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Summary. We investigate the dynamical stability of a differentially rotating
disc (or torus) of fluid of uniform entropy and uniform specific angular
momentum. Such a fluid is neutrally stable to axisymmetric perturbations.
In this paper we consider non-axisymmetric perturbations and undertake a
global stability analysis. We present a general study of the normal mode
eigenvalue problem and the explicit analytic solution of a pair of particular
limiting cases. We derive the fastest growing eigenmodes by numerical
integration of the full linearized equations for more general cases. Our overall
result is that the tori are unstable to low order non-axisymmetric modes and
that the modes grow on a dynamical time-scale. We argue that because of
the strength of the instability, similar unstable modes must exist in tori of
non-uniform entropy or of non-uniform specific angular momentum.

1 Introduction

The study of differentially rotating systems is of importance in astronomy. Differential
rotation is a major ingredient in models of galactic discs (Toomre 1977) and accretion
discs (Pringle 1981). It plays a role in solving the excess angular momentum problem
in the dynamics of star formation, and must occur even in originally uniformly rotating
stars as they evolve, through redistribution of mass with radius, through tidal interaction
with a companion (Savonije & Papaloizou 1983) or through the accretion of high angular
momentum material from a companion (Kippenhahn & Thomas 1978).

In this paper we concentrate our attention on the thick accretion discs, or accretion tori,
which are invoked in accretion type models of quasars. Such models are required, rather
than the standard thin discs, when the accretion luminosity approaches the Eddington limit
(Shakura & Sunyaev 1973) or when inefficient cooling forces the disc to become so hot
that the local gas sound speed approaches the circular velocity and the disc thickness
becomes comparable to, or greater than, the radius. Such tori are also constructed in an
effort to produce a configuration which might be conducive to the formation of jets, using
the empty vortex region along the accretion axis (Lynden-Bell 1978).

2§
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As pressure forces play a role in the equilibrium structure of such tori, there is no reason
for the rotation law to be Keplerian and it may be specified in an arbitrary manner. Because
of this freedom, it is essential to know whether the requirement of dynamical stability
imposes any constraints on the rotation law.

There is no complete theory for the stability of differentially rotating systems (see for
example Toomre (1969), and the relevant chapters in Tassoul (1978)). For a rotating,
homentropic gas the only stability criterion available is that due to Rayleigh (1916) which
states that a necessary (but not necessarily sufficient) criterion for stability is that the
specific angular momentum should not decrease outwards. This is the only criterion used
so far in the literature for limiting the range of allowable models (e.g. Abramowicz, Calvani
& Nobili 1980). Moreover, it is generally assumed, either explicitly or implicitly, that the
criterion is a sufficient one and, in particular, that models with constant specific angular
momentum, are dynamically stable. For example Madej & Paczynski (1977) argue that
in the outer regions of an accretion disc in a close binary system there is a ‘dynamical
instability which tends to keep the angular momentum per unit mass constant with
radius’. In their paper on the evolution of accretion tori, Abramowicz, Henderson & Ghosh
(1983) assume that the time-scale of evolution is much longer than the dynamical time-scale.

However, Rayleigh’s criterion is derived from a consideration of axisymmetric modes,
and indeed for such modes it is both necessary and sufficient. The properties of non-
axisymmetric modes are still essentially unknown, and the theory for these is much more
complex. It is not possible in the non-axisymmetric case to derive an energy principle which
gives necessary and sufficient conditions for stability. In addition, methods of analysis
discussed in the literature, such as the tensor virial method or local stability analysis, do not
provide sufficient conditions for stability to non-axisymmetric modes. In the case of the
tensor virial method or other adapted trial function methods, there is no guarantee that any
derived instabilities are genuine (Friedman & Schutz 1978). Thus the results of Hacyan
(1982) who used such an approach in a study of the stability of accretion tori are incon-
clusive. A local stability analysis can be used to make a case for instability, but of course
in this case the criterion derived is simply the Rayleigh criterion (e.g. Abramowicz et al.
1984).

This paper is the first to emerge from our study of the non-axisymmetric modes of
differentially rotating discs. To study such modes it is essential to solve the time-dependent
linearized fluid equations and so to undertake a global stability analysis. In view of such
well-known features as corotation singularities, one may not, in general, assume a priori
that discrete modes exist. The results of such a study should throw light on the stability of
differentially rotating flows in general, and in particular of all disc flows as well as accretion
tori. In this paper we limit ourselves to a study of non-self-gravitating, homentropic tori
with constant specific angular momentum because in this case the stability problem is
greatly simplified.

We approach the problem of the stability of such tori in three different ways: a general
study of the normal mode eigenvalue problem, the explicit analytic solution of a pair of
particular limiting cases and the full numerical solution of the time-dependent linearized
fluid equations for more general cases. The results from these approaches are interrelated
and complementary and help to shed light on the nature of the instability. Our overall
result is that all such tori are unstable to low order modes and that the instability occurs
on a dynamical time-scale. At first sight this is surprising, as there is no self-gravity in the
problem and the local analysis gives no hint of such instabilities. The instabilities are global
and can only be definitively identified by a proper solution of the full equations.

In view of the interrelatedness of our results and of the fact that no simple instability
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criterion emerges, we present our analysis in one rather lengthy paper. The structure of the
paper is as follows. In Section 2 we display the equilibrium configurations, in general, and
for the particular cases of the gravity being due to a central point mass and of the system
having uniform specific angular momentum. In Section 3 we derive the linear perturbation
equation for general polytropic equilibria and show how a local stability analysis gives rise
to Rayleigh’s criterion. In Section 4 we consider the perturbation analysis for constant
specific angular momentum tori. We show that incompressible tori are stable and that finite
compressibility has a destabilizing effect. We then discuss the general eigenvalue problem
and show that the modes of oscillation of such tori are discrete. By considering an extended
class of equilibria, we are able to illustrate, by means of a somewhat lengthy analysis, how
the unstable modes arise. This analysis implies for any actual problem we are considering
that at least modes with large values of m can be expected to be unstable. In Section 5 we
present two explicit analytic examples of the instability. We consider a thin cylindrical shell
and a thin isothermal torus. The similarity between these problems and the one discussed
in Section 4 is evident and unstable modes are calculated for both. In Section 6 we calculate
the fastest growing unstable modes in relatively distorted tori by direct numerical computa-
tion. We take some trouble to show that the instabilities we discover are not artefacts of
the numerical methods employed. Our results and conclusions are summarized in Section 7.

2 The equilibrium configurations
2.1 GENERAL POLYTROPIC EQUILIBRIA

We consider the equilibrium configuration of a non-self-gravitating differentially rotating
fluid. We use cylindrical polar coordinates (&, ¢, z) in an inertial frame and assume that the
rotation is about the z axis. The equilibrium equation for a fluid subject to an external
potential V is

1
——Vp-Vy+Qw®=0 (2.1)
p

where p is the pressure, p the density, §2 the angular velocity and @ the unit vector in the
radial direction. Throughout most of this paper we assume the external potential as due
to a gravitating point mass, M, situated at the origin, so that = y,, where

Yp=— GM/(w® +2%)"2, (2.2)
We also assume the equation of state of the fluid to be that of a polytrope, that is
p=Ap'*n=4p7, (2.3)

where A4 is the polytropic constant and » the polytropic index. For this equation of state
we require 90£2/9z =0 (see, e.g. Tassoul 1978). Thus we take £ to be a function of ¢ alone
and define a rotational potential Y ; so that

0 Wrot —
o

— Q2. (2.4)

By combining the above equations we may reduce the equilibrium condition to

VYot + ¥+ (n+1)p/p] =0 (2.5)
where we note that (n + 1)p/p = [dp/p is the specific enthalpy. It follows that
(n+1)p/p+ ¥ + Yot = C= const. (2.6)
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The constant, C, defines the boundary of the configuration. If the fluid extends to the
surface on which p = p = 0 then the surface is given by

W + lprot =C. (2-7)

2.2 CONFIGURATIONS WITH CONSTANT SPECIFIC ANGULAR MOMENTUM

If the angular velocity Q « &2, then the specific angular momentum 4 =2 is
constant. In this case we find from equation (2.4) that Y.o,=h%/(2®?), where we have
taken the constant of integration so that Y, vanishes as @ —>oc. When { is given by
equation (2.2), so that the external field is produced by a point mass at the origin, the
equilibrium equation (2.6) becomes

p 1 GM h?
- = ( - + C). (2.8)
0 (I’l + 1) (az + 22)1/2 23)2

To specify the equilibria it is convenient to introduce a constant distance @, defined
by @3 =h?/GM. This is the distance at which an isolated particle in a circular orbit with
specific angular momentum % would rotate. From equation (2.1) it is evident that vp =0
at the position given by @ =y, z=0 so that @, is also the distance of the density
maximum from the rotation axis. Equation (2.8) may then be rewritten as

D GM “\ w% 1/2 1 ZD02 ,
P_ ( R ——) _c| (2.9)
p (m+t1)oo L\m*+z 2\

where the constant C' = — Ct,/(GM). The zero pressure boundary is given by

‘G)Z Z2'-1/2 , 122’02

BRSNS
o o 2\ @

The values, @., of @ for which the boundary intersects the plane z=0 may be found

by putting z = 0 and solving the resulting quadratic equation for @3o/¢3. We obtain

@ =o/(1FV1—-2C"

We note that we take @, to correspond to the outermost point of the torus and @_ to
the innermost. A measure of the distortion, d, of the torus is the dimensionless quantity
d =Y%(w,+®_)/wy, which is equal to (2C")™'. Bounded configurations exist only for
0 <2C"<1. For 2C’ close to 1, the ring is small and undistorted so that it has nearly
circular cross-section. As 2C" decreases to zero the torus becomes more and more distended
(see Fig. 1). When 2C' =0, the innermost point &_ =%, and the outermost T, = oo,
When C' < 0 the configuration extends to infinity and a finite pressure must be supplied
at @ = oo,

3 The perturbation equation for general polytropic equilibria

The time-dependent equations governing the evolution of the tori discussed in Section 2.1
are the momentum equations, viz.,

19p oY

ov Vs, UpOUg UF ov
Dty —24 2 2y, —2=

_24y =, 3.1
at 3 op ® 3z  pow 0w (3.1)
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av¢ av¢ 2 av¢, vwv¢ 0vg 1 9p 1oy
—%+ vgy ty, —=———— —— (3.2)
ot am (0] (0] 0z pwop waop

and

oV, 81)2 v¢ avz avz lap oy

ot E)C) ® 8¢ oz pdz Oz

where U= (v, Uy, U;) is the velocity, and the continuity equation

o (poa) (U (pu) =0 (34)
—+— —(pow — —(pvg) + — (pv .
ot wow O wop ° pLz

In addition we assume a polytropic equation of state. To obtain the perturbation equations
we linearize the equations (3.1)—(3.4) and write

U= Ut U (3.5)
where
Yo = (0, Q2 (@), 0) (3.6)

is the unperturbed velocity and

U= (v, U, ) 3.7)

is the velocity perturbation. We let p = po+p' and p = po + p’, where p’, p’ are the pressure
and density perturbations and we recall that py and p, are functions of @ and z only. We
drop the subscript zero from now on. By perturbing the equation of state (equation 2.3)
we obtain

p'lp=70/p. (3.8)

Since the unperturbed configuration is axisymmetric, we may Fourier analyse in ¢ and ¢
and write the dependence of the perturbed quantities on ¢ and ¢ in the form exp {i(m¢ + ot)}
where m is the azimuthal wavenumber. We take this factor as read in the following analysis.
Using this the linearized version of the equations of motion (3.1)—(3.3), combined with
equation (3.8) become

0
i(0+mQ)vg— 2Qvs=——(p'p), (3.9)
0w
(0 +mQ) ’+v"~" d (°Q) imp’ (3.10)
Ho+mQ)vy+— — = - )
¢ odw & p
and
,_ 0P
i(a+m§2)uz=——(—— . (3.1D)
oz \ p

The linearized continuity equation is

i(lc+mQ)p = — div (ov). (3.12)
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It is convenient to define a quantity W such that
W=p'[lo(c +mQ)], (3.13)

and to solve equations (3.9)—(3.11) for v’ in terms of W. We find

u’m:z(o W amw)/(atﬁ), (3.14)
ow 2w

ma*W ok*/ow mwQ'
v&,=[~ > —E(éz)*‘ 5 )]/(az—xz), (3.15)
and
v'z=%a}}, (3.16)

where 0= o0 +m$) and
2Q d

2 -_
= @), | (317

These equations together with equation (3.8) can be substituted into equation (3.12)
to give a single equation for W, which is

D* 3 [pm( , OW ch_rmW)J [m2W( Ko ) Kk*om aw]
o —+ +pD - —-0?) - —
wowlD o 2w ®® \ 20 2mQ 0w

2 a aw 25=2_2
+D 3 pa— +D*6*p*w/yp =0, (3.18)

where D = 6% — k2.

Equation (3.18) is a single eigenvalue equation for o which describes the stability of a
polytropic torus with an arbitrary angular velocity distribution. We discuss in Section 4
the particular case of constant specific angular momentum for which k2 = 0. Here we note
briefly some general properties of equation (3.18) and of its associated oscillation spectrum.

To illustrate these properties we consider the high wavenumber limit and seek a local
dispersion relation by looking for a solution of the form

W=Woexp [i(ke,® + k,2)], (3.19)

where W is constant, and letting both kg, and k, tend to infinity while their ratio remains
finite (for finite m). In this limit equation (3.18) becomes

p Wo(DEk2, 62+ D* k) =0 (3.20)
which leads to the local dispersion relation
2=(0+mQ)? = k2K2/(k2+ kL). (3.21)

In the limit as kg and k, tend to infinity, k,/kg can have any value so we may expect
the spectrum to be either locally dense or continuous and to cover the range given by

—Kk<0t+tm<k (3.22)
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evaluated for any point in the torus. The arguments given in Appendix A of Papaloizou &
Pringle (1982) for the case of uniform rotation can be extended to apply to the Lagrangian
formulation of the problem described here. In particular, if any external time dependent
force is applied with a frequency in the above range then the Lagrangian displacement
becomes unbounded, implying therefore that the oscillation spectrum is indeed either
continuous or discrete but locally dense over the above range.

We note further that of course for stability the local dispersion relation given above
just requires that

28 d
Ki=— — (@%Q)=0.
& dw

This is simply the necessary condition for the stability of a differentially rotating liquid
derived by Rayleigh (1916).

4 The perturbation equation and stability criteria for constant specific angular momentum
tori

If the torus has constant specific angular momentum, the fact that 32§ = const. and hence
that k = O simplifies the general perturbation equation (3.18) to

1 9 ( aW) m? W 0 ( aW) G2 oW @)
——|pw |- pW+—(p—])=- : :
wow Vo o ®? oz \* 3z Yp

The feature of equation (4.1) that renders a simple discussion feasible (in contrast to the
general case) is that there is no locally dense or continuous portion of the oscillation
spectrum, nor is there the possibility of a corotation singularity.

Since Section 4 is, of necessity, somewhat detailed, we briefly review the contents of
the section here. In Section 4.1 we demonstrate why finite compressibility is necessary to
give rise to instability. This finding is analogous to the results of Broadbent & Moore (1979)
who consider the stability of a vortex line and show that it is destabilized by the effect of
a finite compressibility. In Sections 4.2—4.4 we turn our attention to a related analogous
problem in which the original potential is not just that due to a point mass and in which
finite pressure is maintained at the boundaries of the torus. This enables us to use some
standard mathematical results. For this problem we show that the eigenvalues are discrete.
We demonstrate the existence of some unstable modes and show where and how the
stability is lost. We find a criterion for the existence of unstable modes for tori with a
central mass point but with finite boundary pressure. The unstable modes are shown to
exist provided the boundary pressure is low enough.

The set of unstable tori is infinitely dense in the sense that an unstable configuration
exists infinitesimally close to any torus which satisfies the criterion for the existence of
unstable modes. The distribution of the unstable modes comes from considering modes
of high m and we conclude that the general implication of the analysis for tori with
vanishing boundary pressure is that we expect instability at least to modes with arbitrarily
large values of m.

In Section 4.5 we draw an analogy with the Klein—Gordon equation and show the
relationship between the instability found here and Klein’s paradox.

4.1 INTEGRAL CONDITIONS AND THE INFLUENCE OF FINITE COMPRESSIBILITY

In deriving some general integral formulae from equation (4.1) it is convenient to work in
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terms of o, = 0+mS), where £ is a constant angular velocity whose exact value can be
specified later at our convenience. Equation (4.1) can now be written as

CZAW+0,BW+CW=0 4.2)
where
A=p’/yp, (4.3)
B=2m(Q — Qo) p*yp, (4.4)
and C is the elliptic operator given by

2
W= ) (o e () @

We now multiply equation (4.2) by W*t, where asterisk denotes complex conjugate,
and integrate over the domain in the (23, z) plane occupied by the torus. If the boundary
conditions are such that either W or its normal derivative or p vanishes at the boundary
of the torus we obtain, after integrating by parts,

2 A+0,B-C=0, 4.6)
where
A= [iwrepriwdnds, @47
B= fl WIP2m(Q — Q) p*(yp) 'wdwdz, (4.8)
and
- W2 oW )? 1 p(2—-Qp)°
C= Jp [ — |+ +|W*m? (j—g)]wdwdz. 4.9
ow 0z (&) TP
The solution of equation (4.6) is
E C_ EZ 1/2

0. =———=t|l=+— s 410

© 24 (A 4,42) (4.10)

where we note that 4, B and C are all real. Thus a sufficient condition for stability (real o)
is that C be positive definite for any W for any choice of €2, and for all values of m. It is
evident from equation (4.9) that the only term which could make C negative is the one
involving p/p. In the incompressible limit, in which y — oo, and provided that p/p is non-zero
on the boundary, the quantity p(2— Qc)z/(yp) can be made negligibly small compared to
1/cs? everywhere in the torus. Thus in the incompressible limit, Cis positive definite and the
system is stable, under the assumed boundary conditions. We conclude that any instability
must result from having a finite, rather than an infinite, sound speed.

42 THE GENERAL EIGENVALUE PROBLEM

In this section we consider equation (4.1) from a general standpoint and investigate how
the complex eigenvalues, that is the unstable modes, arise. However, in order to simplify
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the discussion and to make use of a number of standard results we shall find it necessary
to consider a wider class of tori than those with just a central point mass. We shall not be
able precisely to identify the unstable tori. Nevertheless, the set of unstable tori is dense
so that tori with a central point mass are expected to be unstable for some values of the
defining parameters (e.g. n, C' or boundary pressure).

To discuss the eigenvalue problem given by equation (4.1) we need to specify boundary
conditions on W. For the problem we are considering the appropriate boundary condition
is that the density vanishes at the boundary of the torus, and the behaviour of W is then
determined by a regularity condition. In order to make use of the many available analytic
results, it is more convenient to suppose that the density has some small but finite value at
the boundary. We must then specify the behaviour of W there and we consider the cases of
either W or its normal derivative vanishing at the boundary. The latter condition corresponds
physically to the constraint that the normal component of velocity vanish. We find that
our results turn out to be independent of the actual boundary conditions imposed if the
density at the boundary is small, and we may therefore expect them to extend to the case
where the density vanishes.

The eigenvalue problem given by equation (4.1) can be written

L(W)=—(a+mQ)* 0*W/(yp), (4.11)
where L is the linear operator defined by

L) 1 d ( aw>+ a( aW) mipW @12)
=——|po—|+—|p— |- ) )
T3 0w P o/ dz P 0z ?

This can be converted to an integral equation by inverting the elliptic operator L. If
L(W) =S, we may write

W=L"(S)
= fG(G), z,w,z) S, z")dw' dz’ (4.13)
where G(@, z, @, ') is a suitable Green’s function (e.g. Courant & Hilbert 1953). G has a

logarithmic singularity at & =o', z=z" and is therefore square integrable. The eigenvalue
problem is therefore equivalent to

(0 +mQ)? p?w
w+1;1( UL }=0, (4.14)
P
which is an integral equation for W of the form
W+ fK(w, z, @,z 0) W', z')dw' dz' =0 (4.15)

where the kernel K is square integrable. This integral equation can be transformed to one
with a symmetric kernel and is one to which standard theory can be applied to show that
the finite eigenvalues, o,, are given by the vanishing of an analytic function F(¢) (Courant &
Hilbert 1953; Smithies 1965). Accordingly the eigenvalues are discrete and, apart from the
possibility of accidental degeneracy, are separated.

We now modify the problem once more to bring the eigenvalue equation into more
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standard form. We do so by introducing a parameter a into the right-hand side of equation
(4.11), so that it becomes

o?m?(v+ Q)*
4

where for convenience we work in terms of v = o/m. The effect of a is to modify the original
configuration by scaling the pressure at fixed density. From equation (2.1), we see that to
satisfy the equilibrium equation for the unperturbed configuration the introduction of «
corresponds to modifying the problem in two respects. First, for example, if the external
potential is produced by a point mass we must scale Yp by the factor o?, that is replace
Yp by wp/a2. Secondly, the unbalanced centrifugal terms must be accommodated by
introducing an appropriately scaled cylindrically symmetric potential that allows rotation
at constant specific angular momentum still to occur. The equilibrium configuration so
obtained corresponds to a realizable (if not necessarily realistic) configuration which is
analogous to the original. The derivation of the perturbation equation (4.1) is not affected
by these changes.

By introducing «, and by regarding « rather than v as the eigenvalue, we obtain an
eigenvalue problem to which many standard results can be applied. For real », by a slight
extension of the integral equation argument, there is a sequence of real discrete a; (i = 0, 1,
2, . . .) which are the eigenvalues. We shall refer to the solution with o = aq as the funda-
mental and to the others as higher modes.

The modes can be derived from maximum—minimum principles applied to the functional

e
. fm2 W+ Q)2 p%(yw) ' W dw dz |

L(W)=~ (4.16)

For the fundamental mode W,, V[W,]= a3 is an absolute minimum. For the nth mode
W, VIW,]=0d3 is the minimum obtained by varying W over all trial functions which are

orthogonal to all the lower modes W;(0 < i < n —1). The orthogonality condition for two
modes W;and W} is

f(v+ﬂ)2p2(7p)_1 WiW @ dos dz = 65 (4.18)

assuming the W, are suitably normalized. We note that since p2(v + Q)*/yp is non-zero
everywhere except possibly for one value of &, the W; are a complete set except possibly for
a delta-function at that value. .

We now investigate how the eigenvalues o; (assumed positive) depend on v. We consider
initially the case of large |v |, that is |»|> Q, in which case equation (4.16) becomes
equivalent to a standard type for the eigenfrequencies of a vibrating membrane with v?o?
as the eigenvalue. For this problem the eigenvalues form a discrete set

2,2 =
Vo ”)\0,?\1,)\2,...,)\,‘,...

with A, real and positive and such that \,, = % as n = e, For the moment we can consider
just the fundamental mode for which o?v* =\3 and a = ay. This mode is non-degenerate
and the corresponding eigenfunction W does not change sign. For large v?, and taking
ao > 0, there are correspondingly two curves in the (@, v) plane, one for positive v and
one for negative v, on which oy >0 as | v |0, On both of these o increases as | v |
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decreases. If we now go back to the full problem given by equation (4.16) there will be two
corresponding curves in the (@, v) plane. On these ao(v) increases monotonically from close
to zero as | v | is decreased from large values. We note, however, that as | v | is decreased
further, a, cannot pass through a point in the (@, ») plane at which dag/dv is infinite and
which would correspond to a minimum in | » |. For, if this were possible, there would be
close to that point two values of aq giving a fundamental mode (no nodes in W) for the
same value of v, so contradicting the minimum principle. For the same reason, the two
curves ao(v) originating from » =+ oo cannot cross. We also note that as | v | is decreased,
ao(¥) cannot tend to infinity for some value of » (recall that © is not constant), as this
would imply for that value of v, that the fundamental had infinite eigenvalue. Finally, we
note that a, cannot be zero for any finite value of ». We are therefore led to the conclusion
that the two curves originating from large | v | must coalesce and hence that there is a
critical value of ag = aps say, for which v = vy, above which the fundamental mode cannot
be continued for any real ». At the point of coalescence dao/dv =0 and hence, from
equation (4.17) we note that

r
Jm2(Vof+ Q) p*(yp) ! WE wdesdz =0. (4.19)

We now show that in the neighbourhood of o = ag¢ there is a solution of equation (4.16)
with complex v. We use linear perturbation theory and, for small € > 0, let v = po¢ + ep; +
€’v;, W=Wy+eV, +€*V, and o® = ad; + B, +€2B,. Substituting into equation (4.16)
and comparing terms of order € gives §; = 0 (using (4.18) and (4.19)) and

v, = Z by Wy
n=1

where
2v; 03¢ o
bp=—— | WaWo(vos + ) p° (yp)™ & dw dz (4.20)
Gn — Oof

and we note that a2 > o3¢ foralln > 1.
From the second order terms in € we find that

Br=e"%(? — o)
=—2a? P 4.21)

where & is a positive definite expression. This gives v; and hence v as a function of o. We
conclude that in the neighbourhood of a=ag¢, for a< ar the solutions to (4.16) have real
values for v (which we know already) and that for & > ao¢ the solutions have complex pairs
of roots for ». We have shown, therefore, that stability is lost at this point. We have here
used perturbation theory to display explicitly the loss of stability. However, the fact that
there are complex roots for v near a = apf, follows essentially from the fact that the integral
equation argument shows that the relation between « and v is given by the vawishing of an
analytic function f(a, v). The existence of complex roots near o = agf, ¥ = Vo can be seen
by performing a Taylor expansion about that point.

The argument above was made for the fundamental mode of the associated o problem,
for which the nature of the eigenfunction is readily identifiable. An entirely similar
argument can be made, however, for each particular eigenmode and corresponding o, ().
There is the additional possible complication of accidental degeneracy but this does not
change the essential feature which is that stability must again be lost at some value a = Ot
> Qof-
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Finally we stress that we have not proved that unstable modes exist for all real « such
that o > aos, but have strictly just proved the existence of instability bands in a close to
the values a=a,s (n=0, 1, . . .). We note further that the above arguments hold, with
different values for the a;,¢, for each value of the azimuthal wavenumber m.

43 THE BEHAVIOUR OF THE MODES OF THE RELATED PROBLEM FOR LARGE m

To consider the behaviour for large m, we write the variational expression equation (4.17)
in the form

pW? 1 OW\? OW\?
—dwdz+— |p® —) +{— ) |dwdz
@ m? oz 0w
W] =

f(v + Q) p*(yp) ! W dwdz

Vi (4.22)

For real v, the eigenvalues a? which are extrema of ¥ can be found using the maximum—
minimum principles described in the previous section. For large m, the coefficient of the
sécond integral in the numerator, which contains the derivative terms, tends to zero. This
means that trial functions can be arbitrarily localized with little effect on V. In the limit as
m tends to infinity o3, the absolute minimum of V, is found by localizing the function
\V/pW/es at the place in the torus where (v + Q)*pt?/(yp) takes its maximum value. If this
maximum is M(»), then o = 1/M(v) as m —o. The limiting critical value of o3, o, is the
maximum value, Mg", of M~ (v) as v is varied over the real range. Because the influence of
the derivative terms on the value of ¥ diminishes as m —> oo, exactly the same argument holds
for the higher order modes, because the auxiliary conditions for the minimum problem can
be satisfied by a finite combination of non-overlapping localized functions. In particular
o > 1/M(v) as m —oo for all eigenmodes n. It is evident from equation (4.22) that the
limiting value approaches 1/M(v) from above. Thus for each eigenmode n, and given real v,
there is a sequence of values (v, m) which tend to 1/M(v) from above as m — . Similarly
the critical values o ¢(rn) form a sequence which tend to My' from above as m > oo. Further-
more from (4.22) we see that as m —> oo, [a3¢(v, m) — &2¢(v, m +1)]/aZe(v, m) ~ O(1/m).

Given the above, we can now show that the critical values o2¢(m) are densely packed in
the neighbourhood of any value of « such that o > M. To do so choose a large value of
m, say mq. Since @2¢(m,) is an increasing function of n we choose 7 such that aj¢(m0) > o.
We now consider the corresponding values of a2¢(m) as m is increased towards infinity.
Since o > Mg!, there will be two successive values, m and m +1, such that o2¢(m) > o® >
o2¢(m +1) and m > m,. Therefore the distance between these values and the quantity o?
is less than or of order a?/mg. However, m, was arbitrary and therefore for any neigh-
bourhood of o? there are modes whose critical values aZ¢(m) lie in that neighbourhood.
But in Section 4.2 we showed that the critical values are such that for o in their neighbour-
hood, solutians exist with complex ». We conclude that any value of o such that o® > 1/M,
is arbitrarily close to instability for some mode with sufficiently high m. The set of values
of a for which stability occurs is nowhere dense but is not necessarily a set of measure zero
(A. Bremner, private communication).

44 THE IMPLICATION FOR THE INSTABILITY OF TORI WITH CONSTANT SPECIFIC
ANGULAR MOMENTUM

In Section 4.3 we defined M(v) as the maximum value of the quantity (Q +»)2p%%/(vp)
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in the torus for a given v, and showed for m — o that ad; was the reciprocal of the minimum
value of M(v) for all real v. Let the torus be situated in the region @_ < @ < @,. Since
Q «z~? for a constant angular momentum torus, the maximum value of the quantity
F(v) = (Q + v)*®? for given v occurs either at @ = @, or at @=&_ depending on the value
of v. It is easy to show that the smallest such maximum value of F occurs forv=—(Q_o_ +
Q.o.)/(@y + @_), where Q, is the value of § at @, respectively, and is equal to Fpy;p =
23— Q.)*/(w, + w_)?. Furthermore p/p increases towards the boundary of the
torus and is a maximum at some point on the boundary. If, for example, the boundary is
taken to be a constant pressure (or density) surface the maximum value [p/p], occurs both
at &=, and at @ = @_. We deduce therefore that

a(2)f > [7p/p]b/Fmin

_ /el (@, + @)
(. — Q)7

(4.23)

with equality occurring as m —> oo,

The region in which instability occurs was shown in Section 4.3 to be that in which
o > opf. But for tori with a central point mass, which are the main concern of this paper,
a = 1. Thus for instability of such tori we require

[719] iwi(Q.— Q)
—] < .
pdp (o +@)°

(4.24)

It is evident however that inequality (4.24) is satisfied for tori in which the value of p/p
on the boundary is much less than the central value, and that we do not require p/p to
vanish on the boundary.

Indeed, to make the foregoing analysis tractable we have made the assumption that the
density took some small, but non-zero, value on the boundary and then imposed boundary
conditions on W. In fact, when the density on the boundary is zero (as is the case for the
tori we wish to consider), we expect that for finite m the surface boundary conditions
should be replaced by a regularity condition on W. From equation (4.1) this condition is
seen to be

1
—~Vp-VW+(c+mQ)*W=0. (4.25)
0

The other properties of the eigenvalue problem can be expected to remain essentially
unaltered, and we noted that our arguments about stability do not depend on the form of
the boundary condition. This is because when the density vanishes (or nearly vanishes)
faster than the normal distance to the boundary, any regular W can be adjusted in a small
region near the boundary to satisfy any required boundary conditon without affecting
integral forms like C in equation (4.9) or V[W] in equation (4.17). We expect that once
the boundary density has been reduced below a given value, a given mode will be insensitive
to the precise boundary condition imposed. However fundamental modes are sensitive to
the boundary values as m —> o because they become concentrated near the surface. They
change in a way which makes the criterion for stability less easy to satisfy.

We conclude, therefore, that the general implication of inequality (4.24) for the actual
tori we wish to consider (for which the boundary density vanishes) is that we expect
instability to modes with arbitrarily large values of m.
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45 ANALOGY WITH THE KLEIN-GORDON EQUATION

We point out here that the occurrence of unstable eigenvalues of v in equation (4.16) could
have been anticipated because the equation is similar to one well known to physicists,
namely the Klein—Gordon equation for a particle with wave function , charge e and mass
m in an electrostatic field ¢ [note: these definitions of ¢ and  apply in this section only
and are made to keep in line with familiar quantum mechanical notation]. This equation is
(see, for example, Schiff 1955)

— VY +micty = (E — ed)*y, (4.26)

where E is the energy eigenvalue, ¢ the velocity of light and 2 7h Planck’s constant.

If the particle is confined to a finite region (thus Y vanishes on the boundary), then, as
with the problem discussed above, the eigenvalues are discrete. If ¢ is small, then the eigen-
values for F are real, and take both positive and negative values. It is known (Najman 1983)
that if ¢ is increased so that its range exceeds 2mc?, then the lowest positive and the
highest negative eigenvalues can coalesce producing a complex pair of eigenvalues. This is
known as Klein’s paradox and is interpreted to mean that particle—antiparticle pairs are
produced (Berestetskii, Lifshitz & Pitaevskii 1971).

This phenomenon is identical to the one described above. To be more explicit, let
E=—av, ¢ = afl/e and define the elliptic operator L' to be given by

L'(Y)=—m?c*y +h%c? V2 y 4.27)
Then equation (4.26) becomes
L)=—a*(v+Q)yy (4.28)

This equation is closely analogous to equation (4.16). The elliptic operator L' is slightly
different from L but it has identical mathematical properties. Thus the discussion given
above in terms of the (a, v) plane goes through without modification for this case as well.

5 Explicit analytic examples of the instability

The discussion in Section 4 is quite general and leads us to expect instability for constant
specific angular momentum configurations. Although the equilibria we considered were for
a central Newtonian point mass and a polytropic equation of state, our discussion of
stability, and equation (4.1) are quite general and apply for any central potential and for any
barotropic equation of state with variable polytropic index » given by (n +1)/n =dlogp/
dlog p. In this section we consider two limiting configurations for which an explicit analytic
calculation of the normal modes is possible and which illustrate the nature of the instability.

5.1 THIN CYLINDRICAL SHELL

We consider an equilibrium configuration in which matter is confined to the region @, <
W < Wy +a, with a < @,. In this case the pressure and density may take on any constant
values. For z-independent modes, equation (4.1) implies for this problem

1 d awy\ m?*w oipW
__( _)_ - , (5.1)

@
wdw \  dw (h v
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We define a variable x = @ — @, and note that x < @,. If we also assume that m?/w3 < a~2

and neglect terms of order x/&3, equation (5.1) becomes
d*W oW

=_ ) 52
dx? Yp (5.2)

If we expand ¢ = 0 + m{2 about @ = @, for small x we may write the equation in the form

2

d*w ) )
E’-—k ()\'I'x) 1% (53)

where,
A= [0+ mQUwo)/u,
M= —2mQUT30)/ T30,

and

k* = pu?[(vp)

are all constants.

For boundary conditions we take dW/dx =0 at x =0, a, although of course a similar
analysis with similar conclusions applies to the case of W =0 at the boundaries. Our general
discussion of stability given in the preceding section applies here. The quantity & (assumed
positive) plays an analogous role to a, with A being the eigenvalue. The conclusions derived
above imply that we expect A to take on complex values, and so for stability to be lost,
when k£ is sufficiently large. We see that k can be adjusted simply by scaling the constant
pressure, with large k corresponding to small pressure, and long sound crossing times.
Although there is no z-dependence, we can still apply inequality (4.24) to hold as a criterion
for instability to at least high m modes. In this case the inequality becomes k* > 4m?/
(w%a?). This expectation is somewhat surprising as there is no self-gravity in the problem,
and no hint of instability from local analysis (Toomre 1969). This serves to underline the
point that local analysis is no reliable guide to instability in the case of nonaxisymmetric
modes in shearing systems.

Equation (5.3) is found for example in the asymptotic solution of linear ordinary
differential equations with second order turning points (e.g. Nayfeh 1973). The general
solution can be written down in terms of Bessel functions in the form

W= CF(x) + CF,(x), (5.4)
where C;, C, are arbitrary constants and

Fy(x) = [0 + N1 Ty 4 [Bk(x + )],

and

Fo(x) = [(x + NP1V Ty [BK(x + N)?].

The occurrence of fractional powers causes no difficulty as they cancel out. We look
for solutions in which A has a small imaginary part, so that A =Ag +i8, and we assume
that Ag <0, but | Ag | < @ so that x + Ag changes sign at some point in 0 < x < a. The
boundary condition yields an eigenvalue equation for A in the form

F1(0) F3(a) — F3(0) Fi(@) =0. (5.5)
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Since we anticipate instability for large k, we examine equation (5.5) using asymptotic
expansions for the Bessel functions with an error O(k™') which are valid for small §,
including zero. We then find (see, for example, Watson 1944):

Fiw e () (B2 2T) 57)
P -+ (B) T (25-) 538)
an

We have adopted the convention that the square root with positive real part is to be taken
and draw attention to the different signs of these square root terms in equations (5.8) and
(5.9). This comes about because dF,(x)/dx is an odd function of X +x for real values of A
and o. Substituting (5.6)—(5.9) into (5.5) yields after some elementary algebra

/2 sin [%BE[A2 + (A +2)?] ]| = cos [4k[A? — (A +a)?]]. (5.10)

We shall content ourselves by displaying instability by finding solutions of (5.10) for
which A = — %4 +i§. With this substitution equation (5.10) becomes

cosh (kas) =+/2 sin [k(%a® — 82)]. (5.11)

It is evident that equation (5.11) can have positive (unstable) roots for §, for particular
choices of k. Since our approximations require ka®> 1 and 8 <a we may choose ka$
of order unity so that 1/5/2 cosh(ka8)=Cy < 1. Then k may be chosen so that %ka?
(1—48%/a®>)=2Nn+sin™ C, for some large integer N. The typical growth rates of
instabilities are given by kaé ~ 1 which give the growth rate

lul [ w\"?
—Im,(o)=—5u~g=(?ﬁ) . (5.12)

Thus the growth times are of order the sound crossing time, implying that the instabilities
occur on a dynamical time-scale.

It is instructive to examine the values of k for which we have found instability. For
large N these are given by k = 87N/a®. Using the definition of k this corresponds to the
quantity

24

[p ]1/2 2Q(wo)a2= 8N ' (5.13)

Wo m
If the configurations are defined by lettering @ and p/p be very small, but such that ¢ has
a finite value, then by choosing sufficiently large values of N and m we can ensure that g

is arbitrarily close to one of the values for which we have found instability. This implies
that any such configuration is such that a slight adjustment of some parameter (e.g. n or p)

© Royal Astronomical Society ¢ Provided by the NASA Astrophysics Data System

220z ¥snBny g1 uo 188nB Ad 01 £96/12./7/802/9101ME/SEIUW/WOS" dNO"DIWSPEsE//:SARY WO} POPEOjUMOd


http://adsabs.harvard.edu/abs/1984MNRAS.208..721P

FT9BAVNRAS, Z08. “721P!

Dynamical stability of differentially rotating discs 737

is adequate to result in an instability. This is in line with the general discussion given in
Section 4.

5.2 THIN ISOTHERMAL RING

We consider a thin isothermal ring under the influence of a central point mass. The ring is
concentrated near & = o and the equation of state is p = pck where the sound speed cg
is constant. As in Section 5.1 we define a coordinate x = @ — @, and we treat x/w, and
z/t, as small quantities. The integral of the equilibrium equation (2.1) for an isothermal
torus is

cé In p + Y +h?/2w?* = C = constant. (5.14)

The gravitational potential ¥, (equation 2.2) can be expanded about & =@,, z=0 in
the form

’ GM (1 x 2x?-z2 ) 5.15)
=——1-—+——+...) :
N wo 203
Similarly
W (1 2x N 3x? ) 5.16)
—=—— I+ ). :
2wt 2w wo 5
Thus equation (5.14) becomes to second order in x and z,
GM h® GM 3nxt
Elnp+|———3 x——5Qx* - +——=C (5.17)
(r o 2&)0 26)0
where C” is another constant. As before we specify 4> = GM@, and thus obtain
GM
0 = po Xp (— 3 2(x tz )), (5.18)
2@005

where p, is the central density at x =z = 0. We note that here (and, of course, close to the
density maximum for general constant angular momentum tori) the density contours are
concentric circles. As the sound speed, cg, is decreased the torus becomes more concentrated
towards the centre. We define a radial scale length b as b? = c4e3/GM and then

p = poexp [—(x? +22)/2b%). (5.19)

Having set up the equilibrium configuration we can now proceed to the stability analysis.
We note first, however, that the configuration is, strictly speaking, unbounded (though of
finite mass) and because of this our general discussion given in Section 4 does not straight-
forwardly apply. In particular in an unbounded system it is possible to have energy escaping
to infinity. Note, however, that energy escape does not necessarily act in the direction of
stability (Broadbent & Moore 1979). The modes which correspond to this are not square
integrable in the sense that neither fp| W|?>@ dos dz nor fp | W |*(0 + mQ)* @ doo dz exist.
As we shall see, apart from modes of this kind, the problem does have some square
integrable eigenfunctions for which the above integrals do exist. For such modes a finite
boundary at large radius has little effect on the integrals and for them the general theory
applies. In particular, unstable modes are found.
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To study the stability of the thin isothermal ring we consider equation (4.1) in the
limit of small x/@, and for n=-co. Using the same notation as for the cylindrical shell
problem (section 5.1) we find

o [ oW\ 0 ( aW) mipW
—lo—)+—=o—)- = — pk2(x + N\ W (5.20
ox (p ax) oz P oz wi PR ) )

where in this case
4m*Q*(w,)  4m®
cdwd biw?’

k2

and
_ Lo+ mQ(@o)] wo
B 2mU)

We have retained the m?Wp/w}3 term here because it can be comparable to the other terms
for low order modes which vary on a scalelength b. We now eliminate p by using equation
(5.19) and obtain the final equation for W:

2 2 2
%—;%+%—bﬁz%w%=—k2(x+x)2w. (5.21)
We seek a separable solution of the form
W= G1(x) Gy(2) (5.22)
where G,(x) and G,(z) satisfy the equations

d*G, x dG, m*G,

dx: b? dx w2 —AG +k*(AN+x)* G, =0 (5:23)
and
@6 245 | 6 =0 (5.24)
dz*  b? dz ’ '

where A is a separation constant. Equation (5.24) is Hermite’s equation for G,(z/b) and
has bounded solutions only if A =n,/b? for n, =0, 1, 2 . . . The solutions are polynomials
of degree n;.

To solve equation (5.23) we make the transformation

G1(x) = G3(x) exp (— Y%a;x* — a;x) (5.25)

where we choose ¢; and a, to satisfy

aGta/b>+k*=0 (5.26)
and
a, = —2Mk*QQay + 7)™ (5.27)

These conditions ensure that the coefficient of G; is independent of x, and G satisfies
d?G,
dx?

dG
- d—; [(2a, +b72) x + 2a,] + G3(k* N2 — m?/o — nyJb? +a2 — a,) = 0. (5.28)
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This is Hermite’s equation for G; as a function of y, where
2a,
=(2a; + b~ 2)V2 (x+—) 5.29
e (5:29)

and has bounded solutions only if

s m?  n R _ 1
k)\ _'”a_j%—b—z +a2_a1— 2a1+b—2 Ny (530)
for n,=0, 1, 2 . . . and the solutions are polynomials in y of degree n,. For each n,, n,

the equations (5.26), (5.27) and (5.30) determine the eigenvalue A which is linearly related
to 0. In solving equation (5.26) for a; we note that to have a square integrable eigenfunction
we require that Re(2z; + b=2) > 0. This is possible only if k> < 1/4b*. In that case a, is
real and

a1=——1—+(i—k2)1/2 (5.31)
2% \4p* .

Using this the eigenvalue equation for A becomes

m2 1 1/2

K% =(1— 4Kk%p%) [(nl — %) p2 +t— +(nyt 1/2)(—4 - 4k2) ] . (5.32)
(T b

To obtain unstable modes, we require complex roots for X and hence the right-hand side

of equation (5.32) must be negative. It is evident that a necessary condition for this to occur

is that n, =0. Thus the unstable modes are independent of z. We recall that k*=4m?
(b%w3), so that the criterion for instability becomes

2m?e* + (2ny +1)(1 — 16 m?e*)V? < 1 (5.33)

where €= b/wy < 1. If we let £ = 16m?e* = 4k*b* and note that 0 < £ < 1 the condition
becomes

2, +1< (11— eI —E (5.34)

If £ =0, that is m = 0, the inequality cannot be satisfied for any n,. The right-hand side
of (5.34) is a monotonically increasing function of & which tends to infinity as £ =1 from
below. Thus as § increases from zero to unity, larger and larger values of n, (starting with
n, = 0) are able to satisfy the inequality. It is clear from the equations that k* plays the
same role as did o? in the discussion of Section 4, and this result confirms that more and
more harmonics go unstable as k& is increased. The fastest growth rate clearly occurs for
the n, =0 mode — the fundamental. If e is sufficiently small that we may treat £ as a
continuous function in the region of interest we find that the fastest growth rate occurs
for m ~ 0.19 &3,/b and is equal to 0.24¢g/b = 0.24 2(&3). Thus the instability occurs on
the dynamical time-scale.

6 Numerical calculation of the eigenfunctions and growth rates

In this section we obtain the eigenfunction with the fastest growth rate, for a given m,
for various tori by numerical integration. The equilibrium models we consider are those
discussed in Section 2 with a central point mass. We take polytropic index n = 3, corres-
ponding to y =4/3, although varying this makes no difference of substance. We consider
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Figure 1. The outer boundaries (zero-density surfaces) of the three tori for which numerical modes were
calculated are plotted in the (%, z) plane. The linear dimensions are in units of @, so that the density
maximum occurs at (1, 0). The tori are symmetric about the z = 0 plane and rotate around the @ =0
axis. The innermost torus is Model 1, the intermediate, Model 2 and the outermost, Model 3.

three particular models with various values of C', or equivalently distortion parameter d
(defined in Section 2) and these are Model 1 (C' =0.495, d =1.01), Model 2 (C' = 0.444,
d =1.125) and Model 3 (C' = 0.25, d = 2.0). The shapes of these tori are given in Fig. 1.

The numerical technique employed is to rewrite the eigenvalue equation (4.1) as an
initial value problem. This is done by replacing ¢ by —(i9/97) and the equation then
becomes

X% oW 2/4
— +2imQ — —m*QPW=—div(pVW). 6.1)
ot ot p*

This equation is integrated forwards in time from given (arbitrary) initial data using finite
difference techniques (see for example Papaloizou & Pringle 1980). The linear initial value
problem contains a series of eigenmodes for W, of which the unstable ones are such that
| W grows exponentially in time. In general the initial data is composed of a series of these
modes so that if one waits long enough the fastest growing mode dominates the solution.
The validity of this technique for determining the fastest growing mode comes about
because once this has occurred the spatial structure of the solution is the same as that of an
eigenfunction of the original equation (4.1) and the growth rate of | W | is the same as that
for that eigenfunction. We shall find that all the tori considered are unstable and that the
growth rates are dynamical.

Because of the dangers inherent in looking for exponentially growing solutions in
numerical calculations we have done the calculation using two independent methods. The
agreement between the methods gives us confidence in the correctness of our results.
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6.] NUMERICAL METHOD A: CARTESIAN GRID

For this we use a Cartesian grid in the (@, z) plane, which is formed in the following way.
We divide the line z =0, for which @_ < @ < @,, into NV equal intervals, where usually
N =49, We then form a square region in the region z > 0 which has the line as one of the
sides. Because we expect the eigenfunctions which are symmetric about z =0 (that is
OW/0z =0 on z=0) to grow fastest we impose this as a boundary condition and consider
only the region z > 0. The complete square is divided into equal small squares with side-
length A = (@, — e_)/N. The grid points (&3, z) are labelled (7, j). The complete square more
than covers the whole torus and points are cut out using the criterion that if p;; is the
density at (i, j) and p; j41/p;; is less than 0.5, (i, j +1) is cut out. The points at (@, 0)
and (®_, 0) are also cut out. In this way we avoid excessive density ratios in neighbouring
zones and define a boundary to the torus. The densities at the boundary are generally less
than 0.1 per cent of the central maximum value. An example of such a grid is given in
Fig. 2(a).

Using these coordinates the equation (6.1) is written
o2 W ow
— +2imQ — = D(W)
or? ot

where

6.2
oo’ G)Z)Gj 0z* 62)

82W 1aw 2w\ 1/0 aw op oW
D(W) = nﬁQZW+ZE( )+ ( P » )
ow E)’GJ 0z 0z

To proceed to a numerical solution we need to form a finite difference formula for D(W).
At grid points for which there are four neighbouring grid points in the torus, this is
straightforward and standard (see for example, Potter 1973). For example (yp/p)(d*W/
dts® + 92 W/dz?) is represented at (i, j) by

YPi;
A*p

_'(Wz+11+wz 1]+wl,]+l+wl,] 1 4Wi,j)~
ij
Complications arise at points near the grid boundaries which lack four neighbours. For
these points the first derivatives were represented using the nearest pair of grid points for
which a calculation was possible, and forward or backward differences were used if this
was necessary. A representation of the second derivative terms was not critical because of
the smallness of the coefficient yp/p compared to (&.—&-) | Vp/p | near the boundary.
These were calculated as follows. Suppose the points (i, j —1) and (7, j) were used to
estimate 0W/dz at (i, j), those being the nearest for which this was possible, and there
was no point at (i, j +1). Then 82W/dz* was calculated by inserting a fictitious point at
(i, j+1) for which W= W, ;. This is a very crude treatment. However, tests showed that
the same results were obtained even if the term with the yp/p factor is ignored. This is
because of the smallness of this term and the general insensitivity to the precise boundary
conditions for global modes.

To perform the time differencing we rewrite (6.2) as the pair of equations

CLA (6.3
or 3)
a% [H exp (2imQt)] = D(W) exp (2imS2t). (6.4)
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Figure 2. (a) The grid used by numerical Method A for the case of the intermediate torus (Model 2).
The axes are in units of @,. (b) The grid used by numerical Method B for the case of the intermediate
torus (Model 2). The axes are in units of &,

We define a series of time levels ¢,, ¢, + 12, tn+1» - - - , Where the time-step Az =1¢, ., —1,.
We evaluate W at times ¢, #,,4+;, . . ., and H at times ¢, 41,2, tp+ 32, - - . We advance W
from ¢, to t,+, by using first equation (6.4) to advance H from ¢, _;,, to t,,4,,, and then
using equation (6.3). Of course in this method At is subject to the usual time-step restric-
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tions to ensure stability of the calculation. It must not be longer than the sound crossing
time for each zone. We mostly used a time-step equal to half the maximum and tests using
a half of this give the same results.

For the particular cases discussed below (Section 6.3) a time of 50—100 Q7! (&) was
sufficient to allow the fastest growing eigenmode to separate out. However, an experiment
performed by running Model 2 with m =2 for very long times, showed the emergence of
another, probably computational mode, contaminating the initial emergent mode. This
could be prevented by the addition of a small diffusive term into the right-hand side of
equation (6.2) of the same order as the truncation error associated with the difference
equations. This term was of the form

azH (&)+ - ZD_)z
9z At N?

3]

where the constant C, was set equal to 0.037. Checks showed that the properties of the
global mode are independent of this term for C, < 0.05. The emergence of this additional
mode is probably associated with the raggedness of the boundary when a Cartesian grid is
used. No such emergent mode was found using the method described in Section 6.2.

This raggedness affected the other eigenmodes for m = 2 as well but the effects could be
eliminated by including the diffusion term (see below).

6.2 NUMERICAL METHOD B: CURVILINEAR GRID

For this method we use a coordinate system of which one coordinate corresponds to the
equal density contours. To do this we define a quasi-radial coordinate centred on the density
maximum at (&, 0)-

¥ =y, + Yo + constant. 6.5)

where Y, and Y, are defined in Section 2 and we adjust the constant to make ¥ zero on
the torus boundary. Then p « ¥" and p « ¥"*! where n is the polytropic index. If we
define spherical polar coordinates (7, 6) such that ®=rsinf and z =rcosf then the
curvilinear coordinate orthogonal to W is x where

tan x = cos 8/(cos® 0 + 1 — @y/r). (6.6)

The coordinate x is a quasi-angular coordinate and varies from x = 0 for points with z = 0,
@ > W, to x = for points with z =0, @ < @,. The coordinate ¥ varies from ¥, at (&,
0) to zero at the torus boundary. For eigenfunctions symmetric about z = 0 we work in the
range 0 < x < m and assume dW/dx =0 on x =0 and x = 7. The grid points are defined by
taking points at intervals A¥Y =W, /Ny, where usually Ny =20, in the W-direction and
at intervals Ax =m/N,, where usually NV, =42 in the x-direction. We label the point at
(¥, x) by (i, /). One of the (¥, x) grids employed is shown in Fig. 2(b).
In this coordinate system we rewrite equation (6.1) in the form

ow_ 6
or 7)

and

1%

~ = —2imQV + mAQ*W + 1 div (p VW), (6.8)
t p
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In these coordinates the quantity div (p VW) becomes

VWVl [ 3 (p_w_lw 5_W)+3(£C°_|VL' a_W)] (6.9)

w o\ |Vx| o¥/ ox\ |V¥| ox

We perform the spatial differencing in the straightforward way. We evaluate all quantities
at the grid points (i + %, j) and for example the W-derivative term in div (c VW) at (i + 14, f)
is written as

(A\If)2 {Qi+1,j[wi+3/2,j - Wi+1/2,j] - Qi,j[wiﬂ/z,j - Wi—l/z,j]},

where

_ P VY|
vxl

The boundary condition at the ¥ =0 surface, which is that dW/0W¥ = 0 there is taken
care of since p and hence Q is zero there. The regularity condition on W that oW/o¥ =0
at ¥ =W, is easily inserted.

Equations (6.7) and (6.8) are integrated forwards in time using the standard leap-frog
method (Potter 1973). As in Method A the time-step must be small enough to ensure
computational stability. Tests using half the usual time-step yielded identical results as did
tests with double the grid size. For the models discussed below run time in the range
50—100 (o)~ were sufficient to allow the fastest growing eigenmode to separate out.

5 — — T T
L e 4
lOg le ........
3+ oo o .
.'.‘..'..
2 B ot . ...'.. —
T 4
0 1 I | |
0 20 40 60 80
£R (D)

Figure 3, The graph of the maximum value of | W| on the grid against time for the m = 2 mode of
Model 3 using numerical Method B. This illustrates the general behaviour found for | W | as a function
of time for all models and both methods. After an initial period of variability the graph settles down onto
straight line in the log| W |, ¢ plane and the structure of the mode stabilizes. The growth rate is
obtained from the slope of the line.
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6.3 COMPUTATIONAL RESULTS

We present results for five particular cases which serve to illustrate the structure of the
fastest growing eigenmodes. For each case the equations were integrated forward in time
from the initial conditions W= constant and H (Method A) or V (Method B) equal to
zero. Varying the initial conditions had no effect on the final outcome. The integration
is continued until the normalized distribution of |W(&, z)| stabilizes or, equivalently,
until a plot of log | W | versus time, ¢, becomes a straight line. At this stage the fastest
growing eigenfunction has emerged and the growth time, 7, is obtained from the relation
| W] exp(t/r). An example of such a plot is shown in Fig. 3. The five cases we consider
are Model 1 with m =2, 4 and 6, Model 2 with m = 2 and Model 3 with m = 2.

The structures of the eigenmodes are indicated in Figs 4—6. In each figure we plot the
contours of | W| and show the result from each numerical method for comparison. Figs

d 1 1 1 l 1 1 1 1 1 1 1 1 1 1 1 l 1 1 1 L
i Model 1 m=2 r
0.10 | -
i 0.95 i
1 0.95 r
0.05 — L
0 L.
010 —| -
] 0.95 L
] 0.95 L
0.05 — -
0 / r
T T T T [ T T T [ T T ‘ T T T T T T T T
0.90 0.95 1.00 1.05 110 115

(@)
Figure 4. (a) The structure of the fastest growing m =2 eigenmode for the torus Model 1 using
numerical Method A (lower) and B (upper). The axes are in units of @, The values of the contours
are the values of | Wi, normalized to a maximum value of 1. (b) As for Fig. 4(a) but with m = 4.
(c) As for Fig. 4(a) but with m = 6.
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Figure 4 — continued

4(a)—(c) show the modes for the least distorted torus, Model 1, in the cases m =2, 4 and 6
respectively. The mode structure calculated here for a thin ring model with polytropic index
n =3 is analogous to that calculated for the n = oo thin ring in Section 5.2. In particularall
the modes have dW/dz ~ 0. The modes are concentrated towards the points (@, 0) and
(®-, 0), with the peak value at the latter point, and the concentration becomes greater
as m is increased, in line with the high m behaviour found in Section 4. It is evident that
the results of the two numerical methods agree reasonably well, at least away from the
boundaries where the density is in any case low. In Fig. 5 we show the m = 2 eigenmodes.
for the intermediate case, Model 2. The numerical instability which occurs at the boundary
using Method A is illustrated and indeed because of it the peak value of | W | in the plot
occurs at a non-zero value of z. The effects of the instability can be completely removed
by adding a diffusive term as discussed in Section 6.1. Apart from that the effect of increas-
ing distortion at constant m is to increase the mode concentration towards the edges. The
peak value of | W | for this mode occurs at (., 0). Fig. 6 illustrates the effect of increasing
the distortion still further and shows the m = 2 mode for Model 3. Again the two numerical
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Figure 4 — continued

methods agree reasonably in the region whereas the density is high and the mode is concen-
trated. For this mode the concentration is high towards the inner edge (& _, 0). The structure
of-the mode in the low density outer regions is not well defined due to numerical effects.
Apart from the instability already discussed for Method A, the grid used in Method B is
significantly distorted in this case in the outer regions.

The growth times obtained for the modes illustrated are given in Table 1 for each
numerical method. The growth times are all dynamical in that they correspond approxi-
mately to the orbital period 21 (o) ! for a particle at (@3, 0).

7 Discussion
We summarize our conclusions as follows:

1. All reasonable models of constant specific angular momentum tori are liable to
instability for high m. They are also unstable to low order modes with low m.
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Figure 5. The structure of the fastest growing m = 2 eigenmode for the torus Model 2 using Method A
(lower) and B (upper). The axes are in units of &, The values of the contours are the values of | W |
normalized to a maximum value of 1. The effects of the numerical boundary instability in Method A
caused by the necessity of treating a ragged boundary are displayed. They have little affect on the
solution as a whole and can be removed by the addition of an artificial diffusion term at the edge.

2. The analytical solution for the thin isothermal ring shows that the instabilities persist
even though the torus could lose energy to infinity.

3. The instabilities are global. Their existence cannot be deduced from a local analysis
nor from consideration of axisymmetric modes. It is the ability of non-axisymmetric modes
to transfer angular momentum which enables the tapping of the shear energy and so the
growth of the mode.

4. The instabilities are dynamical; their growth times are of order a single rotation period
or equivalently a single radial sound-crossing time.

These results lead to strong constraints on allowable models of accretion tori. In this
regard we note that it is not sufficient to argue that a small change in rotation law or small
lack of homentropy will remove the instabilities. The instabilities are global and have
dynamical growth times and must persist by continuity arguments if the rotation law or
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Figure 6. The structure of the fastest growing m = 2 eigenmode for the torus Model 3 using Methods A
(lower) and B (upper). The axes are in units of &, The values of these contours are the values of | W |
normalized to a maximum value of 1.

Table 1. Growth times in units of (&,)™".

Method A Method B

Model 1

m=2 8.0 8.5

m=4 3.9 4.7

m=6 2.9 4.0
Model 2

m=2 4.0 4.6
Model 3

m=2 8.5 10.7

entropy distribution is changed slightly. It is conceivable that they persist even in thin
accretion discs and might have relevance to the problem of ‘viscosity’ or angular momentum
transfer within them. We shall address these questions in a subsequent paper.

The results bring into question the viability of models of quasars which involve accretion
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tori and of models which require centrifugal force to vacate a funnel up the rotation axis
along which jets might originate. The efficiency with which non-axisymmetric perturbations
can transfer angular momentum could well preclude the existence of such jet-forming
vortex-like regions, by filling them in on the dynamical time-scale. It is clear that further
work must be done before these matters can be resolved.
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