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ABSTRACT

Context. An important open question is the relation between intracluster light and the halos of central galaxies in galaxy clusters.
Aims. Here we report results from an on going project with the aim to characterize the dynamical state in the core of the Hydra I
(Abell 1060) cluster around NGC 3311.
Methods. We analyze deep long-slit absorption line spectra reaching out to ∼25 kpc in the halo of NGC 3311.
Results. We find a very steep increase in the velocity dispersion profile from a central σ0 = 150 km s−1 to σout � 450 km s−1 at
R � 12 kpc. Farther out, to ∼25 kpc, σ appears to be constant at this value, which is ∼60% of the velocity dispersion of the Hydra I
galaxies. With its dynamically hot halo kinematics, NGC 3311 is unlike other normal early-type galaxies.
Conclusions. These results and the large amount of dark matter inferred from X-rays around NGC 3311 suggest that the stellar halo
of this galaxy is dominated by the central intracluster stars of the cluster, and that the transition from predominantly galaxy-bound
stars to cluster stars occurs in the radial range 4 to 12 kpc from the center of NGC 3311. We comment on the wide range of halo
kinematics observed in cluster central galaxies, depending on the evolutionary state of their host clusters.

Key words. galaxies: clusters: general – galaxies: clusters: individual: Hydra I – galaxies: kinematics and dynamics –
galaxies: individual: NGC 3311

1. Introduction

An important open question is the physical and evolutionary re-
lation between the intracluster light (ICL) and the extended halo
of the brightest cluster galaxies (BCGs), whether they are truly
independent components or whether the former is a radial exten-
sion of the latter. Using a sample of 683 SDSS clusters Zibetti
et al. (2005) found a surface brightness excess with respect to
an inner R1/4 profile that characterizes the mean profile of the
BCGs, but it is not yet known whether this cD envelope is sim-
ply the central part of the cluster’s diffuse light component, or
whether it is distinct from the ICL and part of the host galaxy
(Gonzalez et al. 2005).

In the Southern hemisphere, the cD galaxy NGC 3311 and
the giant elliptical NGC 3309 dominate the central region of
the Hydra I cluster, an X-ray bright, non-cooling flow, medium
compact cluster with a velocity dispersion σHydraI = 784 km s−1

(Misgeld et al. 2008). The X-ray observations show that the hot
intracluster medium centered on NGC 3311 has a fairly uniform
distribution of temperature and metal abundance from a few kpc
out to a radius of 230 kpc (Tamura et al. 2000; Yamasaki et al.
2002; Hayakawa et al. 2004, 2006). Given the overall regular
X-ray emission and temperature profile, the Hydra I cluster is
considered as a prototype of an evolved and dynamically relaxed

� Based on observations collected at the European Organisation for
Astronomical Research in the Southern Hemisphere, Chile, during the
observing program 082.A-0255(A) on 2009 March 25.
�� Table 1 is only available in electronic form at
http://www.aanda.org

cluster; it is therefore a suitable candidate for a dynamical study
of a relaxed extended stellar halo around a BCG.

The primary goal of this work is to establish the dynamical
state of the stellar halo of NGC 3311. We use long-slit spectra
to uncover the kinematics in the halo region of NGC 3311 out to
∼25 kpc from its center. In Sect. 2 we present observations with
FORS2 at VLT and the GEMINI GMOS archive data, which
we reanalyze. We describe the data reduction and the kinematic
measurements in Sect. 3. The newly measured halo kinematics
and their implications are discussed in Sect. 4, and our conclu-
sions are summarized in Sect. 5.

We adopt a distance to NGC 3311 of 51 Mpc (NED), equiv-
alent to a distance modulus of 33.54 mag. Then 1′′ corresponds
to 0.247 kpc.

2. Observations and archive data
VLT FORS2 long slit spectra – The long-slit spectra were ob-
tained during the nights of 2009 March 25–28, with FORS2
on VLT-UT1. The instrumental setup had a long-slit 1.′′6 wide
and 6.′8 long, Grism 1400V+18, with instrumental dispersion
of 0.64 Å pixel−1 and spectral resolution σ = 90 km s−1, and
a spatial resolution along the slit of 0.′′252 pixel−1. The see-
ing during observations ranged from 0.′′7 to 1.′′2. The wave-
length coverage of the spectra is from 4655 Å to 5965 Å, in-
cluding absorption lines from Hβ, MgI (λλ5167, 5173, 5184 Å)
and Fe I (λλ5270, 5328 Å). We obtained eight spectra of 1800 s
each, for a total exposure time of 4 h. In the FORS2 obser-
vations, the long slit is centered on the dwarf galaxy HCC 26
at α = 10h36m45.85s and δ = −27d31m24.2s (J2000), with a
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Fig. 1. Optical DSS 7′ × 7′ image centered on NGC 3311 in the Hydra I
cluster. The relative positions of the GMOS slit (5.′5, blue line) and
FORS2 slit (6.′8, red line) are illustrated. Green and yellow sections
on the FORS2 slit indicate regions where average spectra are ex-
tracted. The adjacent numbers specify the radial distances of their light-
weighted mean positions from the center of NGC 3311. The center of
the FORS2 slit coincides with the position of the dwarf galaxy HCC 26
and is marked by a black circle. North is up and East to the left.

position angle of PA= 142◦; HCC 26 is seen in projection onto
the NGC 3311 halo. The position of the FORS2 long slit is
shown in Fig. 1. Its center is located at PA= 64◦ with respect
to NGC 3311, approximately along the major axis of the galaxy.

Gemini GMOS-South long slit spectra – We use Gemini
archive long-slit spectra in the wavelength range from 3675 Å
to 6266 Å observed with the B600 grating, a dispersion of
0.914 Å pixel−1, a spectral resolution of σ = 135 km s−1, and
a spatial scale of 0.′′146 pixel−1; a detailed description of the
instrumental setup is presented in Loubser et al. (2008). The
seeing was typically in the range from 0.′′6 to 1.′′2. We target
the same absorption lines as for the FORS2 spectra, i.e. Hβ,
MgI (λλ5167, 5173, 5184 Å) and Fe I (λλ5270, 5328 Å). The
0.′′5 wide and 5.′5 long Gemini slit is centered on NGC 3311,
at α = 10h36m42.74s and δ = −27d31m41.3s (J2000), along
PA= 63◦, the direction of the galaxy major axis. Its position is
shown in Fig. 1.

3. Data reductions

The data reduction of the FORS2 long slit spectra is carried out
in IRAF. After the standard operations of bias subtraction and
flat-fielding, the spectra are registered, co-added and wavelength
calibrated. The edges of the FORS2 slit reach well into sky re-
gions, which are then used to interpolate the sky emission in the
regions covered by the stellar spectra.

In the low surface brightness regions, spectra are summed
along the spatial direction in order to produce one-dimensional
spectra with an adequate S/N ratio (≥20 per Å). Four indepen-
dent one-dimensional spectra are extracted along the slit where
the light is dominated by the halo of NGC 3311; of these, two
are from regions north and two from regions south of HCC 26,
respectively. We extract spectra from slit regions of ∼31′′ × 1.′′6
and ∼25′′ × 1.′′6 at distances of about 54′′ and 47′′ from the cen-
ter of NGC 3311, and of ∼58′′ × 1.′′6 and ∼36′′ × 1.′′6 at central

Fig. 2. Kinematic fits with PPXF of the spectra extracted at −47′′ (VLT
FORS2) and at −34′′ (Gemini GMOS). In black we display the galaxy
spectra, in green the wavelength range excluded from the fit because
of sky residuals, and in red the best-fit-broadened template model. All
spectra are normalized to the value of the best-fit model at 5100 Å.

distances of about 100′′ and 67′′. We properly mask the spectra
of foreground stars in those areas.

The data reduction for the GMOS long slit spectra is carried
out independently here, also in IRAF and with the standard tasks
in the Gemini package. The procedure is described in Loubser
et al. (2008) for the wavelength calibration and background sub-
traction; also in this case the edges of the slit are used to in-
terpolate the sky emission in the regions covered by the stellar
continuum. Because our goal is to sample the kinematics well
into the halo, the one-dimensional spectra for the absorption line
measurements are summed along the slit direction so that a min-
imum S/N ∼ 20 per Å is obtained in each radial bin, out to a
radial distance of about 40′′ from the center of NGC 3311.

Stellar kinematics – The stellar kinematics is measured from
the extracted 1D spectra in the wavelength range 4800 Å<λ <
5800 Å, using both the “penalized pixel-fitting” method (PPXF,
Cappellari & Emsellem 2004) and the Fourier correlation quo-
tient (FCQ) method (Bender 1990), in order to account for pos-
sible systematic errors and template mismatch.

In the PPXF method, stellar template stars from the MILES
library (Sanchez-Blazquez et al. 2007) are combined to fit the
one-dimensional extracted spectra; the rotational velocity, the
velocity dispersion and Gauss-Hermite moments (e.g. Gerhard
1993) are measured simultaneously. Figure 2 shows two of the
extracted spectra and the broadened templates fit by PPXF. In the
FCQ method, the rotational velocity and velocity dispersion are
derived for each extracted one-dimensional spectrum by assum-
ing that the LOSVD is described by a Gaussian plus third- and
fourth- order Gauss-Hermite functions. Before to the fitting pro-
cedure the MILES template spectra are smoothed to the GMOS
and FORS2 spectral resolution with the measured broadening
offsets. While FCQ provides error estimates along with the mea-
sured kinematics, errors for the PPXF kinematic parameters are
calculated with a series of Monte Carlo simulations adopting the
appropriate S/N for each bin.

Because the stellar populations in cD halos may have differ-
ent metal abundances and ages from those of the inner regions
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Fig. 3. Major axis line-of-sight velocity and velocity dispersion profiles
for NGC 3311 (PA = 63◦). The open light blue triangles are the val-
ues published by Loubser et al. (2008), based on Gemini-South GMOS
data. The black asterisks are our independent measurements from these
GMOS (archival) spectra, and the red asterisks show measurements
from the new VLT-FORS2 spectra. These are weighted averages of
three independent measurements which are obtained with PPXF and
FCQ as described in Sect. 3 and shown separately as the gray, magenta
and green diamonds. The FORS2 data points are obtained from aver-
ages over ∼25′′ and ∼31′′ in the inner regions and over ∼36′′ and ∼58′′
in the outer regions of the slit; see Fig. 1. These off-axis measurements
are plotted at their light-weighted average radii, corrected for projec-
tion onto the major axis of NGC 3311 with an isophotal flattening of
0.89. Positive distances are south-west from the center of NGC 3311
and negative values are north-east, along PA= 63◦.

(Coccato et al. 2010a,b), systematic effects caused by template
mismatch must be evaluated and accounted for. We therefore ex-
tract kinematic measurements with PPFX and FCQ as follows:

1. fit with PPFX the best stellar template from the MILES li-
brary in the central regions with the highest S/N, and extract
v and σ at all radii, using the same stellar template;

2. simultaneously fit the best stellar template, v and σ in each
radial bin with PPFX;

3. adopt the respective best-fit PPXF stellar template to derive
the LOSVD with FCQ for all radial bins;

4. finally, average rotational velocities v and velocity disper-
sions σ are computed as weighted means of the three values
extracted in each radial bin as detailed above. Errors for these
weighted average values are computed from those of the
three measurements, but if the reduced χ2 = 1

(n−1)

∑n
i=1

(xi−x̄)2

ε2i

is greater than one, they are increased by
√
χ2 in order to take

into account systematic differences. I.e., ε2x̄ =
1∑n

i=1 1/ε2i
× χ2

where εi, εx̄ are the errors on the individual measurements xi
and the weighted mean x̄, respectively.

Mean velocities and velocity dispersions in all radial bins are
listed in Table 1, and the profiles are shown in Fig. 3 together
with the previous measurements from Loubser et al. (2008).
Table 1, which is available in electronic form, contains the fol-
lowing information: source of data (Col. 1), distance from galaxy

center (Col. 2), PA (Col. 3), v, σ with errors for each of the pro-
cedures 1.-4. described in the text, in Col. (4–5), (6–7), (8–9),
and (10–11), respectively. Heliocentric and relativistic correc-
tions have been applied to the mean velocities. The systemic ve-
locity is 3800 km s−1 and has been subtracted.

In the central region of NGC 3311, our new velocity disper-
sion profile marginally agrees with that of Loubser et al. (2008).
The new mean line-of-sight velocity measurements agree with
the systemic velocity of NGC 3311 obtained by Misgeld et al.
(2008), but have a systematic offset from the v data of Loubser
et al. (2008), by about 91 km s−1. The agreement between the
new FORS2 measurements at −47′′ and the revised value at
−34′′ from archive GMOS data gives us confidence that the
systematic effects from wavelength calibration offsets, template
mismatch, etc., are sufficiently small in the new, independent
data reductions. However, several tests have convinced us that
the data do not allow us to reliably determine full line-of-
sight distributions (e.g., h3, h4), which could be used to test for
subcomponents, which one would expect in particular at radii
∼30′′−40′′.

4. The kinematics of the NGC 3311 stellar halo

The combined new velocity dispersion profile for NGC 3311
reaches to Rm j = 39′′ � 10 kpc from the center of NGC 3311
along the galaxy’s major axis (PA= 63◦), and to an off-axis dis-
tance of R = 100′′ � 25 kpc along the FORS2 slit. It shows
a very unusual steep rise with increasing radial distance from
the galaxy center: from a central value σ0 = 150 km s−1, to
σ = 231 km s−1 at R = 15′′ � 3.7 kpc, and then on to a
flat σout � 450 km s−1 outside R = 47′′ = 12 kpc. The steep
outward gradient is supported by two independent data sets and
data reductions. The measurements of Loubser et al. (2008) near
the galaxy center had already hinted at a positive gradient from
190 km s−1 at R = 5′′ to ∼240 km s−1 at a radius of R = 10′′,
and data shown in Fig. 1 of Hau et al. (2004) reach �300 km s−1

at ∼25′′. With the new data we now have very clear evidence of
a dynamically hot stellar halo in NGC 3311.

To put the extremely rapid rise of the velocity dispersion pro-
file of NGC 3311 in context, we compare its kinematic proper-
ties with those of early-type galaxy (ETG) halos mapped using
planetary nebula data (Coccato et al. 2009) and with the halos of
the two Coma BCG galaxies NGC 4889, NGC 4874 from deep
absorption line spectroscopy (Coccato et al. 2010a). Figure 4
shows the mean 〈V/σ〉, X-ray luminosity, and total absolute
B-band magnitude for these galaxies versus their outermost halo
velocity dispersion. For NGC 3311, we use a bolometric X-ray
luminosity within 50′′ � 12 kpc, LX = 2.75×1040 erg s−1 (based
on the flux in the 0.5–4.5 keV energy range from Yamasaki et al.
(2002) and corrected to bolometric LX according to Table 1 of
O’Sullivan et al. 2001), and the total extinction corrected B-band
magnitude (12.22) from de Vaucouleurs et al. (1991). For the ve-
locity dispersion of NGC 3311, we use the values at the center,
at 15′′ (�3.7 kpc) and at 47′′ (�12 kpc). Only the central σ0 puts
NGC 3311 in the middle of the ETG distribution; σ(47′′) devi-
ates strongly, with a much larger σ than expected for the given
LX , BT .

The natural interpretation for these results is that the outer
stellar halo of NGC 3311 is dominated by the central intracluster
star component of the Hydra cluster. This is supported by sev-
eral pieces of evidence: (i) The steep rise of the σ-profile; more
isolated ETGs all have slightly or even steep falling σ-profiles
(Coccato et al. 2009); (ii) The saturation of σ at � 12 kpc,
outside of which the dynamically hot component dominates
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Fig. 4. Properties of the stellar halo of NGC 3311 compared with other
early-type galaxy halos: mean 〈V/σ〉 (upper panel), total X-ray lu-
minosity (central panel), and B-band total magnitude (lower panel)
against stellar velocity dispersion σ. Solid diamond, circle, and square
show the measured σ of NGC 3311 at the center, 15′′ (�3.7 kpc), and
47′′ (� 12 kpc). Crosses show outermost velocity dispersions from
Coccato et al. (2009), and open diamonds for NGC 4889/4874 from
Coccato et al. (2010a).

completely. σ(47′′) is ∼60% of the galaxy velocity dispersion
in the cluster core; (iii) The large amount of dark matter inferred
from X-ray observations around NGC 3311 (∼1012 M
 within
20 kpc, Hayakawa et al. (2004)).

In recent cosmological hydrodynamic simulations of cluster
formation, Dolag et al. (2010) applied a kinematic decomposi-
tion to the stellar particles around cD galaxies. With a double
Maxwellian fit to the velocity histogram of star particles cen-
tered on a simulated cD, they were able to separate an inner,
colder Maxwellian distribution associated with the central gal-
axy, and an outer, hotter component of stars that orbit in the clus-
ter potential. For both components they derived radial density
profiles and, fitting Sersic profiles, found that the inner stellar
component is much steeper than the outer diffuse stellar com-
ponent. A comparison with these simulations indicates that the
steep velocity dispersion gradient in the halo of NGC 3311 traces
the transition from central galaxy stars to the diffuse intracluster
stellar component. In the NGC 3311 halo, the transition between
the two occurs at smaller radii than in other BCGs in nearby clus-
ters, in the range between 4 and 12 kpc.

NGC 3311 appears to have a similar halo as the cD galaxy
NGC 6166 in the Abell 2199 cluster (Kelson et al. 2002), whose

σ-profile rises to cluster values at R ∼ 60 kpc. But NGC 3311
is even more extreme; it is a fairly small galaxy, based on its
central σ0 = 150 km s−1, and it is already dominated by the sur-
rounding cluster component at R ∼ 12 kpc. Presumably, this is
because the core of the “relaxed” Hydra cluster has had time
to collapse onto the galaxy. For comparison, the two BCG gal-
axies in the Coma cluster core, which have a nearly constant
σ-profile (Coccato et al. 2010a), may be in the middle of an on-
going merger (Gerhard et al. 2007), so that their previous sub-
cluster halos would have been stripped and a new cluster halo
could have been built only after the merger was completed; and
in the outer halo of the more isolated M 87, the velocity disper-
sion appears to drop (Doherty et al. 2009) towards the edge.

5. Conclusions

Based on two independent long-slit data sets and reductions, we
find a steep gradient in the velocity dispersion profile of the
central galaxy NGC 3311 in the Hydra I cluster, from σ0 �
150 km s−1 to σout � 450 km s−1 outside 12 kpc (60% of the
velocity dispersion of the galaxies in the surrounding cluster).

The new data provide evidence that NGC 3311 is a fairly
small galaxy dominated by a large envelope of intracluster stars
already beyond R ∼ 12 kpc, whose orbits are dominated by the
cluster dark matter potential. Comparison with other BCG gal-
axies shows a wide range of dynamical behavior in their halos.
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Table 1. Measured mean velocities and velocity dispersions for NGC 3311.

Instr. R PA Vppxf1 σppxf1 Vppxf2 σppxf2 VFCQ σFCQ 〈V〉 〈σ〉
(arcsec) (km s−1) (km s−1) (km s−1) (km s−1) (km s−1) (km s−1) (km s−1) (km s−1)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

GMOS-S 38.6 63◦ 38 ± 33 399 ± 38 −47 ± 33 381 ± 38 −62 ± 45 435 ± 48 −17 ± 31 401 ± 23
GMOS-S 14.89 63◦ −18 ± 8 238 ± 13 −50 ± 8 228 ± 13 −49 ± 8 241 ± 14 −39 ± 11 235 ± 8
GMOS-S 7.88 63◦ −7 ± 8 209 ± 15 −21 ± 8 203 ± 15 19 ± 5 193 ± 5 5 ± 12 195 ± 5
GMOS-S 3.8 63◦ −14 ± 7 194 ± 13 −27 ± 7 191 ± 13 1 ± 3 145 ± 3 −5 ± 7 151 ± 11
GMOS-S 0 63◦ −10 ± 6 204 ± 10 −22 ± 6 201 ± 10 −3 ± 3 143 ± 3 −8 ± 5 154 ± 16
GMOS-S −4.09 63◦ 2 ± 6 206 ± 14 −14 ± 6 204 ± 14 16 ± 4 169 ± 4 5 ± 9 174 ± 9
GMOS-S −8.05 63◦ 23 ± 11 244 ± 20 9 ± 11 200 ± 20 26 ± 7 182 ± 8 21 ± 5 191 ± 14
GMOS-S −15 63◦ 29 ± 11 295 ± 16 −6 ± 11 267 ± 16 30 ± 7 200 ± 9 22 ± 11 231 ± 28
GMOS-S −34 63◦ 111 ± 13 323 ± 22 50 ± 13 252 ± 22 −8 ± 17 292 ± 18 60 ± 33 289 ± 19
FORS2 −47 45◦ 76 ± 12 479 ± 14 71 ± 12 433 ± 14 117 ± 7 466 ± 12 100 ± 15 460 ± 13
FORS2 −54 83◦ 67 ± 13 456 ± 15 87 ± 13 447 ± 15 124 ± 8 467 ± 14 105 ± 17 457 ± 8
FORS2 −67 6◦ 87 ± 53 471 ± 49 66 ± 53 454 ± 49 97 ± 55 476 ± 97 83 ± 31 464 ± 33
FORS2 −100 114◦ 14 ± 21 437 ± 35 47 ± 21 432 ± 35 50 ± 29 405 ± 51 35 ± 13 429 ± 22

Notes. For details see text. The galaxy’s systemic velocity Vsys = 3800 km s−1 has been obtained by a linear fit to the velocities in the central 20′′
and has then been subtracted from the measurements. This value includes heliocentric and relativistic corrections.
Column 1: instrument; Col. 2: radial distance from center of NGC 3311; Col. 3: position angle of data with respect to NGC 3311’s center; Col. 4:
velocity measured with PPXF (using template determined at R = 0′′), relative to the galaxy systemic velocity; Col. 5: velocity dispersion measured
with PPXF (using template determined at R = 0′′); Col. 6: velocity measured with PPXF (free template), relative to the galaxy systemic velocity;
Col. 7: velocity dispersion measured with PPXF (free template); Col. 8: velocity measured with FCQ, relative to the galaxy systemic velocity;
Col. 9: velocity dispersion measured with FCQ; Col. 10: weighted average velocity; Col. 11: weighted average velocity dispersion.
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