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CRIMINOLOGY

THE DYNAMICS OF A HOMEOSTATIC PUNISHMENT PROCESS*

ALFRED BLUMSTEIN,** JACQUELINE COHEN,J AND DANIEL NAGINt

I. INTRODUCTION

In his now classic analysis of crime, Durkheim

argues that some level of crime is "an integral part

of all healthy societies... provided that it attains

and does not exceed a certain level for each social

type."' He contends that crime is an unavoidable

consequence of the very processes which contribute

to the maintenance of social cohesion. As the set

of standards and beliefs which define and bound

a society are specified, some types of behavior will

be prohibited and those engaging in these be-

haviors will be considered criminals. Furthermore,

the public condemnation and punishment that

follows a criminal act serves to articulate and

reinforce the common set of norms and sentiments
which ultimately guides the actions of the members

of the society, thereby further enhancing social
cohesion. Thus, while crime is a natural outgrowth

of the processes generating social solidarity, it is

the social response to crime that particularly

serves to consolidate and reinforce that solidarity.

Blumstein and Cohen2 have re-examined Durk-

heim's theory of a stable level of crime and pose

an alternative position emphasizing the stability

of punishment. Their argument is that the stand-
ards or thresholds that define punishable behavior

are adjusted in response to overall shifts in the

behavior of the members of a society so that a

roughly constant proportion of the population is

always undergoing punishment. Thus, if many

more individuals engage in behavior defined as
punishable, the demarcation between criminal

* Research for this paper was conducted under

Ford Foundation Grant #730-0097, "Cross-National
Comparative Study of Criminal Justice Systems"
and LEAA Grant #75NI-99-0005, "Analysis of
Deterrence for Criminal Justice Planning."

**Director, Urban Systems Institute, Carnegie-
Mellon University.

t Research Associate, Urban Systems Institute,
Carnegie-Mellon University.

t Assistant Professor, Institute of Policy Science
Public Affairs, Duke University.

I E. DURKHEIM, TnE RULES OF THE SOCIOLOGICAL

METHOD 66-67 (S. Solovay & J. Mueller trans.
1964).
2 Blumstein & Cohen, A Theory of the Stability of

Punishment, 64J. CRim. L. & C. 198 (1973).

and non-criminal behavior would be adjusted to

re-designate at least part of the previously criminal

behavior as non-criminal, or the intensity or dura-

tion of punishment for those convicted would be

reduced. A similar but opposite reassessment

would occur when fewer people commit currently

punishable acts. Their principal evidence in

support of this hypothesis is the stability of im-

prisonment rates in the United States over the

period 1930-1970 and in Norway over the period

1880-1964 (Figures la and lb). Canadian im-

prisonment rates over the period 1880-1959 have

been obtained subsequently, and these (Figure 1 c)

show the same stability behavior.

In this paper, the theoretical structure and the

empirical basis of this earlier work is extended,

and some processes that might generate the stable

level of punishment are hypothesized. First, the

time series of the imprisonment data for the

United States, Norway and Canada are analyzed

to provide an empirical description of the struc-

ture of the data. These results indicate a striking

similarity in the data structures in the three coun-

tries studied. Different models of the crime and
imprisonment process are then explored in an

effort to characterize an underlying process that

would generate the kinds of time series observed.

A sensitivity analysis is then performed to identify

how the different parameters of one such model

contribute to national differences in observed

levels of punishment.

II. THE BASIC HOMEOSTATIC HYPOTHESIS

First it is necessary to review the stability of

punishment theory. Blumstein and Cohen' posit a

statistical density function fB(x), representing the
distribution of behavior in a society. The basic

concept of such a distribution is that there exists

a range of behavior which may be viewed at one

extreme as being compulsively moralistic and at

the other as being severely criminally deviant

with all shades in between (see Figure 2). It is
then hypothesized that society establishes a

boundary, B 0 , defining the limits, of legitimate

3 Blumstein & Cohen, supra note 2.
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Annual imprisonment rate in the United States: 1930-704

1880 85 910 5 1900 05 1; 1 20 25 30 35 40 45 5'0 5's 6 64

YEAR

FIGURE Ib

Annual imprisonment rate in Norway: 1880-1964-

behavior. Individuals who engage in behavior

B > B0 are deemed punishable.

4 U. S. BUREAU OF THE CENSUS, DEP'T OF COM-

MERCE, HISTORICAL STATISTICS OF THE UNITED

STATES, COLONIAL TIMES TO 1962 AND REVISIONS 33
(1965); U. S. BUREAU OF THE CENSUS, DEs'T OF

COMMERCE, STATISTICAL ABSTRACT OF THE UNITED

STATES 1972, at 140-64 (93d ed. 1972); U. S. BUREAU

OF THE CENSUS, DEP'T OF COMMERCE, STATISTICAL

A punishment probability function, g(B), is
introduced which reflects the probability that a

person engaging in behavior beyond Bo will be

ABSTRACT OF THE UNITED STATES 1970, at 138-61
(91st ed. 1970).

Letter from Nils Christie, Institute of Criminology
and Criminal Law, University of Oslo, to A. Blum-
stein, 1970.

U = 110.2

0=8.9
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FIGURE Ic
Annual imprisonmnent rate in Canada: 1880-19596

Compulsively Criminally
d moralistic deviant

FIGURE 2
The behavior distribution

punished, and a punishment intensity function,

I(B), reflects the intensity of punishment applied

to a punished individual at B. Thus, a, the aggre-

gate amount of punishment delivered by society,

is a function of the frequency of deviant behavior

in that society and the expected punishment

associated with deviant behavior.
7

It is then hypothesized that a will be relatively

stable over time in a given society, even though it

may deviate somewhat for severely disruptive

periods like wars or depressions. One means of

maintaining the stable value of a in the face of

changing behavior in the society is through redefi-

6HISTORICAL STATISTICS OF CANADA 634-59 (M.

URQUHART & K. BuCxLY ed. 1965).
More precisely

ff(x)g(x)I( d

nition of the boundary, B0 , between the criminal

and the non-criminal. Under this homeostatic

hypothesis, if behavior were to become less crimi-

naly deviant, that is, if fB(x) were to shift to the

left, B0 would be adjusted to B0' < B 0 , so that

a(Bo) = a'(Bo') = a.8

It is argued that the social forces accounting for

stability include more than simple prison-cell

capacity, or even the limited willingness of society

to accept the economic burden of processing indi-

viduals through the criminal justice system, con-

8 In terms of the integral formulation, the hy-

pothesis can be represented by:

z'(Bo) = f(x)g'(x)I'(x) dx

= fB fa(x)g(x)I(x) dx =

19761
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fining them and foregoing their productivity. Such

an explanation does not account for the tendency

of downward movements in imprisonment rates to

reverse themselves and return to the mean. More

fundamental considerations of social structure are

probably at work. If too large a portion of the

society is declared deviant, then the fundamental

stability of the society may well be disrupted.

Likewise, if too few are punished, the basic identi-

fying values of the society will not be adequately

articulated and reinforced, again leading to social

instability. In the former case there will be pres-

sures toward decriminalizing some behavior, while

in the latter, there will be pressures for stricter law

enforcement and perhaps more severe punish-

ments.

III. TIME-SERIES ANALYSIS

Time-series analysis is often directed at a se-

quence of observations, such as those of Figure 1,
in order to discover structures in the data, particu-

larly relationships between an observation in

period t and those in prior periods. In time-series

analyses, two basic types of structures typically are

explored: autoregression and moving averages.

These can be studied either separately or in com-
bination and, in many instances, can explain the

systematic behavior of the time series.

In the autoregressive structure an observation

at t is a weighted linear function of the observa-

tions from the preceding T periods, and the auto-

regression is said to be of order T. In the moving

average process an observation at t is the result of

stochastic variations about the mean.9 The sto-

chastic variations in observations in successive

time periods are related by an autoregressive type

structure. Thus, the relationship between an

observation at time t and prior observations occurs

either through the serial correlation of stochastic

deviations from the mean (moving average), or

through serial correlation of the observations

themselves (autoregression). While the difference

between these two processes in terms of the be-

havior of the induced time series may not be

obvious, their properties are very different. These

differences permit the wide variety of time series

which are encountered in practice to be estimated

by making judicious use of autoregressive, moving

average or mixed (autoregressive and moving

average) processes.

' See Appendix I for a more detailed description
of autoregressive and moving average structures.

In order to gain further insight into the dynam-

ics of the imprisonment process, time-series analy-

sis was performed on the annual imprisonment

rate data for the United States, Norway and

Canada. Briefly, the analysis involves the follow-

ing steps:

1) Using ordinary least squares, an autore-

gressive furction of arbitrarily high order,

say T, is estimated. If the autoregressive co-

efficient of the Tth subscript is statistically

insignificant, an autoregressive relationship

of order T-1 is estimated. This process is

continued until a statistically significant

autoregressive coefficient is found.

2) To determine if there is serial correlation of

the stochastic component, et (that is, a

moving-average process), autoregressions

again of arbitrarily high order t are run on

the deviations of the actual data from those

predicted by the estimated autoregression.

If no significant autoregression coefficients

are then found, there is strong evidence of

no serial correlation in the stochastic com-

ponent.

In the time-series analysis for each country,

autoregression functions of order 4 (T = 4) were

estimated and no significant coefficient 4.r was

found until the second-order autoregression was

estimated. When the stochastic components were

checked for serial correlations, no significant

autoregression relationships were found among

the deviations. Figure 3 is a plot of the actual

Canadian data against the values predicted by the

estimated second-order autoregression for Canada.

A visual inspection reveals both the high explana-

tory power of the regression and the seemingly

random nature of the deviations.

Thus, one can reasonably conclude that the

time series of the imprisonment rates for the

United States, Norway and Canada each followed

a second-order autoregressive process with no

moving average component. If rt is the imprison-

ment rate (prisoners/100,000 general population)

in year t, we can adequately express rt as a simple

linear function of the imprisonment rates in the

two immediately previous periods:

rt = 6 + 4irt-i + 0 2rt-2 + Et

where:

rt = the daily average imprisonment rate in

year t,
c,4i = fixed parameters of the process, and

[Vol. 67
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FIGURE 3
Actual vs. predicted imprisonment rate in Canada: 1885-1959

TABLE 1

ESTIMATED AUTOREGRESSION PARAMETERS FOR THE

ANNUAL IMPRISONMENT RATE
1 0 

(rt) IN THE

UNITED STATES, NORWAY AND CANADA

rt= + Oirt-I + 02rt-2 + Et

Parameter USA Norway Canada

01 1.42 1.17 1.25
(10.35) (10.47) (11.58)

02 -. 63 -. 35 -. 42
(-4.41) (-3.13) (-3.83)

22.74 9.34 7.42

(2.76) - (3.15) (3.04)

r
2  

.84 .78 .79

Et = independent and identically distributed

random variables with mean zero and

variance a2.

Table I presents the estimated autoregression

parameters for each country. Given the wide

range of possible structures for these data, the

finding that the imprisonment rates in the three

different countries follows a second-order auto-

regression strongly suggests that a similar mechan-

10The imprisonment rate is the average daily

prison population per 100,000 general population.
In the United States and Norway the rate base is
100,000 total population, while in Canada it is
100,000 population 16 years of age or older.

ism may be generating each, albeit with different

driving parameters. It would be desirable to be

able to identify a mechanism consistent with these
empirical findings.

Processes following a second-order linear differ-
ential equation, not necessarily with constant

coefficients," generate second-order autoregressive

functions. This connection is shown in Appendix

II. Table 2 presents the parameters of the asso-
ciated differential equation for each country as

well as the characteristic time period ("I) of the

cycles for each equation.
12

Thus, a second-order differential equation is
the mathematical characterization of a dynamic

process that would generate the time series that

were observed. Such an equation, however, is only

an abstract representation that could describe any

number of physical or social processes. One can
posit a flow process in and out of prison that would

" The general second-order differential equation

with constant coefficients is: rt + crt + drt = F,
where rt is the average daily imprisonment rate at
t, and it and Ft are respectively the first and second
derivatives of rt.

12 A differential equation of the specified form
results in cyclical behavior when c' - 4d < 0, and
the period II is obtained from:

47r
IId-

1976]
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TABLE 2

PARAMETERS FOR THE SECOND-ORDER DIFFEREN-

TIAL EQUATION WHICH GENERATES THE ESTI-

MATED AUTOREGRESSIVE PROCESS FOR THE IM-

PRISONMENT RATE TIME-SERIES

rt + cit + drt = F

C --

42

d 01 + 42 - 1

42

F= -
02

II = periodicity = 47r - c
2

Parameter USA Norway Canada

C .25 1.34 .98

d .33 .51 .40
F 36.10 26.69 17.62

I 11.2 yrs. 25.4 yrs. 15.7 yrs.

generate the differential equation consistent with

the observed behavior of the time-series. With

such a model the stability of imprisonment rates

can be interpreted in terms of conceptually mean-

ingful characteristics of a society; for example,

the degree of punitiveness and the level of con-

formity. The first formulation is quite simple and

requires only that the prison population remain

stable through a simple balancing of receptions

and releases. This formulation will be shown to be

inconsistent with the observed behavior of the

Canadian data. A second, more elaborate model

which incorporates the homeostatic principles will

be shown to be much more satisfactory and con-

sistent with the Canadian data.

IV. EXPLORATION OF POSSIBLE

EXPLANATORY MODELS

In this section, models of the social mechanism

generating imprisonment rates are developed and

their consistency with the observed stability and

second-order autoregressive movement of the time

series are explored. The models are developed by

partitioning the total population of a society into

three groups, one of which is the prison popula-

tion. The flow rates of individuals among these

groups is then examined. These simultaneous

flows generate a system of simultaneous first-order

differential equations. Such systems can be solved

so that each population is defined solely as a
function of its own derivatives (see Appendix IV).

The result for any population group is in general
a second-order differential equation, although in
some systems, the second-order term vanishes,

leaving only a first-order equation. We can judge

the adequacy of each hypothesized structure by

comparing the parameters of the differential

equation for the imprisonment rate generated by
the model with the same parameters derived from

the autoregressive parameters estimated from the
observed time series.

A. Prisoner, Ex-Convict, and Virgin Model

The first model to be examined partitions the
total population T(t), into a prison population
P(t), an ex-convict population M(t), and a popu-

lation of individuals who have never been to
prison (virgins) V(t). The possible flows in this
structure are shown in Figure 4. Within this
structure, the only mechanism for maintaining a
stable imprisonment rate would be the balancing

of releases from P(t) with receptions from V(t)
and M(t).

When formalized, the relationship among the
model flows can be used to derive a second-order

differential equation for the imprisonment rate.

The parameters (c, d and F') of this equation are
functions of the various flow rates identified in
Figure 4; their specific mathematical form is
derived in Appendix III with their final form

shown by equation (12) of that appendix. To
assess the adequacy of this model, estimates of c
and d generated by the model are compared with

the estimates from the observed Canadian time
series reported in Table 2. This comparison

requires empirical estimates of the model's flow

rates. The imprisonment rate of virgins, ri, is
exceedingly small. In Canada, for example, even
if we were to assume that all receptions into prison

in a year are of first-time offenders, ri would be
no larger than .0004 and (r2 + r3) no larger than

.72. For the period 1880 to 1960 the exponential
growth rate of the Canadian population was

about 0.019 and r4, the death rate, about .017.

Therefore, using equation (12) in Appendix III,
d is about 0.027, while c is about .79. In this model,
c must be more than twenty-five times larger

than d.

The values of c and d estimated from the

Canadian autoregression parameters (Table 2) are
.98 and .40, respectively. Thus, for Canada, Model

I yields only a fair estimate of c and dramatically

[Vol. 67
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r I = imprisonment rate of virgins

r2 = release rate from prison

r3 = imprisonment rate of ex-convicts

r4 = death 
rate

13

r5 = birth rate

FIGURE 4
Model I

underestimates d.14 The large underestimate of d

will result in the model predicting nonoscillatory

behavior in r(t).15 This is, however, completely

contrary to the strong cyclical behavior actually

observed. It then appears that Model I, which

considers only a steady-state balance of receptions

and releases does not adequately explain the

observed dynamics of the imprisonment rate. A

more elaborate flow structure is required.

B. Prisoner, Criminal, Law-Abider Model

We now propose an alternative partitioning of

the population into three subsets (Figure 5), now

identified as "law-abiders," "criminals" and
"prisoners," with the numbers in each group

varying over time. In the context of the behavior

distribution of Figure 2, the number of law-abiders

at time t, L(t), are those individuals whose be-

havior B(t) < Bo(t). Likewise, the criminal popu-

lation, C(t), are those individuals with behavior

B(t) > Bo(t). The prison population, P(t), are

those individuals drawn from the criminal popu-

lation who are confined in institutions at t.

13 For simplicity, differences between the death

rate of ex-convicts and virgins, as well as the small
death rate within prison, have been ignored.

14 When the predicted values of c and d are trans-

formed into autoregressive form (equation (5) in
Appendix II), the respective values of 01 and 02 are
1.54 and -. 55. The predicted value of 01, 1.54, is
outside a 95% confidence interval of the value of
1.25 estimated from the actual data.

15 A necessary condition for oscillatory behavior is
that (e0 - 4d) < 0.

FIGURE 5
Model II-Stable imprisonment as a

homeostatic process

The composition of populations changes con-

tinuously, as shown in the flow diagram of Figure

5. Some criminals are arrested, convicted and sent

to prison at rate k2 (t). Prisoners are regularly

released from prison, with some returning to the

criminal group [0k,(t)] and others becoming law-

abiders [(I - O)kl(t)]. There is also an important

two-way flow between the criminal and law-

abiding populations (k3(t) and k1(t)). As fB(x),

the behavior distribution in Figure 2, shifts to the

right, for example, C(t) increases and L(t) de-

creases correspondingly. Similarly, a shift to the

left, that is, to a population that is more law-

abiding, results in a net flow from C(t) to L(t).

These changes in the population composition

would be reflected in changes in the normal flow

rates, ki(t), among the population groups.

The possibility of flows between the criminal and

law-abiding population is an important element

of the model because these flows permit the in-

corporation of a central theme of the homeostatic

notion, namely the redefinition of criminal be-

havior. Suppose, for example, that at time to the

system were in equilibrium and P(to)/T(t) was

the average long-term imprisonment rate. Now,

suppose that at t, the behavior distribution fB(x)

were to shift to the right, that is, the population

were to become more criminal by current stand-

ards. This shift would be reflected in an increase

in k3(t) to k3(t,) > k3(tO). The increase in k3(t)

would result in a net increase in the flow from L(t)

to C(t). That increase would perturb the system

from equilibrium and, holding all other ki(t) con-

stant, would increase P(t)/T(t) and C(t)/T(t).

An increase in P(t)/T(t), according to the

homeostatic model, would set in motion the de-

criminalization of certain behavior by shifting the

1976]
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demarcation between criminal and non-criminal

behavior, B0 . This shift would be reflected by
readjustments in k3(t) and k4(t) such that C(t)/

T(t) and L(t)/T(t) would return toward the

equilibrium values.

Even when fB(x) and B0 are stable, there is a
regular flow between C(t) and L(t). A previously

law-abiding college student begins dealing in

drugs or a businessman finds that profits are sub-

stantially improved by criminal collusion with

competitors. An occasional burglar gets married

or gets a better job, and decides to cease his
criminal activity. Thus, each population is con-

tinuously feeding the others.

One can formalize the description of these flows
and again derive a second-order differential

equation for the imprisonment rate. This is done

in Appendix V under the preliminary assumption

that the ki(t) are approximately constant over

time."I The parameters of this differential equation

(c, d, and F') are functions of the flow rates for

Figure 5. The adequacy of Model II is tested by

determining the consistency of the model-gener-

ated equation with the observed dynamic behavior

of an actual time series for imprisonment rates.

Toward this end, the model will be analyzed

using rates associated with Canadian peniten-
tiaries. The data were plotted in Figure 1. Visual

inspection of the series indicates no obvious trend

from 1880-1959. However, there does appear to

be a marked change in the dynamic behavior after

1925. To reduce the time variation in the k's (and,

therefore, in c, d and F'), we restrict ourselves to

the post-1925 series for the analysis.

To test the sufficiency of the derived differential
equation (Appendix V), estimates of the ki's must

be made to generate the theoretical values for c,

d, and F'. This differential equation can be used

to derive a theoretical autoregressive relationship

by the approximation shown in Appendix II. An

"This assumption of constant ki (t) disregards a
central element of the stability of punishment theory,
namely the changes in k3(t) and k4(t) that accompany
the adjustment of the standards defining punishable
behavior in response to shifts in objective behavior.
The static nature of this representation results in
serious limitation in the development and empirical
analysis which follow. It does not, however, render it
vacuous. If the model, even under the restriction of
constant ki(t), can generate coefficients which are
plausibly close to the actual values, then a rationale
for exploring more complicated forms where the
ki(t) vary will be established.

TABLE 3

THE RELEASE RATE (k(t)), AVERAGE DAILY

PRISON POPULATION (P(t)) AND TOTAL

POPULATION (T(t)) FOR CANADA:

1925-19601T

Year kj(t) Pt) T(t)
18

1925 .37 2266 5,100,000

1930 .43 2868 6,700,000

1935 .55 3895 7,350,000

1940 .50 3736 7,850,000

1945 .46 3063 8,500,000

1950 .45 4380 9,400,000

1955 .52 5204 10,400,000

1960 .73 6141 11,500,000

empirical autoregression can then be run on the

actual data to determine -whether the parameters

estimated from the data are comparable to those

generated by the theoretical model.

The known values of the system characterized

by Figure 5 are k, (the release rate), T(t) and

P(t). Their values at five-year intervals from 1925

to 1960 are given in Table 3. The year 1940 was

chosen to generate estimates for the model pa-

rameters. That year is about mid-way through

the series, and its release rate k1 and imprisonment

rate/100,000 (P/T X 10-) are the same as the

means for the series.

The unknown values are: k2 (the imprisonment

rate of criminals); k 3 (the rate at which law-abiders

become criminals); k4 (the rate at which criminals

become law-abiders); (1 - 0) (rehabilitation

rate); and C (the size of the criminal population).

Estimates for k2, k 3 , k4 are made for equilibrium

estimates of C/T of 1.5%, 1.0%, and 0.5%.

Since individuals do not continuously behave in a

criminal manner, a reasonable convention must

be established to operationalize the idea of an

individual belonging to the criminal population.

A reasonable definition might categorize a person

as a criminal in year t if he has committed an act

for which he would have been imprisoned if

caught and convicted.
1 9 

Then k 2 , the rate of

17 Prisoner statistics were obtained from unpub-

lished statistics provided by the Office of Statistics,
Secretariat of the Ministry of the Solicitor General,
Government of Canada.

1
9 The total population includes only persons 16

years of age or older.
1
9 

Note that this definition restricts the minimum
time spent in the criminal population to 1 year.
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imprisonment of the criminal population, is the

ratio of prison receptions, a known value, to the
estimate of the size of the criminal population.

The analysis is relatively insensitive to the value
of 0, the portion of released prisoners returning
directly to the criminal population. A plausible
estimate is 0.33. Given our definition of member-
ship in the criminal population, 0 includes all
those released prisoners who commit at least one

crime within a year of their release. In a study of
parole success, Gottfredson 2n reported that during
a two year follow-up period, 38% of released
prisoners returned to prison. In another study
cited by Robison and Smith,2' 51% of released
prisoners returned to prison during the three
years immediately following their release. Since
recidivism rates decline with each additional year

following release and not all releasees who return

to crime are apprehended, it is not unreasonable

to assume that 33% of released prisoners return

immediately to the criminal population.

The value of k4 is calculated somewhat differ-

ently. If r is the average time spent in C, then

k4 , the rate at which criminals leave C, is the

reciprocal of -. -r is assigned a value of 2 years for

C/T = 1.5%. For the other values of C/T, 1.0%

and 0.5%, T is taken to be successively larger. A

smaller C is assumed to be associated with a

larger r to reflect a more "hard core" criminal

population in C. Thus, for C/T = 1.0%, we let

7 = 3 years and for C/T = 0.5%, we let r = 4

years.

The remaining parameter to be estimated is

k3. This parameter may be specified as the value

which will maintain C(t) at a constant level given

the values of k,, k2 , and k4 . This is equivalent to

assuming that the first derivative of C(t) is zero.22

The values of the k's and the resulting differen-

tial equation and autoregression coefficients are
given in Table 4 for the three assumed values of

C/T. For comparison, the empirical second-order

autoregression function estimated from the annual

10 D. GOTTFREDSON, THE ROLE OF BASE EXPEC-

TATIONS IN THE STUny OF TREATMENTS (1959).
"' Robison & Smith, The Effectiveness of Correctional

Programs, 17 CRIME AND DELINQUENCY 67 (1971).
2 From the second equation in system (22) of

Appendix V we have:

-Oki P(t) + (Nd + kQ)C(t)
T(t) - P(t) - C(t)

Canadian imprisonment rate from 1925-1960 is as
follows:

rt = 1.23rt- - .
4

3r,..i + 9.17 (1)
(8.26) (-2.89) (2.25)

where the values in parentheses are the t-values

associated with each of the coefficients. A com-

parison of the parameter estimates of equation (1)

with the corresponding autoregression parameters

theoretically derived from the ki in Table 4 show
them to be roughly equivalent.23 The coefficient

of rt-1, 01, is overestimated by about 5% to 15%,
whereas q52 is underestimated by about the same

amount in each case. The relative direction of
these differences is consistent with the high nega-
tive correlation (-.82) between the coefficients
of rt -- and rt-2 in the autoregression.

The value of the constant term.'is underesti-
mated by as much as 60% in the theoretical esti-
mates, 8' X 105. However, all of the estimates of
a' x 105 are within a 90% confidence interval of
the regression value (2.57, 15.77).

Overall, despite the speculative, albeit plausible,
nature of some of the parameter estimates, the
model appears to do remarkably well in generating
parameters consistent with those estimated from
the actual data. The encouraging nature of these
results indicates the potential merit of this ap-
proach to modeling the imprisonment process and
justifies further work in this direction, especially
efforts to examine the process without the restric-
tive assumption of constant flow rates. Further-
more, while acknowledging the tentative nature
of Model II, one can cautiously begin to interpret
the flow rates in the model in an effort to charac-

terize those features of a society which contribute
to its particular imprisonment rate.

V. IMPLICATIONS OF THE MODEL-A

PARAMETRIC ANALYSIS

As a corollary to the hypothesis of the stability
of crime, Durkheim also conjectured that the
particular level of crime would vary among differ-
ent "social types" and that it might be possible to

The empirically estimated parameters in equa-
tion (1) are based on the imprisonment rate per
100,000 population, while the parameters in Table 4
are based on this rate per unit of population. Although
the rates differ by a factor of 10-, the coefficients
0i are unaffected and may be directly compared.
However, the constant term 6 in Table 4 must be
multiplied by 101 when .it is compared to the con-
stant in equation (1).
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TABLE 4

ESTIMATES OF FLOW PARAMETERS (ki) FOR MODEL II AND THE ASSOCIATED COEFFICIENTS FOR THE

AUTOREGRESSION AND DIFFERENTIAL EPUATIONS GENERATED BY MODEL II USING ANNUAL

CANADIAN IMPRISONMENT RATES FROM 1925-1960

Y(t) + ci(t) + dr(t) = F' (i)

rt = 4oirt-i + 402rt-2 + 8' (ii)

C/T 0.5% C/T =1.0% C/T 1.5%
7 r4 7 3 7r 2

Flow Parameters:

k= .50 ki = .50 k 1 = .50

k2 = .046 k2 = .023 k2 = .015

k3= .0014 k3 = .0035 k3 = .0078

4 .25 k 4 = .33 k 4 = .50

( - 0) =.67 (1 - ) = .67 (1 -0) = .67

Differential Equation Coefficients.Y

c = .84 c = .89 c = 1.06

d = .16 d = .19 d = .28

F = 6.4 X 10
-
5 F' = 8.1 X 10

- 5  
F' = 11.7 X 10

- 5

Autoregression Coefficients.
8

41 = 1.42 41 = 1.39 0, = 1.31

0,2 = -.50 952 ---- -. 48 02 = -- 43

5' = 3.2 X 10
- 5  

8' = 3.9 X 10
-
5 8' = 5.0 X 10

- 5

C/T = average criminal population/total population.

r = mean stay in criminal population.

specify the level appropriate to each "social

type."
26 

Two of the authors have argued else-

where;' that Durkheim was not speaking of the

level of actual criminal behavior that occurs,
28

but rather the level of punished criminal acts.

Hence, it is the level of punishment meted out

which remains stable, but varies in magnitude

among different classes of societies.

A brief inspection of Figure I provides visual

evidence for this corollary. While there is a stable

process in each country with the annual imprison-

ment rate fluctuating around the mean, there are

substantial differences among those means. The

mean imprisonment rate for the United States is

2 These coefficients are estimated for (i) above

using (20).
25 These coefficients are estimated for (ii) above

using (6) and the results for differential equation (i).
26 E. DURKHEim, supra note 1, at 66-67. A "social

type" is simply a collection of similar societies. More

formally, "social types" may be thought of as equiva-

lence classes within the set of societies.
27 Blumstein & Cohen, supra note 2, at 199.

28 This would include any act that is a violation

of some criminal statute.

2-3 times greater than the rate in either Norway

or Canada.
2 9 

In an effort to account for these

differences, Model II will be interpreted in terms

of some general societal characteristics. The ways

in which these characteristics generate different

imprisonment rates can then be examined within

the framework identified by the model.

Two characteristics of societies important to the

phenomena of crime and punishment are the

2) The definition of and institutional arrangements

for prison populations vary considerably from
country to country. The Canadian and U. S. data

include only individuals in prisons and peniten-

tiaries which are largely restricted to persons serving

sentences of one year or more. In Norway, on the

other hand, the typical sentence for the prison popu-
lation rarely exceeds two months. Nevertheless,

despite these differences, the selected prison statistics

refer to the most severe penalty imposed in each

country, aside from capital punishment. Our inten-
tion is to gain insight into the reasons for differences

in the level of only the most severe form of punish-

ment. From this perspective, then, the differences in

definition allow cautious comparison of the rates
while always keeping in mind the potential incom-

patibilities.
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level of conformity within a society and the degree

of punitiveness. The parameters ki and k2 in

Figure 5 reflect two aspects of the degree of puni-

tiveness that are often cited, the severity and

certainty of punishment. When other forms of

punishment are ignored and only imprisonment

is considered, the severity of punishment varies

with the time actually served in prison. Since in-

creases in the time served result in decreases in

the release rate from prison, ki, the release rate,

may be regarded as an inverse measure of the

severity of punishment. The lower the value of

ki, the more severe the punishment meted out.

Alternatively, the flow rate of criminals to prison,

k 2 , reflects the certainty of punishment for crimi-

nal behavior. The higher the value of k2 , the

more criminals are imprisoned.

Parameters k3 and k4 in Figure 5 are the flows

between the law-abiding and criminal popula-

tions and together they reflect the overall level of

conformity in a society. The magnitude of the

flow from law-abiders to criminals, k3 , provides

some indication of the strength of the commit-

ment to conformity within a society; the stronger

the commitment, the smaller the outflow of law-

abiders. The level of commitment to conformity

in any society is probably a complex product of a

number of different contributing factors, among

them the successful internalization of the norma-

tive code, the deterrent effects associated with

penalties and the heterogeneity of the society.

These factors affect the commitment to con-

formity differently and operate on very different

dimensions of an individual's motivation. The

more deeply rooted the norms and values of a

society in the individual consciences of its mem-
bers, the stronger will be their commitment to

conformity. In this case the members conform out

of a sense of duty or obligation. Deterrence, on the

other hand, captures the extent to which individ-

uals respond to the costs associated with the

penalty structure. Effective deterrence will in-

crease the strength of commitment to conformity.

Alternatively, greater heterogeneity in a society,

be it cultural, ethnic, racial or religious, can

weaken the overall commitment to conformity

through the existence of competing normative

systems which may be at odds with the official

institutionalized standards. As the members of a

society respond to the behavioral codes of differ-

ent sub-cultures, there will be a larger variance

in actual behavior and more chances of deviance.

While Model II does not permit distinguishing

the contributions of these different factors, the

effect of the resulting commitment to conformity

can be examined through parameter k3 .

Parameter k4 is the flow from the criminal

population to the law-abiding population. It

reflects the endurance of the criminal role, or the

extent to which individuals remain active crimi-

nals after committing a single crime. Thus, k4 may

be thought of as an inverse measure of the preva-

lence of hardcore criminality in a society. As k4

gets smaller, fewer criminals return to the law-

abiding population and the more enduring the

criminal role.

The endurance of the criminal roleis undoubt-

edly the result of a complicated process involving

both the availability of opportunities to return to

the law-abiding population and the existence of

disincentives to remain a criminal. The opportuni-

ties to return are a function of the permanence of

the stigma attached to being labeled a criminal

and of institutionalized barriers which explicitly

exclude former criminals from various aspects of a

law-abiding life, for example, laws which bar

known criminals from certain types of employ-

ment. The disincentives to remaining a criminal

vary with the effectiveness of deterrents. The only

deterrent explicitly identified in Model II is im-

prisonment. Nevertheless, a host of other unspeci-

fied deterrents, such as arrest and conviction, may

also operate on the criminal population and be

reflected in variations in the value of k4 . In

general, increases in both legitimate opportunities

and criminal disincentives will be associated with

decreases in the endurance of the criminal role

and increases in k 4 .

Having identified each parameter in terms of

punitiveness and conformity, the differential

impact of these characteristics on the imprison-

ment rate and the level of criminality in a society

can be explored. The flow process in Figure 5 can

easily be translated into a Markov process in

which the populations are the states of the process

and the flow rates become the transition proba-

bilities of moving from one state to another.

Assuming the ki(t) are constant over time, the

transition matrix for Model II is:

P(t + l) C(t + l)
P(t) [1 - k1  OkL

M=C(t) k2  I -k 2 -k 4

L(t) L 0 k 3

L(t + 1)

(I -O)k11
k4

I -k 3
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TABLE 5

THE EQUILIBRIUM DISTRIBUTION AMONG PRISONERS (P), CRIMINALS (C) AND LAW-ABIDERS (L), ASSOCIATED

WITH DIFFERENT VALUES OF THE PARAMETERS OF MODEL II

Parameter Values Rates/100,000 Total Population

C k2 k3 k 6 (P) (C) (L)
Prisoners Criminals Law-Abiders

175.8

140.6

.025 .005 .333 .333 105.5

70.4

35.2

0.05

.20

.250

.333

.5001
1.000J

II..

.500

III.

.500

29.0

70.4

.333 .333 134.3

192.8

246.3

14.2

42.5

.333 .333 70.4

111.7

138.7

112.6

91.9

.333 70.4

47.9

24.5

.20d

.2501

.005 .333
•.500 I

1 .000,

.100

.250

.333 .333

.500
.750

1406.1

1406.5

1407.0

1407.5

1408.1

1449.0

1407.5

1343.6

1285.2

1231.6

284.9

849.5

1407.5

2232.4

2774.2

2253.1

1838.8

1407.5

958.0

489.3

1384.9

1399.4

1407.5

1424.3

1450.1

98416.3

98452.4

98486.8

98521.8

98556.6

98521.7

98521.8

98521.8

98522.0

98521.8

99700.7

99107.9

98521.8

97657.5

97087.1

97633.7

98068.9

98521.8

98993.9

99486.2

98545.7

98530.4

98521.8

98504.2

98477.1

Since this matrix is regular,0 the equilibrium
probability distribution among the three states

can be obtained by raising the matrix to successive

powers, Mn . As n becomes large, each row of M
will approach the same equilibrium vector and

any row of the matrix gives the equilibrium dis-

tribution.

This feature of matrix M permits the use of
simulation techniques to examine the equilibrium

distribution for different assigned values of the ki

and 0 in M. By systematically changing the value

of one parameter at a time, one can investigate
the effect of that parameter alone on the equi-

10 A transition matrix is regular if there is at least
one path, perhaps multi-step, from each state to
every other state.

librium distribution. Each parameter is assigned

five values, while holding all other parameters

constant. The entries in Table 5 are the equilib-

rium rates/100,000 total population for each of

the three sub-populations of interest.31

Section I of Table 5 indicates the effects of

varying the severity of punishment, I/k 1 . As ki

increases, punishments become less severe and the

average imprisonment rate decreases sharply. In

fact, as the average time served drops from 5 years

to 1 year, the imprisonment rate also decreases

five-fold. However, the proportion of criminals

among the total population is virtually unaffected

by changes in ki. This is largely due to P's com-

31 The rates in Table 5 were found by multiplying
the equilibrium probability of each state by 10-.

.011
l-OO31

.025 .005
.0081

.o010

.010O

.025

.050

.10075,
(.lOOJ

[Vol. 67



HOMEOSTATIC PUNISHMENT

paratively small size with respect to both C and
L. Ii fact, for all values of kl in the table, P is

never even 0.2% of the total population and it

represents at most only 12.5% of the criminal

population.32 Thus, changes in ki, which affect

the flow out of P, will have very little effect on

the size of C. Any variations in the deterrent

effect associated with changes in the release rate,

ki, will be manifested in changes in k3 and k4 ,

the flows between criminals and law-abiders.

Since these flows are held constant as k, varies,

this effect cannot be detected in this analysis.

The variations in k 2 (section II, Table 5) reflect

changes in the certainty of punishment. As k 2 in-

creases, a higher proportion of criminals are

imprisoned and the imprisonment rate increases.

There is also some change in the relative size of
the criminal population which decreases by 15%

from 1449 to 1232 criminas/100,000 population

as k2 increases from .01 to .10. To the extent that

the level of crime is a function of the number of

criminals, the response of the criminal population

to changes in k1 and k2 is consistent with the cur-

rently popular notion that it is the certainty of

punishment and not its severity which has the
greatest deterrent effect on crime.n

Parameter k3 is assumed to vary with the

strength of the commitment to conformity in a

society. The larger k3, the weaker that commit-

ment and the more frequently law-abiders commit

crimes. As section III of Table 5 reveals, increases

in k3 are accompanied by similar increases in

both the relative size of the criminal population

and the imprisonment rate.

The magnitude of parameter k 4 reflects the

2 These are not unreasonable bounds on the rela-

tive size of P. In the United States in 1970, for ex-
ample, there were slightly less than 200,000 state and
federal prisoners, or about 0.1% of the total popula-
tion. BUREAU OF PRISONS, U. S. DEP'T OF JUSTICE,

BULL. No. 47, NATIONAL PRISONER STATISTICS: PRIS-
ONERS IN STATE AND FEDERAL INSTITUTIONS FOR

ADULT FELONS: 1968, 1969, 1970 (April 1972).
During the same year there were 1,272,783 re-

ported arrests for Index Crimes. FEDERAL BUREAU

OF INVESTIGATION, U. S. DEP'T OF JUSTICE, UNIFORM

CRIME REPORTs: 1970 (1970). Since the arrests of all

police agencies are not contained in the reported fig-
ures and not all criminals are arrested, 2,500,000 is
not an unreasonable estimate of the size of the crim-
inal population. In this case the prisoner population
is only 8 per cent of the criminal population.

3 Wilson, Lock 'em Up and Other Thoughts on Crime,
N. Y. Times, Mar. 9, 1975, §6 (Magazine), at 11,
col. 1; The Purpose of Prison, NEWSWEEK, Feb. 10,
1975, at 36, col. 3 (quoting James Q. Wilson).

prevalence of "occasional" criminals as opposed

to hard-core "careerists" in the criminal popula-

tion. As k4 increases, more criminals return to the

law-abiding population, indicating criminality of

a more transitory nature. It is thus no surprise

that as k4 increases (section IV, Table 5), both

the relative size of the criminal population and

the imprisonment rate decrease. In fact, a five-fold

increase in k4 from 0.2 to 1.0 is accompanied by a

five-fold decrease in the rates of criminals and

prisoners in the population.

The last section of Table 5 presents the effects

of changes in 0, the recidivism rate of released
prisoners. It is clear that the populations are vir-

tually insensitive to changes in recidivism. Sizable

increases in 0 have very little effect on the size of

the criminal and prison populations. As with

parameter ki, the lack of effect on the criminal
population is due to the extremely small size of P,

which in section V of the table is less than 0.1%

of the total population and represents only 5% of

the criminal population. The variations in the

number flowing from this small P to C that result

from changes in 0 will hardly be noticed in C.

Furthermore, since 0 determines the distribution of
the flow out of P and not the magnitude of that

flow, changes in 0 have virtually no effect on the

size of P.

With the exception of 0, changes in any one

parameter of the model result in important differ-
ences in the imprisonment rate. The most striking

consequence of the model, however, is the pre-

dominant effect of k3 or k 4 alone on the criminal

population. This has important policy implica-
tions for the control of crime. If Model II is an

accurate representation of the flow process among

law-abiders, criminals and prisoners, the results

in Table 5 suggest that the activities of the crimi-

nal justice system, reflected in isolated changes in

parameters ki, k 2 or 0, alone have very little

impact on the size of the criminal population.

According to Model II, manipulations of only
the time served in prison (1/ki) or the various

efforts in prisons to reduce recidivism (0) will not

affect the incidence of criminals. Furthermore,

singly increasing the rate at which criminals go to

prison (k2) has only a marginal effect on the

criminal population, while greatly expanding the

prison population. According to Model II, al-

though the imprisonment policies of a society are

important in determining the imprisonment rate,

taken one by one they are for the most part in-
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consequential to the extent of criminality in a

society.

The size of the criminal population is most

responsive to the parameters reflecting the level

of conformity, namely k3 and k4. To the extent

that conformity is a function of an effective

socialization process and/or the homogeneity of a

society, very little in the form of implementable

policies can be done to reduce the proportion of

criminals. However, to the extent that deterrence

and opportunities for return to the law-abiders are

operating, more reasonable attempts can be made

to reduce criminality. Certainly, any efforts to

remove barriers to a return to the law-abiding

population which increase the value of k 4 will

decrease the level of criminality. The more inter-

esting policy implication, however, is the impor-

tant role of deterrence in reducing crime. Inas-

much as effective general deterrence increases

incentives to remain a law-abider (decreases k3),

while effective special deterrence increases incen-

tives to leave the criminal population (increases

k4), the level of conformity increases and the pro-

portion of criminals decreases. The exact mechan-

isms involved in optimizing these deterrence

effects are then vital to efforts to reduce crime.

The results in Table 5 identify only the effects

of "pure" changes in the parameters and as such

they are necessarily artificial. Undoubtedly, sev-

eral of the parameters will vary at the same time,

and the actual population distributions will

reflect the cumulative effect of these different

parameters, as well as any interactive effects due

to functional relationships among the parameters.

Nevertheless, looking at the effects of each parame-

ter alone does provide some opportunity for

exploring the indirect implications of the model.

VI. SUMMARY

It has been conjectured that a homeostatic

process operates within a society to maintain a

stable level of punishment. This process is pre-

sumed to work through adaptive responses to
changes in criminal behavior. In the short run

these responses might involve changes in sen-

tencing policies, such as an increase in the number

of persons sentenced to prison or a decrease in the
length of sentences imposed. In the long run, the

limits of criminal behavior may actually be re-

defined through changes in law and/or in prac-

tice. The result is either the decriminalization of

previously criminal acts or the addition of newly

prohibited acts to the criminal code.

Evidence of the stability of punishment, in par-

ticular, has been presented. The national im-

prisonment rates in three countries were shown

to be trendless time series, each generated by a

second-order autoregressive process. Two models

specifying the flow of individuals among different

population groups were specified in an effort to

identify the underlying dynamic process respon-

sible for this stability.

Model I, which requires only a simple balancing

of prison receptions and releases, was shown to be

inadequate. For reasonable estimates of the par-

ameter values of this process, it does not yield the

observed cyclical behavior in imprisonment rates.

A second model, which includes movements

between the law-abiding and criminal populations,

results in a better fit between the predicted and

actual time series. Furthermore, Model II can be

interpreted in terms of the levels of punitiveness

and conformity in a society, thereby integrating

the model into the existing body of work on de-

viance and social control.

The model, however, requires further develop-

ment if its adequacy is to be fully explored. The

major limitation in the development presented

here is the assumption of constant flow rates

among the populations. A central feature of the

stability of punishment theory is adaptive be-

havior. In the context of our model, incorporation

of adaptive behavior would require time-varying

k's. The incorporation of time-varying ki's into

the model in a manner that is consistent with the

theory would represent a major extension to our

work. Also, the model does not explicitly incor-

porate deterrent effects. A further elaboration of

the relationship of the flow rates to the deterrence

process would further enhance the generality of

the model by providing some synthesis of the

stability of punishment with the notion of deter-

rence.

APPENDIX I

TIME SERIES ANALYSIS

The autoregressive structure is defined by

T

Yt = 6 + - iYt-1Et (1)
i-1

where

Yt is the observation in period t,

6, qbi are the fixed parameters of the gener-

ating process,

et's are independent and identically dis-
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tributed random variables with zerb

mean and variance cr2.

Equation (1) states that the observation at t (Yt)

is a weighted linear function of a constant and the

observations of T prior periods, plus an independ-

ent stochastic error, et. The time series analysis

provides a means for estimating the number of

prior periods, if any, for which the O's are sig-

nificantly different from zero. The "order" of the
autoregressive process is equal to largest subscript

of the non-zero O's. For example, if qa > 0 and

qi = 0 for all i > 3, the process is called a "third-

order" autoregression.

The autoregressive structure assumes the sto-

chastic component, et, to be independent of the

stochastic components of prior observations. In

time-series data, this is often not the case and the

et's may be serially correlated over one or many

periods.

A moving-average process is defined by:

Yt = u + E (2)

where, now:

T

Et = 4t + E]yipt,- (3)

where:
u, -y are fixed parameters of the generating

process,

P/t are independent and identically dis-
tributed random variables with mean

zero variance U2.

The analyses provide a means for estimating u

and the yi which are diffevent from zero. As with

autoregressive processes, the "order" of the moving

average is defined by the maximum subscript of

the y i's which are different from zero.

APPENDIX II

THE DIFFERENTIAL EQUATION REPRESENTATION

OF A SECOND-ORDER AUTORFGREssIVE PROCEsS

Processes following a second-order linear differ-

ential equation, not necessarily with constant

coefficients, generate second-order autoregressive

functions. By approximating the derivatives in the

differential equation by difference equations, that

is, if rt is the imprisonment rate at time t, and its

first two time derivatives are denoted by i't and

:t, then we approximate it and it by:

ft = rt - rt-1

Ft = (rt - rt-) - (rt-1 - rt-2)

The general second-order differential equation
with constant coefficients is Ft + c t + drt = F,

and, in the approximating difference equation,

we have:

Ft + ci' + drt = (rt - rt,.) - (rt-i - rt-2)

+ c(rt - rt-O + drt = F. (4)

Equation (4) then leads to the second-order auto-

regressive function:

rt= I 2-c I rt-1
+c+ d(5)

where + _C+7+ d rt-2 + 1+ c+ di
where 01, 02, and 8 are expressed in terms of c,
d and F.

APPENDIX* III

DERIVATION OF SECOND-ORDER DIFFERENTIAL

EQUATION ASSOCIATED WITH MODEL I

The relationship among the flows of Model I

may be formalized as follows:

'(t) = -rsP(t) + raM(t) + riV(t)

f(t) = rzP(t) - (r. + r4)M(t) (6)

V(t) = -(ri + r4)V(t) + rsT(t)

where

P(t), lM(t), V(t) = rate of change at t of the

respetive populations

ri = imprisonment rate of virgins

r2 = release rate from prison

r3 = imprisonment rate of ex-

convicts

r4 = death rate 4

rs = birth rate

Since the sum of P(t), M(t) and V(t) is the
total population at time t, T(t), then V(t) may

be replaced in the first equation of (6) by:

V(t) = T(t) - P(t) - M(t)

The dynamic behavior of P(t) can now be ex-

pressed by a system of two flow equations where:

P(t) = - (r2 + ri)P(t) + (r3 - rs)M(t) + riT(t)

l9f(t) = r2P(t) - (rS + r4)M(t) (7)

34 For the purpose, of simplicity the differences
between the death rate of ex-cons and of virgins and
the small number of deaths of prisoners have been
ignored.
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or, in matrix form

-k = AY + F

where

_Fp(t) 1 F-(rl + r2) (r3 - ri)1

LM(t)] L r 2  -r 3 ± r 4 )J

F = [rlT(t)]

Using the procedure outlined in Appendix IV,

P(t) may be translated to:

P(t) + aP(t) + bP(t) = Fp (8)

where

a = (r, + r2 + 13 + r4)

b = (r3 + r4)(r, + r 2) - r2(r3 - ri)

= rs(r 2 + r3) + ra(rI + r 2)

Fp = - (ri + r2)rT(t) + (ri + r 2 + r3 + r4)

riT(t) + riT(t) = (r3 + r 4)riT(t)

+ riT(t)

Equation (8) is a differential equation describing

the dynamic behavior of the total prison popula-

tion, P(t), whereas the autoregressions and their

implied differential equations are expressed in

terms of a rate of imprisonment per population.

However, a translation between the two can be

made; when r(t) is the imprisonment rate per unit

of population:

P(t) = r(t)T(t) (9a)

then:

P(t) = i(t)T(t) + r(t)t(t) (9b)

P(t) = iF(t)T(t) + 2 (t)T(t) + r(t)T(t) (9c)

As a first estimate of T(t), we assume that after

accounting for "deaths," T(t) grows exponentially,

T(t) = To0 eg Then:

P(t) = Toestr(t) (10a)

P(t) = Toeg
t (r(t) + gr(t)) (10b)

P(t) = Toert(F(t) + 2gf(t) + g
2
r(t)) (10c)

We then substitute equations (10) into (8) and

divide the equation by T(t). Then:

[F(t) + 2gf(t) + g
2
r(t)]

+ a[i(t) + gr(t)] + br(t) = eo7 (11)

Rearranging terms,

F(t) + ct(t) + dr(t) = F'3
5  (12)

where

c = a + 2g = r1 + r 2 + r3 + r4 + 2 g

d = b + ag + g2 
= rs(r 2 + r3) + r 4(ri + r2)

+ ag + g
2

F' = r 3r1 + r4r, + rig

APPENDIX IV

Suppose we have a system of simultaneous flows

among three populations, A(t), B(t), C(t), where:

A(t) = aiiA(t) + ai2B(t) + ai3C(t) (a)

t(t) = a2 1A(t) + a22B(t) + anC(t)

0(t) = a31A(t) + a32B(t) + anC(t)

(13) (b)

such that

A(t) + B(t) + C(t) = T(t) (14)

with:

T(t) = total population at t

aij may possibly be zero.

Since C(t) = T(t) - A(t) - B(t), system (13)

may be re-written as:

k(t) = (a,, - a,3)A(t) + (a12 - a,3)B(t)

+ ai3T(t)

h(t) = (a21 - an)A(t) + (a22 - an)B(t) (15)

+ anT(t)

or in matrix notation:

V= AY +F (16)

where:

FA(t) 1 -F(t)l [a,,T(t)'1

LB(t) j B(t)] F a23T(t)J

A = F(al - a 13) (a 12 - a13)]

L_(a21 - a 23) (a22  a23)]
35 It should be noted that equation (12) is based

on the imprisonment rate per unit of population,
while the estimated differential equations in Table 2
are based on the rate per 100,000 population. Al-
though the rates differ by a factor of 105, the coeffi-
cients c and d are unaffected and may be directly
compared. The constant term F', however, must be
multiplied by 105 when it is compared to the con-
stant term F in Table 2.
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Taking the derivative of (16), we get:

-k = AYz 
+ V (17)

Substituting (16) for l'

i = A2Y + AF + P (18)

Let a and b be the coefficients of the quadratic
equation resulting from taking the determinant

of[A - XI]:

(an - a13) - (a2 - a2)

(a2 l - a23) (a 22 - a 23) - X19
(19)

C11-X C12

C21  c 2 2-

or

(c11 - X)(c22 - X) - c21clZ = 0

X- (cII + c2)X + (cucI2 - c2iclZ) = 036 (20)

Thus,

a = -(cll + c22)

b = c11c22 - c21c12

Adding the sum (a' + bY) to both sides of (18)

+ al+bY = (A2Y + ak + bY) + AF +

= (A2Y + aAY + bY) + aF

+ AF+ P

= [A2 + aA + bI)Y + aF

+ AF + F

= aF + AF + (21)

since A2 + aA + bI =.0 and (21) are no longer

simultaneous.

APPENDIX V

DERIVATION OF THE SE!COND-ORDER DIFFERENTIAL

EQUATION AssOCIATED WITH MODEL II

The relationship among the flows of Model II
can be formalized as follows:

P(t) = -k(t)P(t) + k 2 (t)C(t)

d(t) = 0ki(t)P(t) - k 2(t)C(t) - k4 (t)C(t)

+ k3(t)L(t) (22)

L(t) = (I - O)k1(t)P(t) + k4(t)C(t)

- k3(t)L(t) + k 5(t)T(t)
36 The values of X which satisfy equation (20) are

the eigenvalues of A.

where

P(t), d(t), l(t) = rate of change at t of the

respective populations (i.e.,

their first derivatives)

kl(t) = release rate from prison at t

k2(t) = imprisonment rate of the

criminal population at t

k 3(t) = rate at which law-abiders

become criminals at t

k 4(t) = rate at which criminals be-

come law-abiders at t

ks(t) = net population growth rate

at t

0 = portion of the persons re-

leased from prison who re-

turn to criminal activity

Since the sum of P(t), C(t) and L(t) is the total

population at t, T(t), we can replace L(t) by

L(t) = T(t) - C(t) - P(t)

and the dynamic behavior of P(t) can be expressed

by the two flow equations:

P(t) = -k(t)P(t) + k2(t)C(t) (23)

6(t) = [0k1(t) - k3(t)]P(t) - [k 2(t) + k3(t)

+ k4(t)]C(t) + k3(t)T(t)

In matrix form:

k = AY + F

where:

= [(t)] Y = [(t)] F = (t)]1

A = ,-kli(t) k(t) +
=L(Ok,(t) - k&()) -(k2(t) + k3(t) + k4(t)).J

The equations in (23) are a first-order system

of simultaneous differential equations like those

examined in the discussion of Model I, but here

the coefficients are not necessarily constant. In the

case of constant coefficients each population was

defined solely in terms of its own derivatives, for

instance:

P(t) + aP'(t) + bP(t) = F,

and a, b and F, were determined from the matrix

A (Appendix IV). A similar solution in terms of

its own derivatives also exists for each population

when the coefficients are not constant, namely:

' + a(t)- + b(t)Y = F(t) (24)

However, now the time-varying coefficients, a(t),

b(t) and F(t), are in general complicated and, in

this case, elusive functions of the ki(t). Neverthe-
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less, as a point of departure we car. explore the

dynamic character of this model by assuming the

ki(t) are approximately constant.

Under the assumption of constant ki, the differ-

ential equation governing the behavior of P(t),

the prison population, is:

i(t) + alS(t) + bP(t) = Fp (25)

where:

a = kl + k2 + k3 + k4

b = k[(l - O)k2 + k 3 + k4] + k 2k3

F, = k 2k3T(t)

We can change (25) into a differential equation

describing the behavior of the rate of imprison-

ment per unit of population, r(t) using the proce-

dure outlined in (8) through (12) in Appendix III

to yield:

i c + dr = F' (26)

where

c = a + 2g

d = b + ag + g
2

F' = k2k3 .
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