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The study of turbulent heating and diffusion in the middle atmosphere is complicated by some subtle points
relating to the application of existing theory. Incorrect interpretation of turbulent spectra can result, leading to errors
in estimates of the strengths of turbulence by factors of 5 and more. In this short review, the relevant turbulent spectra
and equations are considered, and their applications in middle atmosphere studies are outlined. New developments
with regard to some of this theory, and especially new understandings about the dynamical parameters used in some
of these applications (often referred to as the “constants” of the equations) are described. Current areas of uncertainty
are also considered, both in relation to turbulent energy dissipation as well as diffusion over various scales.

1. Introduction
In studies of turbulence, the optimum spectra to use for

calculations of kinetic energy dissipation rates are often the

velocity spectra. These are dealt with in some detail in the

literature (e.g. Batchelor, 1953; Tatarskii, 1961, 1971). For

freely decaying turbulence we can consider ε, the kinetic

energy dissipation rate, as

ε = −
d

dt

1

2

[

u′2 + v′2 + w′2
]

, (1)

where
[

u′2 + v′2 + w′2
]

is the total mean square velocity fluc-

tuation, and 1
2

[

u′2 + v′2 + w′2
]

is therefore the mean kinetic

energy per unit mass at any instant in time (Batchelor, 1953,

page 86). The overbar refers to a spatial average. (An even

more fundamental discussion about the energy dissipation

rate can be found in Batchelor, 1967, Subsection 3.4, but

that is beyond our requirements for this paper.)

If an experimentalist can obtain velocity fluctuations at

scales within the inertial range of turbulence, or even into the

viscous range, then calculation of kinetic energy dissipation

rates is very straight forward. For example, if an observer is

dealing with isotropic, homogeneous turbulence, and if that

observer can make measurements at scales within the inertial

range and deep into the viscous range, then the kinetic energy

dissipation rate ε can be found directly by integrating across

the spectrum as

ε = 2

∫ ∞

0

νk2 E(k) (2)

where ν is the kinematic molecular viscosity coefficient, k

is the wave number, and E(k) is the spectral density of ve-

locity fluctuations (sum of all three components) over a shell
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in wave-number space of radius k (e.g. see Batchelor, 1953;

Hocking and Hamza, 1997, and references therein). How-

ever, in atmospheric sciences, determination of E(k) down to

scales this small is rarely possible. In the middle atmosphere,

it simply cannot be achieved with current technology.

If it is possible to determine velocity fluctuations down to

scales at least into the inertial range, determination of ε is still

modestly easy, although one often needs to make assump-

tions about the form of turbulence (isotropic, Kolmogoroff

theory etc.). Examples of such applications exist in the lit-

erature: for example, Barat (1982) has shown how this may

be done using structure functions.

However, Barat’s measurements required a high altitude

balloon, and special instrumentation. Measurements into

the upper middle atmosphere by this method are limited by a

ceiling on the balloon altitude. In-situ measurements above

say 40 km altitude are limited to rockets, and because these

must travel at high speed, they cannot sample the velocities

with sufficient resolution to apply such methods.

Measurements of middle atmosphere turbulence are there-

fore largely limited to radar techniques, and occasional rocket

and balloon studies. Within these categories, only special

balloon-borne instrumentation is capable of direct velocity

measurements at sufficient spatial and temporal resolution

to enable direct calculation of ε, and even then high altitude

balloons are only flown rarely. All other methods involve

measurements of velocity fluctuations which effectively in-

tegrate over moderately large intervals of scale, or involve

measurements of parameters other than the velocity fluctu-

ations. In the former case, the integration limits and instru-

mental weighting are often hard to determine, and in the latter

case it is often necessary to make various assumptions, and

determine other parameters such as background gradients,

before turbulence strengths can be calculated.

This review focuses on a critical examination of the as-

sumptions made in developing the formulae which are used

in determination of middle atmosphere turbulence strengths,
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and highlights recent developments in this area.

2. Currently Used Formulae
The following equations present various formulae which

are currently used for determinations of middle atmosphere

turbulence strengths.

ε = c0(σ
2)3/2/LB, (3)

LB =
2π

c3

ε1/2ω
−3/2
B , (4)

ε = c1(σ
2)ωB. (5)

Variations of these formulae have been presented by, for

example, Weinstock, (1978a,b, 1981), and Hocking (1983,

1986). The term ωB is the Väisälä-Brunt frequency, ε is

the kinetic energy dissipation rate, σ refers to a typical root-

mean-square velocity (to be specified in more detail later),

and LB is a scale related to the larger eddies.

These equations appear deceptively simple, but they are

in fact complicated by several factors. Principal amongst

these is the fact that the term σ 2 is sometimes ill-defined.

The constants c0 and c1 are critically dependent on how σ 2

is determined. Formulae of this type are often used in both

in-situ and radar studies, but the nature of the determination

of σ 2 must be very carefully considered. For example, in

radar studies it is usually an integral over the radar volume,

and over the duration of the radar record used for the cal-

culation. The details of this integration process need to be

carefully considered. As we will see, there are also addi-

tional complications, and even the choice of the scale LB is

complicated.

In fact there are some references which use yet another

variant on Eq. (3). This equation takes the form

ε = c6(σ
2)3/2/L r (6)

where L r is a scale associated with the radar beam and pulse-

length, and not the scale LB defined above (e.g. Labitt, 1979;

Bohne, 1982; Doviak and Zrnic, 1984). We therefore need

to ask: which of these two options (i.e. Eqs. (3) or (6)) is

preferable?

Thus we recognize that these equations, despite a decep-

tively simple appearance, are not well understood, and we

pose the questions: What do we mean by σ 2? Which scale

“L” should we use? Answering these questions will be one

of our responsibilities in this paper.

There are also other equations which appear in the litera-

ture which need to be more properly understood. Some such

equations are the expressions

η =
(

ν3

ε

)1/4

, (7)

ℓ0 = c4η (8)

and

LB = c5L0. (9)

Again, these are very simple equations, but with hidden

complications. We will define the various terms and consider

these expressions shortly.

Another expression used in the literature to determine ε,

which utilizes the mean square refractive index fluctuation

quantity C2
n , is

ε̄ =
(

γCn
2 ω

2
B

F1/3
M−2

)3/2

. (10)

C2
n is often called the “potential refractive index structure

constant”, although the use of the word “constant” here can

be quite misleading, since the quantity is far from constant—

it in fact varies markedly as a function of the intensity of the

turbulence. Nevertheless, we must persist with this usage,

since it is very common. However, the reader should bear in

mind that C2
n is in fact a measure of the amount of refractive

index fluctuation in a given turbulent patch, and is not to

be considered in the same category as the other dynamical

parameters (also referred to as “constants”) which are the

topic of this paper. Again, the above expression looks simple

enough, but application of this expression is complicated by

determination of the term “F” (which represents the fraction

of the radar volume which is turbulent), and by a proper

determination of the “constant” γ—which in fact turns out

to be Richardson-number dependent. We will not consider

the factor “F” any further here; our main interest is in the

parameter γ . Discussions relating to “F” can be found in

Van Zandt et al. (1978, 1981) and Hocking and Mu (1997).

Finally, there is another expression which appears to be

exquisitly simple, yet hides a multitude of complexity. This

is the expression

K = c2

ε

ω2
B

(11)

where K represents a diffusion coefficient. This relation

purports to relate the rates of atmospheric diffusion and the

value of the kinetic energy dissipation rate. However, it raises

many issues. It may be derived from modestly simple argu-

ments; for example, Fukao et al. (1994), Appendix A, gives

one example. However, there are yet further questions about

this. Is the derivation too simplistic? Is it valid at all? If it

is valid, what should be the “constant” c2? Different authors

have proposed different values for c2. If indeed it does ap-

ply, is it valid over all scales? If the scale-range is limited,

what limits exist? McIntyre (1989) has even considered that

the value of c2 might depend in some way on the mode of

turbulence generation, and the degree of super-saturation of

the waves which generate the turbulence. How realistic is

this proposal? In that case, it would not even make sense to

assume that c2 is a constant for an individual event, although

there might still be some long-term average value of c2 which

can be applied to the middle atmosphere. We cannot address

all these issues, but will try and consider at least some of

them.

Thus, while we recognize that these formulae are used in

the literature for determination of ε and K , we also recognize

that each equation embodies a complication of one sort or

another. A major objective of this paper will be to highlight,

and where possible clarify, these complications.

We will begin our discussions by pointing the reader to Ap-

pendices A to D, which contain expressions for the currently

accepted structure functions and spectra which are generally

used in theoretical Kolmogoroff turbulence studies. In gen-

eral the formulae are presented without proof: they are meant
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to simply be a summary of the main and simplest tools used in

turbulence studies. We begin with functions associated with

measurements of velocity, and later move to measurements

of tracers and scalars.

In our next sections, we then begin to address some of the

questions raised above.

3. Turbulence Scales and Inverse Scales
We first turn to a discussion of the Eqs. (7) to (9), mainly

because the questions posed in relation to these expressions

are some of the simplest to answer.

The first equation, (7), is a derivation produced from di-

mensional analysis. However, once derived it can be usefully

employed as a scaling length. Physically, it is a scale within

the viscous range of the turbulence, and represents a typical

scale at which energy transfer by scale-cascade, and energy

dissipation to heat, are comparable. The scale ℓ0 is a scale

which represents the transition between the inertial and vis-

cous ranges of turbulence, and is defined in terms of the in-

tercept between extrapolations of the spectral forms in these

two ranges (e.g. see Tatarskii, 1971). It is always bigger than

η, and the constant c4 is in fact fairly well known. However,

it is important to recognize that even c4 depends on whether

one is using measurements of velocity fluctuations or some

sort of constituent or tracer. Typical values of c4 are 7.4 for

temperature fluctuations (e.g. Hill and Clifford, 1978), and

(15C)3/4 (where C = 2.0), or 12.8, for velocity fluctuations

(e.g. Tatarskii, 1961).

Thus these scales are at least fairly well understood, al-

though on occasions some authors have assigned them to

have units of metres per radian, which is wrong. They are

simply units of length.

Equation (9) does introduce some extra complications,

however, which sometimes lead to confusion. The scale L0

is a vertical scale at which the RMS fluctuations due to the

turbulence are equal to the change in the mean value of the

same quantity over the same vertical scale. This is quite dif-

ferent to LB, which is a scale at the “large-scale end” of the

inertial range of the spectrum. The latter quantity is usually

much larger than the first—often by more than an order of

magnitude (e.g. see Hocking, 1985, who gives a ratio in the

order of 30).

To complicate things further, an alternative scale to LB is

often used, which equals ε1/2ω
−3/2
B and is called the Ozmidov

scale. This differs from LB only by a multiplicative constant

of 2π/c3, so conceptually is very similar to LB. We will

generally use LB, since this has become more common in

middle atmosphere work, and Barat (1982) has shown that

it does indeed seem to relate fairly nicely to the low wave-

number end of the inertial range.

Another common problem which occurs in discussions

about the scales of turbulence is the use of inverse scaling

factors. Whilst a scale is assigned a “wavelength” λ, and its

corresponding wavenumber is k = 2π/λ, it is not uncom-

mon to use special inverse scales which relate to particular

spatial lengths by a simple reciprocal relation. For example,

sometimes a scale k∗
B = 1/LB is used for scaling purposes.

This seems at odds with the wavenumber kB = 2π/LB, but in

fact there is no conflict; we will therefore dispense with this

issue here. LB is a “typical” scale, but does not particularly

represent the distance between the maxima of any special si-

nusoidal fluctuation. Therefore there is no obligation to use

2π as the scaling constant, so k∗
B = 1/LB is just as useful for

scaling purposes as 2π/LB. Problems arise, however, when

k∗
B is referred to as a “wavenumber”; it is in fact not one,

and should be considered (when used) as nothing more than

an inverse scaling factor. Confusion arises because scaling

parameters like this are sometimes referred to as “wavenum-

bers”, and because they are often denoted by symbols which

are traditionally used for harmonic quantities. If, on the other

hand, one is talking of true wavenumbers, and their relation

to “wavelengths”, then one must use k = 2π/λ.

4. Relation between εεεεεεεε and σ 2σ 2σ 2σ 2σ 2σ 2σ 2σ 2

In this section, we wish to address the issue of the cor-

rect relation between σ 2 and ε, as described in Eqs. (3) and

(6). The equations look similar, but in fact are very different

conceptually, and we need to understand why.

In studies of turbulence with a radar, one usually mea-

sures a complex-amplitude time-series which is a result of

radio-wave scatter from a region of space called the “radar

volume”. This volume is defined by the radar beam and

radar pulse-length. Within this volume, scatterers are mov-

ing with a variety of velocities, and the observed signal is due

to a combination of Doppler shifted echoes produced when

the radiowaves scatter from these entities. The received sig-

nal can be Fourier transformed to produce a spectrum, which

has a half-power half-width of f1/2, and an associated vari-

ance f 2
v . If we multiply f 2

v by (λ/2)2, where λ is the radar

wavelength, then we produce a variance in terms of velocity

units, which we denote as σ 2. This variance is an integrated

effect of all the velocity fluctuations within the radar volume,

as shown diagrammatically by Hocking (1983).

Detailed derivations of the relation between the turbulence

velocity spectrum (which describes the fluctuations inside

the radar volume) and the value of σ 2 have been presented

by (amongst others) Hocking (1983), Labitt (1979), Bohne

(1982) and Hocking (1996a). In the following subsections,

we will briefly re-visit some of these derivations.

To begin, we will follow the derivation presented by

Hocking (1983), which produces Eq. (3).

4.1 Buoyancy scale dependence between σ 2σ 2σ 2σ 2σ 2σ 2σ 2σ 2 and εεεεεεεε

Assuming a Kolmogoroff form for the turbulence spec-

trum, Hocking (1983, 1986) has shown that

σ 2 ∝
∫ k=4π/λ

2π/LB

ε2/3k−5/3dk, (12)

where σ is the root mean square velocity deduced from the

spectral width of the signal. At this stage we will not concern

ourselves with the constants of proportionality; our main

interest here is in the general form of the equation. We will

shortly produce a more sophisticated form of this equation in

which the relevant constants of proportionality will become

clearer. This equation expresses the fact that the velocity

variance measured by the radar is the integrated effect of

different scales within the radar volume.

Upon integration we obtain the following expression:

σ 2 ∝ ε2/3

[

L
2/3
B −

[

λ

2

]2/3
]

. (13)
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Assuming that LB ≫ λ/2 we have the following relation-

ship:

ε = c1

σ 3

LB

. (14)

The value of c1 differs somewhat for different assumptions

about the constants involved in the Kolmogoroff spectrum,

but Hocking (1983) has given a value of c1 of 3.5. This

value assumes that the fluctuations producing the radar signal

are produced in roughly equal proportion by scales in the

buoyancy range and the inertial range. We shall re-address

this assumption shortly.

If, in addition, we use the relation between the buoyancy

scale LB and the Väisälä-Brunt frequency which was speci-

fied earlier as

LB =
2π

0.62
ε1/2ω

−3/2
B (15)

(Weinstock, 1978b), we may then write

ε = c0σ
2ωB (16)

where c0 is a constant (∼0.45).

In contrast to this expression, (which is commonly used

in mesospheric and stratospheric radar studies), equations

relating radar spectral widths and turbulent energy dissipa-

tion rates which have been presented in the meteorological

literature have tended to ignore the possibility that the buoy-

ancy scale may play a role in the relation between ε and σ 2.

Rather, they have assumed that either the length of the radar

pulse, or the radar beam-width, (whichever is larger) is the

most important parameter in determining this ε—σ 2 relation.

We will now look at this particular derivation in more detail.

4.2 Radar volume dependence between σ 2σ 2σ 2σ 2σ 2σ 2σ 2σ 2 and εεεεεεεε

The following derivation briefly summarizes that pre-

sented by Labitt (1979), and also presented by Hocking

(1996a). We do not intend to repeat their derivations in detail

here, and so we start with the relation

σ 2 =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
�ℓℓ(k)[1 − e−[k2

z b2+k2
ya2+k2

x a2]]dk,

(17)

which is derived in those references. �i j is described in Eq.

(B.4), and in this case we take i = j i.e. both velocity com-

ponents aligned in the direction parallel to the direction of

traverse (in this case the direction of traverse of the radar

beam) through the patch of turbulence (see Appendices A to

D). The term in square brackets is simply 1 minus the Fourier

transform of the radar volume, and therefore takes into ac-

count the radar weighting. Equation (17) is in fact similar

in some aspects to Eq. (12), but there are also some impor-

tant differences between the two. The former one essentially

assumes that all radial motions are parallel to the bore-sight

direction of the radar, while this newer one recognizes that

there may be contributions from off-bore-sight components

if the beam is broad. Equation (12) also contains no specific

radar weighting, but does contain a lower limit on k which is

defined by the largest turbulence scales. Equation (17) con-

tains no such turbulence-defined limit, and this will shortly

prove to be an important point.

It is also important to point out that neither of these for-

mulae recognize the fact that the velocity spectrum should

actually be anisotropic at scales comparable to and larger

than LB. However, since for MST work the radars usually

point vertically, and it is primarily the vertical velocity spec-

trum which affects the spectral width, it is only necessary

that a reasonable estimate of the vertical velocity spectrum

is produced for our work here. In this case, we specify E(k),

and the vertical velocity spectrum is derived from that, but

we have allowed a reasonable range of possibilities for E(k),

and therefore a reasonable range of vertical velocity spec-

tra. The key point is that E(k) is chosen so that the vertical

velocity spectra are realistic. Since horizontal fluctuations

are of secondary significance for a vertically pointed, narrow

beam, the issue of anisotropy is not so crucial here. Hocking

(1996a), and Hocking and Hamza (1997) has discussed the

issues of anisotropy in a little more detail.

If one then takes the classical inertial range spectrum (e.g.

see Tatarskii, 1971), then the spectrum of vertical velocities

as a function of wave number k is

�ℓℓ(k) =
E(k)

4πk2

[

1 −
k2

z

k2

]

, (18)

where k is the magnitude of k and so is a scalar satisfying

k2 = k2
x + k2

y + k2
z , E(k) = αε2/3k−5/3, and α is a numerical

constant with value 0.7655C , where C = 2.0 (see Eq. (B.4)).

The following expression for the velocity variance mea-

sured by the radar may now be obtained:

σ 2 =
1

2
αε2/3ϒ, (19)

where

ϒ =
∫ π

θ=0

∫ ∞

k=0

sin3 θk−5/3

×[1 − e−k2[a2 sin2 θ+b2 cos2 θ ]]dkdθ. (20)

Thence

ε =
2
√

2

[αϒ]3/2
σ 3. (21)

Finally, the following expressions for ϒ are valid: Firstly

if a ≥ b:

ϒ = 2Ŵ

(

2

3

)

a2/3 F

[

−1

3
;

1

2
;

5

2
; 1 −

b2

a2

]

(22)

whilst if b ≥ a:

ϒ = 2Ŵ

(

2

3

)

a2/3 F

[

−1

3
; 2;

5

2
; 1 −

a2

b2

]

. (23)

Where F is the confluent hypergeometric function. To a

good approximation we can write

ε = 0.79
σ 3

L r

.cc (24)

where L r is the largest of the pulse length and the beam width,

and cc is a correction factor very close to 1.

As noted, Eqs. (14) and (24) are conceptually very differ-

ent. Why should this be?

The answer to this question can be seen in the diagram-

matic sketch shown in Fig. 1. This diagram shows a sche-

matic representation of the spectrum, as well as the weight-

ing effect of the radar beam. It also emphasizes the fact that
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Fig. 1. Graphs showing the radial velocity spectra and radar weighting functions for different assumed spectra and radar volumes.

the spectrum may have a “roll-over” at small wavenumbers,

where a “roll-over” refers to a moderately abrupt but smooth

change in slope. This may be evident as a “knee” in the

spectrum, or even a local peak. Whether such a “rollover”

exists depends on what one assumes about the nature of the

low wave number spectrum (often the gravity wave spec-

trum) at the scales close to the turbulence regime. It also

depends on which radial velocities are being measured—a

vertically pointed radar measures principally the vertical fluc-

tuating motions, whilst a horizontally pointed radar measures

largely horizontal components of motion. In our discussion

we are primarily considering near-vertical beams, which are

the main modes used for middle atmosphere studies.

This “roll-over” is what causes the Labitt formalism to

break down. Labitt assumed that the Kolmogoroff spectral

form (i.e. ∝ k−5/3) continued down to k = 0, and this is

why his integral involves L r. Such an assumption may be

valid if the radar is used to point its beam horizontally (as

is the case, for example, with the meteorological NEXRAD

radars). However, if this “roll-over point” in the spectrum

occurs at wave-numbers which are greater than the lowest

wave-numbers corresponding to the radar volume, then the

integral begins to involve LB. For most middle atmosphere

radars, near-vertical beams are used, so this latter possibility

is likely.

Figure 1 shows how this comes about. The integrand in-

volves a product of the spectrum and the weighting function,

and it is seen that if the weighting function is that for a “small”

radar volume, and we follow it from large k back to small k,

then the weighting drops to zero before kB is encountered.

Thus the integral does not involve any portion of the spectrum

at k values below kB. However, in the case labelled “large

radar volume”, the radar weighting function does not start

to approach zero (reading from the right) until the spectrum

has entered the “buoyancy” regime. Thus the nature of the

spectrum in this low wave-number end begins to affect the

integral.

The situation is also indicated diagrammatically, but in a

different way, in Fig. 2. In the first case, we show a region of

turbulence with the radar volume being substantially smaller

than the largest scales of turbulence. In this case, we expect

the Labitt formula to apply. However, the other diagrams (b,

c, and d) show cases where some part of the radar volume

exceeds (or is at least comparable with) the largest scales of

the turbulence. In this case, we expect the formula with an

LB dependence to apply.

Thus Labitt has ignored the small wavenumber depar-

ture from the inertial range law. However, we should also

point out that Eq. (12) is also only a crude approximation,

since it assumes that the spectrum drops abruptly to zero at

the wavenumber kB. Therefore both approaches have their

weaknesses—Eq. (12) is mathematically crude, while Eq.

(17) is mathematically rigorous but ignores the true small-

wavenumber spectral variation. It makes sense to combine

the formalisms, to try and take advantage of both of their

strengths.

In the following section, we will put the concepts dis-

cussed above into a mathematical setting, and demonstrate

that our expectations are valid. In fact, we will show that the

largest cross-volume length of the radar volume must be less

than one half of the buoyancy scale for the Labitt formula to

apply—in all other cases, the formula involving LB is more

appropriate.
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Fig. 2. Different possible relations between the radar volume and a patch of turbulence. Only in the first case is the behaviour of the turbulence spectrum

at small k (i.e. below kB) unimportant in determing the relation between ε and σ . In all other cases, the relation between ε and σ has a kB dependence.

5. Combining the Buoyancy Part of the Spectrum
within the Labitt-Formalism

We will now re-address Eqs. (17) and (18), but this time

we will permit E(k) to have a “roll-over” point at low wave-

number. We will see that this substantially changes Eq. (24),

and in fact makes the result appear more like (14) in many

cases.

To begin, we propose the following possible shape of the

spectrum at small k, (as discussed by Hocking, 1996a):

E(k) = αε2/3 k−5/3

[1 + χk(k/kB)n]
(25)

where kB = 2π/LB and where the value of n determines the

form of the low wave-number part of the spectrum. The value

of χk affects the relative positions of the low-wavenumber

“roll-over point” in the spectrum and the quantity kB.

Hocking (1996a), used the special cases n = −3 and −4/3,

because they represent extreme examples of the possible

spectral forms, and thus set reasonable limits on our for-

mulae. They correspond to cases with E(k) ∝ k+4/3 and

k−1/3 at small k respectively. Examples are shown diagram-

matically in Fig. 3 for the case of χk = 1.0. Clearly the

“knee” (or “peak” for the case n = −3) is close to the value

of kB, so henceforth we will use χk = 1.0 as a reasonable ap-

proximation, although we recognize that future more detailed

experimental studies might give slightly different values for

this parameter. At present, however, there are insufficient

experimental data to better define χk .

As noted prior to Eq. (18), this equation implicitly assumes

an isotropic spectrum. However, this is not entirely unrea-

sonable for the cases we wish to consider. In addition, for a

vertically directed beam it is principally the vertical velocity

Fig. 3. Representative forms for the turbulence spectrum E(k), including

typical possible variations at small k. Specifically these graphs show Eq.

(25), for n = −3 and −4/3. The n = −3 case corresponds to a power

law of the type k4/3 at small k, and is represented by the broken line; the

n = −4/3 case corresponds to a power law of the type k−1/3 at small

k, and is represented by the solid line. In both cases the buoyancy scale

is the same and equals 250 m; the corresponding wavenumber lies very

close to the peak in the broken curve (from Hocking, 1996a).

fluctuations which are important, so as long as E(k) is cho-

sen so as to produce a reasonable vertical velocity spectrum,

any lack of isotropy is not too critical to our arguments. It

should also be recognized that we only seek to place rea-

sonable limits on the relation between spectral widths and

the energy dissipation rates, so great accuracy in specifying

E(k) is not required—indeed, it is presently not available



W. K. HOCKING: DYNAMICAL PARAMETERS OF TURBULENCE 531

Fig. 4. These two graphs show corrections to the formula ε ≃ (0.45σ 2ωB) in radar applications. Specifically, they show values for cf in the expression

ε ≃ (0.45σ 2ωB)c
−2/3

f
, for cases of (a) n = −3 and (b) n = −4/3. Cases where the “Labitt formalism” should be used are also indicated. In case (b), the

scale on the right side indicates the approximate heights at which the appropriate beam-widths shown on the left apply, assuming an angular beam-width

of typically 2 to 5 degrees.

as an experimentally measured quantity, which is another

reason why we have taken this more approximate course of

action.

We now must determine

ϒ =
∫ π

θ=0

∫ ∞

k=0

sin3 θ
k−5/3

[1 + (k/kB)n]

×[1 − e−k2[a2 sin2 θ+b2 cos2 θ ]]dkdθ. (26)

Hocking (1996a) has numerically integrated this expres-

sion for a wide range of combinations of kB and pulse length.

With respect to the case n = −3 (E ∝ k4/3 at small k), he

found the following. Provided that the larger of the radar

pulse-length and beam-width exceeds one half of the buoy-

ancy scale, then to very good accuracy,ϒ can be represented

closely by the following expression:

ϒ = (0.45LB)
2/3. (27)

Hence, using Eq. (21) we obtain the relation

ε = 3.3
σ 3

LB

= 0.47σ 2ωB. (28)

This compares very favourably to the estimates made in

the earlier literature, in which the equation ε = 0.45σ 2ω2
B

has been given e.g. see Eq. (16). Figure 4(a) shows a contour

graph in which a measure of the ratio of the true value of

ε relative to the above formula is shown for various beam
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widths and various buoyancy scales LB. The area in which

the Labitt formula is accurate is also highlighted; note that

throughout most of the region described by this graph the

dependence of ε on LB is very important and the Labitt for-

malism is generally not valid. As experimental support for

this prediction, it is noteworthy that Bohne (1981: abstract),

who attempted to use the Labitt formalism to produce radar

measurements of ε, and then compared them with measure-

ments made in-situ, found that he could only make useful

estimates of ε for those cases in which the radar pulse length

was less than one half of the buoyancy scale. The reason for

the inaccuracy of the radar measurement in these cases of

small LB was almost certainly because Eq. (28) should have

been used, rather than the Labitt approach.

Let us now turn to the case of n = −4/3. In this case the

spectrum goes as k−1/3 as k tends to 0. Then in fact numerical

integration of Eq. (26) over a wide range of possible buoyancy

scales and possible pulse lengths and beam widths gives the

following expression:

ε = 3.3
σ 3

LB

1

cf

= 0.47σ 2ωB

[

1

cf

]2/3

(29)

where cf is a correction factor. Even in this case, where the

buoyancy range runs somewhat smoothly into the inertial

range, but where the energy involved in the buoyancy range

is higher than that in the inertial range, it can be seen that

the dependence on LB is still significant and the expression

given by Labitt is generally not appropriate.

Figure 4(b) shows the value of the correction factor over a

wide range of beam widths and buoyancy scales. Note that

the region in which the Labitt formalism is approximately

correct is indicated and is clearly only a small portion of the

region. For MST radars the Labitt equation is almost never

valid and the previous expression (29) is correct. Further-

more, the correction factor is a fairly slowly varying term

which varies from as small as 0.9 for very small beam widths

and very long buoyancy scales up to a factor of as high as 2

for very broad beam widths (widths of several kilometres).

The correction factor is dependent on the characteristics of

the particular radar being used, but it is not a strong function

of the radar parameters, and a reasonable estimate of it can

be made in almost all circumstances.

Thus in summary, we see that the correct equations to use

for converting σ 2 from radar measurements (after removal

of beam and shear-broadening (e.g. Hocking 1983; Nastrom,

1997)) is in fact Eq. (29) with correction factors as shown in

Figs. 4(a) or 4(b) (depending on the nature of the spectrum as

it goes from the turbulent regime to the gravity wave regime).

We have thus unified the two sets of possible formulae

discussed earlier, and also demonstrated when each applies.

This is an important result for future applications of radar

measurements in studies of turbulence strengths using radars.

We now move on to discussion of the other methods for

measurement of atmospheric turbulence. The previous dis-

cussion concentrated on measurements of velocity fluctua-

tions, whereas the next section will look in more detail at

scalar parameters.

6. Scalar Spectral Methods for Measuring εεεεεεεε
In this section, we will consider measurements of scalar

quantities like potential refractive index, neutral fluctuations,

and ion and electron densities, and discuss how they may be

used to infer ε. We will concentrate on two main areas—

firstly, the ways in which radar can be used to measure re-

fractive index fluctuations, and then the ways in which direct

in-situ measurements of spectra can be employed to deter-

mine ε.

The first case relates to application of Eq. (10), and we now

wish to address the questions we have raised in relation to that

equation. To begin, we first recognize that C2
n is a measure of

refractive index fluctuations, and refractive index fluctuations

are related more to potential energy perturbations and less to

kinetic energy fluctuations. Thus the relationship between

C2
n and ε depends on the ratios of potential to kinetic energy.

Since this ratio is Richardson-number dependent, it might not

be surprising to find that γ could depend on the Richardson

number. Nevertheless, there have been documents in which

it has been assumed that γ is indeed a constant, and for a

while this was accepted as standard. In the next section, we

will re-examine the rather complex history associated with

γ . Again, we remind the reader that the terminology of

“constant” for C2
n is very misleading, but is maintained here

for historical reasons. In the following section, we consider

C2
n not as a true constant, but simply as a variable which

parameterizes the degree of potential refractive index fluc-

tuation in a turbulent patch. Our main point of discussion

will be the dynamical parameter γ . We emphasize that the

following discussion relates both to radar measurements of

turbulence strengths using absolute backscatter techniques,

as well as in-situ measurements of ion, electron and neutral

density fluctuations.

6.1 The “constant” γγγγγγγγ

Despite the above expectation about a Richardson-number

dependence of γ , for a while this dependence was all but

ignored in the literature, and γ was indeed taken as a con-

stant. Examples include Van Zandt et al. (1978, 1981), Gage

(1980), as well as Hocking (1985), Thrane et al. (1985, 1987),

Lübken et al. (1987) and Blix et al. (1990). Note that in the

last four cases, it was not actually C2
n , the potential refractive

index gradient structure “constant”, which was measured,

but rather one of the neutral, ion or electron density struc-

ture “constants”. Nevertheless, the same principle applied,

and in each case the Ri dependence of γ was not properly

considered.

This is not to say that the non-constancy of γ was un-

known, but rather it was fully appreciated only in fields

other than middle atmospheric ones. Examples of refer-

ences which demonstrate a Richardson number dependence

include Ottersten (1969), Crane (1980), and Gossard et al.

(1982, 1985, 1987). However, for middle atmosphere ap-

plications many of these early references were not utilized.

To be fair, however, the Ri dependency was often not recog-

nized because it was impossible to employ it, simply because

measurements of Ri with sufficient resolution were not pos-

sible. More recent papers like Hocking (1992), Blix (1993)

and Hocking and Mu (1997) have given due recognition to

the more realistic Ri dependence in middle atmosphere ap-

plications, but are again constrained by the inability of cur-
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rent techniques to make measurements of Ri with sufficient

resolution to be useful. Nevertheless, the recognition of this

dependence is important from a conceptual viewpoint, which

is why we pursue it here.

We will now recap some of the earlier papers which noted

that γ was not in fact a constant. Ottersten (1969) gave

γ =
1

a2

(

1 − R f

Ri

)

=
1

a2 Pr

(

Pr − Ri

Ri

)

(30)

where a2 is a constant, Ri is the gradient Richardson number,

R f is the flux Richardson number, and R f = P−1
r Ri , Pr

being the turbulent Prandtl number. Pr is defined as Km/KT,

where Km and KT are the turbulent momentum and heat

diffusion coefficients respectively.

Gossard et al. (1982, 1984) present an expression in which

γ effectively obeys

γ =
1

Bθ

Pr − Ri

Ri

. (31)

where Bθ = 3.2.

Hocking (1992) assumed to first order a turbulent Prandtl

number of unity and obtained, via energy balance arguments,

the following expression for γ ;

γ =
3

22

|1 − Ri |
|Ri |

. (32)

The ratios of potential to kinetic energy storage as a func-

tion of Ri , as deduced by Hocking (1992), are shown graph-

ically in Fig. 5.

We therefore recognize that even when the Ri dependence

of γ is understood, there is not general agreement about the

details of the relationship. Different authors have produced

different relationships, and we cannot resolve these differ-

ences here. Our preference is to use Eq. (32).

If Richardson number measurements are not available,

then a value of

γ = 0.4 (33)

is recommended as a reasonable compromise, since it cor-

responds approximately with a Richardson number of 0.25

according to (32). We therefore see that we are once again

Fig. 5. The ratio of the potential energy and kinetic energy spectral densities,

d ′, plotted as a function of the Richardson number, Ri . Note that the

ratio tends to infinity as Ri approaches 1, and tends to 1 as Ri approaches

negative infinity (from Hocking, 1992).

returning to an assumption of a constant value for γ , but this

approach is adopted simply because it is often not possible

to measure Ri with sufficient resolution. It is fairest to think

of this as a mean value for γ . It is often the best we can do,

but is definitely an inferior approach to proper use of Ri in

determining γ .

6.2 An alternative way to determine εεεεεεεε using spectral

fitting around the spectral knee

Because of uncertainties in regard to application of the pre-

viously discussed “C2
n ” method, Lübken et al. (1993), and

Lübken (1997) developed an alternative method for determi-

nation of ε. This method still employs direct measurements

of scalar spectra, but in a different manner to that described in

the previous section. It has been well-known for many years

that if one can measure η, the Kolmogoroff microscale, then

one can determine ε through the relation (7). The kinematic

viscosity ν is usually taken from empirical atmospheric mod-

els. The major difficulty is determination of η accurately, be-

cause ε is proportional to η to the fourth power. For example,

an error in η of a factor of 2 means an error in ε of a factor

of 16. Traditionally η has been determined by finding the

inner scale, ℓ0, and then determining η through (8) using an

assumed value for c4. (e.g. Watkins et al., 1988). The value

of c4 depends on whether one is measuring velocity fluctu-

ations, ion fluctuations, neutral fluctuations or whatever, as

seen earlier.

This method fell from favour, however, because there was

too much uncertainty in determining ℓ0. Different extrapola-

tion schemes produced different values. Lübken has recently

attempted to solve this difficulty by fitting a carefully pre-

scribed function to the Fourier-spectrum of the time series

of neutral density fluctuations measured by a moving rocket

(expressed as a function of the spectral angular frequency ω)

viz.

W (ω) =
Ŵ(5/3) sin(π/3)

2πvr

· C2
n · fα ·

×
(ω/vr)

−5/3

[1 + {(ω/vr)/k ′
0}8/3]2

. (34)

An angular frequency of ω corresponds to a spatial scale

in the turbulence along the track of the rocket with “wave-

length” equal to 2πvr/ω. Here, Ŵ(5/3) = 0.90167; vr is

the rocket speed; fα = 2.0, and k ′
0 = 2π/ℓ′0, where ℓ′0 is

a length scale closely related to ℓ0. The denominator in the

last multiplicative term was introduced as an attempt to al-

low the inertial range to run smoothly into the viscous range,

and is somewhat ad-hoc. Because this is so, it is necessary

to exercise some care in the meaning of ℓ′0. Lübken et al.

(1993), and Lübken (1997) made the (unproven) assumption

that ℓ′0 = ℓ0. We wish to emphasize that because this is

not yet proven, it represents a possible source of systematic

error in the following discussions, and we will distinguish

between ℓ′0 and ℓ0 in our discussions here-in, although we

recognize that Lübken et al. did not. An alternative way to

write (34) would be

W (ω) =
Ŵ(5/3) sin(π/3)

2πvr

· C2
n · fα ·

×
(ω/vr)

−5/3

[1 + χL{(ω/vr)/k0}8/3]2
. (35)
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Fig. 6. Experimental and fitted spectra for rocket measurements of neutral density fluctuations. The smooth curve shows a fit assuming a Heisenberg

model in the viscous range. Buoyancy and inner scales are also shown (adapted from Lübken, 1997).

where k0 = 2π/ℓ0, and the term χL accounts for the fact that

the spectral “knee” need not occur directly at a wavenumber

of k0.

By fitting this functional form to the measured spectra,

Lübken et al. (1993), and Lübken (1997) were able to de-

termine ℓ′0 to fairly high accuracy. The value of ℓ′0 can be

determined independently of C2
n and fα . They then assumed

that ℓ′0 is proportional to ℓ0, and so used a variation on (8)

viz.

ℓ′0 = c′
4η. (36)

They used c′
4 = 9.90 to get η, and thence determined

ε. This choice required some knowledge about the Prandtl

number, and there is some uncertainty in this regard. Lübken

et al. (1993) and Lübken (1997) used 0.82, whilst Hill and

Clifford (1978) suggest 0.72. The latter result is the correct

choice if it is recognized that the temperature spectra and the

neutral density spectra are identical in form. An example of

the measured and fitted spectra is shown in Fig. 6.

However, it is appropriate at this juncture that we make

some comments about the function W (ω). This function is

designed to describe both the inertial range of the spectrum as

well as the viscous range, plus the transition between them. It

is proportional toω−7 at largeω, which limits its usefulness to

some degree. For example, if one requires the variance of the

third derivative of the spatial fluctuations, (as is sometimes

sought in turbulence studies), then it involves an integral over

all ω of W multiplied by ω6, which is an integral of ω−1, and

is therefore infinite. Higher order derivatives have similar

infinities. Indeed, Heisenberg’s original proposal for a ω−7

form at high wavenumbers was criticized by, for example,

Batchelor, for reasons like this. Furthermore, Heisenberg’s

formula was really only supposed to apply to energy spectra,

whereas Lübken et al. have adapted it to scalar spectra. The

possibility of such infinite integrals places some limits on the

usefulness of this particular function; if this functional form

is indeed used, it is necessary that the user places some sort of

artifical limit on the integrals, or assumes that the spectrum

changes form yet again at some point well into the viscous

range.

Indeed, the optimal choice of W (ω) requires additional

discussion, and should at this stage be considered indeter-

minate. Lübken found by experimentally fitting the data to

different functions that the so-called “Heisenberg” theoret-

ical form described by Eqs. (34) and (35) gave the best fit,

although his original papers also discussed a model due to

Tatarskii (1971) for the viscous range. However, we have

noted doubts about the suitability of the Heisenberg form.

Another possibility which well deserves examination is the

temperature spectrum of Hill and Clifford (1978). It should

be recognized that within turbulence in the free air, the fluc-

tuations in temperature and the fluctuations in density should

have the same form, since neutral fluctuations due to pressure

perturbations are negligible, so this is an excellent candidate.

Nevertheless, for now we recognize that Lübken’s prefer-

ence is to use Eq. (34). We recognize that the chief new

contribution from Lübken et al. (1993) and Lübken (1997)

to measurements of turbulence was to develop a formalism

whereby ℓ′0 could be determined using all of the available

spectrum, thereby (hopefully) producing higher accuracy.

This method was then used extensively by Lübken (1997)

to determine a climatology of ε. An example will be dis-

cussed shortly in regard to Fig. 8. The method appears to be

moderately reliable, although it should be emphasized that

the assumption that ℓ′0 = ℓ0 is still unproven; this can lead to

systematic errors in ε. Questions about the correct choice of
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Fig. 7. Cumulative graph of ε in the troposphere (from Hocking and Mu, 1997), using radar data and the theory embodied in Eqs. (10) and (33), as well as

various in-situ measurements. Data are compared to Lee et al. (1988) and Vinnichenko et al. (1973).

the Prandtl number have also been noted above. Addition-

ally, because ε varies as the fourth power of ℓ′0, even small

errors in estimating ℓ′0 can lead to considerable errors in ε.

However, even despite these problems, the method remains

one of the more commonly used for rocket studies of tur-

bulence. It is only possible to guess at the effects of these

systematic errors, although we would hope that the method

gives accuracies which are correct to within a factor of 2.

6.3 Application of the new C2
nC2
nC2
nC2
nC2
nC2
nC2
nC2
n formula to some in-situ

data

In this section, we wish to intercompare the two ap-

proaches described in Subsections 6.1 and 6.2, since they

have been two of the main approaches to determinations of

ε by rocket techniques. Previous comparisons have not al-

ways shown good agreement, but in each case we have noted

recent developments and adjustments, so it will be of interest

to see how the two different techniques now compare after

these new developments are considered.

The formulae presented in Subsection 6.1, which involve

the more proper use of γ , have been tested in at least a couple

of cases, and seem to produce somewhat better estimates

than do those which do not properly consider the Richardson-

number dependence of this quantity. We shall illustrate some

of these, but it should nevertheless be borne in mind that even

the tests shown here are not really definitive, and more tests

are unquestionably needed. In particular, in these tests we

have had to assume that γ = 0.4, whereas it would be much

nicer to use actual measured values of the Richardson number

made at scales of a few tens to hundreds of metres.

The first such test is shown in Fig. 7, which summarizes

results from Hocking and Mu (1997), using tropospheric

data. This shows a cumulative distribution of energy dissipa-

tion rates measured by various techniques, including radar.

Whilst the data were taken at different sites, and on different

occasions, the overall agreement is quite reasonable. Val-

ues obtained by radar and shown here, for example, show

broadly better agreement that do those which do not use this

more recent theory.

A more interesting comparison comes about by examining

the same data using two different analysis techniques. We

have chosen the rocket data obtained by Thrane et al. (1985,

1987), Lübken et al. (1987), and Blix et al. (1990), which

have been nicely tabulated in those references. We have con-

verted the energy dissipation rates produced by these authors

back to effective structure constants (analagous to C2
n but in

this case they were ion or electron density or neutral density

structure constants), and then re-determined ε using Eqs. (10)

and (33). We used F equal to 1, because when using in-situ

data there is no need to concern ourselves about an incom-

pletely filled measuring volume—the data are recorded at

very high resolution by the moving probe, and the measur-

ing instruments have volumes much smaller than the size of

any turbulent patch. We have then compared the new data to

estimates of ε obtained by Lübken (1997) using his “spectral-

knee”formalism (see the previous section). The results are

shown in Fig. 8; we have concentrated on the region above

80 km altitude. The most important line is that for winter,

since most of the raw data used were taken in Autumn and

Winter (specifically October 1987, November 1980, January

1984 and February 1984; see references cited above). The

solid circles (theory presented here-in) seem to show bet-

ter agreement with Lübken (1997) than do the filled squares.

Therefore it seems that data produced with the newer version

of (10), using (33), provide broadly better consistency with
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Fig. 8. Energy dissipation rates from Thrane et al. (1985), Lübken et al. (1987) and Blix et al. (1990), produced after rescaling according to Eqs. (10) and

(33). Rescaled raw data are shown by the symbols “T”. The filled squares show median values of ε due to the original authors, whilst the solid circles

show median values using the newer theory. The left and right borders of the filled area shows 16% and 84% percentiles using the newer theory. The

solid lines show estimates for summer and winter due to Lübken (1997), using his procedure for fitting spectra to the data.

the methods described in Subsection 6.2 than do the earlier

methods.

7. The Relation between Diffusion and Energy
Dissipation Rates

The issue of the relation between the rates of diffusion and

the rate of energy dissipation in the atmosphere is another

area which is often oversimplified. It is often assumed that

(11) applies, and that measurements of ε immediately enable

determination of the rate of vertical diffusion, K . Authors

vary in their assumed values of c2, but most (with the possible

exception of McIntryre, 1989) generally agree that the value

lies between 0.2 and 1.25 (e.g. Fukao et al., 1994; Lilly et

al., 1974; Weinstock, 1981). We will not dwell too much on

the actual value of c2 here; it is premature to specify it more

precisely than has been done here, although a value of 0.8 is

commonly used.

A more important matter here is not what c2 is, but rather

whether (11) applies at all. The methods by which diffu-

sion can take place are far more complex than simple three-

dimensional turbulent diffusion. The reasons for this lie in

two main facts; first, turbulence is very intermittent both tem-

porally and spatially, and very often occurs in thin layers in

the middle atmosphere. These thin layers are often separated

by regions which are either only weakly turbulent or even

laminar. Secondly, the processes which induce diffusion can

themselves be scale dependent.

These factors mean that there are several ways in which

diffusion can occur. Table 1 summarizes some of these pro-

cesses, and we will now elaborate briefly upon them.

The first important factor is the spatial and temporal in-

termittency. This effect has been demonstrated in Hocking

(1991, 1996b), after adaptation from Desaubies and Smith

(1982). These authors show how an ensemble of gravity

waves can act together to produce regions of instability sep-

arated in height by regions of stability, with layer thicknesses

of a few tens of metres out to a kilometre or so. Examples

of experimental studies of such layering are also discussed

there-in.

The consequences of this intermittency are important.

They mean, for example, that we must revisualize how large-

scale turbulent diffusion takes place. An important proposal
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Table 1. This table shows some of the various processes which are normally grouped together as “diffusive” processes in the atmosphere. Classical

turbulent diffusion is only one such process, and at large scales is not necessarily even one of the most important. At intermediate scales (500 m to 3 km),

all of these processes occur, but we have left question marks here to indicate that it is uncertain just which of all these processes dominates in this regime.

Scale Momentum Constituents/temperature

<500 m K ∝ ε

ω2
B

K ∝ ε

ω2
B

500 m to 3 km all processes all processes

described above and below— described above and below—

but which dominates? but which dominates?

>3 km “Classical turbulent diffusion” “Classical turbulent diffusion”

Stochastic Layering Stochastic Layering

Quasi-horizontal diffusion Quasi-horizontal diffusion

(Slant-wise convection) (Slant-wise convection)

Stokes Diffusion

+ other? + other?

due to Dewan (1981) and Woodman and Rastogi (1984) sug-

gested that the random occurrence of layers produces a Monte

Carlo type of intermittent diffusion. In this model, diffusion

is not a continuous process, but a step-wise one. First one

layer of turbulence forms around a particle of interest, purely

due to chance. Turbulent transport of this particle then takes

place, possibly to the edge of the layer, or until the layer dies

out. At this time the particle remains fairly stationary, since

molecular diffusion is assumed to be very small. Then at a

later time, another turbulent layer forms around the particle,

and further transport over the depth of that layer is now pos-

sible. This process repeats itself over and over. Thus the

factors which control the large-scale diffusion are not sim-

ply the rates of diffusion across individual layers, but the

frequency of occurrence and depth of individual layers (this

process is illustrated diagramatically in Fig. 2 of Hocking,

1991). Any determinations of effective diffusion coefficients

must take this into account. Proper modelling of the effects

of this intermittency remains an important area of research.

Other consequences of the intermittency of turbulence in-

clude the possibility that the average rates of diffusivity of

momentum and heat may be different, and that the Prandtl

number may exceed 1, and perhaps be in the range of 1 to 3

(Fritts and Dunkerton, 1985). This is to say that if one pa-

rameterizes the rate of heat transport as KT(∂θ/∂z), where

∂θ/∂z is the mean potential temperature gradient, ignoring

the effects of the wave, then the effective coefficient which

must be used to describe the rate of diffusion is less than it

would be if we properly included the effect of the wave in

∂θ/∂z. This is not so for momentum diffusion, because ‘u’

and ‘w’ are not in phase quadrature. Fritts and Dunkerton

(1985) have proposed this process as a way to explain the

conclusions of Strobel et al. (1987), in which these authors

claim that the turbulent Prandtl number is somewhat in excess

of unity in the atmosphere.

Another important means of vertical diffusion is quasi-

horizontal diffusion along tilted isopleths. It is well known

that horizontal diffusion at large scales is a much faster pro-

cess than vertical diffusion. If the mean gradients are tilted,

then this horizontal diffusion attains a vertical component,

and can lead to an effective vertical mixing. Admittedly

a particle which starts at an altitude of z km, and finally

achieves a height of z + ζ km, may also have drifted hori-

zontally a distance equal to perhaps hundreds of times ζ , but

nevertheless this still produces an effective vertical mixing.

Another important process which can produce significant

diffusion is so-called “Stokes Diffusion”, as proposed by

Walterscheid and Hocking (1991) and Hocking and

Walterscheid (1993). These authors have shown that even

a linear combination of Boussinesq waves produces a dif-

fusive-like effect on particles over periods of many hours,

and whilst this process is not as strong as classical turbu-

lence in causing diffusion at scales of a few tens to hundreds

of metres, it becomes a major diffusive effect when applied

at scales of many hours. This is because it is not affected

by the intermittency of turbulence, and acts just as strongly

in laminar regions as it does in turbulent ones. This pro-

cess is especially important for diffusion of constituents. If

the waves are damped, the diffusive effect becomes even

stronger, especially if the damping induces particles to cross

between contours of constant potential tempearture; in this

case, Stokes diffusion may also be important for momen-

tum diffusion. As noted, Table 1 summarizes some of these

processes.

Therefore we conclude this section by simply noting that

the relation between rates of diffusion and energy dissipation

is not simple, and in fact is both scale and species dependent.

This is still an area which deserves much research, and the

key point to note is that previous visualizations and param-

eterizations of these processes have been grossly oversim-

plified in the past. Diffusion is scale dependendent, and the

types of diffusion coefficients which a global-scale modeller

might use may be very different (usually larger) than the ones

which might be needed to describe small scale mixing in the

atmosphere.
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8. Conclusion
Some of the constants traditionally used in turbulence the-

ory, and indeed some classical interpretations, have been

re-examined. The basis for these formulae have been dis-

cussed, showing how some of these constants arise. Appro-

priate formulae for application of radar and in-situ measure-

ments of turbulence have been presented, including recom-

mendations for the most appropriate constants where possi-

ble. Where necessary, oversimplifications in current thinking

about turbulence have also been pointed out. Without ques-

tion, though, all current measurements of energy dissipation

rates in the middle atmosphere have uncertainties of some

type; a major goal in the next few years should be to de-

velop instrumentation which can directly measure velocity

fluctuations in-situ down to scales within the viscous range.

Only then will it be possible to unambiguously interpret the

spectra, and determine turbulent energy dissipation rates with

precision.
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Appendix A. Velocity Structure Functions
The following appendices summarizes the main struc-

ture functions and spectra used in turbulence theory, without

proof or derivation.

The first type of function which we will discuss that is

commonly used to describe turbulent phenomena is the so-

called Structure Function. There are several of these, but the

main ones are D‖ and D⊥, which are defined in the following

way;

D‖(r) = |u‖(x + r)− u‖(x)|2 (A.1)

and

D⊥(r) = |u⊥(x + r)− u⊥(x)|2, (A.2)

where we imagine traversing the turbulent medium in a

straight line and taking point measurements along the way.

“Parallel” components refer to measurements of the veloc-

ity components with directions parallel to the direction of

traverse, and “perpendicular” components refer to velocity

components perpendicular to this direction. Isotropy has

been assumed in this definition, which is why we consider D

to depend only on the magnitude r of the vector r .

Occasionally a 3-D form of the structure function is some-

times used, viz.

Dtot(r) = |u(x + r)− u(x)|2, (A.3)

where the vector difference between displaced components

is used. Because there are two perpendicular components,

and one parallel component, we may write

Dtot = D‖ + 2D⊥. (A.4)

For inertial range, homogeneous, Kolmogoroff-style tur-

bulence, we have the following relations.

D‖ = C2
vr

2/3 (A.5)

where C2
v = Cε2/3, and C is close to 2.0 (e.g. Caughey et

al., 1978; Kaimal, 1976). In addition,

D⊥ =
4

3
C2
vr

2/3, (A.6)

Dtot =
11

3
C2
vr

2/3. (A.7)

There are also a variety of spectral forms which are used

as tools in turbulence studies.

Appendix B. Spectral Forms for Velocity Measure-
ments

A variety of spectra are used for turbulence studies. These

all have different purposes, and are summarized below for

Kolmogoroff-type inertial-range turbulence.

The first important expression is

F(k) = Aε2/3k−11/3 (B.1)

where k = |k| is the length of the vector k, (and so takes

values between 0 and infinity), and A = 11Ŵ( 8
3
) sin( π

3
)

24π2 C ≃
0.061C , (Tatarskii, 1971). This is a full three-dimensional

function describing the total kinetic energy per unit cell size

(due to all three velocity components) in a cell of size d3k at

the end of a vector k originating from the origin. For homo-

geneous isotropic turbulence this function is isotropic. Pic-

torially one can visualize this as a solid sphere in (kx , ky, kz)-

space which has highest density at the centre, and decreasing

density as |k| increases, where the density represents F.

Because this function is isotropic, it is often integrated

over a shell of radius k to give a new expression which is

E(k) = 4πk2
F = αε2/3k−5/3 (B.2)

where α = 4π A = 11Ŵ( 8
3
) sin( π

3
)

6π
C = 0.76655C (e.g. see

Tatarskii, 1971; Batchelor, 1953). Note that we will largely

follow Batchelor’s symbol-usage in this document: For ex-

ample, we use E(k)dk to represent the total energy in a

shell in k-space of thickness dk, as does Batchelor, whereas

Tatarskii (1961, 1971) uses the symbol E to represent the

function which we have called F.

If we use C = 2.0, then we have

E(k) = 1.53ε2/3k−5/3. (B.3)

Different authors use different values for the constant

1.53—anything between 1.35 and 1.53 are common. Note,

however, that if one adjusts this constant then the constant

C also needs adjustment. I prefer to use C = 2.0 because it

has at least been measured with good accuracy in the lower

atmosphere (e.g. Caughey et al., 1978)

These equations are fairly simple to understand. However,

there are more complex variants. An important adjunct (and

in fact a more fundamental expression) is the equation

�i j (k) =
E(k)

4πk4
· (k2δi j − ki k j ) (B.4)

which describes the three-dimensional cross-spectrum be-

tween the velocity components in the “i” direction and the

“ j” direction, where “i or j = 1” mean the x direction, “i
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or j = 2” mean the y direction and “i or j = 3” mean the

z direction. The values k1, k2 and k3 may take both positive

and negative values. Note that k is the length of the vector

from the origin to the point (k1, k2, k3) in k-space, and so

k2 = k2
1 + k2

2 + k2
3 .

For each of these spectra there is a related covariance func-

tion; for example,

�iℓ(k) =
1

8π3

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
e
−jk.ξ

Riℓ(ξ)dξ (B.5)

where Riℓ is the aoutovariance function corresponding to

�iℓ and where j =
√

−1 in this expression. We will not dis-

cuss these various covariance functions in much detail here;

the reader is referred to to Tatarskii (1961, 1971), Batchelor

(1953) or Lumley and Panofsky (1964) for more elaborate

discussions.

For cases of isotropic turbulence, we can integrate �i j

around a shell of radius k to give (e.g. Batchelor, 1953, p. 35)

�i j (k) =
∫∫

©�i j (k)k
2d	k . (B.6)

For homogeneous, isotropic turbulence, we therefore have

�i j (k) = 4πk2�i j (k). (B.7)

E(k) relates to the�i j (and hence to the�i j ) via the rela-

tion

E(k) =
1

2
(�11(k)+�22(k)+�33(k)). (B.8)

Notice the factor 1
2
; this is introduced so that the integral

over all k (i.e. from k = 0 to k = ∞) gives the kinetic

energy per unit mass, 1
2
v2

tot. E(k) is unique in this regard—

other spectra have normalizations which do not involve this

factor of 1
2
. For example,

∫ ∞

0

�11(k)dk = u2
1 (B.9)

where u1 refers to the velocity component in the x direction.

Sometimes (B.8) is also written as

E(k) =
1

2

∫∫

ki ki =k2

© �i i (k)k
2d	k, (B.10)

where the subscript ‘i i’ means sum the three terms�11,�22

and �33 (e.g. Lumley and Panofsky, 1964, p. 28).

The above spectra are useful from a conceptual viewpoint,

but are often hard to determine experimentally, since they

require a full three-dimensional description of the turbulent

field in all three velocity components. That is, they require

knowledge of all three velocity components at all points in

space. This is often difficult (if not impossible) to measure.

Therefore, we also look for spectral analogues to the

structure functions which were described earlier for a one-

dimensional pass through the turbulent field.

To begin, if we have a detector which moves in a straight

line through a patch of turbulence, and it records the velocity

components parallel to the direction of motion (in analogy to

the process described in connection with Eqs. (A.1) to (A.3)),

and then we Fourier transform the resultant spatial series, we

obtain (for Kolmogoroff turbulence) the function

 11(k1, 0, 0) = α′
11ε

2/3|k1|−5/3 (B.11)

where α′
11 = 9

55
α = 0.1244C . This is in fact a one-

dimensional function which we will denote as φp, viz.

φp(k1) = α′
11ε

2/3|k1|−5/3. (B.12)

It is important to note that this is not the same as

�11(k1, 0, 0). Whilst both refer to spectral densities along

the x axis, �11(k1, 0, 0) refers to spectral densities due only

to “waves” with the phase-fronts aligned perpendicular to the

x axis. On the other hand, 11(k1, 0, 0) (and φp(k1)) refer to

the spectral density at wavenumber k1 due to contributions

of “waves” of all orientations which cross the x axis. These

concepts are fundamentally different. In fact,

 i j (k1, 0, 0) =
∫∫

�i j (k1, k2, k3)dk2dk3. (B.13)

Likewise, if we find the spectrum for the velocity com-

ponents perpendicular to the direction of motion during this

traverse, we produce

φt (k1) =  22(k1, 0, 0) = α′
22ε

2/3|k1|−5/3 (B.14)

where α′
22 = 4

3
α′

11.

Additionally, for the choice of C = 2.0 described above,

we have

φp(k1) =  11(k1, 0, 0) = 0.25ε2/3|k1|−5/3

−∞ < k1 <∞, (B.15)

φt (k1) =  22(k1, 0, 0) = 0.33ε2/3|k1|−5/3

−∞ < k1 <∞. (B.16)

In the case of isotropic turbulence, there is no preferred

axis, so that these formulae are not restricted to any particular

axis.

Because of the obvious symmetry, many experimentalists

often “fold” their spectral densities at negative wavenumbers

over onto their positive ones, and so do not differentiate be-

tween positive and negative signs for the wavenumber. Then

we obtain the following functions:

φ′
p(kα) = 0.50ε2/3k−5/3

α

0 < kα <∞, (B.17)

φ′
t (kα) = 0.67ε2/3k−5/3

α

−∞ < kα <∞ (B.18)

where kα are absolute values of wavenumbers along the di-

rection of travel of the probe.

Note that Eqs. (B.11), (B.12), (B.14), and (B.15) to (B.18),

have “k−5/3” laws, but so does (B.2). However, these equa-

tions are conceptually different; (B.2) represents an integra-

tion over a shell of radius k in three-dimensional k-space,

whilst (B.15) to (B.18) represent spectra determined by a

probe moving in a straight line through the turbulence. Nev-

ertheless, it is a common mistake for novice researchers to

confuse the two spectra, when they speak of the “k−5/3” law,

which can lead to the propagation of considerable confusion.

It is important to conceptually distinguish these spectra.
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Appendix C. Scalar Structure Functions and Spec-
tra

In some studies of turbulence, it is not information about

the velocity fluctuations which are sought, but rather den-

sity fluctuations associated with certain tracers. One must

be careful to choose a “good” tracer—certainly quantities

which react chemically with their surrounds will not obey

the following equations (e.g. see Hocking, 1985).

The structure function is described as

Dζ (r) = |ζ(x + r)− ζ(x)|2 (C.1)

where ζ represents the scalar concentration. For

Kolmogoroff inertial range turbulence this is given by

Dζ (r) = C2
ζ r

2/3. (C.2)

The first important spectral form is �ζ (k), which is

the full three-dimensional spectral density function. For

Kolmogoroff turbulence, it is given by

�ζ (k) = 0.033Cζ |k|−11/3 (C.3)

in the inertial range. The nearest analogy to this spectrum

for the velocity case is the function F from Eq. (B.1); �ζ
should not be confused with �i j from Eq. (B.4), although

the notations look similar. This convention may seem just a

little confusing, but is maintained here as a result of historical

precedent.

This function has been chosen to be normalized so that
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
�ζ (k)dk = (ζ ′)2. (C.4)

Then for locally isotropic, homogeneous we define

Eζ (k) = 4πk2�ζ (k) (C.5)

or

Eζ (k) = 0.132πC2
ζ |k|−5/3 = 0.415C2

ζ |k|−5/3. (C.6)

The function Eζ is very analagous to the function E in Eq.

(B.2).

Finally, we present the spectrum seen if we record along

a straight line. This is the spectrum which a probe moving

through a patch of turbulence would measure, and is very

similar to φp from Eqs. (B.12) and (B.14) in the section on

velocity spectra. This is given by

Sζ (k1) =
∫ ∞

−∞

∫ ∞

−∞
�ζ (k)dk2dk3 (C.7)

which, for the case of Kolmogoroff turbulence, becomes

Sζ (k) = 0.125C2
ζ |k|−5/3

−∞ < k <∞. (C.8)

The function Sζ has strong similarities with φp in Eq.

(B.15). If we fold negative wavenumbers onto positive, we

obtain

S′
ζ (k) = 0.25C2

ζ k−5/3

0 < k <∞. (C.9)

Again (as for the velocity spectra), note that (C.6) and (C.9)

both involve a “k−5/3” law, but the spectra are conceptually

different.

Appendix D. C2
nC2
nC2
nC2
nC2
nC2
nC2
nC2
n and εεεεεεεε

The energy dissipation rate is related to the potential re-

fractive index structure constant by

ε̄ =
(

γCn
2 ω

2
B

F1/3
M−2

)3/2

(D.1)

where ωB is the Väisälä-Brunt frequency. The parameter F

represents the fraction of the radar volume which is filled by

turbulence, while γ is discussed in more detail in the main

body of the text.

The “potential refractive index gradient” is given in the

troposphere and stratosphere by

M = −77.6 × 10−6 P

T

(

∂lnθ

∂z

)

×
[

1 +
15500q

T

(

1 −
1

2

∂lnq/∂z

∂lnθ/∂z

)]

(D.2)

where z is height, θ is the potential temperature, q is the

specific humidity, T is the absolute temperature and P is

the atmospheric pressure in millibars. The term in square

brackets was denoted as χ by Van Zandt et al., 1978; indeed

this particular form of the equation was first introduced by

these authors. Note that χ tends to 1 as the humidity terms

tend to zero.

In the ionosphere, where humidity is no longer important

but electron density plays a crucial role, we have

M =
∂n

∂N

[

N

θ
−

d N

dz
+

N

ρ
·

dρ

dz

]

(D.3)

where again we have used the symbol θ for potential tem-

perature and N is the electron density. The term ρ is the

neutral density. The function ∂n
∂N

needs to be determined

from electro-ionic theory (e.g. Sen and Wyller, 1960; Bud-

den, 1965; Hocking and Vincent, 1982).
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