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Abstract. The motion of a one-spike solution to a simplified form of the Gierer–Meinhardt
activator-inhibitor model is studied in both a one-dimensional and a two-dimensional domain. The
pinning effect on the spike motion associated with the presence of spatially varying coefficients in the
differential operator, referred to as precursor gradients, is studied in detail. In the one-dimensional
case, we derive a differential equation for the trajectory of the spike in the limit ε → 0, where ε is
the activator diffusivity. A similar differential equation is derived for the two-dimensional problem
in the limit for which ε ≪ 1 and D ≫ 1, where D is the inhibitor diffusivity. A numerical finite-
element method is presented to track the motion of the spike for the full problem in both one and
two dimensions. Finally, the numerical results for the spike motion are compared with corresponding
asymptotic results for various examples.
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1. Introduction. The generation of spatial pattern and form is one of the major
unresolved problems in developmental biology. In 1952, Turing [31] showed mathe-
matically that a pair of reacting and diffusing chemicals could evolve from initial
near spatially homogeneous states to spatially varying states via the mechanism of
local self-enhancement and long range inhibition. He hypothesized that the resultant
chemical concentration profiles could serve as prepatterns, providing information for
cells, which would differentiate accordingly, forming a spatial pattern. He termed
these chemicals “morphogens,” and, although morphogens have yet to be unequiv-
ocally identified in biological systems, Turing patterns in chemistry are now well
documented. (For a review, see Maini, Painter, and Chau [24].)

Since Turing’s seminal paper, many reaction-diffusion systems have been proposed
for pattern formation. Perhaps the most well-known models are those of activator-
inhibitor type proposed by Gierer and Meinhardt [10]. Their models not only generate
spatial patterns but also exhibit size regulation, a phenomenon that occurs in many
developmental systems such as head development in the Hydra (cf. [10]). In [10]
they showed how a reaction-diffusion system could markedly enhance pre-existing
shallow spatial gradients, called precursor gradients, resulting in a highly localized
(spike-type) pattern for the activator concentration. Their results were then applied
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to model the head formation in the Hydra. In addition, a precursor gradient in the
Gierer–Meinhardt (GM) system was used in the numerical simulations of [15] to model
the formation and localization of heart tissue in the Axolotl, a type of salamander.
Other applications of precursor gradients in the GM system are discussed in [16]
and [14].

From a mathematical viewpoint, precursor gradients are typically modeled by
introducing spatial variations in the coefficients in the nonlinear reaction-diffusion
system. However, since such systems are difficult to study analytically, the previous
work on the GMmodel with precursor gradients has involved either full numerical sim-
ulations (cf. [10], [25], [14], [15], [16]) or else a weakly nonlinear analysis (cf. [17], [18]).

For the simpler case of a scalar singularly perturbed reaction-diffusion equation,
there have been many mathematical studies of the effect of spatially inhomogeneous
coefficients in different settings. In particular, in the field of superconductivity, a spa-
tially inhomogeneous coefficient is known to induce a pinning phenomena, whereby
the dynamics of localized vortex states have new equilibria at certain points deter-
mined by properties associated with the spatially inhomogeneous coefficient (see [5]
and [23]). In the study [3] of hot-spots arising in the microwave heating of ceramics,
a spatially inhomogeneous coefficient, representing an imposed electric field, deter-
mines the spatial extent of the hot-spot region. Hot-spot solutions have also been
computed for a nonlocal spatially inhomogeneous scalar reaction-diffusion model in
[4]. In another problem, the stability of a spike-type solution for a scalar singularly
perturbed PDE is studied in [27]. In addition, the existence of multibump solutions
for nonlinear Schrödinger-type equations with a potential well is analyzed in [11]. Fi-
nally, a mathematical theory for the existence and stability of shock-type solutions to
scalar singularly perturbed reaction-diffusion equations with spatially inhomogeneous
coefficients is given in [12] and [13]. (See also the references therein.)

The goal of this paper is to study the dynamics of localized solutions to a simpli-
fied form of the GM model in a one-dimensional and a two-dimensional domain, while
allowing for the effect of precursor gradients. The simplification to the GM model
that is made is that we neglect the time dependence associated with the inhibitor
field. With this simplification, we are not able to directly model any particular bio-
logical application or compare our results on a quantitative basis with those computed
numerically in the previous modeling studies mentioned above. Instead, our goal is
to develop an asymptotic theory to analyze dynamically the effect of precursor gradi-
ents on the simplified GM system for patterns that exhibit strong spatial variations.
This analysis is in contrast to the weakly nonlinear analysis of [17] and [18] in one
spatial dimension. Mathematically, our analysis extends the previous analytical work
on the effect of precursor gradients in scalar problems to an elliptic-parabolic system
of PDEs.

Neglecting the dynamics of the inhibitor field, the dimensionless GM model
in a one-dimensional domain reduces to the following reaction-diffusion system of
activator-inhibitor type (cf. [19]):

at = ε2axx − [1 + V (x)] a+
ap

hq
, −1 < x < 1, t > 0,(1.1a)

0 = Dhxx − µ(x)h+ ε−1 a
r

hs
, −1 < x < 1, t > 0,(1.1b)

ax(±1, t) = hx(±1, t) = 0.(1.1c)
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Fig. 1. Plot of a one-spike equilibrium solution to (1.1) computed numerically with (p, q, r, s) =
(2, 1, 2, 0), V ≡ 0, ǫ = .05, µ ≡ 1.0, and D = .20. The solid curve is the activator concentration,

and the dotted curve is the inhibitor concentration.

Here a, h, ε, D > 0, µ(x) > 0, and V = V (x) > 0 represent the scaled activator con-
centration, inhibitor concentration, activator diffusivity, inhibitor diffusivity, inhibitor
decay rate, and activator decay rate, respectively. The terms V and µ represent the
precursor gradients. The exponents (p, q, r, s) in (1.1) are assumed to satisfy

p > 1, q > 0, r > 0, s ≥ 0,
p− 1
q

<
r

s+ 1
.(1.2)

In (1.1) we assume that ε ≪ 1 so that the activator diffuses more slowly than does
the inhibitor. The analogous problem in a two-dimensional domain is (cf. [19])

at = ε2△a− [1 + V (x)] a+
ap

hq
, x ∈ Ω, t > 0,(1.3a)

0 = D△h− µ(x)h+ ε−2 a
r

hs
, x ∈ Ω, t > 0,(1.3b)

∂na = ∂nh = 0, x ∈ ∂Ω.(1.3c)

Here ∂n is the outward normal derivative to the boundary, and Ω is a bounded domain
in R2.

For ε ≪ 1, many numerical studies of the GM model (1.1) (i.e., [10], [14]) have
shown that the solution to (1.1) can have one or more spikes in the activator concen-
tration a. These spikes, which represent strong localized deviations from a constant
background concentration, have a spatial extent of O(ε). In Figure 1 we plot a
one-spike equilibrium solution to (1.1) for V ≡ 0, µ ≡ 1, and certain other specific
parameter values. In this case, an equilibrium one-spike solution is, by symmetry
considerations, centered at the midpoint of the interval as shown in Figure 1.

Most of the previous studies for (1.1) and (1.3) have neglected the effect of pre-
cursor gradients by taking V ≡ 0 and µ = 1. Under this assumption, the existence
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of symmetric k-spike equilibrium solutions for (1.1) was proved in [30]. The stability
properties of these solutions was studied in [21]. In particular, in [21] it was shown
that for (1.1) there exist critical values DN of D such that if DN+1 < D < DN , then
a symmetric spike pattern with at most N spikes is stable. Formulae for these critical
values DN were calculated explicitly in [21]. In [33], critical values of D characteriz-
ing the stability of N -spike solutions have also been derived for the two-dimensional
problem (1.3). Finally, the dynamics of multispike solutions for (1.1) when V (x) ≡ 0
and µ = 1 have been studied in [20]. Specifically, a differential-algebraic system of
ODEs for the evolution of the centers of the spikes was derived along with criteria
predicting the onset of spike collapse events.

The situation is very different when V (x) and µ(x) are allowed to have spatial
variations. These precursor gradients can influence the dynamics, equilibria, and
stability of spike solutions. Specifically, it has been observed in previous numerical
studies that the precursor gradients can limit the region where spike formation can
occur (cf. [14]). As a partial analytical explanation of this observation, we show that
the motion of a spike can be pinned to certain points in the domain due to the presence
of these gradients. In our analysis, we allow for arbitrary forms for V (x) and µ(x).
However, in our examples of the theory, we take specific forms for these gradients.
An exponential function for µ(x), similar to that used in [14], is chosen in the one-
dimensional case. A potential well is chosen for V (x) since, based on the analysis
of [11] for the nonlinear Schrödinger equation, we might anticipate that a new spike
equilibrium located at the minimum of the potential well may be introduced. Other
forms for µ and V are possible, including linear, quadratic, and exponential functions
as discussed in [14].

The outline of the paper is as follows. In section 2 we examine the effects of a
spatially variable inhibitor decay rate µ = µ(x) > 0 and a potential V (x) on the
dynamics and the equilibrium locations of a one-spike solution to the one-dimensional
problem (1.1). In particular, we derive an asymptotic differential equation for the
center x0(t) of a one-spike solution to (1.1). We show that the exact equilibrium
location now depends on certain pointwise values of V (x) and on certain global prop-
erties associated with µ(x) over the domain. In section 3 we treat the two-dimensional
problem (1.3). In the recent paper [7] a differential equation for the center of the spike
was derived for the special case when p = 2, q = 1, V ≡ 0, and µ ≡ 1. We extend
this result using the method of matched asymptotic expansions to derive a similar
result for the more general case of arbitrary p and q, allowing V and µ to have a spa-
tial dependence. The analysis is valid when D ≫ − log ε and ε ≪ 1. In section 4 we
present a finite-element method to solve the one-dimensional and the two-dimensional
problems (1.1) and (1.3) numerically. In sections 5 and 6 we compare the asymptotic
results of sections 2 and 3 with corresponding numerical results obtained from the
finite-element method of section 4 for the one-dimensional and the two-dimensional
problems, respectively. Finally, in section 7 we summarize the results obtained and
discuss some open problems.

2. One-spike asymptotic dynamics: The one-dimensional case. In this
section we analyze the dynamics of a one-spike solution to (1.1). For finite inhibitor
diffusivity D, we derive a differential equation determining the location x0(t) of the
maximum of the activator concentration for a one-spike solution to (1.1).

In the inner region near the spike we introduce the new variables

y = ε−1 [x− x0(τ)] , h̃(y) = h(x0 + εy), ã(y) = a(x0 + εy), τ = ε2t.

(2.1a)
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We then expand the inner solution as

h̃(y) = h̃0(y) + εh̃1(y) + · · · , ã(y) = ã0(y) + εã1(y) + · · · .(2.1b)

The functions h̃i and ãi will depend parametrically on τ . The spike location is chosen
to satisfy ã

′

(0) = 0. Substituting (2.1) into (1.1) and collecting terms that are O(1)
as ε → 0, we obtain the leading order problems for ã0 and h̃0,

ã
′′

0 − [1 + V (x0)] ã0 + ãp0/h̃
q
0 = 0, −∞ < y < ∞,(2.2a)

h̃
′′

0 = 0,(2.2b)

with ã
′

0(0) = 0. In order to match to the outer solution to be constructed below,
we require that h̃0 is independent of y. Thus we set h̃0 = H, where H = H(τ) is a
function to be determined. We then write the solution to (2.2a) as

ã0(y) = Hγuc(y), where γ ≡ q/(p− 1).(2.2c)

Here uc(y), which depends parametrically on τ , is the unique solution to

u
′′

c − [1 + V (x0)]uc + up
c = 0, −∞ < y < ∞,(2.3a)

uc(0) > 0, u
′

c(0) = 0, uc(y) ∼ αe−β|y| as y → ±∞(2.3b)

for some α = α(x0) > 0, where β =
√

1 + V (x0). In the special case for which p = 2,
we can calculate explicitly that

uc(y) =
3

2
[1 + V (x0)] sech

2
(

√

1 + V (x0) y/2
)

.(2.3c)

Next we collect the O(ε) terms in the inner region expansion. In this way, we
obtain the problem for ã1 and h̃1,

ã
′′

1 − [1 + V (x0)] ã1 +
pãp−1

0

h̃q
0

ã1 =
qãp0
h̃q+1

0

h̃1 − x
′

0ã
′

0 + yV
′

(x0)ã0, −∞ < y < ∞,

(2.4a)

Dh̃
′′

1 = −ãr0/h̃
s
0.(2.4b)

Here x
′

0 ≡ dx0/dτ . We then write ã1 as

ã1 = Hγu1.(2.5)

Substituting (2.2c), (2.5), and h̃0 ≡ H into (2.4), we get

L(u1) ≡ u
′′

1 − [1 + V (x0)]u1 + pup−1
c u1 =

qup
c

H
h̃1 − x

′

0u
′

c + yV
′

(x0)uc, −∞ < y < ∞,

(2.6a)

Dh̃
′′

1 = −Hγr−sur
c ,(2.6b)

where u1 is to decay exponentially as |y| → ∞. Since L(u
′

c) = 0 and u
′

c → 0
exponentially as |y| → ∞, the right-hand side of (2.6a) must satisfy the solvability
condition that it is orthogonal to u

′

c. From this condition, we obtain

q

H

∫ ∞

−∞

up
cu

′

ch̃1 dy + V
′

(x0)

∫ ∞

−∞

yucu
′

c dy = x
′

0

∫ ∞

−∞

(

u
′

c

)2

dy.(2.7)
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The second term on the left-hand side of (2.7) is evaluated as

V
′

(x0)

∫ ∞

−∞

yucu
′

c dy = −V
′

(x0)

2

∫ ∞

−∞

u2
c dy.(2.8)

To evaluate the first term on the left-hand side of (2.7), we integrate by parts twice
and use the fact that h̃

′′

1 and uc are even functions. In this way, we get the differential
equation

x
′

0

∫ ∞

−∞

(u
′

c)
2dy = − q

2H(p+ 1)

∫ ∞

−∞

up+1
c dy

(

lim
y→+∞

h̃
′

1 + lim
y→−∞

h̃
′

1

)

− V
′

(x0)

2

∫ ∞

−∞

u2
c dy.(2.9)

Next we analyze the solution in the outer region defined at an O(1) distance away
from the center of the spike. In this region, a is exponentially small, and we expand
h as h = h0(x) + o(1) as ε → 0. Then, from (1.1b), we obtain that h0 satisfies

Dh
′′

0 − µh0 = −Hγr−sbrδ(x− x0), −1 < x < 1,(2.10a)

h
′

0(±1) = 0.(2.10b)

Here br = br(x0) is defined by

br ≡
∫ ∞

−∞

[uc(y)]
r
dy.(2.10c)

Solving for h0, we have

h0(x) = Hγr−sbrG(x;x0),(2.11)

where Green’s function G(x;x0) satisfies

DGxx − µG = −δ(x− x0), −1 < x < 1,(2.12a)

Gx(±1;x0) = 0.(2.12b)

To match the outer and inner solutions, we require that

h0(x0) = H, lim
y→+∞

h̃
′

1 + lim
y→−∞

h̃
′

1 = h
′

0(x0+) + h
′

0(x0−).(2.13)

Substituting (2.11) into (2.13), we get

lim
y→+∞

h̃
′

1 + lim
y→−∞

h̃
′

1 =
H

G(x0;x0)
[Gx(x0+;x0) +Gx(x0−;x0)] ,(2.14a)

H =

[

1

brG(x0;x0)

]1/[γr−(s+1)]

.(2.14b)

Finally, substituting (2.14) into (2.2c), (2.9), and (2.11) and letting τ = ε2t, we obtain
the main result of this section.

Proposition 2.1. For ε ≪ 1, the dynamics of a one-spike solution to (1.1) is
characterized by

a(x, t) ∼ Hγuc(ε
−1[x− x0(t)]),(2.15a)

h(x, t) ∼ HG [x;x0(t)] /G [x0(t);x0(t)],(2.15b)
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where H = H(t), with t = ε2τ, is given in (2.14b). The spike location x0(t) satisfies
the differential equation

dx0

dt

∫ ∞

−∞

[u
′

c(y)]
2 dy ∼ − ε2q

2(p+ 1)

∫ ∞

−∞

[uc(y)]
p+1

dy

(

Gx(x0+;x0) +Gx(x0−;x0)

G(x0;x0)

)

− ε2

2
V

′

(x0)

∫ ∞

−∞

[uc(y)]
2
dy.(2.15c)

Notice that when V (x0) �= 0, the integrals in (2.15c) may also depend on x0.
We can calculate the integrals in (2.15c) explicitly using the differential equation

(2.3) for uc. As shown in Appendix A, we get

∫∞

−∞
[uc(y)]

p+1
dy

∫∞

−∞
[u′

c(y)]
2
dy

=
2(p+ 1)

p− 1 ,

∫∞

−∞
[uc(y)]

2
dy

∫∞

−∞
[u′

c(y)]
2
dy

=

(

p+ 3

p− 1

)

[1 + V (x0)]
−1

.

(2.16)

Substituting (2.16) into (2.15c), we obtain the following result.
Corollary 2.2. For ε ≪ 1, the dynamics of a one-spike solution to (1.1) is

characterized by

dx0

dt
∼ − ε2q

p− 1

(

Gx(x0+;x0) +Gx(x0−;x0)

G(x0;x0)

)

− ε2

2

(

p+ 3

p− 1

)

V
′

(x0)

1 + V (x0)
.(2.17)

We now study the effect of µ(x) on the dynamics.

2.1. The effect of µ(x). In the special case where µ(x) = µ is a positive
constant independent of x, we can solve (2.12) explicitly for G(x;x0) to get

G(x;x0) =

{

A0cosh [θ(1 + x)] / cosh [θ(1 + x0)], −1 < x < x0,
A0cosh [θ(1− x)] / cosh [θ(1− x0)], x0 < x < 1,

(2.18a)

where

A0 ≡ 1√
µD

(tanh [θ(1− x0)] + tanh [θ(1 + x0)])
−1

, θ ≡ (µ/D)
1/2

.(2.18b)

Substituting (2.18) into (2.17), we obtain the following result.
Corollary 2.3. Let ε ≪ 1, and let µ(x) = µ be a positive constant. Then the

differential equation for the spike location is

dx0

dt
∼ − ε2qθ

p− 1 (tanh [θ(1 + x0)]− tanh [θ(1− x0)])−
ε2

2

(

p+ 3

p− 1

)

V
′

(x0)

1 + V (x0)
.

(2.19)

Here θ ≡
√

µ/D.
From (2.19) we can determine the qualitative effect of the potential V (x) on the

stability of a one-spike solution. If V is convex with a minimum at some point in
[−1, 1], then there exists a unique equilibrium solution to (2.19), and this equilibrium
solution is stable. The situation is more complicated when V (x) is not convex. For
instance, suppose that V (x) is a double-well potential of the form V (x) = ζ(1− x2)2

with ζ > 0. In this case, it is easy to see from (2.19) that when

ζ

1 + ζ
> ω, where ω ≡ qθ2sech2θ

p+ 3
,(2.20)
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then x0 = 0 is an unstable equilibrium solution to (2.19), and there exists a stable
equilibrium solution on each of the subintervals −1 < x < 0 and 0 < x < 1. Al-
ternatively, if ζ

1+ζ < ω, then x0 = 0 is the only equilibrium solution to (2.19), and

it is stable. We conjecture that when a fixed point x0e of (2.19) is stable, then the
steady-state boundary value problem for (1.1) has a stable one-spike solution centered
at x0e. Numerical evidence for this conjecture is seen in the numerical experiments
1–5 in section 5.

In general, when µ depends on x, we must compute Green’s function satisfy-
ing (2.12) to determine the dynamics as described in (2.17). However, to illustrate
qualitatively the effect of a spatially varying µ(x), we now derive an approximate
differential equation for x0 in the limits D ≫ 1 and D ≪ 1, with D independent of ε.

In the limit D ≫ 1, we expand G as

G(x;x0) = G0(x;x0) +D−1G1(x;x0) +O
(

D−2
)

.(2.21)

Substituting (2.21) into (2.12) and collecting powers of D−1, we get

G0xx = 0, G1xx = µG0 − δ(x− x0),(2.22)

with Gjx = 0 at x = ±1 for j = 0, 1. The problem for G1 does not have a solution
unless G0 satisfies a solvability condition. In this way, we calculate that

G0 = (2µa)
−1, G1x = (2µa)

−1

∫ x

−1

µ(y) dy −
{

0, −1 < x < x0,
1, x0 < x < 1.

(2.23)

Here µa is the average of µ over the interval, defined by

µa ≡ 1

2

∫ 1

−1

µ(x) dx.(2.24)

Substituting (2.23) into (2.19), we obtain the following result.
Corollary 2.4. For ε ≪ 1 and D ≫ 1, with D independent of ε, the differential

equation (2.17) for the spike location reduces to

dx0

dt
∼ − 2ε2q

D(p− 1)

(
∫ x0

−1

µ(y) dy − µa

)

− ε2

2

(

p+ 3

p− 1

)

V
′

(x0)

1 + V (x0)
.(2.25)

From (2.25) we notice that, when D ≫ 1, the O(ε2) pinning effect associated with
the potential V (x) dominates the pinning effect of order O

(

ε2/D
)

associated with
µ(x).

Alternatively, when D ≪ 1, we can readily obtain a WKB solution for (2.12) in
the form

G(x;x0) =























A0µ
−1/4cosh

[

D−1/2
∫ x

−1

√

µ(s) ds
]

/ cosh
[

D−1/2
∫ x0

−1

√

µ(s) ds
]

,

−1 < x < x0,

A0µ
−1/4cosh

[

D−1/2
∫ 1

x

√

µ(s) ds
]

/ cosh
[

D−1/2
∫ 1

x0

√

µ(s) ds
]

,

x0 < x < 1,

(2.26a)

where

A0 ≡ 1√
Dµ1/4

(

tanh

[

D−1/2

∫ 1

x0

√

µ(s) ds

]

+ tanh

[

D−1/2

∫ x0

−1

√

µ(s) ds

])−1

.

(2.26b)

Substituting (2.26) into (2.19), we obtain the next result.
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Corollary 2.5. For ε ≪ 1 and D ≪ 1, with D independent of ε, the differential
equation (2.17) for the spike location reduces to

dx0

dt
∼ − ε2q

p− 1

√

µ0

D

[

tanh

(

D−1/2

∫ x0

−1

√

µ(s) ds

)

− tanh
(

D−1/2

∫ 1

x0

√

µ(s) ds

)]

− ε2

2

(

p+ 3

p− 1

)

V
′

(x0)

1 + V (x0)
.

(2.27)

Here we have defined µ0 = µ(x0).
From (2.25) and (2.27) we observe that the one-spike dynamics depend on global

properties associated with µ(x) but on pointwise properties associated with V (x).
This is intuitively clear since, in the limit D ≫ 1, (1.1) can be reduced to a nonlocal
PDE referred to as the shadow problem [28], [19]. The spike dynamics for this problem
depend nonlocally on h and therefore on µ(x).

3. One-spike asymptotic dynamics: The two-dimensional case. In this
section, we analyze the dynamics of a one-spike solution to (1.3) in the limit ε ≪ 1
and D ≫ 1. The precise range of D with respect to ε for the validity of the analysis
is discussed after Proposition 3.2 below. Our goal is to derive a differential equation
for the center x0 of the spike as a function of time. In the limit ε ≪ 1 and D ≫ 1,
the solution in the inner region, referred to as the core of the spike, has the leading
order asymptotic form

a(x, t) ∼ a0(|y|) ≡ Hγuc(|y|),(3.1a)

h(x, t) ∼ H.(3.1b)

Here γ = q/(p− 1), y = ε−1(x−x0), and H is a function of τ to be determined. The
radially symmetric function uc(|y|), with ρ = |y|, is the unique positive solution of

u
′′

c +
1

ρ
u

′

c − [1 + V (x0)]uc + up
c = 0, ρ ≥ 0,(3.2a)

u
′

c(0) = 0, uc ∼ αρ−1/2e−βρ, as ρ → ∞.(3.2b)

Here α = α(x0) > 0 is some constant and β =
√

1 + V (x0). The function uc depends
on x0 so that the activator concentration in the core depends on the location of the
spike.

In the outer region, away from the core of the spike, a is exponentially small, and
so the term ε−2ar/hs in (1.3b) will be exponentially small except when x approaches
x0. In the outer region, this term is asymptotically represented as a multiple of a
Dirac mass in the form

ε−2 a
r

hs
→ 2πHγr−sbrδ(x− x0), br ≡

∫ ∞

0

[uc(ρ)]
r
ρ dρ,(3.3)

where uc(ρ) satisfies (3.2). Substituting (3.3) into (1.3b), we see that the outer prob-
lem for h is

D△h− µh+ 2πHγr−sbrδ(x− x0) = 0, x ∈ Ω,(3.4a)

∂nh = 0, x ∈ ∂Ω.(3.4b)



1306 WARD, MCINERNEY, HOUSTON, GAVAGHAN, MAINI

We now solve this problem for D ≫ 1 by expanding h as

h = h0 +
1

D
h1 +

1

D2
h2 + · · · .(3.5)

Substituting (3.5) into (3.4) and collecting powers of D−1, we obtain

△h0 = 0, x ∈ Ω, ∂nh0 = 0, x ∈ ∂Ω,(3.6)

and

△h1 = µh0 − 2πHγr−sbrδ(x− x0), x ∈ Ω,(3.7a)

∂nh1 = 0, x ∈ ∂Ω,(3.7b)
∫

Ω

µh1 dx = 0.(3.7c)

This last condition, which arises from a solvability condition applied to the problem
for h2, ensures that the solution to (3.7) is unique.

The solution to (3.6) depends only on time. To match this solution to the inner
solution, we require

h0 = H.(3.8)

The divergence theorem applied to (3.7) determines H as

H =

(

2πbr
∫

Ω
µdx

)
1

(1+s)−γr

.(3.9)

Then, with this value of H, we write the solution to (3.7) as

h1 = HG(x;x0)

∫

Ω

µdx,(3.10)

where G is the modified Green function satisfying

△G =
µ

∫

Ω
µdx

− δ(x− x0), x ∈ Ω,(3.11a)

∂nG = 0, x ∈ ∂Ω,(3.11b)
∫

Ω

µGdx = 0.(3.11c)

The two-term expansion obtained from substituting (3.8) and (3.10) into (3.5) is

h ∼ H
(

1 +
G(x;x0)

D

∫

Ω

µdx

)

.(3.12)

The solution to (3.11) can be written as a sum of a singular part and a regular part
R as

G(x;x0) = − 1

2π
log |x− x0|+R(x;x0).(3.13)

As x → x0, we can expand R in a Taylor series as

R(x;x0) = R0 +∇R0·(x− x0) + · · · , R0 ≡ R(x0;x0), ∇R0 ≡ ∇R(x;x0)|x=x0
.

(3.14)
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Therefore, the two-term expansion (3.12) for h has the following behavior as x → x0:

h ∼ H
[

1 +
1

D

∫

Ω

µdx

(

− 1

2π
log |x− x0|+R0 +∇R0·(x− x0)

)]

.(3.15)

We now construct the inner expansion and derive the differential equation for x0

in two limiting regimes of D and ε.

3.1. The effect of the potential. The form (3.15) suggests that in the inner
(core) region the change in h from a constant value will be of the order O (− log ε/D).
In this region, the perturbation to a induced by the gradient of the potential is of the
order O(ε). Hence, as ε → 0, we will assume at present that D is large enough to
satisfy

D ≫ −ε−1 log ε.(3.16)

This restriction on D can be weakened substantially as discussed following (3.39)
below. Under (3.16) we can expand a and h in the core region as

a(x, t) = Hγuc

[

ε−1(x− x0(τ))
]

+ εã1 + · · · , h = H+O(ε),(3.17)

where τ = ε2t. Substituting (3.17) into (1.3a) and writing ã1 as

ã1 = Hγu1,(3.18)

we get that u1 satisfies

L(u1) ≡ △u1 − [1 + V (x0)]u1 + pup−1
c u1 =∇V (x0)·y uc − u

′

c

x0

′

·y

|y| .(3.19)

Here x0

′ ≡ dx0/dτ and u1 → 0 is to tend exponentially to zero as |y| → ∞. Since
L
(

∂yj
uc

)

= 0 for j = 1, 2, this problem for u1 has a solution only when the right-hand
side of (3.19) is orthogonal to ∂yj

uc for j = 1, 2. Hence the solvability condition for
(3.19) is

x0

′

·

∫

R2

y

|y|u
′

c∂yj
uc dy =∇V (x0)·

∫

R2

y uc∂yj
uc dy(3.20)

for j = 1, 2. Upon integrating by parts and using symmetry, we can readily derive that

∫

R2

ykuc∂yj
uc dy = −π

∫ ∞

0

[uc(ρ)]
2
ρ dρ δj,k,

∫

R2

yk
|y|u

′

c∂yj
uc dy = π

∫ ∞

0

[u
′

c(ρ)]
2ρ dρ δj,k.

(3.21)

Here δj,k is the usual Kronecker symbol. Substituting (3.21) into (3.20), we obtain
the following main result.

Proposition 3.1. For ε ≪ 1 and D satisfying (3.16), the dynamics of a one-
spike solution to (1.3) in the core are characterized by

a(x, t) ∼ Hγuc

[

ε−1|x− x0(t)|
]

+O(ε),(3.22a)

h(x, t) ∼ H+ o(ε),(3.22b)
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where uc and H are defined in (3.2) and (3.9), respectively. The differential equation
for the center x0 of the spike is

dx0

dt
∼ −ε2

∇V (x0)

(

∫∞

0
[uc(ρ)]

2
ρ dρ

∫∞

0
[u′

c(ρ)]
2
ρ dρ

)

.(3.22c)

From (3.2) it is clear that uc depends on x0. Thus the integrals in (3.9) for H
and in (3.22c) for the dynamics of x0 also depend on x0. To explicitly show this
dependence, we introduce the new variables η and wc defined by

ρ = [1 + V (x0)]
−1/2

η, uc = [1 + V (x0)]
1/(p−1)

wc.(3.23)

Substituting (3.23) into (3.2), we find that wc(η) satisfies

w
′′

c +
1

η
w

′

c − wc + wp
c = 0, η ≥ 0,(3.24a)

w
′

c(0) = 0, wc ∼ αη−1/2e−η as η → ∞.(3.24b)

In terms of these variables, (3.9) becomes

H1+s−γr = C [1 + V (x0)]
−1+r/(p−1)

, C ≡ 2π
∫∞

0
wr

cη dη
∫

Ω
µdx

,(3.25)

where C is independent of τ . In addition, the differential equation (3.22c) becomes

dx0

dt
∼ −ε2b

∇V (x0)

1 + V (x0)
, b ≡

∫∞

0
[wc(η)]

2
η dη

∫∞

0
[w′

c(η)]
2
η dη

,(3.26)

where b is independent of x0. In Appendix B, we calculate b as b = 2/(p− 1). Then
(3.22c) can be written compactly as the gradient flow

dx0

dt
∼ − 2ε2

(p− 1)∇W (x0), where W (x0) ≡ log [1 + V (x0)] .(3.27)

From (3.27) we observe that stable equilibria for the spike are located at points
where the potential V (x) has a local minimum. In addition, the motion of the spike
is orthogonal to level curves of the potential W (x0) and dW (x0)/dt < 0 except at
critical points of W .

3.2. The regular part of Green’s function. In the derivation below, we
assume that V (x) ≡ 0 in (1.3). Our expansion parameter is taken as ε/D, and we
will use D ≫ 1 to simplify some of the terms that arise in the expansion. In the core
region, we begin by introducing new variables

ã(y) = a(x0 + εy, t), h̃(y) = h(x0 + εy, t), y = ε−1 [x− x0(τ)] ,(3.28)

where τ is a slow time scale. We then expand ã and h̃ as

ã(y) = ã0(|y|) +
ε

D
ã1(y) + · · · , h̃(y) = h̃0(|y|) +

ε

D
h̃1(y) + · · · .(3.29)

Here ã0 and h̃0 are radially symmetric and are at most O(− log ε) as ε → 0. The
functions ã1 and h̃1 are not radially symmetric. A nontrivial solvability condition will
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arise at the problem for ã1 and h̃1. This forces us to introduce the slow time scale τ
defined by

τ =
ε2

D
t.(3.30)

Substituting (3.29) and (3.30) into (1.3a) and (1.3b) and collecting powers of ε/D,
we obtain the problems

△ã0 − ã0 +
ãp0
h̃q

0

= 0, |y| ≥ 0,(3.31a)

△h̃0 = − ãr0

Dh̃s
0

, |y| ≥ 0,(3.31b)

and

△ã1 − ã1 +
pãp−1

0

h̃q
0

ã1 =
qãp0
h̃q+1

0

h̃1 − ã
′

0

x0

′

·y

|y| , y ∈ R2,(3.32a)

△h̃1 = − 1

D

[

rãr−1
0

h̃s
0

ã1 −
sãr0

h̃s+1
0

h̃1

]

, y ∈ R2.(3.32b)

Here x0

′ ≡ dx0/dτ . The matching conditions as |y| → ∞ obtained from (3.15) are

h̃0 ∼ H
[

1 +
1

D

∫

Ω

µdx

(

− 1

2π
log |y| − 1

2π
log ε+R0

)]

as |y| → ∞,(3.33a)

h̃1 ∼ H
∫

Ω

µdx (∇R0·y) as |y| → ∞.(3.33b)

When D ≫ 1, the leading order problems for ã0 and h̃0 become decoupled. In this
limit, there is a unique solution to (3.31) with the following leading order expansion
in D:

ã0 ∼ Hγwc(|y|) +O(D−1), h̃0 ∼ H+O(D−1).(3.34)

Here H and wc were defined in (3.9) and (3.24), respectively. In addition, in the limit
D ≫ 1, the solvability condition for (3.32a) is that the right-hand side of (3.32a) must
be orthogonal to ∂yj

wc for j = 1, 2. This condition yields a differential equation for
x0 in the form

x0

′

·

∫

R2

y

|y| ã
′

0∂yj
wc dy =

∫

R2

qãp0
h̃q+1

0

h̃1 ∂yj
wc dy.(3.35)

To derive an explicit differential equation, we substitute (3.34) into (3.35) to get

x0

′

·

∫

R2

y

|y|w
′

c∂yj
wc dy =

q

(p+ 1)H

∫

R2

h̃1∂yj

(

wp+1
c

)

dy, j = 1, 2.(3.36)

The integral term on the left-hand side of (3.36) was evaluated in (3.21). To evaluate
the integral term on the right-hand side of (3.36), we integrate by parts twice and use
both symmetry and the asymptotic boundary condition (3.33b) as y → ∞ to get

∫

R2

h̃1∇
(

wp+1
c

)

dy = −
∫

R2

(

wp+1
c

)

∇h̃1 dy ∼ −H∇R0

∫

Ω

µdx

∫

R2

wp+1
c dy.

(3.37)

Substituting (3.37) and (3.21) into (3.36), we obtain the following result.
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Proposition 3.2. Consider a one-spike solution to (1.3) when V (x) = 0, ε ≪ 1,
and D ≫ 1. Then the solution to (1.3) in the core is given by (3.34). The motion of
the center of the spike satisfies

dx0

dt
∼ − 2qε2

D(p+ 1)
∇R0

∫

Ω

µdx

(

∫∞

0
[wc(ρ)]

p+1
ρ dρ

∫∞

0
[w′

c(ρ)]
2
ρ dρ

)

.(3.38)

Here ∇R0 is the gradient of the regular part of Green’s function defined in (3.14).
Setting µ = 1, p = 2, and q = 1 in (3.38), we obtain the result derived previously

in [7] using a different method.
As shown in Appendix B, we can calculate the integral appearing in (3.38) ex-

actly as
∫∞

0
[wc(ρ)]

p+1
ρ dρ

∫∞

0
[w′

c(ρ)]
2
ρ dρ

=
p+ 1

p− 1 .(3.39)

There are two important remarks. The first observation is that the differential
equation (3.38) derived when V (x) ≡ 0 predicts a motion on a time scale of O

(

ε2/D
)

,
whereas (3.22c) predicts a motion on a faster time scale of O(ε2). Therefore, when
D ≫ 1, the pinning effect induced by the potential dominates the dynamics. The
second observation concerns the range of validity of the results (3.22c) and (3.38) with
respect to D as ε → 0. For the validity of Proposition 3.2, we require thatD ≫ − log ε
to ensure that h̃0 = H+o(1) in the core region and that the leading order problems for
ã0 and h̃0 decouple. With this decoupling that occurs for D ≫ − log ε, the problem
for ã1 is self-adjoint, and the solution to the homogeneous form for (3.32a) is simply
∂yj

wc.
Similarly, the result (3.22c) for the spike motion in the presence of the potential

V (x) is valid for D ≫ − log ε. This condition again ensures that the leading order
problems for a and h in the core are decoupled and that the functions ∂yj

uc for
j = 1, 2 can be used for the solvability condition. However, when D is asymptotically
smaller than the estimate given in (3.16), we must modify the inner expansion (3.17)
for a and h by inserting intermediate terms of lower order than the O(ε) terms.
The asymptotic matching condition (3.15) ensures that these new terms are radially
symmetric functions. Thus they give rise only to trivial solvability conditions. A
nontrivial solvability condition arises only from the O(ε) term in the inner expansion
for a, which does not have radial symmetry.

3.3. Calculating the regular part of Green’s function. We decompose the
solution to (3.11) in the form

G(x;x0) = gp(x) + g(x;x0) + c(x0).(3.40)

Here gp and g are any solutions to

△gp =
µ

∫

Ω
µdx

, x ∈ Ω,(3.41a)

∂ngp = 1/L, x ∈ ∂Ω,(3.41b)

and

△g = −δ(x− x0), x ∈ Ω,(3.42a)

∂ng = −1/L, x ∈ ∂Ω.(3.42b)
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Here L is the perimeter of ∂D. To satisfy the condition (3.11c), we chose the constant
c in (3.40) as

c

∫

Ω

µdx = −
∫

Ω

µ (gp + g) dx.(3.43)

In terms of this decomposition, the function R in (3.13) is given by

R(x;x0) = gp(x) +

(

g(x;x0) +
1

2π
log |x− x0|

)

+ c(x0).(3.44)

As an example, consider a circular domain of radius one with µ = µ(|x|). For
this case, where L = 2π, we identify points in the circle as complex numbers and then
calculate g explicitly from (3.42) as

g(x;x0) = − 1

2π
log |x− x0| −

1

2π
log |x0| −

1

2π
log |x− 1/x̄0|.(3.45)

Here x̄0 denotes the complex conjugate of x0. From (3.41) we determine gp as

gp =
1

2πµa

∫ r

0

1

s

(
∫ s

0

ηµ(η) dη

)

ds, µa ≡
∫ 1

0

rµ(r) dr.(3.46)

Substituting (3.45) and (3.46) into (3.44), we can calculate the gradient of R at x0 as

∇R0 ≡ ∇R(x;x0)|x=x0
=

1

2π

[

1

1− |x0|2
+

1

µa|x0|2
∫ |x0|

0

sµ(s) ds

]

x0.(3.47)

Substituting (3.47) into (3.38) and using (3.39), we obtain the following result.
Corollary 3.3. Under the conditions of Proposition 3.2, let µ = µ(|x|), and

suppose that Ω is a circular domain of radius one. Then the motion of the center of

the spike satisfies

dx0

dt
∼ −ε2κµa

[

1

1− |x0|2
+

1

µa|x0|2
∫ |x0|

0

sµ(s) ds

]

x0,(3.48a)

where µa is defined in (3.46) and

κ ≡ 2q

D(p− 1) .(3.48b)

From (3.48), it follows that the spike will tend to the origin as t → ∞. A
differential equation for the distance from the center of the spike to the origin can be
obtained by taking the dot product of (3.48a) with x0. As an example, suppose that
µ ≡ 1. Then, upon defining ξ = ξ(t) by ξ = |x0|2, we obtain from (3.48a) that

dξ

dt
∼ −ε2κ

(

2− ξ

1− ξ

)

ξ.(3.49)

Upon integrating this differential equation, we obtain the next result.
Corollary 3.4. Let µ = 1, V ≡ 0, and Ω be the unit circle. Suppose that the

spike is initially centered at x0(0) ∈ Ω. Then, when ε ≪ 1 and D ≫ 1, the distance
from the spike to the origin at later times is given by

|x0(t)| ∼
(

1−
[

1− βe−2ε2κt
]1/2

)1/2

, where β ≡ 1−
(

1− |x0(0)|2
)2

.

(3.50)

Here κ is defined in (3.48b).
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4. Finite element discretization. In this section, we outline the numerical
method used to compute solutions to (1.3). For simplicity, we write (1.3) in the
compact form

Mut = ∇· (K∇u) + f(u,x),(4.1a)

where u = (u, v) and

M ≡
(

1 0
0 0

)

,

K ≡
(

ǫ2 0
0 D

)

, and

f(u,x) ≡
(

−[1 + V (x)]u+ up/vq

−µv + ǫ−2ur/vs

)

.

(4.1b)

Before we define the finite-element discretization of (4.1a), let us first introduce some
notation. Let 0 = t0 < t1 < · · · < tN = T be a subdivision of [0, T ] with corresponding
time steps kn = tn − tn−1. For each n, 0 ≤ n ≤ N , let Tn = {κ} be a finite-
element partition of Ω into shape regular simplices κ. For p ∈ N, we define the
finite-element space

Shn
= {w ∈ C(Ω) : w|κ ∈ Pp(κ) ∀κ ∈ Tn}(4.2)

for n = 1, . . . , N , where Pp(κ) denotes the space of polynomials of degree at most p
over κ.

The construction of the finite-element method involves writing the problem (4.1a)
in the following weak form: find u(t) such that

(Mut(·, t),w) = − (K∇u(·, t),∇w) + (f(u(·, t), ·),w) ∀ w ∈ V,(4.3a)

(u(·, 0),w) = (u0,w) ∀ w ∈ V.(4.3b)

Here (·, ·) denotes the L2(Ω) inner product, V =
(

H1(Ω)
)2
, and H1(Ω) denotes the

usual Hilbertian Sobolev space. The time-discretization involves approximating the
derivative ut by a divided difference operator. The simplest appropriate discretization
is the backward Euler method, giving for n = 1, . . . , N

(

M
u(·, tn)− u(·, tn−1)

kn
,w

)

= − (K∇u(·, tn),∇w) + (f(u(·, tn), ·),w) ∀ w ∈ V,

(4.4a)

(u(·, 0),w) = (u0,w) ∀ w ∈ V.(4.4b)

If we now define un
h = (un

h, v
n
h) to be the Galerkin finite-element approximation to

u(·, tn) at time tn, then applying the finite-element method to (4.4) yields the following
formulation. Find un

h ∈ (Shn
)2 for 1 ≤ n ≤ N such that

(

M
un
h − un−1

h

kn
,w

)

= − (K∇un
h,∇w) + (f(un

h,xn),w) ∀ w ∈ (Shn
)
2
,(4.5a)

(

u0
h,w

)

= (u0,w) ∀ w ∈ (Shn
)
2
.(4.5b)

For computational simplicity, the nonlinear reaction term f(un
h,xn) on the right-hand

side of (4.5a) is linearized about the finite-element solution un−1
h at the previous time

level tn−1. The numerical method described above is similar to that given in [1]
and [22].
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5. Asymptotic and numerical results in one dimension. For the special
case where (p, q, r, s) = (2, 1, 2, 0), we compare the asymptotic results presented in
section 2 with corresponding numerical results. In each of the figures below, the solid
curves are obtained from solving the full problem (1.1) numerically using the finite-
element method described in section 4 with approximately 1001 elements. The crosses
in these figures represent the asymptotic results obtained from solving the relevant
differential equation of section 2 numerically using a standard solver routine from
Maple [6] and from the NAG library [26].

5.1. Experiment 1. We take the parameter values V (x) ≡ 0, µ(x) = 1, D = 1,
and ǫ = 0.03. The initial condition used for the finite-element solution, as obtained
from (2.3c), (2.15a), and (2.15b), is

a(x, 0) =
3H

2
sech2

(

x− x0

2ǫ

)

,(5.1a)

h(x, 0) = H
G(x;x0)

G(x0;x0)
,(5.1b)

where from (2.14b)

H = [6G(x0;x0)]
−1

.(5.1c)

In this case, the initial condition a(x, 0) consists of a spike in the activator concentra-
tion centered at x0 = 0.6. The asymptotic result for the motion of the center of the
spike obtained from (2.19) is

dx0

dt
∼ −(0.03)2 [tanh(1 + x0)− tanh(1− x0)] ,(5.2)

with x0(0) = 0.6. In Figure 2 and Table 1, we show the favorable agreement between
the asymptotic and numerical results for the motion of the center of the spike. For
this example, the spike drifts toward the center of the interval.

5.2. Experiment 2. The parameter values here are V (x) ≡ 1
2 (x− 1

4 )
2, µ(x) = 1,

D = 1, and ǫ = 0.03. The initial condition used for the finite-element solution is

a(x, 0) =
3

2
H (1 + V [x0]) sech

2

(

√

1 + V [x0](x− x0)

2ǫ

)

,(5.3a)

h(x, 0) = H
G(x;x0)

G(x0;x0)
,(5.3b)

where

H = [6G(x0;x0)]
−1
[1 + V (x0)]

−3/2
.(5.3c)

As in the previous experiment, we choose the initial spike location to be at x0(0) = 0.6.
In this case, the differential equation for the spike location x0(t), as obtained from
(2.19), is

dx0

dt
∼ −(0.03)2

(

tanh(1 + x0)− tanh(1− x0) +
5
(

x0 − 1
4

)

2 +
(

x0 − 1
4

)2

)

,(5.4)
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Fig. 2. The trajectory x0(t) of the spike in the activator concentration. The solid curve is the

numerical result, and the crosses are obtained from solving the asymptotic result (5.2) numerically.

Table 1

The numerical and asymptotic results for x0(t) corresponding to a selection of the values plotted

in Figure 2.

t log10(t + 1) x0(t) (num) x0(t) (asm)
0 0.0 0.6000 0.6
10 1.041 0.5940 0.5951
100 2.0043 0.5500 0.5534
200 2.3032 0.5060 0.5107
400 2.6031 0.4280 0.4358
800 2.9036 0.3060 0.3189
1600 3.2044 0.1600 0.1727
3200 3.5053 0.0440 0.0514

with x0(0) = 0.6. As a result of the competition between the hyperbolic tangent
functions and the precursor gradient V (x), the spike does not approach the center of
the interval as t → ∞. Instead, by setting the right-hand side of (5.4) to zero, it follows
that (5.4) has a unique stable equilibrium location xe

0 �= 0 for which limt→∞ x0(t)→
xe

0 ≈ 0.184. In Figure 3 and Table 2, we favorably compare the asymptotic and
numerical results for the motion of the center of the spike.

5.3. Experiment 3. The parameter values are V (x) ≡ 1
2 (x − 1

4 )
2, µ(x) = 1,

D = 50, and ǫ = 0.03. The initial conditions are as in the previous experiment. In
this case, the appropriate differential equation is (2.25), which reduces to

dx0

dt
∼ −(0.03)2

(

x0

25
+

5
(

x0 − 1
4

)

2 +
(

x0 − 1
4

)2

)

,(5.5)

with x0(0) = 0.6. From this differential equation it follows that the equilibrium
position of the spike is approximately 1

4 since the contribution to the dynamics from
the first term is negligible. Thus, in this case, the spike tends to the minimum value
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Fig. 3. The trajectory x0(t) of the spike in the activator concentration. The solid curve is the

numerical result, and the crosses are obtained from solving the asymptotic result (5.4) numerically.

Table 2

The numerical and asymptotic results for x0(t) corresponding to a selection of the values plotted

in Figure 3.

t log10(t + 1) x0(t) (num) x0(t) (asm)
0 0.0 0.6000 0.6
10 1.041 0.5880 0.5879
100 2.0043 0.4900 0.4929
200 2.3032 0.4080 0.4130
400 2.6031 0.3040 0.3100
800 2.9036 0.2180 0.2234
1600 3.2044 0.1880 0.1899
3200 3.5053 0.1840 0.1867

of the potential function V (x) as t → ∞. The asymptotic and numerical results for
the center of the spike as a function of time are compared in Figure 4 and Table 3.

5.4. Experiment 4. Here we set V (x) ≡ 0, µ(x) = 2e−(x+1), D = 50, and
ǫ = 0.03. We take the same initial conditions as in experiment 1. For this example,
the spike location satisfies (2.25), which reduces to

dx0

dt
∼ − (0.03)

2

25

(

2

∫ x0

−1

e−(x+1)dx− µa

)

,(5.6)

with x0(0) = 0.6. From (5.6) it follows that there is a unique stable equilibrium value
xe

0 satisfying

∫ xe
0

−1

µ(y)dy = µa, where µa =
1

2

∫ 1

−1

µ(y)dy.(5.7)

Using µ(x) = 2e−(x+1), (5.7) yields xe
0 = −1 − log(1 − µa

2 ) ≈ −0.434, and thus
limt→∞ x0(t) → xe

0. Asymptotic and numerical results for the center of the spike as
a function of time are compared in Figure 5 and Table 4.
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Fig. 4. The trajectory x0(t) of the spike in the activator concentration. The solid curve is the

numerical result, and the crosses are obtained from solving the asymptotic result (5.5) numerically.

Table 3

The numerical and asymptotic results for x0(t) corresponding to a selection of the values plotted

in Figure 4.

t log10(t + 1) x0(t) (num) x0(t) (asm)
0 0.0 0.6000 0.6
10 1.041 0.5920 0.5924
100 2.0043 0.5320 0.5306
200 2.3032 0.4740 0.4740
400 2.6031 0.3920 0.3914
800 2.9036 0.3060 0.3045
1600 3.2044 0.2560 0.2555
3200 3.5053 0.2460 0.2463

5.5. Experiment 5. Here we take V (x) ≡ 1
2 (x− 1

4 )
2, µ(x) = 2e−(x+1), D = 1.0,

and ǫ = 0.03. We take the same initial conditions as in experiment 2.

For this example, the spike location satisfies the differential equation (2.17). In
order to evaluate Green’s function appearing in the asymptotic result (2.17), we solved
the boundary value problem (2.12) numerically using COLSYS [2] for a range of x0

values. A spline interpolant was then used to evaluate the first term on the right-
hand side of (2.17) at an arbitrary value of x0. The stable equilibrium value for (2.17)
was found numerically to be xe

0 ≈ 0.056. Thus we have that limt→∞ x0(t) → 0.056.
Asymptotic and numerical results for the center of the spike as a function of time are
compared in Figure 6 and Table 5.

6. Asymptotic and numerical results in two dimensions. For the special
case where (p, q, r, s) = (2, 1, 2, 0), we compare the asymptotic results presented in
section 3 with corresponding numerical results. For each of the examples below we
took a circular domain of radius one. In the numerical computations shown, we
took 8321 nodes and 16384 elements for the finite-element method of section 4. The
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Fig. 5. The trajectory x0(t) of the spike in the activator concentration. The solid curve is the

numerical result, and the crosses are obtained from solving the asymptotic result (5.6) numerically.

Table 4

The numerical and asymptotic results for x0(t) corresponding to a selection of the values plotted

in Figure 5.

t log10(t + 1) x0(t) (num) x0(t) (asm)
0 0 0.6000 0.6
100 2.0043 0.5980 0.5974
200 2.3032 0.5940 0.5947
400 2.6031 0.5900 0.5895
800 2.9036 0.5800 0.5791
1600 3.2044 0.5600 0.5584
3200 3.5053 0.5200 0.5177
6400 3.8062 0.4420 0.4395
12800 4.1072 0.3020 0.2955
25600 4.4081 0.0660 0.0748
51200 4.7095 −0.2260 −0.2166
102400 5.0104 −0.4060 −0.4018

circular domain was triangulated in a manner similar to that shown in Figure 7.
A fixed time step, ∆t = 0.1, was chosen in the simulations. The general form of the
initial conditions used in the simulations is

a(x, 0) =
m
∑

i=1

sech8[ε−1|x− xi|],(6.1a)

h(x, 0) = 100.0,(6.1b)

where xi is the location of the ith spike and m is the number of spikes.

6.1. Experiment 1: The effect of D when V ≡ 0. We set V (x) ≡ 0 and
µ(x) = 1. The initial condition for a in (6.1) is taken to consist of a single spike in
the activator concentration centered at (−0.5,−0.5). The asymptotic result for the
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Fig. 6. The trajectory x0(t) of the spike in the activator concentration. The solid curve is the

numerical result, and the crosses are obtained from solving the asymptotic result (2.17) numerically.

Table 5

The numerical and asymptotic results for x0(t) corresponding to the values plotted in Figure 6.

t log10(t + 1) x0(t) (num) x0(t) (asm)
0 0.0 0.6000 0.6
10 1.041 0.5860 0.5854
100 2.0043 0.4780 0.4771
200 2.3032 0.3820 0.3808
400 2.6031 0.2480 0.2464
800 2.9036 0.1220 0.1200
1600 3.2044 0.0640 0.0621
3200 3.5053 0.0560 0.0557

distance of the spike to the origin is given in (3.50), and it is valid when ε ≪ 1 and
D ≫ 1. In Figure 8a, where D = 10 and ε = 0.06, we show the close agreement
between the full numerical result for the distance of the spike to the origin and the
asymptotic result obtained from (3.50). The asymptotic result (3.50) is no longer
valid when D = O(1) since the leading order problem (3.31) is strongly coupled,
which makes the analysis more difficult. In Figure 8b, where D = 1 and ε = 0.03, we
show the rather poor agreement between the full numerical result for the distance of
the spike to the origin and the result obtained from (3.50). The motion of a spike for
the case D = O(1) is similar to that shown in Figures 11c and 11d below. It would
be interesting to analytically characterize the one-spike dynamics when D = O(1).
We remark that a limitation of the numerical method used to generate Figures 8a
and 8b is that they were done with a small fixed time step. To improve accuracy
and minimize computational costs over a long time interval, it would be preferable to
implement a variable time step strategy with error control.

6.2. Experiment 2: The effect of the potential V . We take V (x) ≡ 1
4 |x−

ξ|2, where ξ = (0.25,−0.25), so that the potential W in (3.27) has a minimum at
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Fig. 7. A regular triangulation of a circular domain.

x = ξ. From (3.27) we expect that x → ξ as t → ∞. The other parameter values
are D = 25, µ = 1, and ε = 0.10. Since D ≫ 1, the asymptotic result for the spike
motion is (3.27). The initial condition in a, given in (6.1a), is taken to be a single
spike centered at x0(0) = (−0.5,−0.5). From the asymptotic result (3.27), we can
derive the following system for the coordinates x0 = (x0, y0) of the center of the spike:

dx0

dt
∼ −4ε

2(x0 − ξ1)

4 + |x0 − ξ| ,
dy0

dt
∼ −4ε

2(y0 − ξ2)

4 + |x0 − ξ| .(6.2)

Here ξ = (ξ1, ξ2). In Figure 9a, we show the close agreement between the full numerical
result for the distance of the spike to the origin and the corresponding asymptotic
result obtained from integrating (6.2) numerically using Maple [6]. In Figure 9b, we
show that the trajectory of the spike is approximately orthogonal to the level curves
of the potential W as predicted by (3.27).

7. Discussion. In a one-dimensional domain, we have given a complete char-
acterization of the dynamics of a one-spike solution to (1.1), allowing for spatially
inhomogeneous precursor gradients µ and V . These gradients had the effect of local-
izing a spike to certain points in the domain, depending on certain global properties
of µ and local properties of V . The dynamical results obtained from our asymptotic
analysis have been favorably compared with full numerical simulations. We have re-
stricted our analysis to the special case of a single spike since the analysis of multispike
solutions under the effect of precursor gradients is expected to be significantly more
intricate. It would be interesting to extend the analysis to the multispike case.

The analysis presented above is for the simplified forms (1.1) and (1.3) of the
GM model, where the dynamical behavior of the inhibitor field is neglected. This
simplification has led to a parabolic-elliptic system for a and h. An interesting but
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Fig. 8a. The distance from the center of the spike to the origin for experiment 1 when D = 10
and ε = 0.06. The dotted curve is the full numerical result, and the solid curve is the asymptotic

result (3.50).
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Fig. 8b. The distance from the center of the spike to the origin for experiment 1 when D = 1
and ε = 0.03. The dotted curve is the full numerical result, and the solid curve is the asymptotic

result (3.50).

significantly more difficult problem would be to extend the analysis presented above
to allow for a genuine parabolic system for a and h such as that obtained by replacing
the left-hand side of (1.1b) and (1.3b) by τ0ht. We expect that the effect of this term
would be to introduce the possibility of Hopf bifurcations and oscillatory phenomena
for certain ranges of the time constant τ0. This study would allow us to make quan-
titative comparisons of the analytical theory with the full numerical simulations of
spike localization phenomena computed in [14] and [15].
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Fig. 9a. The distance from the center of the spike to the origin for experiment 2. The dotted

curve is the full numerical result, and the solid curve is the asymptotic result (6.2).

0.5 0.4 0.3 0.2 0.1 0 0.1 0.2 0.3

0.5

0.4

0.3

0.2

0.1

0

0.1

0.2

0.3

x

y

-

-

_

-

-

- - - - -

Fig. 9b. The heavy solid line is the spike trajectory from the full numerical result for experiment

2, and the solid lines are the level curves of the potential W as defined in (3.27).

Other reaction-diffusion systems also exhibit spike-type behavior, including the
Gray–Scott model studied in [29], [8], and [9]. These previous studies have focused
on the one-dimensional problem in the absence of precursor gradients. It would be
interesting to extend their results on spike dynamics and spike replication to allow for
the effect of precursor gradients.

For the two-dimensional problem (1.3), under the assumption that D ≫ − log ε,
we studied the evolution of a one-spike solution allowing for spatially inhomogeneous
precursor gradients in both V and µ. Using a finite-element solution, we compared
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our asymptotic results in the case of a circular domain for two different forms of V
when µ = 1. The evolution of a one-spike solution when D = O(1) will require further
study since in this case the activator and inhibitor fields are strongly coupled in the
core of the spike. This will lead to a different law of motion from what we have
derived.

Most of the full numerical simulations of (1.3) (e.g., [14] and [25]) involve the
motion of several or even many spikes inside the domain. We now give a glimpse
at the behavior of a two-spike solution with spatially homogeneous coefficients. In
this experiment, we examine numerically the behavior of the solution to (1.3) at two
different values of D when the initial condition in a consists of two spikes centered
at (−0.5, 0.0) and (0.5, 0.0). The initial profiles for a and h are given by (6.1). The
parameter values are V (x) ≡ 0, µ(x) ≡ 1, and ε = 0.03, and the domain is a unit
circle. We first take D = 0.5. For this value of D, each spike tends to a certain
equilibrium location inside the unit circle as shown in Figures 10a and 10b. Next,
for the case when D = 1.0, we show the computational results at various times in
Figures 11a–11d. For this value of D, we observe that one of the spikes is annihilated
rather quickly, while the remaining spike drifts very slowly toward the center of the
circle. This slow drift toward the origin is described by the result in Corollary 3.4.

The stability of multispike solutions in a multidimensional domain is a difficult
problem. In [33], the first criterion for the stability of an N -spike equilibrium solution
in a two-dimensional domain was derived in the limit ε → 0 for the case of no pinning,
where V (x) ≡ 0 and µ ≡ 1. For ε → 0, it was proven in [33] that an N -spike
equilibrium solution is stable on an O(1) time scale if and only if

D < DN ∼ − log ε
2πN

.(7.1)

This result predicts that the threshold value DN is independent of the locations of the
centers of the spikes. For the example above, where N = 2 and ε = 0.03, we calculate
from (7.1) that D2 = 0.28. However, the numerical experiment above indicates that
the two-spike equilibrium solution is stable when D = 0.5 > D2. We believe that this
paradox results from obtaining only a leading order asymptotic expansion for DN in
powers of − log ε. We conjecture that DN has an infinite logarithmic expansion of the
form

DN ∼ − log ε+ F (xi; ν(ε))

2πN
,(7.2)

where F is O(1) as ε → 0, which can be expanded in powers of ν ≡ −1/ log ε, and
depends on the equilibrium spike locations xi for i = 1, . . . , N . Infinite logarithmic
series, and the difficulty associated with low order truncations of these series, have
been identified previously in many problems, including singularly perturbed eigenvalue
problems (see [32]). We were unsuccessful in verifying the criterion (7.1) by computing
full numerical solutions of (1.3) for values of ε significantly smaller than ε = 0.03. This
is a result of numerical difficulties associated with having to generate a sufficiently
fine finite-element mesh that can resolve the spikes for very small values of ε and then
having to remesh the domain as the spikes move very slowly in time. It would be
very interesting to develop a theory giving a complete characterization of the stability
and dynamics of multispike solutions in two dimensions with and without the effect
of spatially inhomogeneous precursor gradients.
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Fig. 10a. The numerical solution of a(x, t) at t = 100.0 with parameters ǫ = 0.03, µ = 1.0, and
D = 0.5.
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Fig. 10b. The numerical solution of a(x, t) at t = 3000.0 with parameters ǫ = 0.03, µ = 1.0,
and D = 0.5.
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Fig. 11a. The numerical solution of a(x, t) at t = 10.0 with parameters ǫ = 0.03, µ = 1.0, and
D = 1.0.
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Fig. 11b. The numerical solution of a(x, t) at t = 160.0 with parameters ǫ = 0.03, µ = 1.0, and
D = 1.0.
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Fig. 11c. The numerical solution of a(x, t) at t = 170.0 with parameters ǫ = 0.03, µ = 1.0, and
D = 1.0.
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Fig. 11d. The numerical solution of a(x, t) at t = 3000.0 with parameters ǫ = 0.03, µ = 1.0,
and D = 1.0.



1326 WARD, MCINERNEY, HOUSTON, GAVAGHAN, MAINI

Appendix A. Calculating some integrals in section 2. Here we show how
to calculate the integrals appearing in (2.15c). We define them as

e ≡
∫∞

−∞
[uc(y)]

2
dy

∫∞

−∞
[u′

c(y)]
2
dy

, f ≡
∫∞

−∞
[uc(y)]

p+1
dy

∫∞

−∞
[u′

c(y)]
2
dy

.(A.1)

We first multiply (2.3a) by uc. Upon integrating the resulting equation over the
domain, we obtain

∫ ∞

−∞

ucu
′′

c dy − [1 + V (x0)]

∫ ∞

−∞

u2
c dy +

∫ ∞

−∞

up+1
c dy = 0.(A.2)

Upon integrating the first term in this equation by parts, we get

−1 = [1 + V (x0)] e− f.(A.3)

To obtain an additional equation, we multiply (2.3a) by u
′

c and integrate over the
domain to fix the constant of integration. We then integrate the resulting expression
again to get

1 = [1 + V (x0)] e−
2f

p+ 1
.(A.4)

Solving (A.3) and (A.4), we get the key results

f =
2(p+ 1)

p− 1 , e =
1

1 + V (x0)

(

p+ 3

p− 1

)

.(A.5)

Appendix B. Calculating some integrals in section 3. We define the inte-
grals in (3.26) and (3.39) by b and f , respectively. They are given by

b ≡
∫∞

0
[wc(η)]

2
η dη

∫∞

0
[w′

c(η)]
2
η dη

, f ≡
∫∞

0
[wc(η)]

p+1
η dη

∫∞

0
[w′

c(η)]
2
η dη

.(B.1)

We show how to calculate them in terms of the solution wc to (3.24).
We first multiply (3.24a) by ηwc. Upon integrating the resulting equation over

the domain, we obtain
∫ ∞

0

wc(ηw
′

c)
′

dη −
∫ ∞

0

ηw2
c dη +

∫ ∞

0

ηwp+1
c dη = 0.(B.2)

Upon integrating the first term in this equation by parts, we get

f = b+ 1.(B.3)

To obtain an additional equation, we multiply (3.24a) by η2w
′

c and integrate over the
domain. Upon integrating by parts and using the decay of wc at infinity, we obtain

b = 2f/(p+ 1).(B.4)

Solving (B.3) and (B.4), we get the key results

f =
p+ 1

p− 1 , b =
2

p− 1 .(B.5)
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