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Summary. We extend our investigation of the dynamical stability of differen-
tially rotating fluid tori of uniform entropy to the case in which there is a
gradient of specific angular momentum. This case is much more complicated
and in this paper we limit ourselves to an analytic approach. Our overall con-
clusions are that (i) the dynamical instabilities found to exist in constant
specific angular momentum tori persist in this case; (ii) additional unrelated
Kelvin—Helmholtz-like instabilities are introduced by allowing a gradient in
specific angular momentum and (iii) the general unstable mode is a mixture
of these two.

1 Introduction

In a previous paper (Papaloizou & Pringle 1984, hereafter Paper I) we studied the stability of
a differentially rotating, perfect barotropic fluid with constant specific angular momentum,
h, with particular reference to accretion tori. We used both analytic and numerical tech-
niques, both of which were in agreement in showing that the tori are expected to be
dynamically unstable to global modes with low azimuthal wavenumber m as well as to
modes with high m. In this paper we extend the work of Paper I and consider tori in which
the specific angular momentum is not constant. Because the problem is technically more
complex than that considered in Paper I, a large amount of parameter space needs to be
explored to obtain a basic idea of the stability properties. In this paper we content ourselves
with an analytic approach. A numerical exploration will be presented subsequently.

Some idea of the complexity of the problem can be obtained from the studies of the
effect of compressibility on plane parallel shear flows (Blumen, Drazin & Billings 1975;
Turland 1976; Drazin & Davey 1977; Ray 1982). It is found that the effect of compres-
sibility is to add a further mode of instability to the classical Kelvin—Helmholtz instability,
and that the earlier concept of a critical Mach number across the shear above which stability
set in (e.g. Blumen 1970) was erroneous. We note in passing (see also Turland 1976) that this
finding is of relevance to the shear flow present around astrophysical jets and should lead to
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a reassessment of previous stability analyses in which the concept of a critical Mach number
is used (e.g. Blandford & Pringle 1976). The new mode of instability is caused by the propa-
gation of sound waves across the shear flow and it was this mode which was responsible for
the instabilities found in Paper 1. These ideas are drawn together in a powerful piece of work
by Grinfeld (1984) who gives sufficient conditions for stability.

The structure of the paper is as follows. In Section 2 we set up the equations governing
the structure of the equilibrium configuration. We consider the flow around a central gravi-
tating point mass, although it should be noted that the general conclusions drawn do not
depend intimately on this assumption. We consider in particular the case in which the torus
takes the form of a thin ring. We derive the linearized perturbation equations (as in
Paper I) but here also derive the equations governing the Lagrangian displacement, E.

In Section 3 we present some general results. We present explicitly the Liapounov
function found by Grinfeld (1984) for the two-dimensional rotational shear flow and derive
from it sufficient conditions for stability. We also show for the fully three-dimensional case,
but for a power-law rotation law that any unstable mode must corotate with the flow at
some point.

In Section 4 we consider tori with nearly constant specific angular momentum, /2 = (%),
where (%@, ¢, z) denote cylindrical polar coordinates, by use of perturbation theory, taking
the & = constant case as the zeroth order state. We show that unstable modes found in the
h = constant case can be extended continuously to cases for which 4’ = dh/dw is small. We
calculate explicitly the perturbation to the eigenvalue of the unstable fundamental mode of
the isothermal thin ring discussed in Paper I.

In Section 5 we consider tori with small minor radii, and modes with low m for which
the gradient of # cannot be treated as a perturbation. For small values of m there are modes
which are almost independent of z. We show that for power-law rotation laws of the form
Q (@) « @9, the modes are unstable for ¢ >+/3 and stable for g <+/3. Instability in this
case is driven by the classical Kelvin—Helmholtz mechanism and the modes do not have a
sonic character. We also show that modes which are odd in z and have low m are stable. The
analysis breaks down for high m where the modes regain their sonic character.

In Section 6 we consider high-m modes but for analytic tractability in the limit of a flat
torus (g = 3/2). We show that there exist sonic modes which are driven both by the classic
instability and by the sonic mechanism. This illustrates the expectation that general unstable
modes are likely to be driven by both mechanisms.

In Section 7 we present a discussion of the findings of this paper and summarize our
conclusions in Section 8.

2 The basic equations

In this section we set out the equations governing the equilibrium configuration and derive
the linear perturbation equations. Since these derivations closely follow Section 2 of
Paper I we do not include all the details here. We have, however, extended the derivation of
the perturbation equations to include expressions for the Lagrangian displacement which we
require in Section 3.

2.1 THE EQUILIBRIUM

We consider the equilibrium configuration of a non-self-gravitating differentially rotating
fluid. We use cylindrical polar coordinates (@, ¢, z) in an inertial frame and assume that the
fluid rotates about the z-axis. We assume that the flow is under the influence of an external
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potential, ¥, which is that due to a gravitating point mass, M, situated at the origin; thus
Yp=—GM/(2* + z*)"?. As in Paper I we adopt a polytropic equation of state, so that
pressure, p, and density, p, are related by p =A;0F where A4 is a constant. The polytropic
index, n, is defined by I'=1+1/n. This implies that the angular velocity £2, must be a
function of @ alone.

In this paper we consider power-law rotation laws of the form

Q= Qo (m/wo)_q (21)

where g, o and @, are constants. As in Paper I we define a rotational potential {4, where
here

Vrot = 250557/ [(2q — 2) w7, (2.2)
The equilibrium density configuration is then given by (see Paper I):

(n+1)p/p+ Yp+ Yror = C = const, (2.3)

and we note that p/p = Ap'". Such a density configuration defines a torus centred on the
origin. The density maximum of the torus lies in the z = 0 plane, and for convenience we
define it to lie on the ring (o = @y, z = 0).

In this paper we shall be interested in tori of small extent, that is, tori for which any
internal dimension is very much less than @,. For these we may obtain an approximation to
the structure by expanding Y, + Y, about @ = @y, z =0. Since we have a density maxi-
mum there, we have V(Y + Y1) =0 there and the leading terms in the expansion are
quadratic. Performing the expansion, equation (2.3) becomes (cf. Paper I, section 5.2)

GM ,
An+1) "+ T [(2q —3)x*+2z%]=C 2.4
@y

where we define x = @ — @g and find

C'=C+ Q35§ (2q — 3)/(2q - 2). (2.5)
The surface of the torus (p = 0) is given by
2C" e}
(2q —3)x*+z%= e (2.6)
In this approximation the density is given by
P = Po [1—x—2~*—zi—]n (2.7)
@ (2q-3)a%"’

where po=[C'/A(n+1)]" is the maximum value of the density, and a®=2(n +1)@3po/
[GMpo(2q — 3)] < w3,

In the case treated in Paper I (constant angular momentum, g =2) the surfaces of
constant density in the (3, z) plane are concentric circles. For equilibria which are stable to
axisymmetric perturbations (Rayleigh’s criterion) we are interested in values of g < 2. In this
case the constant density surfaces become similar concentric ellipses elongated in the
w-direction with ratios of major to minor axes of 1/(2q — 3)', or equivalently with eccen-
tricity [2(2 — ¢)]¥%. As g tends towards the value of 3/2 from above the eccentricity of the
ellipses tends to unity. This is because when g tends to 3/2, the rotation rate becomes
Keplerian and radial pressure support tends to zero. The maximum and minimum radii of
the torus occur on the midplane at @. = @p £ a.
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2.2 THE PERTURBATION EQUATIONS

The velocity of the unperturbed toroidal equilibrium is vo = (0, @$2, 0) and we write the
velocity perturbation as v'= (v, Up, vz). The full velocity v=v,+ v’ satisfies the fluid
equations

ov 1

—+(v-V)v=——Vp - Vy, 2.8)
ot P

where ¥ = Y, t+ Y04, and

ap

—=—div (pv). 2.9)
ot

Since the unperturbed configuration is independent of time, ¢, and azimuth, ¢, we assume
the perturbed quantities to depend on ¢ and ¢ in the form exp [i(m ¢ + o¢)] where m is the
azimuthal wavenumber, and o is a (possibly) complex eigenfrequency. We write

o=0r tivy (2.10)

where og and v are real and for instability we have y < 0.
The components of the Lagrangian displacement §= (£, &y, £,) associated with the
velocity perturbation are given by (Chandrasekhar 1961)

(o = U’w/ia,

£p= V/iT — @ - (dYde) - (v [?),

and

£, =v,liv, (2.11)

where 6=0+m&Q. The relationship between p’ and v’ which comes from linearizing
equation (2.8) is derived in Paper I and is

!

. , o (p
iovw —291)(1):__(_),
o\ p
I imp'
iovgthvg/oo=——,
@p
a !
iov, = — —(5), (2.12)
oz \p

where 4’ = d (@*Q)/dw.
Using the variable W = p'/(p0), and equation (2.11) equations (2.12) can be written as

Voo — Eph[T3= 10 W/03,

vpt Enhes = — mW/w,

vz=idW/oz. (2.13)
Now v’ can be eliminated and we obtain the components of Ein terms of W:

(0% — k*) £ = 0(WO)/0® + 2mOQW/w,

(0% — k?) &4 = imoW/os + 21 UOW/0ws),

0% &, = 9(Wo)/oz, (2.14)

where k2= 2Qh'w.
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The perturbed continuity equation is
iop' = — div (pv) (2.15)
or, equivalently,
p'=—div (0). (2.16)
The perturbed equation of state for isentropic perturbations yields
_(TP)
p =(—)p. (2.17)
P
Using the definition of W, and equations (2.14), (2.16) and (2.17) we deduce
2p* W . i 9 mph
= —div (OVW) + — — (o) +— * koo, (2.18)
I'p @ 0w (o)

and hence that

i W 1 0 (pwo?dW\ pm® o d ([ W\ GmW 3 [pH
=—— o +—2~—-W——(p—) —(—) (2.19)
Ip wow\ D ow (o>} D 0z 0z » 0w \wD

where D=2 — k2

This equation is the same as the equation (3.18) derived in Paper 1.

3 Some general results

A comprehensive review of the stability of cylindrically symmetric (and plane parallel) shear
flows for an incompressible, inviscid fluid is given by Drazin & Reid (1981). In this section
we make use of the more recent results by Grinfeld (1984) to generalize the results to com-
pressible media for two-dimensional flows. We also show that the result (due to Rayleigh)
that any unstable mode has a corotation point within the flow is carried over to the full
three-dimensional equilibria we consider here.

3.1 TWO-DIMENSIONAL FLOW

We consider here a flow, and perturbed flow, which are two-dimensional (i.e. independent of
z). The perturbed fluid equations (Section 2.2) then simplify to

Mo o (P

—+imQu,, — 2Qv, =———(-), 3.1
ot © ¢ o\ p G-
av,¢ . ! !t _’ imp"

—timQugt+ hvg /= ——, 3.2)
ot wp

and

o (o' "1

— (&) rimal+ —div (ov) = 0. (33)
or\ p p P

where now p=p(w) can be regarded as a surface density, and as before we assume
p'=(T'p/p)p". For such a flow the unperturbed vorticity is wo = /'/2s, and the perturbed
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vorticity is
, 1 0 . im
w=— — (®Up) — — V. 34
® oW w

For ease of analysis we consider the flow between two fixed concentric cylinders, so that the
boundary conditions are that vy =0. Following Grinfeld (1984) we consider the real

functional
2 F 2
+ (—p —w? 92) }

0
(3.5)

where €4 is the unit vector in the ¢-direction. It is straightforward to show that / is a
constant of the motion. Since / is the sum of three terms each of which consists of a positive
definite quantity multiplied by a coefficient, we can deduce sufficient conditions for stability,
The conditions are that if in some frame the coefficients are positive throughout the flow,
then no perturbation can become unbounded, since 7 is constant, and therefore the flow is
stable. In this case the relevant frames to consider are those rotating with constant angular
velocity .. In such a frame the equation (3.5) is changed only by replacing the explicitly
occurring §2 by § — §2.. The general stability criterion is then:

If there is a value of §2 for which

;o
V+— C)Qé¢
0

’

0

P

2
+

2

P

I=f podwdd {

J=19) lpw’ — (H[w)p'
d(h'/pw)/des

@’ (2 — Q)< Tp/p (3.6)
and

d (K
(QAQc)d—a—j(‘E)>O 3.7

everywhere in the fluid, then the flow is stable.

Inequality (3.7) is impossible to satisfy only if d (h/pws)/de is zero somewhere in the
fluid. This is the generalization of Rayleigh’s inflexion point criterion to rotating, compres-
sible flows. Inequality (3.6) has no analogue for incompressible fluids. It is the same as the
criterion found in Section 4 (equation 4.24) of Paper I, which was, however, derived for full
three-dimensional perturbations.

3.2 COROTATION OF UNSTABLE MODES

Here we show that for any unstable mode, the real part of o vanishes at some point in the
unperturbed flow. The proof given holds only for power-law rotation laws, but is not
restricted to toroidal equilibria and takes the z-dependence of the unperturbed equilibrium
fully into account. We assume that at the fluid boundary either p =0, or W =0, or the
normal derivative of W vanishes. This facilitates integration by parts without the introduction
of surface terms.

We take equation (2.18), multiply both sides by W*, where * denotes complex conjugate,
and integrate over the volume occupied by the unperturbed fluid. After some integrations by
parts we obtain

62p2
fr IWI2d7=prVW|2dT+11, (3.8)
p
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where
mph' pEsh' OW*
L= f —EWrdT — i pEgh OV dr. (3.9)
(03] W 0w

Similarly, multiplying the parts of equation (2.14) by p&%,, p&d and p&f respectively, integrat-
ing over the fluid volume and adding the results we obtain,

- f52plfl2d7+szp(liw |2+|z¢|2)dr=f6wmv (o8)dr + Iy, (3.10)
where
2mSd) oW
L=~ | —— & Wodr — 2i | Q&§ — pdr. (3.11)
@ ow

For a power-law rotation law 4'/(Q) is a constant and thus [, = — 2 Q@I§/h". On the
ths of equation (3.10) we use equation (2.16) and the definition of W to note that div (0§) =
— GWp?(T'p). Thus equation (3.10) can be rewritten as

g2 W|? 2Qw
—fazplzﬁdﬁfﬁp(l%w|2+|s¢|2)dr=—f——p2dr —r. (12
I'p h
We now eliminate [; between equations (3.8) and (3.12) to obtain
2Q0 [ 0% | W 1512w
, f ol dT—J.B"‘plglsz=—J.———p2dT
h Ip Ip
2 2 2 2QZD 2
— | K p(lEw I* t1Eg1°) dT + X pIVW|*dr. (3.13)
Y
Recalling that 0 = og + i, the imaginary part of (3.13) then gives
2Qwp? | W )
YV {—————tplEl*(cg + mQ)d7=0. (3.14)
hlp

It follows at once that for an unstable mode (7y# 0), since the part of the integrand
in (3.14) in curly brackets is positive definite, then og + 7 §2 must vanish at some point in
the range of integration. Thus an unstable mode must have og = — m 2 at some point in the
flow.

4 Tori with nearly constant specific angular momentum

In Paper I we discussed tori with constant specific angular momentum for which 2=
constant. We showed both analytically and numerically that instabilities existed in such tori.
In Paper I we asserted that the instabilities must persist if the rotation law is changed slightly.
Here we demonstrate the truth of that assertion.

4.1 PERTURBATION THEORY FOR UNSTABLE MODES

By inspection of equation (2.19) we see that we may in general expect a real continuum
spectrum of singular modes for which D = > — k= 0. However, for unstable modes (for
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which vy #0), the quantity D is nowhere zero and we may apply standard perturbation
theory.
When / = constant, equation (2.19) takes the form

gip*W
L(p,W)= (4.1)
Ip
where the elliptic operator L is defined by
L 1 9 ( aW) pm*W 9 ( aW) “2)
W) =—— —|pw — |+ ——lo—) .
P ® oo\ 3w o 2\ e

Consider a torus for which 4 = constant, and for which p=p; p=p; and  =Q,. We
consider a particular unstable mode for which W=W;, ¢ =0, and 6= 0;, with Im(0y) =
Im(o,) # 0.

We now consider the torus to be perturbed slightly so that the angular momentum is
nearly, but not exactly, constant. We suppose the structure of the torus is changed slightly
and write p=p; + 6p, p =p; + Spand Q = Q; + 2. Asaresult of these changes we expect the
mode to be perturbed and write 0= 0, + §0 and W = W + 6W. We now calculate § W and bo0.
To carry out the perturbation we note that k> = 2 Q4o is a small quantity, so that we may

write

(—72 62 1 K2 ( )
_ = — ~ + —. 4.3
D >—«? o2

In making this expansion we have used the fact that |5, |is bounded below for an unstable
mode, so that the expansion is valid for small enough «.
On substituting these expansions into equation (2.19) we obtain
o307 26p 6 o0 W.
1P1 (W1+6W+ [J_l’] W1)+ 1P1 Wy
I'py

(280 +2mbQ2)
I'p, [ 2

2

1 0 8W1 ;(2 m2p1 K
=L (ps, W1+6W)+L(5p,W1)A~_(p1ZD _2)+ Wi
w 0w 0w 07 Wi 01

“4.4)

o,mW 9 (p1 h')
® 0w \wod)
To find 80, we multiply this equation by W, and integrate over the volume of the torus.
After doing some integrations by parts, and using the equation satisfied by W;, we obtain

J1’50=J2+J3+J4+J5, (45)
where
2= 12
pia W
J1=2J L
Ipy
2212
oiWs 2mé) 26 h)
J2=_J'P1 1 1( " +_"_)__p_)df’
I'py 0y P P1

J3= f 8p (VW)*dr,
K2p,[m*W? [OW;\?
e (2
o] L @ o
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and

g, mw? 9 n
Js'-‘—f 1 1—(p1 )d’r
® 0w \wo

pyh' 3
=f 25 &:)-(olmWﬁdT.

The last two terms can be combined and we write J,; + J5 = Jg, where

K2py (AWL\ (OW; ymW
J,,=f p’(—‘) (—‘+ ! ‘) dr. (4.6)

o7 \ow/ \ow Q@

We remark that of the terms determining 60, J, and J5 come from changes in the back-
ground density, pressure and rotation law. However, the basic analysis given in Paper I still
holds regardless of changes of this type and so these terms do not change the qualitative
picture obtained from tori with constant 4. Changes of physical significance arise from J,
and J; (i.e. J¢) which depend on /',

We now give rough order of magnitude estimates of the terms J; and J;. To do so we note
that in general for moderate values of m, W; changes on a scale length not less than @, even
when the torus is small. This follows from equation (4.1) for modes almost independent of
z, such as those found in Paper 1, if we remember that characteristically
o (dQ)2 . m*Q3a®> m?p,

W=,

dos

o ~ 4.7
Wy o
where subscript zero denotes the value of the quantity at (230, 0) and « is the minor radius

(see Section 2). We also use the fact that for an unstable mode |G;|>|v|. Then for
moderate values of m, we estimate

K291|W1|2
and
[Y] po
[Jil~ f_ J‘P1‘W1|2d7'- (4.9)
Po

These estimates are probably reasonable for |y | ~a §2¢/t3, when W; changes on a length
scale comparable to @. Note that if W, changes on a length scale long compared to @, then
|Jg | is correspondingly reduced. When W, changes on a scale & we have the estimate

k2 Tp, &° a\
160~ L oY (—~) (4.10)
lyI® po®o | y]? ®o

where &? is an appropriate average. As expected we see that if k2 is small everywhere, then
|60 is small, and the instabilities found for constant 4 also exist for tori with nearly
constant 4.

42 APPLICATION TO THE THIN ISOTHERMAL RING

Once a particular mode W; and corresponding eigenvalue o; are known for a constant angular
momentum configuration, the correction, §o0, to o, caused by a slight deviation from the

© Royal Astronomical Society ¢ Provided by the NASA Astrophysics Data System

220z ¥snBny 0z uo 159N Ad £891.56/66./1/€ 1.Z/9101ME/SEIUW/WOS dNO"DIWSPEDE//:SARY WO} POPEOjUMOQ


http://adsabs.harvard.edu/abs/1985MNRAS.213..799P

FT9B5WNRAS, 7137 “799P!

808 J. C. B. Papaloizou and J. E. Pringle

h' =0 rotation law can be calculated by evaluating the integrals involved in equation (4.5). It
would be possible to do this for example for the modes determined numerically in Paper I. As
an illustration of the procedure we calculate 0 for the case of the thin isothermal ring (Paper
I, section 5.2) for which the eigenmodes can be found analytically in the 4 = constant case.
An extensive discussion of this case was given in Paper I, so we only briefly review the relevant
points here and refer the reader to Paper I for further details.

The isothermal equation of state is p = pc? where the sound speed cg is constant. In this
case the density distribution corresponding to a thin ring is (cf. equation 2.7)

p=poexp {— [2g — 3)x*+2%])2b%}

where

b? = 23| GM < 3. (4.11)
For the unperturbed, constant-% torus, we have ¢ = 2 and the density distribution is

p1=poexp [—(x?+2%)/2b%]. (4.12)

For the perturbation we consider a power-law rotation law with g slightly less than 2 and
define € =2 — g. We note that > 0 and assume € to be small. By comparison of (4.11) and
(4.12) we find to lowest order in e that

8p/py = €(x*/b%), (4.13)

and note that by isothermality §p/p; = 6p/p;. For a small torus we may expand §2 about the
centre and retain only the first term; thus to first order in b/@, we may write

Q=QO—qQOx/C)0. (414)
Hence we obtain
582/82, = ex/w,. (4.15)

The relevant eigenfunctions W, are given in Paper I. The unstable modes are independent of
z, and for a fixed m, the fastest growing mode is the fundamental which is of the form

W, =exp (— 1/2‘11352 — ayX),

where
1 1 4m? P?
e
Yoop? lapt presd
and
_2mQo(01 + mQ)[ 1 am? V2
2= W2 4t b2 w3 (4.16)
S
The eigenvalue o, is given by
(01 + MG 2<1 16m2b2)[m2 1 (1 4m2)”2] “17)
oy +m =c2fl-— | —+—— i )
! or s w3 Jlewd 2% \4p* prosd

For sufficiently small m, oy +m 82, is purely imaginary and we now have all the relevant infor-
mation to evaluate the integrals in equation (4.5), and hence to find §o0. The integrals are
straightforward to evaluate, but somewhat tedious and we content ourselves here with making
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Stability of differentially rotating discs — II 809

the further simplification of considering the case m*b?/@< 1. In Paper I we showed that the
fastest growing mode occurred for m*h%/ewg= 0.04. Under this approximation we find

;= — 4m?|wj, (4.18)
and

(0, +mQp)* = —3m*b* Q% jwd. (4.19)
Thus for the unstable mode,

01+ mQ=—i/3 mbQ /o, (4.20)
and

a,=— 4i\/3m?b/osk. (4.21)

The main simplification in the evaluation of the integrals occurs because now W; is slowly
varying in comparison to p;, and so its variation may be neglected in evaluating J,, J, and J3.
For these integrals we may take W; =1. However, clearly the variation of W; may not be
neglected in evaluating J4 (equation 4.6), but in fact after differentiation we may set W; =1
here also. Finally, because we are dealing with a small torus, the quantities such as @, k2 and
Q may be replaced by their values at the density maximum; similarly we have dr=
2mtsg dx dz, and since everything but p, isindependent of z, the z-integration just gives rise to
a constant factor throughout which we ignore. In this way we obtain

8mm © /x i\/3
Jy=— Po (— + —) exp (— x?%/2b%) dx, (4.22)
Qb Jowlb 2
8mm? © /x i3V [ x? b
J2=M j (*+i) |:—+j/——————] exp (— x*/2b%) dx, (4.23)
@0 —w\b 2 b%  (x/b+i/3/2)
2am*pge [ x°
Ji= ST Pot f — exp (—x?*2b?) dx, (4.24)

and

=87rm2906 J‘"‘" [2(x/b+i\/~3_)2 (x/b+z'—\i§)_
@ J_ L tivERy T (/b +iN32)

These integrals are all real and simple to evaluate, and equations (4.5), (4.6) then yield

] exp (— x?%/2b%)dx. (4.25)

80 =1.61i/3mQbe/w, (4.26)
or equivalently
in3mb§
0, +80= - mQy—————— (1 —1.61¢), (4.27)
0

where €=2 — ¢>0, and the approximations we have made require €< m?b*/w<1. We
note that this value of 8o is smaller in modulus than the estimate given by equation (4.10)
by a factor ~ (b?/ew3) because in this case the scale on which W; changes in the isothermal
ring is @3 /b rather than @,. As expected the effect of departure from constancy of 4 is to
reduce the growth rate of the instability slightly.
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We remark that the numerical value (1.61) obtained here depends on precisely what per-
turbation is carried out: here we changed g but kept ¢g and po constant whereas another
possibility would be to change g and keep ¢ and the total torus mass constant (equivalent to
a small change in p,). Nevertheless the result that a slight change in the rotation law leads to
a corresponding slight change in the growth rate of the mode can be expected to hold in
general.

5 Stabilization of modes with low m in small tori

We have seen in Section 4 that the effect of a small positive gradient in specific angular
momentum is to reduce the growth rate of an unstable mode. Indeed when there is a positive
gradient of specific angular momentum there is a natural local frequency of oscillation, «,
which one would expect on physical grounds to impart stability. In this section we investigate
conditions under which particular modes can be stabilized by this effect.

A convenient measure of the amount of shear in the torus is given by AQ =Q_— ©,>0
where 2, and §2_ are the minimum and maximum rotation rates in the torus, occurring at
@, and o_ respectively. The dimensionless ratio AS2/k then gives a measure of the strength
of the driving of the shear instability compared to the stabilizing term. In particular, when
A [k is small in some sense one might expect any instability driven by shear to be inhibited
or possibly removed. Such conditions are the opposite extreme to those pertaining to the
case of almost constant specific angular momentum for which k ~ 0 and AQ/k > 1. We there-
fore consider tori in which AQ/k is small. To do so we consider small tori for which the
equilibrium density can be represented by equation (2.7). We have seen (Section 3.2) that
for unstable modes, we must have og = — mQ at some point in the torus. Thus for weakly
unstable modes (with small ), | 0 + m €2 | is also small throughout the torus. In fact

lo+mQ? |og+tmQP+7y2 m*(AQ) + 72
= < )
K2 22 -q)Q° 22— q) 2

For a torus of small extent with @, = o+ ¢, we may use equation (4.14) to write AQ =
2qa 2y [tg, and hence find that

(5.1)

lo+mQ|? . 4¢*m*a® Q% [k + 2
K2 22-90%
Thus if v is small, |6+ mQ|/x is small provided that m?e*/w}< (2 — q)/24* We note
that the reverse of this strong inequality was required in Section 4.2. We now investigate the

stability of modes for which this condition is satisfied. We note that for given ¢ and m, the
inequality can always be satisfied for a torus of sufficiently small a.

(5.2)

5.1 MODES WHICH ARE EVEN FUNCTIONS OF z

The equation governing linear stability is equation (2.19). When | 0 + m§ | < &, the quantity
D may be replaced in that equation by — k2, and the equation becomes

(5.3)

w
I'p @ 0w P

G20’W 1 9 ( azaW) m?p o2 W 0 ( BW)+m6W 0 (ph'
- halhaian T — W —{p— e .
kK? dw/ K 9z \' 0z w 0w w;<2)
It is convenient to work in terms of Q = WG = p'/p, for which the equation can be written
_2[1 ) (pZD aQ) m?pQ sz]+6mQ 0 (2Qp) 0 ( E)Q)
o' |l—— = —]—- — —.

wiw \k? 3w/ k*w? Ip @ ow\ k? iy

(5.4)

] oz
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Stability of differentially rotating discs — II 811

For a small torus we write as before x = @ — @y, and neglect the variation of @ and of
(except where it occurs in ). We then have approximately

L[L 880y mPpQ p*Q) GmQ D (2Qp) 3 ( 3Q
AL269 Tnmeerg
k2 ox \ ox kK2w3 Tpl o ox \ k2 9z \' 0z

For the moment we have for convenience retained the 2Q/k? inside the differential of the
final term on the lhs, although this is not necessary.

Equation (5.5), although simplified, is still a complicated partial differential equation.
The solutions for Q can be classified according to whether they are even or odd functions of
z. We consider here the even functions, and indeed find modes for which z-dependence plays

only a minor role. We consider the odd functions in Section 5.2.
To investigate solutions of equation (5.5) we write

0= Y Up) Vi(x, 2). (5.6)
k=0

where the functions Vi (x, z) are specified orthogonal functions of z, for each value of x,
with weight p?/p. That is

ka(x, Z) V,-(x, Z.)'p—dZ =Nk(x)5k,-, (57)
p

where N (x) is some suitable normalizing function of x, and the integral is taken along a line
of constant z through the extent of the torus. It follows that we may choose Vi (x, z) to
satisfy the equation

0 3Vk p2
—( )+7\k V=0 (5.8)
0z 0z D

where A is an appropriate eigenvalue for the eigenfunction V. Using equation (2.7) for the
density distribution and the polytropic equation of state, equation (5.8) is seen to be
equivalent to

0 0
3% [( 22)" ] + N (1= ) d?(2q - 3) %0 Vi =0 (5.9)

Do

where po and p, are the density and pressure in the centre of the torus, # is the adiabatic
index, and

£=2/[(2q — 3) (& — x")]"2. (5.10)

We note thatx = &3 — @, is to be regarded as constant as far as integrating (5.8) is concerned.
If the torus extends to the zero-pressure surface, the boundary conditions to be used in con-
junction with equation (5.9) are simply the regularity conditions at £ = £ 1. The eigenvalue
problem so presented is a standard one (Whittaker & Watson 1927). It has polynomial
solutions for ¥} such that

Vie(x, 2) = CEV2(%); k=0,1,2,..., (5.11)
where C7 (%) denotes the Gegenbauer polynomial of degree k. The corresponding eigenvalues
are
k(k+2n—1
\e = ( L. p°2. (5.12)
(2q —3) Poa

We note that the eigenvalues are independent of x, although the eigenfunctions Vj are not.
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812 J. C. B. Papaloizou and J. E. Pringle

We now substitute the expression for Q (equation 5.6) into equation (5.5), multiply both
sides by Vi (x, z), k=0, 1, 2, ... and integrate with respect to z. This gives us an infinite set
of equations for the unknown functions Uy (x), k=0, 1, 2, ... which take the form

o ) _ G2 (0 oU; 0 o\ m
(5 et o v i kn Sl )5 v 19

Here the repeated suffixes j are summed and

ov; aVk 2Qp
—_—— J‘ — Vk 2 dZ;
ax 8x ox \ K
2
Ji = f oV e Lz,
Kjx = = Jij»
and

We do not attempt to solve the set of equations (5.13) in full generality. However, for
small tori with | /x| <1 there are solutions for which all terms in the series for Q (equation
5.6) except the first one (k = 0) are small. These solutions are approximately separable in x
and z and, because the eigenfunction Vj is constant, are essentially independent of z. This
solution is an even function of z, and the odd terms in the expression for Q may be taken as
zero.

To obtain this approximate solution we consider equation (5.13) with & = 0, and assume
that to zeroth order the only term to contribute from the sums on the rhs is the j = 0 term.
Since Vjis constant, and Ay= 0, we obtain

52 24z moU, d (2QZ\ 6° (d [_dUs m?

A 0_( - +_{_(2J) — 30!, (5.15)
r p oo X\ K k2 ldx \ dx/ @}

where the surface density Z (x) is defined by

E(x)=J.p(x, z) dz. (5.16)

By inspecting the equation (5.13) for k> 0, and again retaining only the j = O term in the
sums we may estimate the ratio | Ug|/| Uyl for k> 0. We assume that U, varies on the same
scale as the torus, @, or slower and recall from inequality (5.2) that for small ¥ we have
| 5 1%/k* < m%a?/w?. Hence we obtain the estimate

2.2 N 1/2
IUISIUl(ma () (5.17)
¢ ° CJ%)) (Nk)

This supports our contention that there is a mode which is dominated by the £ = 0 term in
the series.

To proceed with equation (5.15) we note that the definition of (equation 5.16) and the
expression for the density distribution (equation 2.7) yield

2\n+1/2

X
E:Knpoa(Qq—3)1/2(l¥~5) , (5.18)
a
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Stability of differentially rotating discs — 1I 813
where the constant K, is defined by

1 2" [T+ 1))
K, = — )ytgg = ; 5.
=2 fo(l o= (5.19)

Similarly we find

(5.20)

Jpzdz_ Qn+1)(n+1) )X
p nQRq-3)aQ (1-x*d?)

Using these, equation (5.15) becomes
d ({_dU, Qrn+1)k*Z m?z
(2 — | - U { Tt
2q -3)Q%a*(1 —x¥a*) w5}

dx
mk? d (229)}_0 (5.21)
5’&)0 dx K2 ) '
This equation is similar in form to the z-component of the linearized vorticity equation
for a two-dimensional disturbance in an axisymmetric incompressible flow and indeed is
analogous to linearized equations for perturbations of two-dimensional plane-parallel incom-
pressible shear flows (Drazin & Reid 1981). By using the standard procedures applied there
it follows that a necessary condition for instability is that d (2 2Z/k*)/dx = 0 somewhere in
the flow (cf. Section 3.1). For the small torus approximation we are using this occurs at the
density maximum x=0. In this approximation we write 0= —mqSox/t, Where
5= 0+m8Qy, write 2 = Qg and k2 =2 (2 — q) 23. We may then rewrite equation (5.21) as

i(ZdUO)~UOE(n+1/2){'4(2——q)+2m2(a2x2)+ dx }=
dx dx 2q -3 we(2n+1) g\ —x)

dx

(5.22)

a® — x?
where
A= 6'030/(”’1([90)

By analogy with the incompressible shear flow problem we search for non-singular
solutions of equation (5.22) which correspond to marginally stable solutions with o, or
equivalently A, real. Such solutions exist only when o is chosen so that ¢ +m{2 =0 at the

same value of N\ at which d(292Z/k?)/dx vanishes. In the small torus approximation this
means that X = 0, We can also neglect the second term in curly brackets provided that

m%a® 4Q2n+1)2—q)
< .
w3 2¢ -3

The equation for the neutral mode then becomes
i (2 dUO) ~ UpZ(n+Y,) . 43 -¢%) _

dx \  dx . @?-x* qQRq-3)

Using equation (5.18) we see that this equation has solutions regular at x =+ ¢ only if
Uy (x) = C(x/a) where as before Cj, represents the Gegenbauer polynomial, and k=0, 1, 2,

.... The solutions exist only for the particular relevant values, g (k), of ¢ which satisfy the
equation

(1+2n)(q* —3)=q(q — ) k(k + 2n) (5.24)

and lie in the range %, < g < 2.

(5.23)
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The only value of k for which relevant values of g (k) exist are k=0, g(0) =+/3 and
k=1,q(1)=2. However, for g =2, the approximations used here are invalid. We are
interested therefore in the fundamental mode with k=0, for which U,= constant and
q (0) =+/3. It is straightforward to demonstrate, using perturbation theory that in the neigh-
bourhood of this neutral mode stability occurs for ¢ < +/3 and instability for g> /3.
Perturbation theory for this mode with g > +/3 yields the growth rate

— v =—Im(mq Q2N wo)
mK, 1, q(3— qz) . ally

- (5.25)
m 2g—-3 T

where K, is defined in equation (5.19).

We see therefore that for small enough tori, the modes with low enough m that m?%a?/o5}
is appropriately small are stable provided that ¢ <+/3. We note that the approximations we
have made in this section have ruled out the possibility of sonic-type modes and that the
instabilities we have been considering here are driven by a similar mechanism to the shear
flow instability. The sonic-type modes are regained even in small tori if we allow values of
m 2 @y /a, and these modes may still be unstable.

5.2 MODES WHICH ARE ODD FUNCTIONS OF Z

The modes considered in Section 5.1 were essentially independent of z. In this section we
use the same approximation but consider modes for which Q is an odd function of z. Since
in this approximation the modes correspond to the shear-driven modes in incompressible
shear flows, we might expect the z-dependence to aid stabilization. Indeed we prove that all
such odd modes are stable.

To do this we define a new variable X = Q/G"/2 and rewrite equation (5.4) in the form

1 9 (pmaaX) mX 9 (29p)+ X a(pa; dQ) Xpm2(d9)2

wow \ k2 dw/ ® dw\ K? 2w dw \ k?  dw/ 4ok*\dw
1 of ax\ _ [(m%X p°X
Zi——- p—— + 0 —'—2——2+—— . (526)
00z\ Oz wk® Ip

We multiply this equation by @ X* and integrate over the cross-section of the torus, to obtain

o

v

oX
ow

-5

* 0 [m
+J |X|2ég [—K—;—O (2Q+1/2w9')]dw dz. (5.27)

2 m2p pzw

+(——2+—) |Xl2} dewdz
K I'p

2 m29’2

C4k2

0X

2z

IXlz} dw dz

We now take the imaginary part of this equation to obtain

(o) 2 m? L) e
k] e (25 2
K

wk? Tp/ |6
In this equation all the terms are of the same sign except for the last one. It follows therefore

2 m2Q'2

 4x?

oX

ow

aX

3

|X|2]} dewdz=0.  (5.28)
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Stability of differentially rotating discs — II 815
that if at each relevant value of @,
X |? m2Q'?
pl—1I1 dz> n J‘pl)(l2 dz, (5.29)
0z 4k

we must have v = 0, and there can be no unstable mode.
Consider now the minimum possible value of the ratio

_JploX/oz|*dz
[ )X 1> dx’

at each value of @ in the torus, subject to the constraint that X be an odd function of z. By
Rayleigh’s principle in Sturm—Liouville theory, the minimum value of R is attained when X
satisfies equation (5.8) and is equal to the corresponding eigenvalue. The smallest eigenvalue

corresponding to an odd eigenfunction is \; = 2npo/[pea®(2q — 3)] and hence for all odd X
(at each value of @),

p2

— | X ?dz (5.31)

J‘ 0X 4
0 7>
poa®(2q—3)J p

0z
Further, since p/p has its minimum value at the centre of the torus we also have

&

Using the inequalities (5.29) and (5.32) we see at once that if throughout the torus
m?a®> 16n(2 — q)

(5.30)

2 2npo

2 2n
A
2q-3)d*

oX
0z

f ol X|?dz. (5.32)

< (5.33)
»  ¢*(2q-3)

then no unstable mode can exist. This inequality is almost the same as that demanded by our
approximations and we deduce that in small tori, the modes with low enough m that
m*a*[w} is appropriately small and which are odd functions of z are stable.

6 Instability of modes with high m

In Section 5 we considered low-m modes in small tori. These modes did not have the
character of sound waves and, when unstable, were driven by an analogous mechanism to
that which drives the classic shear flow instability. For those modes we required | 6 | < k. In
the opposite limit | 5|> , the modes acquire the character of sound waves and for large m
we can ensure that | 0 + m§2 | > k throughout most of the flow except for a small region near
corotation for weakly unstable modes. In this case we can replace D by 62 in equation (2.19)
and write

W 1 o oW mw o oW\ _mW 8 [ph'
=—— P +p - — —o— — | —). 6.1

I'p @ 909 30 o o\’ oz @ 0w \wo?

In the limit of large m, bearing in mind that apart from in a small region near corotation we
have | 6 + m&2 | = m, the last term in (6.1) is small compared to the other W term and can be
neglected. We then have

GZp2 W 10 ( BW)+ m:w 8( 8W)
=—— — [pow— ——1o—)
Ip @ 0w d 0w P w0z P oz

(6.2)
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However, equation (6.2) is the governing equation for the constant angular momentum case
(Paper 1) and is obtained from (equation 2.19) by setting 4'=0. The mathematical pro-
perties of equation (6.2) derived in Paper I do not depend on the detailed form of £ or p
and lead us to expect instability. The modes have the character of sound waves, and their
instability is connected to the condition (3.6) and not to the classical shear flow mechanism
corresponding to condition (3.7). However, apart from this inherent tendency for sound
waves to be unstable, the shear flow mechanism may operate near to corotation where
equation (6.2) breaks down. In general we expect modes to exist which are unstable as a
result of the combination of the two effects.

To investigate the stability of sonic modes with large m in full generality using equation
(2.19) is a difficult problem. To obtain something tractable we seek conditions under which
the modes are almost independent of z. The problem then becomes one in ordinary rather
than partial differential equations. We start by returning to the basic equations (2.12)
together with (2.15) and (2.17). From these we may derive the following pair of equations

g 0 , [ - K8 [pw\ K?Gp*) in'd [0 dp KPP w

- a—w(pqus) = ivg [PO —;8%(7) + Tpm? ]*; ™ (ovz)* vy 7 7o _WJ
(6.3)

and

10 ,_op*th 3 ., imp 0% pos?

> a—w(PCJUwF T Vg — a—z‘(PUz) e [1 =T } (6.4)

We can integrate equations (6.3) and (6.4) with respect to z through the torus under the
assumption that vy, and vy are independent of z, to obtain a pair of first-order differential
equations for vg,, vg. If p and p were independent of z this would correspond to the case
discussed in Section 3.1. However, if we attempt to justify this approach for a torus by
following a similar procedure to that adopted in Section 5 we find that it can only be
justified if g = 3/2 and the resulting modes do not vary on too short a length scale.

We let n=vy, {=ive/m and u=o/m, so that 6=m/(u+ )=mpy, and obtain from
equations (6.3) and (6.4):

d
— (Zwn) =An+ B, (6.5)
do
and
d
— (Zw{)=Cn+ D§, (6.6)
dew
where
dz p*dz
A=®w——h uw ,
dow I'p
W? d (Zw p*dz
B=m*% -—— — (—*,)+h’2 —,
oudw\ h I'p
2
p-dz
C=X-@*e” | —,
I'p
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I'p

We note that the coefficient B is singular at corotation where 6 =0, if o is real, and that
the singular term has the factor d (Zo/h")/dw. This quantity plays a crucial role in driving
non-sonic shear instabilities (Section 3.1), and we might expect it to play a similar role here.
However, equations (6.3) and (6.4) allow solutions with a sonic character, especially for
large m.

By referring back to equation (6.2) with z-dependence neglected, it can be seen that for
large m the solution is oscillatory in character in particular at the boundaries where p/p
becomes infinite. As m increases the number of oscillations in the solution also increases,
and as in Paper I we expect high-m modes to be trapped near to @, and @._.

We can discuss the onset of instability by searching for marginally stable non-singular
modes. As before these modes can only occur when u is chosen so that g =0 at the point
where d(Zw/h')/dw = 0. Solutions of equations (6.5) and (6.6) which satisfy the appro-
priate regularity conditions at the boundaries will exist only for special values of other
parameters. Here we adopt m as parameter, and assume it is so large that it can be treated as
a continuous variable. Since the number of oscillations in the solution increases with m, we
expect there to be critical values of m for which marginal modes exist. We suppose that such
a value m = m, exists and let n=ny, ¢ =¢o, M= Mo, A =Ao, B=By, C=Coand D=D,. We
now seek unstable modes for values of m near to my. We write m =mgo+ émand u=puo+ou
with 6m, du small. We then note that n and ¢ satisfy the equations

d
— (Zn) — (4on + BoY)
dw

[(mq + 8m)? m212§+h,2 d (Em) s W' S J‘pzdz n
— m m _— —_— — —, . o . .
° > n) (ot Q) (ot 8t Q) y

w dw D
6.7
and
d
— (Z®{) — (Con+ DoY)
doo
, [PPdz , p?dz
=—w* '(2/.10+252+8,u)°6u-n+6u-h&>'f - ¢ (6.8)
I'p I'p

To find the behaviour of §u to lowest order in perturbation theory we multiply equation
(6.7) by @3¢, and equation (6.8) by @n,. We then subtract and integrate with respect to &

over the torus and replace ¢ by {, and 1 by no. We find, eventually,

d (Zw K2k
2;n06mf2§%mdw+6uf{m(—,—) . 55
dw\ h' | (ot Q) (uotdu+ )

p2dZ 3 2 ! 2
+2 . * [e0° (o + Q) Mg — Sonoh ©*] {doo = 0. (6.9)

From this equation we may find 8u. To evaluate the integral containing (uo + 8u + Q)
28
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we must assume that §u has a small negative imaginary part and write

1
———=P( )+ma +Q 6.10
miaron o (ko * £2) (6.10)

where P is the principal value and § is Dirac’s 6-function. Because of the choice of uo, all
other terms are non-singular. We thus obtain:

d 203 h’2 2 2032 ’
5;1{10] ( ) L dca+” P e (Q+ o) — 2tomoh'] deo dz
D

dos \ 1 ) (o + Q)? r

a? (zca)h’2§%,] } f
tin|— | — =—2mém | THBwdw, 6.11
[dw2 W) ol o (6.11)

where the subscript ¢ denotes evaluation at the corotation point where uo+ 2 =0.

It is clear from equation (6.10) that we can ensure that 6u has a small negative imaginary
part as initially assumed. An exception to this occurs when either 2" = 0 or {, = 0 at corota-
tion, and then in general §u is real to this order. However, we know from Paper I that tori
with 4’ =0 are unstable. Instability in such a case comes about when the coefficient of §u in
equation (6.11)is zero, in which case (8u)? = 6m so that for at least one sign of 6m instability
results (Section 4.2 of PaperI). Similar results have been obtained in the case of compressible
plane parallel shear flow (Blumen ez al. 1975; Drazin & Davey 1977).

7 Discussion

In this paper we have extended our investigation of the stability of thick rotating discs or
tori to cover more general rotation laws than that corresponding to constant specific angular
momentum. We have adopted an analytic approach which has limited the complexity of the
cases we discuss. More general problems require a numerical approach and we shall present
the results of such an approach in a subsequent paper.

Some idea of the kind of instabilities present in compressible shear flow can be found in
the work of Blumen et al. (1975) and Drazin & Davey (1977) who consider plane parallel
flow and look for non-singular neutral modes. They show that if the velocity difference
across the shear is subsonic then the usual inflexion point criterion is relevant (see also Drury
1979). However, for supersonic shears the unstable modes take on the character of sound
waves, These results are confirmed by Grinfeld (1984) who gives an explicit Liapounov
function for the linearized perturbation equations for the plane parallel compressible flow.
The plane parallel case is however, simpler than the one we consider because of Squire’s
theorem which says, loosely, that the disturbances in that case may always be regarded as
two-dimensional. In rotating flows no such simplification is possible.

However, the application of Grinfeld’s Liapounov function approach to rotating flows is
instructive (though strictly valid only for two-dimensional perturbations of two-dimensional
flows) and we have given the relevant Liapounov function explicitly in Section 3.1. This
shows that instability can occur only if either there are supersonic relative motions or the
gradient of the ratio of vorticity to density changes sign. The tori considered in Paper I had
zero vorticity and were unstable because they had essentially zero-pressure surfaces where
the sound velocity was zero or small enabling violation of the first (supersonic) condition.
There is no analogue of these instabilities in incompressible fluids. The second condition is
the analogue of Rayleigh’s necessary criterion for shear-flow instabilities in incompressible
fluids and any instabilities driven by the behaviour of the gradient of 4'/(zZ) do have an
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incompressible precedent in the Kelvin—Helmholtz instability. Although Grinfeld’s analysis
cannot be used to prove instability our work in Paper I may be regarded as an illustration of
the unstable sound waves that can occur when there are relative supersonic motions in the
unperturbed flow.

In this paper we have considered rotation laws of the form € « &4 with 3/2 < g <2, and
a finite barotropic fluid under the influence of a single gravitating point mass. For such flows
which have a density maximum within them both of Grinfeld’s conditions are violated and
for general ¢ we might expect any unstable modes to be an inseparable mixture of classical
shear-flow mode and sound wave. In Section 3.2 we proved the general condition that any
unstable mode must corotate at some point in the torus.

When the torus does not have constant specific angular momentum a natural restoring
frequency, k, where k> =2Qh'[w, exists in the fluid. In Section 4 we demonstrated that
when « is small tesults may be obtained by applying perturbation theory to the unstable
modes of sonic character found in the 4" =0 case. We have shown that there are no singu-
larity problems in doing this and that the unstable eigenvalues found in the 4’ = 0 case are
only slightly modified when k is small. We have calculated the change in the eigenvalue
explicitly for the fundamental unstable mode of the thin isothermal ring.

When the epicyclic frequency k cannot be regarded as small we show in Section 5.1 that
if g # 2 and the torus has small cross-section (g < @) then modes with low m exist which are
almost independent of z. We show that such modes are unstable if g>+/3 and stable if
q<\/3. When unstable, these modes do not have a sonic character and are driven by a
mechanism analagous to the one which drives the classical Kelvin—Helmbholtz instability. For
such tori we have shown that modes with low m, but with odd symmetry in z, are stable.
This analysis breaks down for large m (roughly when m 2 @, /a) when the modes again take
on a sonic character. In Section 6 we have investigated mainly sonic modes with high m. To
obtain a tractable problem we have taken the limit of vy, and vy independent of z which is
valid for the two-dimensional flow of Section 3.1 or for a highly flattened torus with g = 3/2
(i.e. near Keplerian rotation). We show that the sonic modes can be unstable with the
instability being driven by the Kelvin—Helmholtz mechanism in addition to the mechanism
discussed in Paper I. This is an example of the mixture of sonic and Kelvin—Helmholtz mode
which can be expected for the general rotation law.

8 Conclusion

The instabilities, shown to exist in Paper I in tori with 4" =0, persist in tori with non-
constant specific angular momentum. Furthermore there is the complication that additional
unrelated Kelvin—Helmoltz-like instabilities occur in tori for which 4'# 0. The general
unstable mode is a mixture of these two types. These results imply that models of quasars
which invoke accretion tori, and models which imagine that centrifugal force can vacate a
funnel up the rotation axis along which jets might originate (e.g. Lynden-Bell 1978; Rees
et al. 1982) are not viable.

Because of the efficiency with which these instabilities can transfer angular momentum,
they will be of fundamental importance in determining permissible rotation laws of differen-
tially rotating flows in the astrophysical context. They imply that thick accretion discs must
evolve dynamically rather than doing so on the slow ‘viscous’ time-scale envisaged for their
thin counterparts. In the stellar context it will be important to determine the effect of a
radial (possibly stabilizing) entropy gradient on the instabilities. For the thick disc-like flows
seen in star-forming regions the (possibly destabilizing) effects of self-gravity will need to be
taken into account.
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Even the relatively simple flows considered in this paper are complicated to analyse, and
the analytic approach adopted here has limited use to the treatment of particular cases. In a
subsequent paper we shall adopt a numerical approach which will enable us to extend our
investigation.
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