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THE DYNAMICAL PROPERTIES OF PENROSE TILINGS

E. ARTHUR ROBINSON, JR.

Abstract. The set of Penrose tilings, when provided with a natural compact
metric topology, becomes a strictly ergodic dynamical system under the action
of R2 by translation. We show that this action is an almost 1:1 extension of
a minimal R2 action by rotations on T4, i.e., it is an R2 generalization of a
Sturmian dynamical system. We also show that the inflation mapping is an al-
most 1:1 extension of a hyperbolic automorphism on T4. The local topological
structure of the set of Penrose tilings is described, and some generalizations
are discussed.

1. Introduction

Penrose tilings are a remarkable family of aperiodic tilings of the plane, first
described in the mid 1970s by Roger Penrose [11]. They consist of the edge-to-
edge tilings of R2 by copies of the two marked Penrose tiles (Figure 1, on the next
page), subject to the matching rule that the arrows on adjacent edges must match
(Figure 2).

While it is not completely trivial to show that any Penrose tilings exist, there are
in fact uncountably many incongruent Penrose tilings [7], all of which are aperiodic.
It has often been noted that many of the basic properties of Penrose tilings are
similar to properties well known in dynamical systems theory. For example, the
matching rule resembles a subshift of finite type (the tiles play the role of the
symbols and the arrows play the role of the adjacency graph). Similarly, the Penrose
inflation property (see Section 7) resembles a substitution rule for a substitution
dynamical system (cf. [3]). It has also been observed that the inflation is related
to a certain hyperbolic toral automorphism (see [1] and [17]). In this paper we will
make these and many other such analogies concrete by studying Penrose tilings in
terms of tiling dynamical systems.

A tiling dynamical system consists of a translation invariant set of tilings with
a natural compact metric topology on which Rn acts by translation. D. Rudolph
[15] first introduced a particular tiling dynamical system as a device to generalize
the idea of a ‘flow under a function’ (i.e., suspensions) to Rn. More generally,
tiling dynamical systems provide a natural notion of symbolic dynamics in the Rn

setting. Our results in the Penrose tiling case concern both the ergodic theory and
the topological dynamics of the Penrose tiling dynamical system. Our main result
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Figure 1. Penrose tiles.

is that this system is an almost 1:1 extension of a certain Kronecker R2 action
on T4; the pure point spectrum of this Kronecker action is generated by the 5th
roots of unity. It follows that the Penrose system is strictly ergodic, with metric
(but not topological) pure point spectrum. As a corollary, we obtain a simple
description of the local topological structure of the compact metric space X of all
Penrose tilings. This should be compared to the more difficult C∗ algebra based
‘topological structure’ on the set of congruence classes of Penrose tilings recently
discussed by A. Connes [4]. Finally, we show that the inflation mapping Q on X is
an almost 1:1 extension of a hyperbolic automorphism of T4.

Our analysis of Penrose tilings is aided by the fact that an extensive understand-
ing of Penrose tilings already exists. In particular, we make substantial use of N. G.
de Bruijn’s [2] remarkable algebraic structure theorem for Penrose tilings, although

Figure 2. Part of a Penrose tiling of the plane.
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we need to work to make that result continuous and translation equivariant. This
paper differs from previous approaches to Penrose tilings in that our results (and
proofs) specifically involve dynamical ideas. For example, the proof of our main
result shows that the Penrose tiling dynamical system is essentially a suspension
of a Z2 symbolic dynamical system which is obtained as the product of two 1-
dimensional Sturmian systems. Our result on the topology of Penrose tiling space
amounts to constructing R2 ‘flow boxes’ around arbitrary Penrose tilings. Other
papers (see [13], [12] and [16]) have analyzed various types of aperiodic tilings in
terms of tiling dynamical systems. However, the results presented here for the
Penrose case are the most specific and complete results of this kind to date.

2. Tiling spaces

In this paper, a tile will be a convex polygon in R2 (possibly with markings). A
tiling x will be a set of tiles which cover R2, intersecting only on the boundaries. We
will always regard two congruent tilings as different if they differ by a nontrivial rigid
motion. For t > 0, let Ct = {(v1, . . . , vn) : |vi| ≤ t} ⊆ R2. Given ε > 0 and a tiling
x, let ∂ε(x) = ∂(C1/ε) ∪

⋃
τ∈x

(
∂(τ) ∩ C1/ε

)
, where ∂(ω) is the boundary of ω (in-

cluding the markings, if any). Let Nε(ω) =
⋃

v∈ω Bε(v). For two compact subsets

ω1, ω2 ⊆ Rn let H(ω1, ω2) = max
{

inf{ε1 : ω1 ⊆ Nε1(ω2)}, inf{ε2 : ω2 ⊆ Nε2(ω1)}
}

be the Hausdorff metric. For tilings x, y, let h(x, y) = inf{ε : H(∂ε(x), ∂ε(y)) ≤ ε}.
One can show that h defines a metric on any set X of tilings of R2. Let T tx denote
the translation of x by t ∈ R2. We call a compact T -invariant set X of tilings a
shift space of tilings, and note that (t, x) 7→ T t on X is a continuous R2 action
(i.e., a dynamical system) on X .

For a finite set p of translationally incongruent prototiles, let Xp denote the
set of tilings of R2 by translations of tiles in p. If the tiles p have matching-rule
markings, we assume that x ∈ Xp satisfies that rule. We always assume Xp 6= φ.
Rudolph [15] observed that Xp is always compact (cf. [12]). Let p̃ be prototiles
obtained by rotating the tiles in Figure 1 by multiples of 2π/10, and let p denote
the tiles in p̃ without the markings. Then card(p̃) = 20, card(p) = 10, and the

2:1 ‘eraser’ mapping ε : p̃ → p extends to a continuous mapping ε : X̃ → Xp

satisfying ε(T tx) = T tε(x). We call X = ε(Xp̃) the unmarked Penrose tilings.
Since it is possible to restore the markings to a tile in a Penrose tiling knowing only
its immediate neighbors (see [2]), ε has a continuous inverse, and hence provides a
topological conjugacy.1 Thus without loss of generality, we work with X .

In addition to being aperiodic, all Penrose tilings x satisfy the local isomorphism
property: for any patch s of tiles in x, there exists R > 0 such that a copy of
s occurs within R from an arbitrary location in any Penrose tiling y (including
y = x). Equivalently, in terms of toplogical dynamics, every Penrose tiling is an
almost periodic point for T (see [13]). By Gottschalk’s Theorem [5], T is minimal
(i.e., there are no nontrivial closed T -invariant subsets of X).

3. The Kronecker model

For a continuous R2 action T on a compact metric space X we call w ∈ R2 a
continuous eigenvalue if there is a complex valued f ∈ C(X) (called a continuous

1Similar topological conjugacies to other common kinds of Penrose tilings also exist, in partic-
ular: ‘kites and darts’, ‘pentagons and stars’, ‘triangles’ (cf. [7]).
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eigenfunction) such that

f(T tx) = e2πi<t,w>f(x)(1)

for all t ∈ R2. If T is uniquely ergodic (i.e., there exists a unique T -invariant Borel
probability measure µ on X), and (1) holds µ a.e. for a Borel function f (i.e.,
a metric eigenfunction), we call w a metric eigenvalue. Let CT and MT (resp.)
denote the continuous and metric eigenvalues. In the strictly ergodic (i.e., minimal
and uniquely ergodic) case, both CT and MT are countable subgroups of R2 with
CT ⊆ MT . We say T has continuous (or metric) pure point spectrum if the span
of the continuous (or metric) eigenfunctions is dense in C(X) (or in L2(X,µ)). By
the Halmos-von Neumann theorem, (see [19]) two minimal actions with topological
pure point spectrum are topologically conjugate if and only if CT = CS . Such an
action can always be realized as a Kronecker action, i.e., a group of rotations on a
compact abelian group.

Let ζ = e2πi/5 and let Z[ζ] denote the ring of integral combinations of the
5th roots of unity. Since 1 + ζ + ζ2 + ζ3 + ζ4 = 0 is the only integral relation
among the 5th roots of unity [8], the group Z[ζ] is isomorphic to Z4, and the

dual group Ẑ[ζ] is isomorphic to T4 = R4/Z4. We ‘decomplexify’ Z[ζ] and view
it as the subset of R2 generated by the vectors {vi = (Re(ζi), Im(ζi))}. We will
model the Kronecker action K of R2 on T4 with CK = MK = Z[ζ] as follows:
The set T5

0 = {u ∈ T5 : u0 + · · · + u4 = 0 (mod 1)} is a closed subgroup of T5

isomorphic to T4. We identify T4 with a 4-cube with opposite faces identified,
and write the homeomorphism explicitly as π(u0, u1, u2, u4) = (u0, u1, u2, u3, u4),
where u3 = −(u0 + u1 + u2 + u4). Let W be the 5 × 2 matrix whose rows are
v0,v1, . . . ,v4. Define a continuous action of R2 on T5 by Ltu = u +W t mod 1.
Since T5

0 is L-invariant, we can define an action K on T5
0 by Kt = Lt|T5

0
. Pulling

back by π to T4, it is clear that K is a strictly ergodic Kronecker action on T4

with CK = MK = Z[ζ].

4. The Penrose shift

Let K and T be R2 actions on compact metric spaces Y and X respectively. If
ϕ : X → Y is a a continuous surjection with ϕ ◦ T t = Kt ◦ ϕ then we say K is
a factor of T (ϕ is the factor mapping) and T is an extension of K. An extension
is almost 1:1 if there exists y ∈ Y such that card(ϕ−1(y)) = 1. If K is minimal
then {y : card(ϕ−1(y)) = 1} ⊆ Y is a K-invariant and dense Gδ (see [18]). We
define the thickness of the extension by η = sup{card(ϕ−1(y)) : y ∈ Y }, and we
call {card(ϕ−1(y)) : y ∈ Y } the thickness spectrum. An extension is nontrivial if
η > 1. A nontrivial almost 1:1 extension of a strictly ergodic Kronecker action is
called an almost automorphic action. Such actions are always minimal (see [18]).

Theorem A. The Penrose shift T on X is a strictly ergodic, almost automorphic
action of R2 with thickness 10 (the thickness spectrum is {1, 2, 10}). The pure point
spectrum factor is the Kronecker action K on T4 with CK = Z[ζ], and the unique
T -invariant measure on X is the pullback µ = λ ◦ ϕ−1 of Lebesgue measure λ on
T4.

It follows from Theorem A that T has topological entropy zero. Geometrically
this means the number of different ‘pictures’ occuring in N × N windows around
the origin in all x ∈ X grows sub-exponentially as a function of N2. The one
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dimensional entropy in every direction is also zero. For fixed t0, let T tt0 be the flow
which translates each Penrose tiling in the direction t0. Theorem A implies that this
flow is strictly ergodic if and only if {t0}⊥∩Z[ζ] = {0}. It follows that every possible
patch occurs infinitely often in a sufficiently wide strip in such a direction t0. If
Rθ denotes the rotation by θ, then T acting on Rθ(X) is topologically conjugate
to T acting on X if and only if θ is a multiple of 2π/10. Finally we note that T on
X has metric pure point spectrum but not topological pure point spectrum since
ϕ is not 1:1. However, since CT = MT , every eigenfunction for T is continuous, a
property we refer to in [14] as homogeneity. The last statement is also proved in
[16] by a completely different argument.

5. The Proof of Theorem A

For u ∈ R, let `j(u) = {t ∈ R2 : 〈t,vj〉 = u} = {vj}⊥ + uvj in R2, and let
yj(u) =

⋃
k∈Z `j(u+k). Then yj is an infinite family of evenly spaced parallel lines,

offset by u. We call yj(u) the j–grid and we call `j(u+ k) the k–line in the j-grid.
For u ∈ R5 we let y(u) = y0(u0) ∪ y1(u1) ∪ · · · ∪ y4(u4). We view y(u) as a tiling
of R2 by an infinite set of polygonal prototiles (see Figure 3), called a grid tiling.

Since y(u + k) = y(u) for k ∈ Z5, we have u ∈ T5 = R5/Z5. For u ∈ R5,
t ∈ R2, let n(t,u) = bW t + uc ∈ Z5 (where b·c denotes the ‘floor’). Then n( · ,u)
is constant on the tiles of y(u), and changes by ±ej when a line in yj(uj) is crossed.
Let WT denote W transpose, and define b(u) = { 2

5W
Tn(t,u) : t ∈ R2} ⊆ R2.

For a tiling y, let q(y) denote vertices of the tiles, and let e(y) denote the edges.
A tiling x is dual to y if there is a bijection ∗ : y → q(x) such that when σ1, σ2 ∈ y
are adjacent across an edge ` ∈ e(y), then the vertices σ∗1 , σ

∗
2 ∈ q(x) are connected

by the edge `∗ ∈ e(x). We call the duality ∗ geometric if each edge ` in e(y) is
perpendicular to `∗ in e(x).

We call y(u) nonsingular if no more than 2 grid lines cross at any point, and
otherwise call it singular. We say u ∈ T5 is nonsingular if y(u) is nonsingular.

Figure 3. Part of a nonsingular grid tiling.
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Figure 4. The Penrose tile dual to a vertex in a grid tiling.

We denote the nonsingular vectors by T5
n. Let T5

0,n = T5
0 ∩ T5

n and note that

T5
0,n ⊆ T5

0 is K-invariant and dense Gδ. Let R5
n be the lift of T5

n to R5. We will
use the following result.

Proposition 5.1 (de Bruijn [2]). Let Xp denote the set of all edge-to-edge tilings
by the unmarked Penrose prototiles p. For any u ∈ R5

n there exists y∗(u) ∈ Xp

such that q(y∗(u)) = b(u). In particular, for a tile σ in y(u) the vertex σ∗ ∈ b(u)
in y∗(u) is given by σ∗ = 2

5W
Tn(t,u) for any t ∈ σ.

The main idea (see Figure 4) is that vj = 2
5W

Tej (see [2] for a proof).
The importance of the geometric property is that if x, x′ ∈ Xp are both geometri-
cally dual to y(u), then x′ = T tx for some t ∈ R2. We will also use the following:

Theorem 5.2 (de Bruijn [2]). If u ∈ T5
0,n then y∗(u) is a Penrose tiling.

Theorem 5.2 yields most Penrose tilings, up to translation. Unfortunately, it
does not give all translations of the Penrose tilings it produces. Our next task is to
correct this.

Let m(t,u) = n(t,u)− buc = bW t + uc − buc, so that2 m(t,u + k) = m(t,u).
Given u ∈ R5

n, let

t(u) = 2
5W

Tu ∈ R2(2)

and define

x(u) = T t(u)y∗(u).(3)

If q(u) = q(x(u)) is the vertex set, then q(u) = b(u)−t(u) = 2
5W

T {m(t,u)−{u} :
t ∈ R2}, and thus q(u + k) = q(u). It follows that q and x depend on u ∈ T5

0,n

(rather that R5
n). Let Xn = {x(u) : u ∈ T5

0,n}. We call x ∈ Xn a nonsingular
Penrose tiling.

Lemma 5.3. The mapping u 7→ x(u) : T5
0,n → Xn is continuous and it satisfies

x(Ktu) = T tx(u).

Proof. Since m(·,u) is constant on tiles in y(u), a small change in u does not change
m(·,u) on a large square around 0 ∈ R2.

2It is interesting to note that the function m satisfies a cocycle identity m(t + s,u) =
m(t,Ksu) + m(s,u).
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Since 2
5W

TW = I, (3) implies

q(Ktu) = 2
5W

T ({bKtu +W sc : s ∈ R2} − (u +W t))

= 2
5 ({bu +W (s + t)c : s ∈ R2} − u)− t

= 2
5W

T ({bu +W sc : s ∈ R2} − u)− t

= q(u) − t.

(4)

Lemma 5.4. There exists a uniformly continuous homeomorphism ϕ : Xn → T5
0,n

such that u = ϕ(x(u)) and ϕ(T tx) = Ktϕ(x).

The proof of Lemma 5.4 uses Sturmian dynamical systems3, which we briefly
review. Let T = [0, 1) mod 1. For irrational α, the rotation Rα on T (by 2πα) is
defined by Rαu = u+ α mod 1. For u ∈ T define z+(u) ∈ {0, 1}Z by z+(u)j = 0 if
Rjαu ∈ [0, α), and z+(u)j = 1 ifRjαu ∈ [α, 1). Also define z−(u)j = 0 ifRjαu ∈ (0, α],
and z−(u)j = 1 if Rjαu ∈ (α, 1]. Let Z+ = {z+(u) : u ∈ T}, Z− = {z−(u) : u ∈ T},
Z = Z+∪Z− and Zn = Z+∩Z−. Then Z is a closed shift-invariant subset of {0, 1}Z.
The set Z\Zn is countable dense, and Zn is dense Gδ. The Sturmian dynamical
system is the left-shift S acting on Z. We summarize some of its properties (see
[5]).

Lemma 5.5. The shift S on Z is a thickness 2 almost automorphic extension of
Rα. The factor map ψ : Z → T is 1:1 on Zn and 2:1 on Z\Zn. If Tn = T\{Rnα0 :
n ∈ Z}, then ψ|Zn = (z+|Tn)−1 = (z−|Tn)−1.

Let Σ(T5
0) = {u ∈ T5

0 : u0 = u1 = 0} and Σ(T5
0,n) = Σ(T5

0) ∩ T5
0,n. Let w

be the periodic tiling of R2 by the first two grids: w = y0(0) ∩ y1(0). The first
two coordinates of (m0(t),m1(t)) of m(u, ·) are constant on the tiles in w, and
0 ∈ R2 is the lower left vertex of tile (0, 0). Let ` = `2(u2) be the 0-line of the
2-grid g2(u2). Note that ` passes through the lower edge of tile (0, 0). Let v be the
distance along this edge to the point of intersection. Then 0 < v < sec(π/10) and
u2 = cos(π/10)v, (see Figure 5).

We will use (ai, bi) = (m0(t),m1(t)) to follow t ∈ ` through the tiles. We put
(a0, b0) = (0, 0) since ` ‘starts’ in the tile (0, 0). Now suppose (ai, bi) = (a, b). As `
moves northeast, the next tile is either tile (a + 1, b) or tile (a, b + 1). In the first
case, we put (ai+1, bi+1) = (a + 1, b); in the second, we continue to the next tile,
(a + 1, b+ 1), and define (ai+1, bi+1) = (a + 1, b+ 1). A similar procedure defines
(ai, bi) for i < 0. Note that ` passes through each tile (ai, bi), and for each i ∈ Z,
bi+1 = bi + 1 and ai+1 = ai + zi where zi = 0 or zi = 1. Let z be the sequence with
entries zi.

Let α = 1 − 2 sin(π/10) = 3−
√

5
2 . Viewing the lower edge e of a tile in w as

the fundamental domain for a circle, we see that ` intersects the next copy e′ of a
lower edge of a w-tile in a position advanced by α. Let i ⊆ e be the subinterval
determined by a line parallel to ` through the upper right vertex of the tile (see
Figure 5). In the identification of e with the circle, i is identified with the interval
[α, 1). Moreover, zi = 1 if and only if ` intersects i (see Figure 5). Since u is
nonsingular, ` never meets a vertex of w, so it contains no endpoints of [α, 1).
Thus we have that the sequence z ∈ Zn for the Sturmian dynamical system with

α = 3−
√

5
2 . Also v = sec(π/10)ψ(z) and u2 = ψ(z).

3This system is frequently referred to as the Sturmian minimal set, see [6].
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Figure 5. The Sturmian system inside a grid tiling (compare to
Figure 3 ).

For u ∈ T5
0,n, let N(u) = {m(s,u) : s ∈ R2} and N = {N(u) : u ∈ Σ(T5

0,n)} ⊆
Z5. Consider the mapping u 7→ N(u) : Σ(T5

0,n)→ N. For t > 0 let

Cct = {(n0, . . . , n4) ∈ Z5 : |ni| > t, i = 0, 1, . . . , 4}.

Let 4 denote the symmetric difference operation, and let || · || denote Euclidean
distance in T5.

Lemma 5.6. The mapping u 7→ N(u) is 1:1. The inverse mapping, denoted
ω : N → Σ(T5

0,n), has the property that for all ε > 0 there exists t > 0 such
that if N,N ′ ∈ N satisfy N4N ′ ⊆ Cct , then ||ω(N)− ω(N ′)|| < ε.

Proof. Given N = N(u) ∈ N, we have (p, q,−1, r, s) ∈ N if and only if ` passes
through tile (p, q) in w(u). Putting a lexicographic order on the set of pairs (p, q)
which arise as the first two coordinates of (p, q,−1, r, s), we construct a sequence
(ai, bi), which we use to construct z. By the previous lemma u2 = ψ(z). In a
completely analogous way we obtain u4 by reading off from N how the line `4(u4)
travels through w. Since u0 = u1 = 0 and u ∈ T5

0, this determines u ∈ Σ(T5
0,n)

uniquely.
If N and N ′ agree on Ct, then the corresponding sequences c and c′ agree for

−t/2 < i < t/2. Given ε > 0, it follows from the uniform continuity of ψ that if
this R is sufficiently large, then |u2−u′2| = |ψ(z)−ψ(z′)| < ε. The same arguments
apply to u4.

We define Σ(Xn) to be the set of all x ∈ Xn such that 0 ∈ R2 is the upper right
vertex of a translate of the prototile τ1 = (`0 ∩ `1)∗ (Figure 6). Every such tile is
dual to a crossing between a 0-grid and 1-grid line in x (i.e., a vertex in w).
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Figure 6. The tile (a) τ in x ∈ Σ(Xn) with its vertex at 0, and
(b) the translation σ of 0∗ with its vertex at 0.

Comment. There is a natural Z2 action σ defined on Σ(Xn). Let e1 and e2 denote
the standard basis vectors for Z2. For x ∈ Σ(Xn) define σe1x as follows. Let y be
the grid tiling dual to x and let s be the vertex in y dual to the copy of τ1 with a
vertex at the origin (it is an intersection of a 0-grid and a 1-grid line). Let s′ be
the next intersection of a 0-grid and a 1-grid line in a positive direction (southeast)
along the 1-grid line in y. Choose t(e1) ∈ R2 so that 0 is the upper right vertex
of the copy of τ1 in T t(e1)x which is dual to s′. We define σe1x = T t(e1)x. We
define σe2 in the same way, except that we move up along the 0-grid line from s.
One can interpret σ as a Z2-symbolic dynamical system as follows. Consider all
the different ways the 2, 3 and 4-grid lines cross the tiles in z, saying two such
pictures are equivalent if (including their boundaries) they have the same dual.
Clearly there are only finitely many such equivalence classes. These classes will be
the alphabet, and the action σ of Z2 will consist of translations along the 0 and
1-grid lines. It is easy to see that this Z2-action consists of a rotation action on
T4, coded by a partition of T4 into polytopes. Clearly the R2 Penrose shift is a
(nonconstant) suspension of this Z2-action. The value of the suspension cocycle on
the unit basis vectors e1, e2 ∈ Z2 depends only on the symbol at time 0 ∈ Z2. It is
the length of the “sequence” of tiles dual to the (vertical or horizontal) edge of one
equivalence classe. Equivalently, this is the return time to Σ(Xn).

Lemma 5.7. For any x ∈ Xn there exist infinitely many t ∈ R2 such that T tx ∈
Σ(Xn). Moreover, at least one such t satisfies ||t|| < 8.

This follows from the fact that the diameter of the patch dual to any of the
equivalence classes discussed above is ≤ 8, and x(u) is made up of a union of such
patches.

Given x ∈ Σ(Xn), we define m : Z5 → q(x) inductively by putting m(0) = 0
and extending to adjacent vertices using m(t ± vj) = m(t) ± ej . That m is well
defined follows from the fact that the sum of m around the vertices of any tile is
zero. Let N(x) = {m(t) : t ∈ q(x)}.

Suppose x ∈ Σ(Xn) ⊆ Xn. By the definition of Xn, x = T t(u′′)y∗(u′′) for some
u′′ ∈ T5

0,n, so x is geometrically dual to y(u′′). Let t be the vertex in y(u′′) dual
to the tile τ in x which has its upper right corner at 0. By duality, t is at an
intersection of a 0-grid line and a 1-grid line (Figure 6). Letting u′ = u′′ −W t,
we have y(u′) = y(u′′ −W t) = T−ty(u′′). Thus y(u′) is also dual to x. But the
vertex in y(u′) dual to τ (which is the intersection of the 0-lines in both the 0-grid
and the 1-grid) is at the origin (Figure 6(b)). Let σ be the tile in y(u′) with 0
as a vertex and which is on the positive side of 0-lines in both the 0-grid and the
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1-grid (Figure 6(b)). For r ∈ σ, m(r,u′) = 0. It follows that N(x) = N(u′). Thus
N(x) ∈ N and

u′ = w(N(x)),(5)

and also x = y∗(u′). Let

u = K−t(u′)u′.(6)

By (3) and (6),

x(u) = x(K−t(u′)u′) = T−t(u′)x(u′)

= y∗(u′)

= x.

(7)

We define ϕ : Σ(Xn)→ T5
0,n by ϕ(x) = u. By (7), x(ϕ(x)) = x, which implies ϕ is

1:1, and ϕ(x(u)) = u. Then (5), (6) and (2) imply ϕ(x) = (I − 2
5WWT )ω(N(x)).

By Lemma 5.6, ϕ is uniformly continuous.

Lemma 5.8. Suppose x, T tx ∈ Σ(Xn) for some t ∈ R2. Then

ϕ(T tx) = Ktϕ(x).(8)

Proof. Let u = ϕ(x) and u′ = ϕ(T tx), so that by Lemma 5.3, x = T−tx(u′) =
x(K−tu′). Then

ϕ(x) = ϕ(x(K−tu′))

= K−tu′

= K−tϕ(T tx).

(9)

Proof of Lemma 5.4. For x ∈ Xn, choose s ∈ R2 so that ||s|| ≤ 8 and T sx ∈ Σ(Xn),
and define

ϕ(x) = K−sϕ(T sx).(10)

It follows from Lemma 5.8 that (10) does not depend on the choice of s. Moreover, ϕ
is uniformly continuous, since ϕ|Σ(Xn) is uniformly continuous and ||s|| is bounded.

Now suppose x is such that T sx ∈ Σ(Xn) for some s ∈ R2. Then T s−t(T tx) ∈
Σ(Xn), and it follows that

ϕ(T tx) = K−(s−t)ϕ(T s−t(T tx))

= Kt(K−sϕ(T s(x)))

= Kt(ϕ(x)).

(11)

We define the singular Penrose tilings Xs = X\Xn, and call T5
0,s = T5

0\T5
0,n

and Ys = y(T5
0,s) the singular vectors and singular grids respectively. It was shown

by de Bruijn [2] that the restriction u ∈ T5
0 (i.e., not just u ∈ T5) implies that there

can be no 4-fold crossings in y(u), and moreover, every nonsingular Penrose 5-grid
y(u) is of one of the following two types: In Type A all the multiple crossings in
y(u) are 3-fold crossings. There are two kinds of 3-fold crossings: In the first kind,
two lines cross with angle 2π/5, bisected by the third line. In the second kind lines
cross with angle 4π/5. All 3-fold crossings occur along a single grid line. In Type
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B there is a unique 5-fold crossing in y(u), infinite sequences of 3-fold crossings
along each of the five grid lines in the 5-fold crossing. There are no other multiple
crossings. The following proposition paraphrases a result of de Bruijn:

Proposition 5.9 (de Bruijn [2]). (i) If x is a singular penrose tiling then there
exists a singular vector u0, a sequence uk of nonsingular vectors with uk → u0,
and a translation T t such that

x = T t

(
lim
k→∞

y∗(uk)

)
.

(ii) Suppose u0 is a singular pentagrid and let Y ∗(u0) denote the the set of
limit points of sequences of the form y∗(uk), where uk is a sequence of nonsingular
vectors with uk → u0. If u0 is Type A then card(Y ∗(u0)) = 2. If u0 is Type B
then card(Y ∗(u0)) = 10.

We will need the following refinement of (i).

Proposition 5.10. If x is a singular Penrose tiling then there exists a singular
vector u(x) such that for some sequence uk of nonsingular vectors with uk → u(x),

x = lim
k→∞

x(uk).(12)

In particular, since each x(uk) is a nonsingular Penrose tiling, it follows that X =
Xn.

Proof. Suppose x = T t(limk→∞ y∗(u′k)) where u′k → u′0. Then

x = lim
k→∞

y∗(Ktu′k)

= lim
k→∞

T−t(u′k)x(Ktu′k)

= lim
k→∞

x(K−t(u′k)+tu′k).

(13)

Letting uk = K−t(u′k)+tu′k, it follows that uk → K−t(u0)+tu′0 as k → ∞, and we

put u(x) = K−t(u0)+tu′0.

By Lemma 5.4 the mapping ϕ : Xn → T5
0 is uniformly continuous, and thus has

a unique continuous extension ϕ to X . For x singular, (12) implies that

ϕ(x) = lim
k→∞

uk = u(x).(14)

Proposition 5.11. The mapping ϕ : X → T5
0 is a factor mapping.

Proof. It suffices to show that ϕ is onto. Suppose u0 is a singular and uk → u0.
Passing to a subsequence if necessary, we assume x(uk)→ x. Applying ϕ, we have
u0 = ϕ(x).

Corollary 5.12.

card(ϕ−1(u)) =

 1 if u is nonsingular,
2 if u is Type A,
10 if u is Type B.

This follows from (ii) of Theorem 5.9 and (14).

Proof of Theorem A. This now follows from Lemma 5.4, Proposition 5.11 and
Corollary 5.12.
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6. The geometry of singular Penrose tilings and the topology on X

If u0 is a Type A singular vector, we assume (wolog) that the 3-fold crossings in
y(u0) occur along a 3-grid line `3 and that the origin is a crossing of the second kind
(u0 = u1 = u3 = 0). Any small perturbation u of u0 in Σ(T5

0,n) moves `3 above (a
positive perturbation) or below (a negative perturbation) the origin, destroying the
3-fold crossings (see Figure 7).

Let uk → u0 where the uk are nonsingular and the same sign. Then the limit of
x(uk) exists and depends only on the sign. We denote it by x+(u0) or x−(u0) re-
spectively. Clearly ϕ(x±(u0)) = u0, so ϕ−1(u0) = {x+(u0), x−(u0)}. To construct
x+(u0) and x−(u0), let p′ = p ∪ {η1, η2} where η1 and η2 are the two hexagons
shown in Figure 8(b).

By a straightforward extension of Proposition 5.1, q(u0) is the vertex set of
a unique tiling x′(u0) in Xp′ . The 3-fold crossings in y(u0) are dual to a strip
of hexagons η1 and η2 parallel to `3. Away from this strip, x′(u0) looks like a
nonsingular Penrose tiling. To get x+(u0) or x−(u0), we resolve all hexagons in
the same (+ or −) direction (see Figure 8). The strip of tiles in x+(u0) or x−(u0)
obtained by resolving of the hexagons is called a Conway worm (see [7]).

The case of Type B is similar but a little more complicated. For j = 0, . . . , 9,
let v′j = (Re(eπij/5), Im(eπij/5)), and let cj denote the interior of the positive cone

in R2 spanned by v′j and v′j+1. Let F be the matrix with v2 and v4 as rows, and
consider perturbations u0(s) of u0, defined by u0(s) = u0 + (0, 0, u2,−u2−u4, u4),
where (u2, u4) = u′ and u′ = F s for small s. If the 5-fold crossing occurs at b0

in y(u), then in y(u0(s)) there will be a crossing of a 0 and a 1-grid line at b0,
but the 2 and 4-grid lines will cross at b0 + s. There will be 3-fold crossings in a
neighborhood of b0 if s is on the boundary of one of the cones c0, . . . , c9. Fixing
j, we choose sk ∈ cj such that sk → 0 and u0(sk) is nonsingular. Then the limit
xj(u0) = limk→∞ x(u0(sk)) exists and depends only on j. Let p′′ consist of (i)
the tiles in p, (ii) the two hexagons η1 and η2 and their rotations by multiples of
2π/5, and (iii) the regular unit decagon δ. Because u0 is Type B, q(u0) is the
vertex set for a tiling x′′(u0) ∈ Xp′′ , where δ is dual to the five-fold crossing (δ lies
at the ‘intersection’ of five unresolved Conway worms). A choice of cj determines
a resolution of this decagon and a resolution of each worm. Figure 9 shows the
resolution of a patch around δ in x0(u0), i.e., sk ∈ c0.

Figure 7. A Type A singular 5-grid (b), with its positive (a) and
negative (c) resolutions.
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Figure 8. An unresolved Conway worm (b) made of the hexagons
η1 and η2, together with its (a) positive and (c) negative resolu-
tions. These pictures are dual to the corresponding pictures in
Figure 7.

Figure 9. A resolution of the 5-fold crossing in a Type B singular
5-grid, and its dual the cartwheel; a resolution of the decagon δ.

In fact, since all the resolutions of x′′(u0) may be obtained from x0(u0) by a
rotation, any two Type B Penrose tilings are congruent. This congruence class is
called the cartwheel tiling (see [7]).

Theorem B. Any Penrose tiling x ∈ X has a neighborhood which is the product
of an open set in R2 and a Cantor set.

Proof. We identify Σ(T5
0) with T2 = {(u2, u4) : 0 ≤ u2, u4 < 1} and let Σs =

Σ(T5
0)\Σ(T5

0,s) ⊆ T2. First we describe how Σs looks as a subset of T2. Let

u0 ∈ T2 be a Type B singular vector. The points in T2 that correspond to the
cones cj , j = 0, . . . , 9, are bounded by the lines u0 +F s, where s ∈

⋃
j=0,...,5{vj}⊥.

This set consists of five lines through u0. Three of these (vertical, horizontal and
diagonal) have rational slope, and are thus circles in T2. The other two, which

have irrational slopes −1−
√

5
2 and 1−

√
5

2 , wrap densely around T2. We call such
configuration of five lines a spider at u0 (see Figure 10(a)).

Since Type B singular vectors are dense in T2, Σs has spiders at a dense set of
points. Any intersection of 2 or more spider legs corresponds to an n-fold crossing
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in y(u0) with n > 3. Since there are no 4-fold crossings, spiders correspond to
5-fold crossings in y(u0) (see Figure 10(b)).

We inductively construct a model for D = ϕ−1(Σ(T5
0)), replacing each line in the

spiders by a pair of lines in D. Since there is a spider at 0 ∈ T2, we first remove a
vertical and a horizontal circle from T2. Adding a segment to each side, we obtain
a closed square which we denote by C′. We model this as a horizontal square in
R3. Now we view Σs as a countable collection of line segments going across C′

(see Figure 10(b)). In Step 1 we cut along the first segment, separate each half
vertically by 1/2, and glue a segment along each side. We denote the result by C1.
In Step j, we cut the jth segment out of Cj , separate the two halve vertically by
1/2j and glue segments along both of the edges. Each time we cross a previous cut
we obtain a corner (see Figure 11). The resulting union of ≤ 2j polygons is denoted
Cj+1. The set C, defined to be the set of all limits of sequences aj ∈ Cj , is a Cantor
set. Define α : C → T2 by α(t1, t2, t3) = (t1, t2). Note that α is surjective and
card(α−1(u)) is either 0, 2 or 10, depending on whether u is nonsingular (disjoint
from the spiders), Type A (in a leg) or Type B (in the center of a spider). Let
C0 = α−1(Σ(T5

0,n)) and D0 = ϕ−1(Σ(T5
0,n)) ⊆ D. Define a uniformly continuous

homeomorphism γ = ϕ−1 ◦ α|C0 : C0 → D0. This map has a unique extension to a
homeomorphism γ : C → D.

Now let x ∈ D and let V1 = ϕ−1(U1), where U1 is a neighborhood of ϕ(x) in
Σ(T5

0). Choose ρ sufficiently small that ||t1||, ||t2|| < ρ implies Kt1U1 ∩Kt2U1 = φ
or (equivalently) T t1V1 ∩ T t2V2 = φ. Let U =

⋃
||t||<ρK

tU1 and note that U =

U1 × Bρ(0), so that U is open. Then V =
⋃
||t||<ρ T

tV1 = ϕ−1(U) is also open.

We claim that V is homeomorphic to V1 × Bρ(0) via the map t(x, t) = T tx. It
suffices to show that the inverse is continuous. Given ε > 0, we choose δ > 0
for the uniform equicontinuity of the maps {T t : ||t|| ≤ ρ}. If x1, x2 ∈ V with
h(x1, x2) < δ, then for i = 1, 2 there exists ||ti|| < ρ and zi ∈ V1 with xi = T tizi.
Thus t−1(xi) = (zi, ti), and we have h(z1, z2) < ε. Now ϕ(T tizi) = Ktiϕ(zi), and
U = U1 × Bε(0). Thus since ϕ is continuous, we can ensure that ||t1 − t2|| < ε by
choosing δ sufficiently small.

Figure 10. The torus with (a) one spider, and (b) several spi-
ders. Note that (b) can be viewed as a countable collection of line
segments crossing the square.
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Figure 11. The set (a) C1, and (b) the set C2 showing four cor-
ners. Note that two more cuts will eventually go through the same
point, so there will ultimately be ten corners there.

For x 6∈ D, we let (u′0, u
′
1, . . . , u

′
4) = ϕ(x), and replace the set Σ(T5

0) = {u ∈
T5

0 : u0 = u1 = 0} with the set {u ∈ T5
0 : u0 = u′0, u1 = u′1}.

The author acknowledges helpful conversations with Le Tu Quoc Thang on this
subject.

7. The Penrose inflation

One of the most intriguing properties of Penrose tilings is inflation. This is most
conveniently described in terms of a self-map Q on Xp̃. For x ∈ Xp̃, each tile τ
in x is subdivided into patches of smaller scale p̃ tiles (see Figure 12) resulting a
new Penrose tiling x̃ on a smaller scale. Then x̃ is scaled up (i.e., inflated) to the
original scale. We denote the result by Qx ∈ Xp̃. Clearly Q is a homeomorphism
of Xp̃, and by conjugating with the mapping ε : Xp̃ → X , we may assume that Q
is a homeomorphism of X . Although, as we noted in the Introduction, inflation is
reminicient of a substitution rule (see [3], [16], [13]), here we will concentrate on the
“hyperbolicity” of Q.

The matrix

A =


1 1 0 1
1 1 1 0
−1 0 0 −1

0 −1 −1 0

 .(15)

Figure 12. The Penrose inflation.
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is a Lebesgue measure preserving hyperbolic automorphism of T4 = R4/Z4. The

eigenvalues of A are 1±
√

5
2 , each with multiplicity 2. It is easy to show that A is inte-

grally conjugate to the Cartesian square of the Fibonacci automorphism

(
1 1
1 0

)
on T2. Our main result on inflation is the following.

Theorem C. The inflation homeomorphism Q is a nontrivial almost 1:1 extension
of the hyperbolic toral automorphism A on T4. The factor map ϕ is the same as the
factor map in Theorem A. Moreover, Q preserves the unique T -invariant measure
µ on X.

It follows from Theorem C that Q is topologically mixing and Bernoulli with

respect to the unique T -invariant measure µ on X . The entropy of Q is ln(1+
√

5
2 ).

However Q is not minimal or uniquely ergodic, since it has infinitely many periodic
points.

Proof of Theorem B. It is easy to see that the shift T and the inflation Q satisfy
the commutation relation

Q ◦ T t = T λt ◦Q,(16)

where λ = 1+
√

5
2 . Let

B =


1 1 0 0 1
1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
1 0 0 1 1

 .(17)

Then T5
0 and T5

0,n are B-invariant subsets of T5, and although det(B) = 3, the

restriction of B to T5
0 is invertible. Conjugating by π : T4 → T5

0, we have π ◦A =
B|T5

0
◦ π. A computation shows that the rows of WT are left eigenvectors for B,

and thus

WTB = λWT .(18)

De Bruijn [2] showed that for all u ∈ T5
0,n Qy

∗(u) = y∗(Bu), and it follows from

this, with (18) and (16) that for u ∈ T5
0,n,

Qx(u) = T−λW
TuQ(y∗(u))

= T−W
TBuy∗(Bu)

= x(Bu).

(19)

To complete the proof, we conjugate by ϕ and π, and use continuity to extend to
the singular case.

8. Generalizations

Here we will briefly mention two ways the situation discussed in this paper can
be generalized. First, it is possible to relax the assumption that u ∈ T5

0 and replace
it with the assumption u ∈ T5

β,n = {u ∈ T5
n : u0 + . . . u4−β = 0 (mod 1)} for some

β 6= 0. We then construct the corresponding grid tilings y(u), and let Xβ denote
the closure of the duals of the nonsingular ones. For β 6= 0 this yields tilings that
are not congruent (or even locally isomorphic) to Penrose tilings (Figure 13).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE DYNAMICAL PROPERTIES OF PENROSE TILINGS 4463

It is easy to see that the shift T on each Xβ is an almost automorpic extension
of the (same) Kronecker action K, and is thus metrically isomorphic to the Penrose
shift. However, one can show that for Lebesgue a.e. β, there is a singular grid
tiling with a four-fold crossing. It follows that 8 belongs to the thickness spectrum
and thus the corresponding shift is not topologically conjugate to the Penrose shift
(although they are metrically isomorphic).

Figure 13. A generalized Penrose tiling for β = 1/2. It is easy
to see that the shaded patch cannot be decorated with arrows
to satisfy the Penrose matching condition, so this patch does not
occur in any Penrose tiling.

Figure 14. Part of a generalized Penrose tiling for r = 23.

In a second generalization, one replaces the 5th roots of unity with the rth roots
of unity for r ≥ 6. Following Niizeki [10], we let d = r if r is odd and d = r/2 if
r is even. For u ∈ Td, a grid tiling y(u) consists of d grids perpendicular to the
first d rth roots of unity. If such a tiling is nonsingular, its dual is some x ∈ Xp,
where p is the collection of convex hulls of pairs of the first d rth roots of unity
(card(p) = d(d − 1)/2). Let X denote the closure of all such nonsingular grids.
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As in the case above (where the parameter β separates different minimal sets or
local isomorphism classes), one can show there is an a = d−φ(r) parameter family
of minimal sets (where φ denotes the Euler φ-function). Restricted to any such
minimal set, the shift T in this case is almost auomorphic with CT = Z[e2πi/r]. It
is interesting to note that r = 2t implies a = 0 (see [10]), so T is minimal on X .
The smallest such case r = 8, d = 4 (Figure 14) gives the well known Aman tiling
(see [7]).
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