Weertman 1975; MurrelI 1976). 
However, the results on non-Newtonian flow show that this must be interpreted as an 
effective viscosity at a stress equal to the maximum shear stress in the bend region, which in 
turn nearly equals the stress creating the trench (several tens of MPa; Fig. ll(a) and (b)). 
The low effective viscosity is thus explained if the rheology of the lithosphere is non- 
Newtonian, a result which seems particularly likely at  the large stresses involved (Stocker & 
Ashby 1973; Schwenn & Goetze 1978). 

H. J. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMelosh and A .  Raefiky 
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Appendix 

Following Cormeau (1975), we define an explicit algorithm for equation (8) as follows: 

1. Initialization 

(a) form KO and Fo 
(b) decompose KO into LDLT 
(c) solve for Uo 
(d) QO = DBUo, €ip = 0. 

2. Define 
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3. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAForm 

FN+l* 

4. Back-substitute to find uN+1 

(LDLT)UN+, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= [IBTD~T+l d Q  + F N + ~ .  

5 .  ON+1=D(BUN+I -€f;s.i). 
6. S e t N = N +  1,if 

Tis  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
p' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis 

N 

i = 1  
Ati  < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT, 

go to 2 ;  otherwise stop. 

the time interval over which the calculation is to be performed. Defining: S = D-', 
the Jacobian matrix formed by differentiating p with respect to the components of 

UN and UN + 1 = SUN + 1 + UN, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAON + 1 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6O.N + 1 +ON- 

Hughes & Taylor (1978) considered the following implicit algorithm, where ( I ~ E  [0, 11 

1. Initialization 

(a) form KO and Fo 
(b) decompose KO into LDLT 
(c) solve for Uo 
(d) G = DBU,,. 

2. Form 
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