
Journal of Machine Learning Research 5 (2004) 1557–1595 Submitted 3/2004; Published 12/2004

The Dynamics of AdaBoost:

Cyclic Behavior and Convergence of Margins

Cynthia Rudin∗
CRUDIN@PRINCETON.EDU

Ingrid Daubechies INGRID@MATH.PRINCETON.EDU

Program in Applied and Computational Mathematics

Fine Hall

Washington Road

Princeton University

Princeton, NJ 08544-1000, USA

Robert E. Schapire SCHAPIRE@CS.PRINCETON.EDU

Princeton University

Department of Computer Science

35 Olden St.

Princeton, NJ 08544, USA

Editor: Dana Ron

Abstract

In order to study the convergence properties of the AdaBoost algorithm, we reduce AdaBoost to

a nonlinear iterated map and study the evolution of its weight vectors. This dynamical systems

approach allows us to understand AdaBoost’s convergence properties completely in certain cases;

for these cases we find stable cycles, allowing us to explicitly solve for AdaBoost’s output.

Using this unusual technique, we are able to show that AdaBoost does not always converge to a

maximum margin combined classifier, answering an open question. In addition, we show that “non-

optimal” AdaBoost (where the weak learning algorithm does not necessarily choose the best weak

classifier at each iteration) may fail to converge to a maximum margin classifier, even if “optimal”

AdaBoost produces a maximum margin. Also, we show that if AdaBoost cycles, it cycles among

“support vectors”, i.e., examples that achieve the same smallest margin.

Keywords: boosting, AdaBoost, dynamics, convergence, margins

1. Introduction

Boosting algorithms are currently among the most popular and most successful algorithms for pat-

tern recognition tasks (such as text classification). AdaBoost (Freund and Schapire, 1997) was the

first practical boosting algorithm, and due to its success, a number of similar boosting algorithms

have since been introduced (see the review paper of Schapire, 2002, for an introduction, or the re-

view paper of Meir and Rätsch, 2003). Boosting algorithms are designed to construct a “strong”

classifier using only a training set and a “weak” learning algorithm. A “weak” classifier produced

by the weak learning algorithm has a probability of misclassification that is slightly below 50%,

i.e., each weak classifier is only required to perform slightly better than a random guess. A “strong”

∗. C. Rudin’s present address is New York University / Howard Hughes Medical Institute, 4 Washington Place, Room

809, New York, NY 10003-6603, USA. Her present email is rudin@nyu.edu.

c©2004 Cynthia Rudin, Ingrid Daubechies and Robert E. Schapire.

RUDIN, DAUBECHIES, AND SCHAPIRE

classifier has a much smaller probability of error on test data. Hence, these algorithms “boost” the

weak learning algorithm to achieve a stronger classifier. In order to exploit the weak learning al-

gorithm’s advantage over random guessing, the data is reweighted (the relative importance of the

training examples is changed) before running the weak learning algorithm at each iteration. That is,

AdaBoost maintains a distribution (set of weights) over the training examples, and selects a weak

classifier from the weak learning algorithm at each iteration. Training examples that were misclas-

sified by the weak classifier at the current iteration then receive higher weights at the following

iteration. The end result is a final combined classifier, given by a thresholded linear combination of

the weak classifiers.

AdaBoost does not often seem to suffer from overfitting, even after a large number of itera-

tions (Breiman, 1998; Quinlan, 1996). This lack of overfitting has been explained to some extent by

the margin theory of Schapire, Freund, Bartlett, and Lee (1998). The margin of a boosted classifier

is a number between -1 and 1, that according to the margin theory, can be thought of as a confidence

measure of a classifier’s predictive ability, or as a guarantee on the generalization performance. If

the margin of a classifier is large, then it tends to perform well on test data. If the margin is small,

then the classifier tends not to perform so well. (The margin of a boosted classifier is also called the

minimum margin over training examples.) Although the empirical success of a boosting algorithm

depends on many factors (e.g., the type of data and how noisy it is, the capacity of the weak learn-

ing algorithm, the number of boosting iterations, regularization, entire margin distribution over the

training examples), the margin theory does provide a reasonable explanation (though not a complete

explanation) of AdaBoost’s success, both empirically and theoretically.

Since the margin tends to give a strong indication of a classifier’s performance in practice, a

natural goal is to find classifiers that achieve a maximum margin. Since the AdaBoost algorithm

was invented before the margin theory, the algorithm became popular due to its practical success

rather than for its theoretical success (its ability to achieve large margins). Since AdaBoost was not

specifically designed to maximize the margin, the question remained whether in fact it does actually

maximize the margin. The objective function that AdaBoost minimizes (the exponential loss) is not

related to the margin in the sense that one can minimize the exponential loss while simultaneously

achieving an arbitrarily bad (small) margin. Thus, AdaBoost does not, in fact, optimize a cost

function of the margins (see also Wyner, 2002). It was shown analytically that AdaBoost produces

large margins, namely, Schapire et al. (1998) showed that AdaBoost achieves at least half of the

maximum margin, and Rätsch and Warmuth (2002) have recently tightened this bound slightly.

However, because AdaBoost does not necessarily make progress towards increasing the margin

at each iteration, the usual techniques for analyzing coordinate algorithms do not apply; for all

the extensive theoretical and empirical study of AdaBoost prior to the present work, it remained

unknown whether or not AdaBoost always achieves a maximum margin solution.

A number of other boosting algorithms emerged over the past few years that aim more explicitly

to maximize the margin at each iteration, such as AdaBoost∗ (Rätsch and Warmuth, 2002), arc-

gv (Breiman, 1999), Coordinate Ascent Boosting and Approximate Coordinate Ascent Boosting

(Rudin et al., 2004c,b,a; Rudin, 2004), the linear programming (LP) boosting algorithms including

LP-AdaBoost (Grove and Schuurmans, 1998) and LPBoost (Demiriz et al., 2002). (Also see the

ε-boosting literature, for example, Rosset et al., 2004.) However, AdaBoost is still used in practice,

because it often empirically seems to produce maximum margin classifiers with low generalization

error. In fact, under tightly controlled tests, it was shown empirically that the maximum margin

algorithms arc-gv and LP-AdaBoost tend to perform worse than AdaBoost (Breiman, 1999; Grove

1558

THE DYNAMICS OF ADABOOST

and Schuurmans, 1998). In the experiments of Grove and Schuurmans (1998), AdaBoost achieved

margins that were almost as large, (but not quite as large) as those of the LP algorithms when

stopped after a large number of iterations, yet often achieved lower generalization error. AdaBoost

is also easy to program, and in our trials, it seems to converge the fastest (with respect to the margin)

among the coordinate-based boosting algorithms.

Another surprising result of empirical trials is that AdaBoost does seem to be converging to

maximum margin solutions asymptotically in the numerical experiments of Grove and Schuurmans

(1998) and Rätsch and Warmuth (2002). Grove and Schuurmans have questioned whether AdaBoost

is simply a “general, albeit very slow, LP solver”. If AdaBoost is simply a margin-maximization

algorithm, then why are other algorithms that achieve the same margin performing worse than Ada-

Boost? Is AdaBoost simply a fancy margin-maximization algorithm in disguise, or is it something

more? As we will see, the answers are sometimes yes and sometimes no. So clearly the margins do

not tell the whole story.

AdaBoost, as shown repeatedly (Breiman, 1997; Friedman et al., 2000; Rätsch et al., 2001;

Duffy and Helmbold, 1999; Mason et al., 2000), is actually a coordinate descent algorithm on a

particular exponential loss function. However, minimizing this function in other ways does not

necessarily achieve large margins; the process of coordinate descent must be somehow responsible.

Hence, we look to AdaBoost’s dynamics to understand the process by which the margin is generated.

In this work, we took an unusual approach to this problem. We simplified AdaBoost to reveal

a nonlinear iterated map for AdaBoost’s weight vector. This iterated map gives a direct relation

between the weights at time t and the weights at time t +1, including renormalization, and thus pro-

vides a much more concise mapping than the original algorithm. We then analyzed this dynamical

system in specific cases. Using a small toolbox of techniques for analyzing dynamical systems, we

were able to avoid the problem that progress (with respect to the margin) does not occur at every

iteration. Instead, we measure progress another way; namely, via the convergence towards limit

cycles.

To explain this way of measuring progress more clearly, we have found that for some specific

cases, the weight vector of AdaBoost produces limit cycles that can be analytically stated, and are

stable. When stable limit cycles exist, the convergence of AdaBoost can be understood. Thus,

we are able to provide the key to answering the question of AdaBoost’s convergence to maximum

margin solutions: a collection of examples in which AdaBoost’s convergence can be completely

understood.

Using a very low-dimensional example (8×8, i.e., 8 weak classifiers and 8 training examples),

we are able to show that AdaBoost does not always produce a maximum margin solution, finally

answering the open question.

There are two interesting cases governing the dynamics of AdaBoost: the case where the optimal

weak classifiers are chosen at each iteration (the “optimal” case), and the case where permissible

non-optimal weak classifiers may be chosen (the “non-optimal” case). In the optimal case (which

is the case we usually consider), the weak learning algorithm is required to choose a weak classifier

that has the largest edge at every iteration, where the edge measures the performance of the weak

learning algorithm. In the non-optimal case, the weak learning algorithm may choose any weak

classifier as long as its edge exceeds ρ, the maximum margin achievable by a combined classifier.

This is a natural notion of non-optimality for boosting, thus it provides a natural sense in which to

measure robustness. Based on large scale experiments and a gap in theoretical bounds, Rätsch and

Warmuth (2002) conjectured that AdaBoost does not necessarily converge to a maximum margin

1559

RUDIN, DAUBECHIES, AND SCHAPIRE

classifier in the non-optimal case, i.e., that AdaBoost is not robust in this sense. In practice, the

weak classifiers are generated by CART or another weak learning algorithm, implying that the

choice need not always be optimal.

In Section 8, we show this conjecture to be true using a 4 × 5 example. That is, we show

that “non-optimal AdaBoost” (AdaBoost in the non-optimal case) may not converge to a maximum

margin solution, even in cases where “optimal AdaBoost” does.

Empirically, we have found very interesting and remarkable cyclic dynamics in many differ-

ent low-dimensional cases (many more cases than the ones analyzed in this paper), for example,

those illustrated in Figure 6. In fact, we have empirically found that AdaBoost produces cycles on

randomly generated matrices – even on random matrices with hundreds of dimensions. On low-

dimensional random matrices, cycles are almost always produced in our experiments. Thus, the

story of AdaBoost’s dynamics does not end with the margins; it is important to study AdaBoost’s

dynamics in more general cases where these cycles occur in order to understand its convergence

properties.

To this extent, we prove that if AdaBoost cycles, it cycles only among a set of “support vec-

tors” that achieve the same smallest margin among training examples. In this sense, we confirm

observations of Caprile et al. (2002) who previously studied the dynamical behavior of boosting,

and who also identified two sorts of examples which they termed “easy” and “hard.” In addition,

we give sufficient conditions for AdaBoost to achieve a maximum margin solution when cycling

occurs. We also show that AdaBoost treats identically classified examples as one example, in the

sense we will describe in Section 6. In Section 10, we discuss a case in which AdaBoost exhibits

indications of chaotic behavior, namely sensitivity to initial conditions, and movement into and out

of cyclic behavior.

We proceed as follows. In Section 2 we introduce some notation and state the AdaBoost al-

gorithm. Then in Section 3 we decouple the dynamics for AdaBoost in the binary case so that we

have a nonlinear iterated map. In Section 4, we analyze these dynamics for a simple case: the case

where each weak classifier has one misclassified training example. In a 3× 3 example, we find

that the weight vectors always converge to one of two stable limit cycles, allowing us to calculate

AdaBoost’s output vector directly. From this, we can prove the output of AdaBoost yields the best

possible margin. We generalize this case to m×m in Section 5. In Section 6 we discuss identically

classified examples. Namely, we show that the weights on identically classified training examples

can be shifted among these examples while preserving the cycle; that is, manifolds of stable cycles

can occur. For an extension of the simple 3× 3 case, we show that manifolds of cycles exist and

are stable. In Section 7 we show that the training examples AdaBoost cycles upon are “support

vectors” in that they all achieve the same margin. In the process, we provide a formula to directly

calculate the margin from the cycle parameters. We also give sufficient conditions for AdaBoost

to produce a maximum margin classifier when cycling occurs. Then in Section 8 we produce an

example to show non-robustness of AdaBoost in the non-optimal case. In Section 9, we produce the

example discussed above to show that AdaBoost may not converge to a maximum margin solution.

And finally in Section 10, we provide a case for which AdaBoost exhibits indications of chaotic

behavior.

1560

THE DYNAMICS OF ADABOOST

2. Notation and Introduction to AdaBoost

The training set consists of examples with labels {(xi,yi)}i=1,...,m, where (xi,yi)∈ X ×{−1,1}. The

space X never appears explicitly in our calculations. Let H = {h1, ...,hn} be the set of all possible

weak classifiers that can be produced by the weak learning algorithm, where h j : X → {1,−1}.

We assume that if h j appears in H , then −h j also appears in H . Since our classifiers are binary,

and since we restrict our attention to their behavior on a finite training set, we can assume the

number of weak classifiers n is finite. We typically think of n as being very large, m ≪ n, which

makes a gradient descent calculation impractical because n, the number of dimensions, is too large;

hence, AdaBoost uses coordinate descent instead, where only one weak classifier is chosen at each

iteration.

We define an m× n matrix M where Mi j = yih j(xi), i.e., Mi j = +1 if training example i is

classified correctly by weak classifier h j, and −1 otherwise. We assume that no column of M has

all +1’s, that is, no weak classifier can classify all the training examples correctly. (Otherwise the

learning problem is trivial. In this case, AdaBoost will have an undefined step size.) Although

M is too large to be explicitly constructed in practice, mathematically, it acts as the only “input”

to AdaBoost in this notation, containing all the necessary information about the weak learning

algorithm and training examples.

AdaBoost computes a set of coefficients over the weak classifiers. At iteration t, the (unnor-

malized) coefficient vector is denoted λt ; i.e., the coefficient of weak classifier h j determined by

AdaBoost at iteration t is λt, j. The final combined classifier that AdaBoost outputs is fλtmax
given

via λtmax
/‖λtmax

‖1:

fλ =
∑n

j=1 λ jh j

‖λ‖1

where ‖λ‖1 =
n

∑
j=1

|λ j|.

In the specific examples we provide, either h j or −h j remains unused over the course of AdaBoost’s

iterations, so all values of λt, j are non-negative. The margin of training example i is defined by

yi fλ(xi). Informally, one can think of the margin of a training example as the distance (by some

measure) from the example to the decision boundary, {x : fλ(x) = 0}.

A boosting algorithm maintains a distribution, or set of weights, over the training examples that

is updated at each iteration t. This distribution is denoted dt ∈ ∆m, and dT
t is its transpose. Here,

∆m denotes the simplex of m-dimensional vectors with non-negative entries that sum to 1. At each

iteration t, a weak classifier h jt is selected by the weak learning algorithm. The probability of error

at iteration t, denoted d−, for the selected weak classifier h jt on the training examples (weighted by

dt) is ∑{i:Mi jt =−1} dt,i. Also, denote d+ := 1− d−. Note that d+ and d− depend on t; although we

have simplified the notation, the iteration number will be clear from the context. The edge of weak

classifier jt at time t with respect to the training examples is (dT
t M) jt , which can be written as

(dT
t M) jt = ∑

i:Mi jt =1

dt,i − ∑
i:Mi jt =−1

dt,i = d+−d− = 1−2d−.

Thus, a smaller edge indicates a higher probability of error. For the optimal case (the case we

usually consider), we will require the weak learning algorithm to give us the weak classifier with

the largest possible edge at each iteration,

jt ∈ argmax
j

(dT
t M) j,

1561

RUDIN, DAUBECHIES, AND SCHAPIRE

i.e., jt is the weak classifier that performs the best on the training examples weighted by dt . For the

non-optimal case (which we consider in Section 8), we only require a weak classifier whose edge

exceeds ρ, where ρ is the largest possible margin that can be attained for M, i.e.,

jt ∈ { j : (dT
t M) j ≥ ρ}.

(The value ρ is defined formally below.) The edge for the chosen weak classifier jt at iteration t is

denoted rt , i.e., rt = (dT
t M) jt . Note that d+ = (1+ rt)/2 and d− = (1− rt)/2.

The margin theory developed via a set of generalization bounds that are based on the margin dis-

tribution of the training examples (Schapire et al., 1998; Koltchinskii and Panchenko, 2002). These

bounds can be reformulated (in a slightly weaker form) in terms of the minimum margin, which was

the focus of previous work by Breiman (1999), Grove and Schuurmans (1998), and Rätsch and War-

muth (2002). Thus, these bounds suggest maximizing the minimum margin over training examples

to achieve a low probability of error over test data. Hence, our goal is to find a normalized vector

λ̃ ∈ ∆n that maximizes the minimum margin over training examples, mini (Mλ̃)i (or equivalently

mini yi fλ(xi)). That is, we wish to find a vector

λ̃ ∈ argmax
λ̄∈∆n

min
i

(Mλ̄)i.

We call this minimum margin over training examples (i.e., mini(Mλ)i/‖λ‖1) the ℓ1-margin or sim-

ply margin of classifier λ. Any training example that achieves this minimum margin will be called

a support vector. Due to the von Neumann Min-Max Theorem for 2-player zero-sum games,

min
d∈∆m

max
j

(dT M) j = max
λ̃∈∆n

min
i

(Mλ̃)i.

That is, the minimum value of the edge (left hand side) corresponds to the maximum value of the

margin (i.e., the maximum value of the minimum margin over training examples, right hand side).

We denote this value by ρ. One can think of ρ as measuring the worst performance of the best

combined classifier, mini(Mλ̃)i.

The “unrealizable” or “non-separable” case where ρ = 0 is fully understood (Collins et al.,

2002). For this work, we assume ρ > 0 and study the less understood “realizeable” or “separable”

case. In both the non-separable and separable cases, AdaBoost converges to a minimizer of the

empirical loss function

F(λ) :=
m

∑
i=1

e−(Mλ)i .

In the non-separable case, the dt’s converge to a fixed vector (Collins et al., 2002). In the

separable case, the dt’s cannot converge to a fixed vector, and the minimum value of F is 0, occurring

as ||λ||1 → ∞. It is important to appreciate that this tells us nothing about the value of the margin

achieved by AdaBoost or any other procedure designed to minimize F . To see why, consider any

λ̄ ∈ ∆n such that (Mλ̄)i > 0 for all i (assuming we are in the separable case so such a λ̄ exists).

Then lima→∞ aλ̄ will produce a minimum value for F , but the original normalized λ̄ need not yield

a maximum margin. To clarify, any normalized λ̄ for which (Mλ̄)i > 0 for all i produces a classifier

that classifies all training examples correctly, has unnormalized counterparts that attain values of F

arbitrarily close to 0, yet may produce a classifier with arbitrarily small margin. In other words, an

arbitrary algorithm that minimizes F can achieve an arbitrarily bad margin. So it must be the process

1562

THE DYNAMICS OF ADABOOST

AdaBoost (“optimal” case):

1. Input: Matrix M, No. of iterations tmax

2. Initialize: λ1, j = 0 for j = 1, ...,n

3. Loop for t = 1, ..., tmax

(a) dt,i = e−(Mλt)i/∑m
ī=1

e−(Mλt)i for i = 1, ...,m

(b) jt ∈ argmax
j

(dT
t M) j

(c) rt = (dT
t M) jt

(d) αt = 1
2

ln
(

1+rt

1−rt

)

(e) λt+1 = λt +αte jt , where e jt is 1 in position jt and 0 elsewhere.

4. Output: λtmax
/‖λtmax

‖1

Figure 1: Pseudocode for the AdaBoost algorithm.

of coordinate descent that awards AdaBoost its ability to increase margins, not simply AdaBoost’s

ability to minimize F . The value of the function F tells us very little about the value of the margin;

even asymptotically, it only tells us whether the margin is positive or not.

Figure 1 shows pseudocode for the AdaBoost algorithm. Usually the λ1 vector is initialized to

zero, so that all the training examples are weighted equally during the first iteration. The weight

vector dt is adjusted so that training examples that were misclassified at the previous iteration are

weighted more highly, so they are more likely to be correctly classified at the next iteration. The

weight vector dt is determined from the vector of coefficients λt , which has been updated. The

map from dt to dt+1 also involves renormalization, so it is not a very direct map when written in

this form. Thus on each round of boosting, the distribution dt is updated and renormalized (Step

3a), classifier jt with maximum edge (minimum probability of error) is selected (Step 3b), and the

weight of that classifier is updated (Step 3e). Note that λt, j = ∑t
t̃=1 α t̃1 jt̃= j where 1 jt̃= j is 1 if jt̃ = j

and 0 otherwise.

3. The Iterated Map Defined By AdaBoost

AdaBoost can be reduced to an iterated map for the dt’s, as shown in Figure 2. This map gives a

direct relationship between dt and dt+1, taking the normalization of Step 3a into account automat-

ically. For the cases considered in Sections 4, 5, and 6, we only need to understand the dynamics

of Figure 2 in order to compute the final coefficient vector that AdaBoost will output. Initialize

d1,i = 1/m for i = 1, ...,m as in the first iteration of AdaBoost. Also recall that all values of rt are

nonnegative since rt ≥ ρ > 0.

To show the equivalence with AdaBoost, consider the iteration defined by AdaBoost and reduce

as follows. Since:

αt =
1

2
ln

(
1+ rt

1− rt

)
, we have e−(Mi jt αt) =

(
1− rt

1+ rt

) 1
2

Mi jt

=

(
1−Mi jt rt

1+Mi jt rt

) 1
2

.

1563

RUDIN, DAUBECHIES, AND SCHAPIRE

Iterated Map Defined by AdaBoost

1. jt ∈ argmax
j

(dT
t M) j

2. rt = (dT
t M) jt

3. dt+1,i =
dt,i

1+Mi jt rt
for i = 1, ...,m

Figure 2: The nonlinear iterated map obeyed by AdaBoost’s weight vectors. This dynamical system

provides a direct map from dt to dt+1.

Here, we have used the fact that M is a binary matrix. The iteration defined by AdaBoost combined

with the equation above yields:

dt+1,i =
e−(Mλt)ie−(Mi jt αt)

∑m
ī=1

e−(Mλt)ī e−(Mī jt
αt)

=
dt,i

∑m
ī=1

dt,ī

(
1−Mī jt

rt

1+Mī jt
rt

) 1
2
(

1+Mi jt rt

1−Mi jt rt

) 1
2

.

Here, we have divided numerator and denominator by ∑m
ĩ=1

e−(Mλt)ĩ . For each i such that Mi jt = 1,

we find:

dt+1,i =
dt,i

∑{ī:Mī jt
=1} dt,ī

(
1−rt

1+rt

) 1
2
(

1+rt

1−rt

) 1
2
+∑{ī:Mī jt

=−1} dt,ī

(
1+rt

1−rt

) 1
2
(

1+rt

1−rt

) 1
2

=
dt,i

d+ +d−
(

1+rt

1−rt

) =
dt,i

1+rt

2
+ 1−rt

2

(
1+rt

1−rt

) =
dt,i

1+ rt

.

Likewise, for each i such that Mi jt = −1, we find dt+1,i =
dt,i

1−rt
. Thus our reduction is complete. To

check that ∑m
i=1 dt+1,i = 1, i.e., that renormalization has been taken into account by the iterated map,

we calculate:
m

∑
i=1

dt+1,i =
1

1+ rt

d+ +
1

1− rt

d− =
(1+ rt)

2(1+ rt)
+

(1− rt)

2(1− rt)
= 1.

For the iterated map, fixed points (rather than cycles or other dynamics) occur when the training

data fails to be separable by the set of weak classifiers. In that case, the analysis of Collins, Schapire,

and Singer (2002) shows that the iterated map will converge to a fixed point, and that the λ′
ts will

asymptotically attain the minimum value of the convex function F(λ) := ∑m
i=1 e−(Mλ)i , which is

strictly positive in the non-separable case. Consider the possibility of fixed points for the dt’s in the

separable case ρ > 0. From our dynamics, we can see that this is not possible, since rt ≥ ρ > 0 and

for any i such that dt,i > 0,

dt+1,i =
dt,i

(1+Mi, jt rt)
6= dt,i.

Thus, we have shown that AdaBoost does not produce fixed points in the separable case.

1564

THE DYNAMICS OF ADABOOST

4. The Dynamics of AdaBoost in the Simplest Case : The 3×3 Case

In this section, we will introduce a simple 3×3 input matrix (in fact, the simplest non-trivial matrix)

and analyze the convergence of AdaBoost in this case, using the iterated map of Section 3. We will

show that AdaBoost does produce a maximum margin solution, remarkably through convergence

to one of two stable limit cycles. We extend this example to the m×m case in Section 5, where

AdaBoost produces at least (m−1)! stable limit cycles, each corresponding to a maximum margin

solution. We will also extend this example in Section 6 to include manifolds of cycles.

Consider the input matrix

M =




−1 1 1

1 −1 1

1 1 −1




corresponding to the case where each classifier misclassifies one of three training examples. We

could add columns to include the negated version of each weak classifier, but those columns would

never be chosen by AdaBoost, so they have been removed for simplicity. The value of the margin

for the best combined classifier defined by M is 1/3. How will AdaBoost achieve this result? We

will proceed step by step.

Assume we are in the optimal case, where jt ∈ argmax j(d
T
t M) j. Consider the dynamical system

on the simplex ∆3 defined by our iterated map in Section 3. In the triangular region with vertices

(0,0,1),(1
3
, 1

3
, 1

3
),(0,1,0), jt will be 1 for Step 1 of the iterated map. That is, within this region,

dt,1 < dt,2 and dt,1 < dt,3, so jt will be 1. Similarly, we have regions for jt = 2 and jt = 3 (see Figure

3(a)).

AdaBoost was designed to set the edge of the previous weak classifier to 0 at each iteration, that

is, dt+1 will always satisfy (dT
t+1M) jt = 0. To see this using the iterated map,

(dT
t+1M) jt = ∑

{i:Mi jt =1}
dt,i

1

1+ rt

− ∑
{i:Mi jt =−1}

dt,i
1

1− rt

= d+
1

1+ rt

−d−
1

1− rt

=
1+ rt

2

1

1+ rt

− 1− rt

2

1

1− rt

= 0. (1)

This implies that after the first iteration, the dt’s are restricted to

{d : [(dT M)1 = 0]
[

[(dT M)2 = 0]
[

[(dT M)3 = 0]}.

Thus, it is sufficient for our dynamical system to be analyzed on the edges of a triangle with vertices(
0, 1

2
, 1

2

)
,
(

1
2
,0, 1

2

)
,
(

1
2
, 1

2
,0
)

(see Figure 3(b)). That is, within one iteration, the 2-dimensional map

on the simplex ∆3 reduces to a 1-dimensional map on the edges of the triangle.

Consider the possibility of periodic cycles for the dt’s. If there are periodic cycles of length T ,

then the following condition must hold for d
cyc
1 , ...,dcyc

T in the cycle: For each i, either

• d
cyc
1,i = 0, or

• ∏T
t=1(1+Mi jt r

cyc
t) = 1,

where r
cyc
t = (dcycT

t M) jt . (As usual, d
cyc
t

T
:= (dcyc

t)T , superscript T denotes transpose.) The state-

ment above follows directly from the reduced map iterated T times. In fact, the first condition

d
cyc
1,i = 0 implies d

cyc
t,i = 0 for all t ∈ {1, ...,T}. We call the second condition the cycle condition.

1565

RUDIN, DAUBECHIES, AND SCHAPIRE

a) b)

t,
2

t,1

j = 1

j = 2
t

t j = 3
t

1

1

d

d

1/3

1/3

t,1

t,
2

(d M) =0

(d M) =0

(d M) =0

2

1

3t

t

t
T

T

T

1

1

1/2

d

d

1/2

c1) c2) c3)

� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �

✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁
✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁
✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁
✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁
✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁
✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁
✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁
✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁
✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁
✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁
✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁
✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁
✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁
✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁
✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁
✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁
✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁
✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁
✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁
✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁
✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁
✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁
✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁
✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁
✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁
✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁

t,1

t,
2

✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂
✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂
✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂
✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂
✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂
✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂
✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂
✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂
✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂
✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂
✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂

✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄
✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄
✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄
✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄
✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄
✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄
✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄
✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄
✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄
✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄

☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎
☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎
☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎
☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎

✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆
✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆
✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆
✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆

✝ ✝ ✝ ✝ ✝ ✝ ✝ ✝ ✝ ✝ ✝ ✝
✝ ✝ ✝ ✝ ✝ ✝ ✝ ✝ ✝ ✝ ✝ ✝
✞ ✞ ✞ ✞ ✞ ✞ ✞ ✞ ✞ ✞ ✞ ✞
✞ ✞ ✞ ✞ ✞ ✞ ✞ ✞ ✞ ✞ ✞ ✞

✟ ✟ ✟ ✟ ✟ ✟ ✟ ✟ ✟ ✟ ✟
✟ ✟ ✟ ✟ ✟ ✟ ✟ ✟ ✟ ✟ ✟
✟ ✟ ✟ ✟ ✟ ✟ ✟ ✟ ✟ ✟ ✟
✟ ✟ ✟ ✟ ✟ ✟ ✟ ✟ ✟ ✟ ✟
✟ ✟ ✟ ✟ ✟ ✟ ✟ ✟ ✟ ✟ ✟
✟ ✟ ✟ ✟ ✟ ✟ ✟ ✟ ✟ ✟ ✟
✟ ✟ ✟ ✟ ✟ ✟ ✟ ✟ ✟ ✟ ✟
✟ ✟ ✟ ✟ ✟ ✟ ✟ ✟ ✟ ✟ ✟

✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠
✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠
✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠
✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠
✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠
✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠
✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠
✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠

✡ ✡ ✡ ✡ ✡ ✡ ✡ ✡ ✡ ✡
✡ ✡ ✡ ✡ ✡ ✡ ✡ ✡ ✡ ✡
☛ ☛ ☛ ☛ ☛ ☛ ☛ ☛ ☛ ☛
☛ ☛ ☛ ☛ ☛ ☛ ☛ ☛ ☛ ☛

☞ ☞ ☞ ☞ ☞ ☞ ☞ ☞ ☞
☞ ☞ ☞ ☞ ☞ ☞ ☞ ☞ ☞
☞ ☞ ☞ ☞ ☞ ☞ ☞ ☞ ☞
☞ ☞ ☞ ☞ ☞ ☞ ☞ ☞ ☞

✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌
✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌
✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌
✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌

✍ ✍ ✍ ✍ ✍ ✍ ✍
✍ ✍ ✍ ✍ ✍ ✍ ✍
✍ ✍ ✍ ✍ ✍ ✍ ✍
✍ ✍ ✍ ✍ ✍ ✍ ✍
✍ ✍ ✍ ✍ ✍ ✍ ✍
✍ ✍ ✍ ✍ ✍ ✍ ✍

✎ ✎ ✎ ✎ ✎ ✎ ✎
✎ ✎ ✎ ✎ ✎ ✎ ✎
✎ ✎ ✎ ✎ ✎ ✎ ✎
✎ ✎ ✎ ✎ ✎ ✎ ✎
✎ ✎ ✎ ✎ ✎ ✎ ✎

✏ ✏ ✏ ✏ ✏ ✏ ✏ ✏ ✏ ✏ ✏
✏ ✏ ✏ ✏ ✏ ✏ ✏ ✏ ✏ ✏ ✏
✏ ✏ ✏ ✏ ✏ ✏ ✏ ✏ ✏ ✏ ✏
✏ ✏ ✏ ✏ ✏ ✏ ✏ ✏ ✏ ✏ ✏
✏ ✏ ✏ ✏ ✏ ✏ ✏ ✏ ✏ ✏ ✏
✏ ✏ ✏ ✏ ✏ ✏ ✏ ✏ ✏ ✏ ✏

✑ ✑ ✑ ✑ ✑ ✑ ✑ ✑ ✑ ✑ ✑
✑ ✑ ✑ ✑ ✑ ✑ ✑ ✑ ✑ ✑ ✑
✑ ✑ ✑ ✑ ✑ ✑ ✑ ✑ ✑ ✑ ✑
✑ ✑ ✑ ✑ ✑ ✑ ✑ ✑ ✑ ✑ ✑
✑ ✑ ✑ ✑ ✑ ✑ ✑ ✑ ✑ ✑ ✑
✑ ✑ ✑ ✑ ✑ ✑ ✑ ✑ ✑ ✑ ✑

✒ ✒ ✒ ✒ ✒ ✒ ✒ ✒ ✒ ✒ ✒ ✒
✒ ✒ ✒ ✒ ✒ ✒ ✒ ✒ ✒ ✒ ✒ ✒
✒ ✒ ✒ ✒ ✒ ✒ ✒ ✒ ✒ ✒ ✒ ✒
✒ ✒ ✒ ✒ ✒ ✒ ✒ ✒ ✒ ✒ ✒ ✒
✒ ✒ ✒ ✒ ✒ ✒ ✒ ✒ ✒ ✒ ✒ ✒
✒ ✒ ✒ ✒ ✒ ✒ ✒ ✒ ✒ ✒ ✒ ✒
✒ ✒ ✒ ✒ ✒ ✒ ✒ ✒ ✒ ✒ ✒ ✒

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕
✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕
✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕
✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕
✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕
✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

1

1

1/2

d
1/2

d

✘ ✘
✘ ✘
✘ ✘
✘ ✘
✘ ✘
✘ ✘
✘ ✘
✘ ✘
✘ ✘

✙ ✙
✙ ✙
✙ ✙
✙ ✙
✙ ✙
✙ ✙
✙ ✙
✙ ✙
✙ ✙

t,1

t,
2

✚ ✚ ✚ ✚
✚ ✚ ✚ ✚
✚ ✚ ✚ ✚
✚ ✚ ✚ ✚
✚ ✚ ✚ ✚
✚ ✚ ✚ ✚
✚ ✚ ✚ ✚
✚ ✚ ✚ ✚

✛ ✛ ✛ ✛
✛ ✛ ✛ ✛
✛ ✛ ✛ ✛
✛ ✛ ✛ ✛
✛ ✛ ✛ ✛
✛ ✛ ✛ ✛
✛ ✛ ✛ ✛
✛ ✛ ✛ ✛

✜ ✜ ✜
✜ ✜ ✜
✜ ✜ ✜
✜ ✜ ✜
✜ ✜ ✜
✜ ✜ ✜
✜ ✜ ✜
✜ ✜ ✜
✜ ✜ ✜
✜ ✜ ✜
✜ ✜ ✜
✜ ✜ ✜

✢ ✢
✢ ✢
✢ ✢
✢ ✢
✢ ✢
✢ ✢
✢ ✢
✢ ✢
✢ ✢
✢ ✢
✢ ✢
✢ ✢

✣ ✣ ✣ ✣ ✣ ✣ ✣ ✣ ✣ ✣ ✣
✣ ✣ ✣ ✣ ✣ ✣ ✣ ✣ ✣ ✣ ✣
✣ ✣ ✣ ✣ ✣ ✣ ✣ ✣ ✣ ✣ ✣
✣ ✣ ✣ ✣ ✣ ✣ ✣ ✣ ✣ ✣ ✣
✣ ✣ ✣ ✣ ✣ ✣ ✣ ✣ ✣ ✣ ✣
✣ ✣ ✣ ✣ ✣ ✣ ✣ ✣ ✣ ✣ ✣
✣ ✣ ✣ ✣ ✣ ✣ ✣ ✣ ✣ ✣ ✣
✣ ✣ ✣ ✣ ✣ ✣ ✣ ✣ ✣ ✣ ✣
✣ ✣ ✣ ✣ ✣ ✣ ✣ ✣ ✣ ✣ ✣
✣ ✣ ✣ ✣ ✣ ✣ ✣ ✣ ✣ ✣ ✣
✣ ✣ ✣ ✣ ✣ ✣ ✣ ✣ ✣ ✣ ✣
✣ ✣ ✣ ✣ ✣ ✣ ✣ ✣ ✣ ✣ ✣

✤ ✤ ✤ ✤ ✤ ✤ ✤ ✤ ✤ ✤ ✤
✤ ✤ ✤ ✤ ✤ ✤ ✤ ✤ ✤ ✤ ✤
✤ ✤ ✤ ✤ ✤ ✤ ✤ ✤ ✤ ✤ ✤
✤ ✤ ✤ ✤ ✤ ✤ ✤ ✤ ✤ ✤ ✤
✤ ✤ ✤ ✤ ✤ ✤ ✤ ✤ ✤ ✤ ✤
✤ ✤ ✤ ✤ ✤ ✤ ✤ ✤ ✤ ✤ ✤
✤ ✤ ✤ ✤ ✤ ✤ ✤ ✤ ✤ ✤ ✤
✤ ✤ ✤ ✤ ✤ ✤ ✤ ✤ ✤ ✤ ✤
✤ ✤ ✤ ✤ ✤ ✤ ✤ ✤ ✤ ✤ ✤
✤ ✤ ✤ ✤ ✤ ✤ ✤ ✤ ✤ ✤ ✤
✤ ✤ ✤ ✤ ✤ ✤ ✤ ✤ ✤ ✤ ✤
✤ ✤ ✤ ✤ ✤ ✤ ✤ ✤ ✤ ✤ ✤

✥ ✥ ✥ ✥ ✥ ✥ ✥ ✥ ✥
✥ ✥ ✥ ✥ ✥ ✥ ✥ ✥ ✥
✥ ✥ ✥ ✥ ✥ ✥ ✥ ✥ ✥
✥ ✥ ✥ ✥ ✥ ✥ ✥ ✥ ✥
✥ ✥ ✥ ✥ ✥ ✥ ✥ ✥ ✥
✥ ✥ ✥ ✥ ✥ ✥ ✥ ✥ ✥
✥ ✥ ✥ ✥ ✥ ✥ ✥ ✥ ✥
✥ ✥ ✥ ✥ ✥ ✥ ✥ ✥ ✥
✥ ✥ ✥ ✥ ✥ ✥ ✥ ✥ ✥
✥ ✥ ✥ ✥ ✥ ✥ ✥ ✥ ✥
✥ ✥ ✥ ✥ ✥ ✥ ✥ ✥ ✥
✥ ✥ ✥ ✥ ✥ ✥ ✥ ✥ ✥

✦ ✦ ✦ ✦ ✦ ✦ ✦ ✦ ✦
✦ ✦ ✦ ✦ ✦ ✦ ✦ ✦ ✦
✦ ✦ ✦ ✦ ✦ ✦ ✦ ✦ ✦
✦ ✦ ✦ ✦ ✦ ✦ ✦ ✦ ✦
✦ ✦ ✦ ✦ ✦ ✦ ✦ ✦ ✦
✦ ✦ ✦ ✦ ✦ ✦ ✦ ✦ ✦
✦ ✦ ✦ ✦ ✦ ✦ ✦ ✦ ✦
✦ ✦ ✦ ✦ ✦ ✦ ✦ ✦ ✦
✦ ✦ ✦ ✦ ✦ ✦ ✦ ✦ ✦
✦ ✦ ✦ ✦ ✦ ✦ ✦ ✦ ✦
✦ ✦ ✦ ✦ ✦ ✦ ✦ ✦ ✦
✦ ✦ ✦ ✦ ✦ ✦ ✦ ✦ ✦✧ ✧ ✧ ✧ ✧ ✧ ✧ ✧ ✧ ✧ ✧ ✧ ✧ ✧

★ ★ ★
★ ★ ★
★ ★ ★
★ ★ ★
★ ★ ★
★ ★ ★
★ ★ ★
★ ★ ★
★ ★ ★
★ ★ ★
★ ★ ★

✩ ✩
✩ ✩
✩ ✩
✩ ✩
✩ ✩
✩ ✩
✩ ✩
✩ ✩
✩ ✩
✩ ✩
✩ ✩

✪ ✪ ✪
✪ ✪ ✪
✪ ✪ ✪
✪ ✪ ✪
✪ ✪ ✪
✪ ✪ ✪
✪ ✪ ✪
✪ ✪ ✪
✪ ✪ ✪
✪ ✪ ✪

✫ ✫ ✫
✫ ✫ ✫
✫ ✫ ✫
✫ ✫ ✫
✫ ✫ ✫
✫ ✫ ✫
✫ ✫ ✫
✫ ✫ ✫
✫ ✫ ✫
✫ ✫ ✫

✬ ✬ ✬ ✬ ✬
✬ ✬ ✬ ✬ ✬
✬ ✬ ✬ ✬ ✬
✬ ✬ ✬ ✬ ✬
✬ ✬ ✬ ✬ ✬
✬ ✬ ✬ ✬ ✬
✬ ✬ ✬ ✬ ✬
✬ ✬ ✬ ✬ ✬
✬ ✬ ✬ ✬ ✬
✬ ✬ ✬ ✬ ✬

✭ ✭ ✭ ✭ ✭
✭ ✭ ✭ ✭ ✭
✭ ✭ ✭ ✭ ✭
✭ ✭ ✭ ✭ ✭
✭ ✭ ✭ ✭ ✭
✭ ✭ ✭ ✭ ✭
✭ ✭ ✭ ✭ ✭
✭ ✭ ✭ ✭ ✭
✭ ✭ ✭ ✭ ✭
✭ ✭ ✭ ✭ ✭

✮ ✮ ✮ ✮ ✮ ✮ ✮
✮ ✮ ✮ ✮ ✮ ✮ ✮
✮ ✮ ✮ ✮ ✮ ✮ ✮
✮ ✮ ✮ ✮ ✮ ✮ ✮
✮ ✮ ✮ ✮ ✮ ✮ ✮
✮ ✮ ✮ ✮ ✮ ✮ ✮
✮ ✮ ✮ ✮ ✮ ✮ ✮
✮ ✮ ✮ ✮ ✮ ✮ ✮
✮ ✮ ✮ ✮ ✮ ✮ ✮
✮ ✮ ✮ ✮ ✮ ✮ ✮
✮ ✮ ✮ ✮ ✮ ✮ ✮
✮ ✮ ✮ ✮ ✮ ✮ ✮

✯ ✯ ✯ ✯ ✯ ✯ ✯
✯ ✯ ✯ ✯ ✯ ✯ ✯
✯ ✯ ✯ ✯ ✯ ✯ ✯
✯ ✯ ✯ ✯ ✯ ✯ ✯
✯ ✯ ✯ ✯ ✯ ✯ ✯
✯ ✯ ✯ ✯ ✯ ✯ ✯
✯ ✯ ✯ ✯ ✯ ✯ ✯
✯ ✯ ✯ ✯ ✯ ✯ ✯
✯ ✯ ✯ ✯ ✯ ✯ ✯
✯ ✯ ✯ ✯ ✯ ✯ ✯
✯ ✯ ✯ ✯ ✯ ✯ ✯
✯ ✯ ✯ ✯ ✯ ✯ ✯

✰ ✰ ✰ ✰ ✰ ✰ ✰
✰ ✰ ✰ ✰ ✰ ✰ ✰
✰ ✰ ✰ ✰ ✰ ✰ ✰
✰ ✰ ✰ ✰ ✰ ✰ ✰
✰ ✰ ✰ ✰ ✰ ✰ ✰
✰ ✰ ✰ ✰ ✰ ✰ ✰
✰ ✰ ✰ ✰ ✰ ✰ ✰
✰ ✰ ✰ ✰ ✰ ✰ ✰
✰ ✰ ✰ ✰ ✰ ✰ ✰
✰ ✰ ✰ ✰ ✰ ✰ ✰

✱ ✱ ✱ ✱ ✱ ✱ ✱
✱ ✱ ✱ ✱ ✱ ✱ ✱
✱ ✱ ✱ ✱ ✱ ✱ ✱
✱ ✱ ✱ ✱ ✱ ✱ ✱
✱ ✱ ✱ ✱ ✱ ✱ ✱
✱ ✱ ✱ ✱ ✱ ✱ ✱
✱ ✱ ✱ ✱ ✱ ✱ ✱
✱ ✱ ✱ ✱ ✱ ✱ ✱
✱ ✱ ✱ ✱ ✱ ✱ ✱
✱ ✱ ✱ ✱ ✱ ✱ ✱

✲ ✲ ✲ ✲
✲ ✲ ✲ ✲
✲ ✲ ✲ ✲
✲ ✲ ✲ ✲
✲ ✲ ✲ ✲
✲ ✲ ✲ ✲
✲ ✲ ✲ ✲
✲ ✲ ✲ ✲
✲ ✲ ✲ ✲
✲ ✲ ✲ ✲
✲ ✲ ✲ ✲

✳ ✳ ✳ ✳
✳ ✳ ✳ ✳
✳ ✳ ✳ ✳
✳ ✳ ✳ ✳
✳ ✳ ✳ ✳
✳ ✳ ✳ ✳
✳ ✳ ✳ ✳
✳ ✳ ✳ ✳
✳ ✳ ✳ ✳
✳ ✳ ✳ ✳
✳ ✳ ✳ ✳

✴
✴
✴
✴
✴
✴
✴
✴
✴
✴
✴
✴

✵
✵
✵
✵
✵
✵
✵
✵
✵
✵
✵
✵

1

1

1/2

d
1/2

d

t,1

t,
2

✶ ✶
✶ ✶
✶ ✶
✶ ✶
✶ ✶
✶ ✶
✶ ✶
✶ ✶
✶ ✶
✶ ✶
✶ ✶
✶ ✶
✶ ✶
✶ ✶
✶ ✶
✶ ✶
✶ ✶
✶ ✶
✶ ✶
✶ ✶
✶ ✶
✶ ✶
✶ ✶
✶ ✶
✶ ✶

✷ ✷
✷ ✷
✷ ✷
✷ ✷
✷ ✷
✷ ✷
✷ ✷
✷ ✷
✷ ✷
✷ ✷
✷ ✷
✷ ✷
✷ ✷
✷ ✷
✷ ✷
✷ ✷
✷ ✷
✷ ✷
✷ ✷
✷ ✷
✷ ✷
✷ ✷
✷ ✷
✷ ✷
✷ ✷

✸ ✸
✸ ✸
✸ ✸
✸ ✸
✸ ✸
✸ ✸
✸ ✸
✸ ✸
✸ ✸
✸ ✸
✸ ✸

✹
✹
✹
✹
✹
✹
✹
✹
✹
✹
✹

✺ ✺
✺ ✺
✺ ✺
✺ ✺
✺ ✺
✺ ✺
✺ ✺
✺ ✺
✺ ✺

✻ ✻
✻ ✻
✻ ✻
✻ ✻
✻ ✻
✻ ✻
✻ ✻
✻ ✻

✼ ✼ ✼
✼ ✼ ✼
✼ ✼ ✼
✼ ✼ ✼
✼ ✼ ✼
✼ ✼ ✼
✼ ✼ ✼
✼ ✼ ✼

✽ ✽ ✽
✽ ✽ ✽
✽ ✽ ✽
✽ ✽ ✽
✽ ✽ ✽
✽ ✽ ✽
✽ ✽ ✽
✽ ✽ ✽

✾ ✾ ✾
✾ ✾ ✾
✾ ✾ ✾
✾ ✾ ✾
✾ ✾ ✾
✾ ✾ ✾

✿ ✿ ✿
✿ ✿ ✿
✿ ✿ ✿
✿ ✿ ✿
✿ ✿ ✿
✿ ✿ ✿

❀ ❀ ❀ ❀ ❀
❀ ❀ ❀ ❀ ❀
❀ ❀ ❀ ❀ ❀
❀ ❀ ❀ ❀ ❀
❀ ❀ ❀ ❀ ❀
❀ ❀ ❀ ❀ ❀
❀ ❀ ❀ ❀ ❀

❁ ❁ ❁ ❁ ❁
❁ ❁ ❁ ❁ ❁
❁ ❁ ❁ ❁ ❁
❁ ❁ ❁ ❁ ❁
❁ ❁ ❁ ❁ ❁
❁ ❁ ❁ ❁ ❁
❁ ❁ ❁ ❁ ❁

❂ ❂ ❂ ❂ ❂
❂ ❂ ❂ ❂ ❂
❂ ❂ ❂ ❂ ❂
❂ ❂ ❂ ❂ ❂
❂ ❂ ❂ ❂ ❂
❂ ❂ ❂ ❂ ❂

❃ ❃ ❃ ❃ ❃
❃ ❃ ❃ ❃ ❃
❃ ❃ ❃ ❃ ❃
❃ ❃ ❃ ❃ ❃
❃ ❃ ❃ ❃ ❃
❃ ❃ ❃ ❃ ❃

❄ ❄ ❄ ❄
❄ ❄ ❄ ❄
❄ ❄ ❄ ❄
❄ ❄ ❄ ❄

❅ ❅ ❅ ❅
❅ ❅ ❅ ❅
❅ ❅ ❅ ❅
❅ ❅ ❅ ❅

❆ ❆ ❆ ❆ ❆ ❆
❆ ❆ ❆ ❆ ❆ ❆
❆ ❆ ❆ ❆ ❆ ❆
❆ ❆ ❆ ❆ ❆ ❆
❆ ❆ ❆ ❆ ❆ ❆

❇ ❇ ❇ ❇ ❇ ❇
❇ ❇ ❇ ❇ ❇ ❇
❇ ❇ ❇ ❇ ❇ ❇
❇ ❇ ❇ ❇ ❇ ❇
❇ ❇ ❇ ❇ ❇ ❇

❈ ❈ ❈ ❈ ❈ ❈ ❈
❈ ❈ ❈ ❈ ❈ ❈ ❈
❈ ❈ ❈ ❈ ❈ ❈ ❈

❉ ❉ ❉ ❉ ❉ ❉ ❉
❉ ❉ ❉ ❉ ❉ ❉ ❉
❉ ❉ ❉ ❉ ❉ ❉ ❉

❊ ❊ ❊ ❊ ❊ ❊ ❊ ❊ ❊ ❊ ❊❋ ❋ ❋ ❋ ❋ ❋ ❋ ❋ ❋ ❋ ❋
● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●

❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍
❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍
❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍

1

1

1/2

d
1/2

d
d) e)

t,1

t,
2

1

1

1/2

d
1/2

d

t,1

t,
2

x

x

x

1

1

1/2

d
1/2

d

Figure 3: (a) Regions of dt-space where classifiers jt = 1,2,3 will respectively be selected for Step

1 of the iterated map of Figure 2. Since dt,3 = 1− dt,2 − dt,1, this projection onto the

first two coordinates dt,1 and dt,2 completely characterizes the map. (b) Regardless of

the initial position d1, the weight vectors at all subsequent iterations d2, ...,dtmax
will be

restricted to lie on the edges of the inner triangle which is labelled. (c1) Within one iter-

ation, the triangular region where jt = 1 maps to the line {d : (dT M)1 = 0}. The arrows

indicate where various points in the shaded region will map at the following iteration.

The other two regions have analogous dynamics as shown in (c2) and (c3). (d) There are

six total subregions of the inner triangle (two for each of the three edges). Each subregion

is mapped to the interior of another subregion as indicated by the arrows. (e) Coordinates

for the two 3-cycles. The approximate positions d
cyc
1 , d

cyc
2 , and d

cyc
3 for one of the 3-cycles

are denoted by a small ‘o’, the positions for the other cycle are denoted by a small ‘x’.

1566

THE DYNAMICS OF ADABOOST

0.2 0.3 0.4 0.5

0.2

0.4

0.5

d
t,1

d
t,
2

Figure 4: 50 iterations of AdaBoost showing convergence of dt’s to a cycle. Small rings indicate

earlier iterations of AdaBoost, while larger rings indicate later iterations. There are many

concentric rings at positions d
cyc
1 , d

cyc
2 , and d

cyc
3 .

Consider the possibility of a periodic cycle of length 3, cycling through each weak classifier

once. For now, assume j1 = 1, j2 = 2, j3 = 3, but without loss of generality one can choose j1 =
1, j2 = 3, j3 = 2, which yields another cycle. Assume d

cyc
1,i > 0 for all i. From the cycle condition,

1 = (1+Mi j1r
cyc
1)(1+Mi j2r

cyc
2)(1+Mi j3r

cyc
3) for i = 1,2, and 3, i.e.,

1 = (1− r
cyc
1)(1+ r

cyc
2)(1+ r

cyc
3) for i = 1, (2)

1 = (1+ r
cyc
1)(1− r

cyc
2)(1+ r

cyc
3) for i = 2, (3)

1 = (1+ r
cyc
1)(1+ r

cyc
2)(1− r

cyc
3) for i = 3. (4)

From (2) and (3),

(1− r
cyc
1)(1+ r

cyc
2) = (1+ r

cyc
1)(1− r

cyc
2),

thus r
cyc
1 = r

cyc
2 . Similarly, r

cyc
2 = r

cyc
3 from (3) and (4), so r

cyc
1 = r

cyc
2 = r

cyc
3 . Using either (2), (3),

or (4) to solve for r := r
cyc
1 = r

cyc
2 = r

cyc
3 (taking positive roots since r > 0), we find the value of the

edge for every iteration in the cycle to be equal to the golden ratio minus one, i.e.,

r =

√
5−1

2
.

Now, let us solve for the weight vectors in the cycle, d
cyc
1 , d

cyc
2 , and d

cyc
3 . At t = 2, the edge with

respect to classifier 1 is 0. Again, it is required that each d
cyc
t lies on the simplex ∆3.

(dcyc
2

T
M)1 = 0 and

3

∑
i=1

d
cyc
2,i = 1, that is,

−d
cyc
2,1 +d

cyc
2,2 +d

cyc
2,3 = 0 and d

cyc
2,1 +d

cyc
2,2 +d

cyc
2,3 = 1,

thus, d
cyc
2,1 =

1

2
.

1567

RUDIN, DAUBECHIES, AND SCHAPIRE

Since d
cyc
2,1 = 1

2
, we have d

cyc
2,2 = 1

2
− d

cyc
2,3 . At t = 3, the edge with respect to classifier 2 is 0. From

the iterated map, we can write d
cyc
3 in terms of d

cyc
2 .

0 = (dcyc
3

T
M)2 =

3

∑
i=1

Mi2d
cyc
2,i

1+Mi2r
=

1
2

1+ r
−

1
2
−d

cyc
2,3

1− r
+

d
cyc
2,3

1+ r
, so

d
cyc
2,3 =

r

2
=

√
5−1

4
and thus d

cyc
2,2 =

1

2
−d

cyc
2,3 =

3−
√

5

4
.

Now that we have found d
cyc
2 , we can recover the rest of the cycle:

d
cyc
1 =

(
3−

√
5

4
,

√
5−1

4
,
1

2

)T

,

d
cyc
2 =

(
1

2
,
3−

√
5

4
,

√
5−1

4

)T

,

d
cyc
3 =

(√
5−1

4
,
1

2
,
3−

√
5

4

)T

.

To check that this actually is a cycle, starting from d
cyc
1 , AdaBoost will choose jt = 1. Then r1 =

(dcyc
1

T
M)1 =

√
5−1
2

. Now, computing
d

cyc
1,i

1+Mi,1r1
for all i yields d

cyc
2 . In this way, AdaBoost will cycle

between weak classifiers j = 1,2,3,1,2,3, etc.

The other 3-cycle can be determined similarly:

d
cyc′

1 =

(
3−

√
5

4
,
1

2
,

√
5−1

4

)T

,

d
cyc′

2 =

(
1

2
,

√
5−1

4
,
3−

√
5

4

)T

,

d
cyc′

3 =

(√
5−1

4
,
3−

√
5

4
,
1

2

)T

.

Since we always start from the initial condition d1 =
(

1
3
, 1

3
, 1

3

)T
, the initial choice of jt is arbitrary;

all three weak classifiers are within the argmax set in Step 1 of the iterated map. This arbitrary step,

along with another arbitrary choice at the second iteration, determines which of the two cycles the

algorithm will choose; as we will see, the algorithm must converge to one of these two cycles.

To show that these cycles are globally stable, we will show that the map is a contraction from

each subregion of the inner triangle into another subregion. We only need to consider the one-

dimensional map defined on the edges of the inner triangle, since within one iteration, every trajec-

tory starting within the simplex ∆3 lands somewhere on the edges of the inner triangle. The edges of

the inner triangle consist of 6 subregions, as shown in Figure 3(d). We will consider one subregion,

the segment from
(
0, 1

2
, 1

2

)T
to
(

1
4
, 1

2
, 1

4

)T
, or simply

(
x, 1

2
, 1

2
− x
)T

where x ∈ (0, 1
4
). (We choose not

to deal with the endpoints since we will show they are unstable; thus the dynamics never reach or

1568

THE DYNAMICS OF ADABOOST

converge to these points. For the first endpoint the map is not defined, and for the second, the map

is ambiguous; not well-defined.) For this subregion jt = 1, and the next iterate is

(
x

1− (1−2x)
,

1
2

1+(1−2x)
,

1
2
− x

1+(1−2x)

)T

=

(
1

2
,

1

4(1− x)
,
1

2
− 1

4(1− x)

)T

.

To compare the length of the new interval with the length of the previous interval, we use the fact that

there is only one degree of freedom. A position on the previous interval can be uniquely determined

by its first component x ∈ (0, 1
4
). A position on the new interval can be uniquely determined by its

second component taking values 1
4(1−x) , where we still have x ∈ (0, 1

4
). The map

x 7→ 1

4(1− x)

is a contraction. To see this, the slope of the map is 1
4(1−x)2 , taking values within the interval (1

4
, 4

9
).

Thus the map is continuous and monotonic, with absolute slope strictly less than 1. The next it-

erate will appear within the interval
(

1
2
, 1

4
, 1

4

)T
to
(

1
2
, 1

3
, 1

6

)T
, which is strictly contained within the

subregion connecting
(

1
2
, 1

4
, 1

4

)T
with

(
1
2
, 1

2
,0
)T

. Thus, we have a contraction. A similar calculation

can be performed for each of the subregions, showing that each subregion maps monotonically to

an area strictly within another subregion by a contraction map. Figure 3(d) illustrates the various

mappings between subregions. After three iterations, each subregion maps by a monotonic con-

traction to a strict subset of itself. Thus, any fixed point of the three-iteration cycle must be the

unique attracting fixed point for that subregion, and the domain of attraction for this point must be

the whole subregion. In fact, there are six such fixed points, one for each subregion, three for each

of the two cycles. The union of the domains of attraction for these fixed points is the whole triangle;

every position d within the simplex ∆3 is within the domain of attraction of one of these 3-cycles.

Thus, these two cycles are globally stable.

Since the contraction is so strong at every iteration (as shown above, the absolute slope of the

map is much less than 1), the convergence to one of these two 3-cycles is very fast. Figure 5(a) shows

where each subregion of the “unfolded triangle” will map after the first iteration. The “unfolded

triangle” is the interval obtained by traversing the triangle clockwise, starting and ending at
(
0, 1

2
, 1

2

)
.

Figure 5(b) illustrates that the absolute slope of the second iteration of this map at the fixed points

is much less than 1; the cycles are strongly attracting.

The combined classifier that AdaBoost will output is

λcombined =

(
1
2

ln
(

1+r
cyc
1

1−r
cyc
1

)
, 1

2
ln
(

1+r
cyc
2

1−r
cyc
2

)
, 1

2
ln
(

1+r
cyc
3

1−r
cyc
3

))T

normalization constant
=

(
1

3
,
1

3
,
1

3

)T

,

and since mini(Mλcombined)i = 1
3
, we see that AdaBoost always produces a maximum margin solu-

tion for this input matrix.

Thus, we have derived our first convergence proof for AdaBoost in a specific separable case.

We have shown that at least in some cases, AdaBoost is in fact a margin-maximizing algorithm. We

summarize this first main result.

Theorem 1 For the 3×3 matrix M:

1569

RUDIN, DAUBECHIES, AND SCHAPIRE

a) b)

(0,.5,.5) (.5,.5,0) (.5,.0,.5) (0,.5,.5)
(0,.5,.5)

(.5,.5,0)

(.5,.0,.5)

(0,.5,.5)

position along triangle

p
o

s
it
io

n
 a

lo
n

g
 t

ri
a

n
g

le

(0,.5,.5) (.5,.5,0) (.5,.0,.5) (0,.5,.5)
(0,.5,.5)

(.5,.5,0)

(.5,0,.5)

(0,.5,.5)

position along triangle

p
o

s
it
io

n
 a

lo
n

g
 t

ri
a

n
g

le

Figure 5: (a) The iterated map on the unfolded triangle. Both axes give coordinates on the edges of

the inner triangle in Figure 3(b). The plot shows where dt+1 will be, given dt . (b) The

map from (a) iterated twice, showing where dt+3 will be, given dt . For this “triple map”,

there are 6 stable fixed points, 3 for each cycle.

• The weight vectors dt converge to one of two possible stable cycles. The coordinates of the

cycles are:

d
cyc
1 =

(
3−

√
5

4
,

√
5−1

4
,
1

2

)T

,

d
cyc
2 =

(
1

2
,
3−

√
5

4
,

√
5−1

4

)T

,

d
cyc
3 =

(√
5−1

4
,
1

2
,
3−

√
5

4

)T

,

and

d
cyc′

1 =

(
3−

√
5

4
,
1

2
,

√
5−1

4

)T

,

d
cyc′

2 =

(
1

2
,

√
5−1

4
,
3−

√
5

4

)T

,

d
cyc′

3 =

(√
5−1

4
,
3−

√
5

4
,
1

2

)T

.

• AdaBoost produces a maximum margin solution for this matrix M.

5. Generalization to m Classifiers, Each with One Misclassified Example

This simple 3 classifier case can be generalized to m classifiers, each having one misclassified

training example; we will find solutions of a similar nature to the ones we found for the 3×3 case,

1570

THE DYNAMICS OF ADABOOST

where there is a rotation of the coordinates at every iteration and a contraction. Here,

M =




−1 1 1 · · · 1

1 −1 1 · · · 1

1 1 −1
...

...
. . . 1

1 · · · · · · 1 −1




.

Theorem 2 For the m×m matrix above:

• The dynamical system for AdaBoost’s weight vectors contains at least (m−1)! stable periodic

cycles of length m.

• AdaBoost converges to a maximum margin solution when the weight vectors converge to one

of these cycles.

The proof of Theorem 2 can be found in Appendix A.

6. Identically Classified Examples and Manifolds of Cycles

In this section, we show how manifolds of cycles appear automatically from cyclic dynamics when

there are sets of identically classified training examples. We show that the manifolds of cycles that

arise from a variation of the 3×3 case are stable. One should think of a “manifold of cycles” as a

continuum of cycles; starting from a position on any cycle, if we move along the directions defined

by the manifold, we will find starting positions for infinitely many other cycles. These manifolds

are interesting from a theoretical viewpoint. In addition, their existence and stability will be an

essential part of the proof of Theorem 7.

A set of training examples I is identically classified if each pair of training examples i and i′

contained in I satisfy yih j(xi) = yi′h j(xi′) ∀ j. That is, the rows i and i′ of matrix M are identical;

training examples i and i′ are misclassified by the same set of weak classifiers. When AdaBoost

cycles, it treats each set of identically classified training examples as one training example, in a

specific sense we will soon describe.

For convenience of notation, we will remove the ‘cyc’ notation so that d1 is a position within the

cycle (or equivalently, we could make the assumption that AdaBoost starts on a cycle). Say there

exists a cycle such that d1,i > 0 ∀i ∈ I , where d1 is a position within the cycle and M possesses some

identically classified examples I . (I is not required to include all examples identically classified

with i ∈ I .) We know that for each pair of identically classified examples i and i′ in I , we have

Mi jt = Mi′ jt ∀t = 1, ...,T . Let perturbation a ∈ R
m obey

∑̄
i∈I

aī = 0, and also ai = 0 for i /∈ I .

Now, let da
1 := d1 + a. We accept only perturbations a so that the perturbation does not affect the

value of any jt in the cycle. That is, we assume each component of a is sufficiently small; since

the dynamical system defined by AdaBoost is piecewise continuous, it is possible to choose a small

enough so the perturbed trajectory is still close to the original trajectory after T iterations. Also, da
1

1571

RUDIN, DAUBECHIES, AND SCHAPIRE

must still be a valid distribution, so it must obey the constraint da
1 ∈ ∆m, i.e., ∑i ai = 0 as we have

specified. Choose any elements i and i′ ∈ I . Now,

ra
1 = (da

1
T M) j1 = (d1

T M) j1 +(aT M) j1 = r1 + ∑̄
i∈I

aīMī j1
= r1 +Mi′ j1 ∑̄

i∈I

aī = r1

da
2,i =

da
1,i

1+Mi j1ra
1

=
da

1,i

1+Mi j1r1

=
d1,i

1+Mi j1r1

+
1

1+Mi′ j1r1

ai = d2,i +
1

1+Mi′ j1r1

ai

ra
2 = (da

2
T M) j2 = (d2

T M) j2 +
1

1+Mi′ j1r1

(aT M) j2 = r2 +
1

1+Mi′ j1r1
∑̄
i∈I

aīMī j2

= r2 +
Mi′ j2

1+Mi′ j1r1
∑̄
i∈I

aī = r2

da
2,i =

da
2,i

1+Mi j2ra
2

=
da

2,i

1+Mi j2r2

=
d2,i

1+Mi j2r2

+
1

(1+Mi′ j2r2)(1+Mi′ j1r1)
ai

= d3,i +
1

(1+Mi′ j2r2)(1+Mi′ j1r1)
ai

...

da
T+1,i = dT+1,i +

1

∏T
t=1(1+Mi′ jt rt)

ai = d1,i +ai = da
1,i.

The cycle condition was used in the last line. This calculation shows that if we perturb any cycle

in the directions defined by I , we will find another cycle. An entire manifold of cycles then exists,

corresponding to the possible nonzero acceptable perturbations a. Effectively, the perturbation shifts

the distribution among examples in I , with the total weight remaining the same. For example, if

a cycle exists containing vector d1 with d1,1 = .20,d1,2 = .10, and d1,3 = .30, where {1,2,3} ⊂ I ,

then a cycle with d1,1 = .22,d1,2 = .09, and d1,3 = .29 also exists, assuming none of the jt’s change;

in this way, groups of identically distributed examples may be treated as one example, because they

must share a single total weight (again, only within the region where none of the jt’s change).

We will now consider a simple case where manifolds of cycles exist, and we will show that these

manifolds are stable in the proof of Theorem 3.
The form of the matrix M is 



−1 1 1
...

...
...

−1 1 1

1 −1 1
...

...
...

1 −1 1

1 1 −1
...

...
...

1 1 −1

1 1 1
...

...
...

1 1 1




.

To be more specific, the first q1 training examples are misclassified only by h1, the next q2 examples

are misclassified only by h2, the next q3 examples are misclassified only by h3, and the last q4

1572

THE DYNAMICS OF ADABOOST

examples are always correctly classified (their weights converge to zero). Thus we consider the

components of d as belonging to one of four pieces; as long as

(
q1

∑
i=1

di,
q1+q2

∑
i=q1+1

di,
q1+q2+q3

∑
i=q1+q2+1

di

)T

= d
cyc
1 ,dcyc

2 ,dcyc
3 ,dcyc′

1 ,dcyc′

2 , or d
cyc′

3 from Section 4,

then d lies on a 3-cycle as we have just shown.

Theorem 3 For the matrix M defined above, manifolds of cycles exist (there is a continuum of

cycles). These manifolds are stable.

The proof of Theorem 3 can be found in Appendix B.

7. Cycles and Support Vectors

Our goal is to understand general properties of AdaBoost in cases where cycling occurs, to broaden

our understanding of the phenomenon we have observed in Sections 4, 5, and 6. Specifically, we

show that if cyclic dynamics occur, the training examples with the smallest margin are the training

examples whose dt,i values stay non-zero (the “support vectors”). In the process, we provide a

formula that allows us to directly calculate AdaBoost’s asymptotic margin from the edges at each

iteration of the cycle. Finally, we give sufficient conditions for AdaBoost to produce a maximum

margin solution when cycling occurs.

As demonstrated in Figure 6, there are many low-dimensional matrices M for which AdaBoost

empirically produces cyclic behavior. The matrices used to generate the cycle plots in Figure 6 are

contained in Figure 7. These matrices were generated randomly and reduced (rows and columns

that did not seem to play a role in the asymptotic behavior were eliminated). We observe cyclic

behavior in many more cases than are shown in the figure; almost every low-dimensional random

matrix that we tried (and even some larger matrices) seems to yield cyclic behavior. Our empirical

observations of cyclic behavior in many cases leads us to build an understanding of AdaBoost’s

general asymptotic behavior in cases where cycles exist, though there is not necessarily a contraction

at each iteration so the dynamics may be harder to analyze. (We at least assume the cycles AdaBoost

produces are stable, since it is not likely we would observe them otherwise.) These cyclic dynamics

may not persist in very large experimental cases, but from our empirical evidence, it seems plausible

(even likely) that cyclic behavior might persist in cases in which there are very few support vectors.

When AdaBoost converges to a cycle, it “chooses” a set of rows and a set of columns, that is:

• The jt’s cycle amongst some of the columns of M, but not necessarily all of the columns. In

order for AdaBoost to produce a maximum margin solution, it must choose a set of columns

such that the maximum margin for M can be attained using only those columns.

• The values of dt,i (for a fixed value of i) are either always 0 or always strictly positive through-

out the cycle. A support vector is a training example i such that the dt,i’s in the cycle are

strictly positive. These support vectors are similar to the support vectors of a support vector

machine in that they all attain the minimum margin over training examples (as we will show).

These are training examples that AdaBoost concentrates the hardest on. The remaining train-

ing examples have zero weight throughout the cycle; these are the examples that are easier

1573

RUDIN, DAUBECHIES, AND SCHAPIRE

a) b)

0 0.1 0.2 0.3
0

0.1

0.25

0.35

d
t,1

d
t,

2

0 0.1 0.3 0.4 0.5
0

0.05

0.15

0.2

0.25

d
t,1

d
t,
2

c) d)

0 0.05 0.15 0.25
0

0.05

0.25

0.35

d
t,1

d
t,
2

0 0.1 0.2 0.3
0

0.1

0.3

0.4

d
t,1

d
t,

2

e) f)

0 0.1 0.35 0.45
0

0.1

0.4

0.5

d
t,1

d
t,
2

0 0.05 0.15 0.2
0

0.05

0.15

0.2

d
t,11

d
t,

1
2

Figure 6: Examples of cycles from randomly generated matrices M. An image of M for each plot

appears in Figure 7. These plots show a projection onto the first two components of Ada-

Boost’s weight vector, e.g., the axes might be dt,1 vs. dt,2. Smaller circles indicate earlier

iterations, and larger circles indicate later iterations. For (a), (d) and (f), 400 iterations

were plotted, and for (b) and (e), 300 iterations were plotted. Plot (c) shows 5500 itera-

tions, but only every 20th iteration was plotted. This case took longer to converge, and

converged to a simple 3-cycle.

1574

THE DYNAMICS OF ADABOOST

a) b)

1 5 10 15 20 25

1

4

8

12

2 4 6 8 10

2

4

6

8

10

c) d)

5 10 15

2

4

6

8

10

2 4 6 8

2

4

6

8

10

e) f)

5 10 15 20

1

5

8

11

1 10 20

1

10

20

30

40

50

Figure 7: The matrices M used to generate the plots in Figure 6. White indicates a value of 1, and

black indicates a value of -1. The size of M does not seem to have a direct correlation on

either the number of iterations per cycle, or the speed of convergence to a cycle.

1575

RUDIN, DAUBECHIES, AND SCHAPIRE

for the algorithm to classify, since they have margin larger than the support vectors. For sup-

port vectors, the cycle condition holds, ∏T
t=1(1 + Mi jt r

cyc
t) = 1. (This holds by Step 3 of the

iterated map.) For non-support vectors, ∏T
t=1(1+Mi jt r

cyc
t) > 1 so the dt,i’s converge to 0 (the

cycle must be stable).

Theorem 4 AdaBoost produces the same margin for each support vector and larger margins for

other training examples. This margin can be expressed in terms of the cycle parameters r
cyc
1 , ...,rcyc

T .

Proof Assume AdaBoost is cycling. Assume d1 is within the cycle for ease of notation. The cycle

produces a normalized output λcyc := limt→∞ λt/||λt ||1 for AdaBoost. (This limit always converges

when AdaBoost converges to a cycle.) Denote

zcyc :=
T

∑
t=1

αt =
T

∑
t=1

1

2
ln

(
1+ rt

1− rt

)
.

Let i be a support vector. Then,

(Mλcyc)i =
1

zcyc

T

∑
t=1

Mi jt αt =
1

zcyc

T

∑
t=1

Mi jt

1

2
ln

(
1+ rt

1− rt

)

=
1

2zcyc

T

∑
t=1

ln

(
1+Mi jt rt

1−Mi jt rt

)
=

1

2zcyc

ln

[
T

∏
t=1

1+Mi jt rt

1−Mi jt rt

]

=
1

2zcyc

ln



(

T

∏
t=1

1+Mi jt rt

1−Mi jt rt

)(
T

∏
t=1

1

(1+Mi jt rt)

)2



=
1

2zcyc

ln

[
T

∏
t=1

1

(1−Mi jt rt)(1+Mi jt rt)

]

=
1

2zcyc

ln

[
T

∏
t=1

1

1− r2
t

]
= −1

2

ln∏T
t=1 (1− r2

t)

∑T
t̃=1

1
2

ln
(

1+rt̃

1−rt̃

)

= − ln∏T
t=1(1− r2

t)

ln∏T
t̃=1

(
1+rt̃

1−rt̃

) . (5)

The first line uses the definition of αt from the AdaBoost algorithm, the second line uses the fact

that M is binary, the third line uses the fact that i is a support vector, i.e., ∏T
t=1(1 + Mi jt rt) = 1.

Since the value in (5) is independent of i, this is the value of the margin that AdaBoost assigns to

every support vector i. We denote the value in (5) as µcycle, which is only a function of the cycle

parameters, i.e., the edge values.

Now we show that every non-support vector achieves a larger margin than µcycle. For a non-

support vector i, we have ∏T
t=1(1+Mi jt rt)> 1, that is, the cycle is stable. Thus, 0 > ln

[
1

∏T
t=1(1+Mi jt rt)

]2

.

1576

THE DYNAMICS OF ADABOOST

Now,

(Mλcyc)i =
1

zcyc

T

∑
t=1

Mi jt αt =
1

2zcyc

ln

[
∏t(1+Mi jt rt)

∏t̃(1−Mi jt̃ rt̃)

]

>
1

2zcyc

ln

[
∏t(1+Mi jt rt)

∏t̃(1−Mi jt̃ rt̃)

]
+

1

2zcyc

ln

[
1

∏t̃(1+Mi jt̃ rt̃)

]2

=
− ln∏T

t=1(1− r2
t)

ln∏T
t̃=1

(
1+rt̃

1−rt̃

) = µcycle.

Thus, non-support vectors achieve larger margins than support vectors.

The previous theorem shows that the asymptotic margin of the support vectors is the same as the

asymptotic margin produced by AdaBoost; this asymptotic margin can be directly computed using

(5). AdaBoost may not always produce a maximum margin solution, as we will see in Sections 8

and 9; however, there are sufficient conditions such that AdaBoost will automatically produce a

maximum margin solution when cycling occurs. Before we state these conditions, we define the

matrix Mcyc ∈ {−1,1}mcyc×ncyc , which contains certain rows and columns of M. To construct Mcyc

from M, we choose only the rows of M that correspond to support vectors (eliminating the others,

whose weights vanish anyway), and choose only the columns of M corresponding to weak classifiers

that are chosen in the cycle (eliminating the others, which are never chosen after cycling begins

anyway). Here, mcyc is the number of support vectors chosen by AdaBoost, and ncyc is the number

of weak classifiers in the cycle.

Theorem 5 Suppose AdaBoost is cycling, and that the following are true:

1.

max
λ̂∈∆ncyc

min
i

(Mcycλ̂)i = max
λ̃∈∆n

min
i

(Mλ̃)i = ρ

(AdaBoost cycles among columns of M that can be used to produce a maximum margin solu-

tion.)

2. There exists λρ ∈ ∆ncyc
such that (Mcycλρ)i = ρ for i = 1, ...,mcyc. (AdaBoost chooses support

vectors corresponding to a maximum margin solution for Mcyc.)

3. The matrix Mcyc is invertible.

Then AdaBoost produces a maximum margin solution.

The first two conditions specify that AdaBoost cycles among columns of M that can be used to

produce a maximum margin solution, and chooses support vectors corresponding to this solution.

The first condition specifies that the maximum margin, ρ, (corresponding to the matrix M) must be

the same as the maximum margin corresponding to Mcyc. Since the cycle is stable, all other training

examples achieve larger margins; hence ρ is the best possible margin Mcyc can achieve. The second

condition specifies that there is at least one analytical solution λρ such that all training examples of

Mcyc achieve a margin of exactly ρ.

1577

RUDIN, DAUBECHIES, AND SCHAPIRE

Proof By Theorem 4, AdaBoost will produce the same margin for all of the rows of Mcyc, since

they are all support vectors. We denote the value of this margin by µcycle.

Let χmcyc
:= (1,1,1, . . . ,1)T , with mcyc components. From 2, we are guaranteed the existence of

λρ such that

Mcycλρ = ρχmcyc
.

We already know

Mcycλ
cyc = µcycleχmcyc

since all rows are support vectors for our cycle. Since Mcyc is invertible,

λcyc = µcycleM−1
cycχmcyc

and λρ = ρM−1
cycχmcyc

,

so we have λcyc = constant ·λρ. Since λcyc and λρ must both be normalized, the constant must be

1. Thus ρ = µcycle.

It is possible for the conditions of Theorem 5 not to hold, for example, condition 1 does not hold

in the examples of Sections 8 and 9; in these cases, a maximum margin solution is not achieved.

It can be shown that the first two conditions are necessary but the third one is not. It is not hard

to understand the necessity of the first two conditions; if it is not possible to produce a maximum

margin solution using the weak classifiers and support vectors AdaBoost has chosen, then it is not

possible for AdaBoost to produce a maximum margin solution. The third condition is thus quite

important, since it allows us to uniquely identify λcyc. Condition 3 does hold for the cases studied

in Sections 4 and 5.

8. Non-Optimal AdaBoost Does Not Necessarily Converge to a Maximum Margin

Solution, Even if Optimal AdaBoost Does

Based on large scale experiments and a gap in theoretical bounds, Rätsch and Warmuth (2002)

conjectured that AdaBoost does not necessarily converge to a maximum margin classifier in the

non-optimal case, i.e., that AdaBoost is not robust in this sense. In practice, the weak classifiers are

generated by CART or another weak learning algorithm, implying that the choice need not always

be optimal.

We will consider a 4×5 matrix M for which AdaBoost fails to converge to a maximum margin

solution if the edge at each iteration is required only to exceed ρ (the non-optimal case). That is,

we show that “non-optimal AdaBoost” (AdaBoost in the non-optimal case) may not converge to a

maximum margin solution, even in cases where “optimal AdaBoost” does.

Theorem 6 AdaBoost in the non-optimal case may fail to converge to a maximum margin solution,

even if optimal AdaBoost does. An example illustrating this is

M =




−1 1 1 1 −1

1 −1 1 1 −1

1 1 −1 1 1

1 1 1 −1 1


 .

1578

THE DYNAMICS OF ADABOOST

Proof For this matrix, the maximum margin ρ is 1/2. Actually, in the optimal case, AdaBoost will

produce this value by cycling among the first four columns of M. Recall that in the non-optimal

case:

jt ∈ { j : (dT
t M) j ≥ ρ}.

Consider the following initial condition for the dynamics:

d1 =

(
3−

√
5

8
,
3−

√
5

8
,
1

2
,

√
5−1

4

)T

.

Since (dT
1 M)5 = (

√
5−1)/2 > 1/2 = ρ, we are justified in choosing j1 = 5, although here it is not

the optimal choice. Another iteration yields

d2 =

(
1

4
,
1

4
,

√
5−1

4
,
3−

√
5

4

)T

,

satisfying (dT
1 M)4 > ρ for which we choose j2 = 4. At the following iteration, we choose j3 = 3,

and at the fourth iteration we find d4 = d1. This cycle is the same as one of the cycles considered in

Section 4 (although there is one extra dimension). There is actually a whole manifold of 3-cycles,

since d̃1
T

:= (ε, 3−
√

5
4

− ε, 1
2
,
√

5−1
4

) lies on a (non-optimal) cycle for any ε, 0 ≤ ε ≤ 3−
√

5
4

. In any

case, the value of the margin produced by this cycle is 1/3, not 1/2.

We have thus established that AdaBoost is not robust in the sense we described; if the weak

learning algorithm is not required to choose the optimal weak classifier at each iteration, but is

required only to choose a sufficiently good weak classifier jt ∈ { j : (dT
t M) j ≥ ρ}, a maximum

margin solution will not necessarily be attained, even if optimal AdaBoost would have produced

a maximum margin solution. We are not saying that the only way for AdaBoost to converge to a

non-maximum margin solution is to fall into the wrong cycle; it is conceivable that there may be

many other, non-cyclic, ways for the algorithm to fail to converge to a maximum margin solution.

Note that for some matrices M, the maximum value of the margin may still be attained in the

non-optimal case; an example is the 3×3 matrix we analyzed in Section 4. If one considers the 3×3

matrix in the non-optimal case, the usual 3-cycle may not persist. Oddly, a 4-cycle may emerge

instead. If AdaBoost converges to this 4-cycle, it will still converge to the same (maximum) margin

of 1/3. See Appendix C for the coordinates of such a 4-cycle. Thus, there is no guarantee as to

whether the non-optimal case will produce the same asymptotic margin as the optimal case.

In Figure 8, we illustrate the evolution of margins in the optimal and non-optimal cases for

matrix M of Theorem 6. Here, optimal AdaBoost converges to a margin of 1/2 via convergence to

a 4-cycle, and non-optimal AdaBoost converges to a margin of 1/3 via convergence to a 3-cycle.

9. Optimal AdaBoost Does Not Necessarily Converge to a Maximum Margin Solution

In this section, we produce a low-dimensional example that answers the question of whether Ada-

Boost always converges to a maximum margin in the optimal case.

1579

RUDIN, DAUBECHIES, AND SCHAPIRE

0 50 150 200
−0.5

0

0.2

0.3

0.4

0.5

Iterations

M
a
rg

in

Optimal AdaBoost

Non−Optimal AdaBoost

Figure 8: AdaBoost in the optimal case (higher curve) and in the non-optimal case (lower curve).

Optimal AdaBoost converges to a margin of 1/2 via convergence to a 4-cycle, and non-

optimal AdaBoost converges to a margin of 1/3 via convergence to a 3-cycle. In both

cases we start with λ1 = 0.

Theorem 7 Consider the following matrix whose image appears in Figure 9 (one can see the nat-

ural symmetry more easily in the imaged version):

M =




−1 1 1 1 1 −1 −1 1

−1 1 1 −1 −1 1 1 1

1 −1 1 1 1 −1 1 1

1 −1 1 1 −1 1 1 1

1 −1 1 −1 1 1 1 −1

1 1 −1 1 1 1 1 −1

1 1 −1 1 1 1 −1 1

1 1 1 1 −1 −1 1 −1




. (6)

For this matrix, it is possible for AdaBoost to fail to converge to a maximum margin solution.

Proof The dynamical system corresponding to this matrix contains a manifold of strongly attracting

3-cycles. The cycles we will analyze alternate between weak classifiers 3, 2, and 1. If we consider

only weak classifiers 1, 2, and 3, we find that training examples i = 1 and 2 are identically classified,

i.e., rows 1 and 2 of matrix M are the same (only considering columns 1, 2, and 3). Similarly,

examples 3, 4 and 5 are identically classified, and additionally, examples 6 and 7. Training example

8 is correctly classified by each of these weak classifiers. Because we have constructed M to have

such a strong attraction to a 3-cycle, there are many initial conditions (initial values of λ) for which

AdaBoost will converge to one of these cycles, including the vector λ = 0. For the first iteration,

we chose jt = 1 to achieve the cycle we will analyze below; there are a few different choices for jt
within the first few iterations, since the argmax set sometimes contains more than one element. The

dynamics may converge to a different 3-cycle, depending on which values of jt are chosen within

the first few iterations. (Oddly enough, there are initial values of λ where AdaBoost converges to

1580

THE DYNAMICS OF ADABOOST

2 4 6 8

1

2

3

4

5

6

7

8

Figure 9: The image of the matrix M in (6). White indicates +1, black indicates -1. This matrix has

natural symmetry.

a cycle in which a maximum margin solution is produced, although finding such a cycle requires

some work.)

To show that a manifold of 3-cycles exists, we present a vector d1 such that d4 = d1, namely:

d1 =

(
3−

√
5

8
,
3−

√
5

8
,
1

6
,
1

6
,
1

6
,

√
5−1

8
,

√
5−1

8
,0

)T

. (7)

To see this, we iterate the iterated map 4 times.

dT
1 M =

(√
5−1

2
,0,

3−
√

5

2
,
3
√

5−1

12
,
3
√

5−1

12
,
3
√

5−1

12
,
1

2
,
11−3

√
5

12

)
,

and here j1 = 1,

d2 =

(
1

4
,
1

4
,

√
5−1

12
,

√
5−1

12
,

√
5−1

12
,
3−

√
5

8
,
3−

√
5

8
,0

)T

dT
2 M =

(
0,

3−
√

5

2
,

√
5−1

2
,
4−

√
5

6
,
4−

√
5

6
,
4−

√
5

6
,

√
5−1

4
,
5+

√
5

12

)
,

and here j2 = 3,

d3 =

(√
5−1

8
,

√
5−1

8
,
3−

√
5

12
,
3−

√
5

12
,
3−

√
5

12
,
1

4
,
1

4
,0

)T

dT
3 M =

(
3−

√
5

2
,

√
5−1

2
,0,

3

4
−

√
5

12
,
3

4
−

√
5

12
,
3

4
−

√
5

12
,
3−

√
5

4
,

√
5

6

)
,

and here, j3 = 2, and then d4 = d1.

1581

RUDIN, DAUBECHIES, AND SCHAPIRE

0 50 100
−0.1

0.2

0.3

0.4

Iterations

M
a
rg

in

Figure 10: AdaBoost (lower curve) and Approximate Coordinate Ascent Boosting (higher curve),

using the 8× 8 matrix M given in Section 9 and initial condition λ = 0. AdaBoost

converges to a margin of 1/3, yet the value of ρ is 3/8. Thus, AdaBoost does not converge

to a maximum margin solution for this matrix M.

Hence the 3-cycle exists, and since there are identically classified examples, a manifold of cy-

cles exists; it is automatically stable due to the calculation in the proof of Theorem 3. The margin

produced by one of these 3-cycles is always 1/3, yet the maximum margin for this matrix is 3/8. To

see that a margin of 3/8 can be obtained, note that M× [2,3,4,1,2,2,1,1]T ×1/16 = 3/8 for all i.

In Figure 10, we have plotted the evolution of the margin over time for M, for both AdaBoost

and Approximate Coordinate Ascent Boosting. Approximate Coordinate Ascent Boosting (Rudin

et al., 2004c,b,a; Rudin, 2004) is an algorithm similar to AdaBoost that converges to a maximum

margin solution, and runs in polynomial time. AdaBoost rapidly converges to the cycle analyzed

above and does not produce a maximum margin solution.

Again, we are not saying that the only way for AdaBoost to converge to a non-maximum margin

solution is to fall into the wrong cycle since there may be many other non-cyclic ways for the

algorithm to fail to converge to a maximum margin solution. However, many high dimensional

cases can be reduced to low dimensional cases simply by restricting our attention to support vectors

and weak classifiers that are actually chosen by the algorithm. Thus, a “bad” cycle may not be as

uncommon as one would expect, even in a realistic setting.

10. Indications of Chaos

Although we do observe cyclic behavior for many random low-dimensional matrices, we have found

an example for which AdaBoost exhibits behavior resembling that of a chaotic dynamical system.

In particular, this case exhibits:

• Sensitivity to initial conditions.

1582

THE DYNAMICS OF ADABOOST

• Movement into and out of cyclic behavior.

The matrix M we consider for this section is given in Figure 7(a).

Figure 11 shows AdaBoost’s edge rt for t ranging from 0 to 10,000; a number of different initial

conditions were considered, which are of the form λ1,i = a for all i, for a = 0,0.01,0.02,0.03,0.05,0.06,0.07,0.08,0.09

and 0.1, (a-j) respectively. In many of these cases, cyclic behavior occurs after some time. In fact,

for a = 0.08, AdaBoost converges to a 3-cycle. Sometimes, AdaBoost seems to migrate in and out

of cyclic behavior, and its behavior is not at all clear. Thus, this example suggests sensitivity to

initial conditions. This sensitivity makes sense, since the iterated map is not continuous, it is only

piecewise continuous. That is, if the argmax set contains two different elements, say j1 and j2, the

arbitrary choice between them may cause the dynamics to change spectacularly. If we are near such

a boundary of a jt region, a small perturbation may change the choice of jt chosen and the trajec-

tory may change dramatically. (Note that the Li and Yorke “Period-3-Implies-Chaos” result does

not apply to the dynamical system defined by AdaBoost since the iterated map is not continuous, as

illustrated in Figure 5 for the 3×3 case.)

Within Figure 11, we can see AdaBoost moving into and out of cyclic behavior, for example,

in Figure 11(j). In order to closely examine the switch between the large region of cycling within

approximately iterations 8500-9381 and the following chaotic region, we focus our attention on

the iterations just before the switch into chaotic behavior. This switch does seem to occur due to

a change in region. In other words, as AdaBoost cycles for many iterations (in a cycle of length

14), the weight vectors (viewed every 14th iteration, as in Figure 12) migrate towards the edge of

a region and eventually cross over this edge. Where previously, at every 14th iteration AdaBoost

would choose jt = 19, it instead chooses jt = 3. Figure 12 shows the values of (dT
t M)3 and (dT

t M)19

at every 14th iterate preceding the switch into chaotic behavior at iteration 9381. Figure 13, which

shows the evolution of two components of the weight vector, also illustrates the switches into and

out of chaotic behavior.

Eventually, the dynamics drift back towards the same cycle and actually seem to converge to

it, as shown in Figure 14(a). Here, the weight vectors do not cross regions, since the values of the

largest two components of (dT M) do not cross, as shown in Figure 14(b).

Thus, there are many open questions regarding AdaBoost’s dynamics that could help us under-

stand its asymptotic behavior; for example, is AdaBoost chaotic in some cases or does it perhaps

always produce cyclic behavior asymptotically?

11. Conclusions

We have used the nonlinear iterated map defined by AdaBoost to understand its update rule in

low-dimensional cases and uncover remarkable cyclic dynamics. We describe many aspects of

AdaBoost’s dynamical traits including the fact that AdaBoost does not necessarily converge to a

maximum margin solution. We have also proved the conjecture that AdaBoost is not robust to

the choice of weak classifier. The key to answering these questions was our analysis of cases in

which AdaBoost’s asymptotic behavior could be completely determined. Thus an understanding of

simple cases has yielded answers to important open questions concerning AdaBoost’s large-scale

asymptotic behavior.

We leave open many interesting questions. To what extent is AdaBoost chaotic? For what cases

does AdaBoost produce maximum margin solutions? Does AdaBoost always exhibit cyclic behavior

in the limit? If AdaBoost can behave chaotically without converging to a cycle, how large does the

1583

RUDIN, DAUBECHIES, AND SCHAPIRE

a) b)

0 5000 10000

0.6

0.7

0.9

Iterations

r t

0 5000 10000
0.5

0.6

0.7

0.9

Iterations

r t

c) d)

0 5000 10000
0.5

0.6

0.7

0.9

Iterations

r t

0 5000 10000
0.5

0.6

0.7

0.9

Iterations

r t

e) f)

0 5000 10000
0.5

0.6

0.7

0.9

Iterations

r t

0 5000 10000

0.6

0.7

0.9

Iterations

r t

g) h)

0 5000 10000
0.5

0.6

0.7

0.9

Iterations

r t

0 5000 10000
0.5

0.6

0.7

0.9

Iterations

r t

i) j)

0 5000 10000
0.5

0.6

0.7

0.9

Iterations

r t

0 5000 10000
0.5

0.6

0.7

0.9

Iterations

r t

Figure 11: AdaBoost is sensitive to initial conditions. Value of the edge rt at each iteration t, for

many different runs of AdaBoost. For all plots we used the matrix M shown in Fig-

ure 7(a), but with slightly different initial conditions. Some of these plots look some-

what chaotic except for a few regions where AdaBoost seems to be converging to a cycle

before becoming chaotic again. In (h), AdaBoost converges to a simple 3-cycle after a

significant number of iterations.

1584

THE DYNAMICS OF ADABOOST

9241 9283 9339 9381
0.751

0.7515

0.752

0.7525

0.753

0.7535

Every 14th Iteration

(d
t
 M)

19

(d
t
 M)

3

Figure 12: The values of (dT
t M)3 and (dT

t M)19 at every 14th iterate preceding the switch into

chaotic behavior of Figure 11(j) where a = 0.1. AdaBoost switches from a 14-cycle into

chaotic behavior after iteration 9381 when it switches regions, from the region where

jt = 19 into the region where jt = 3.

0 0.05 0.1 0.15 0.3 0.35 0.4
0

0.05

0.1

0.15

0.3

0.35

0.4

d
t,1

d
t,
2

Figure 13: Scatter plot of dt,1 vs. dt,2 for the iterations surrounding the slow convergence to the

cycle in Figure 11(j), where the initial condition is λ1, j = 0.1 for all j. By examining

the circles (especially the smallest and largest ones) one can see the switch into the

cyclic behavior, the slow migration towards a cycle, and the fast switch back into chaotic

behavior. Again, smaller circles indicate earlier iterations and larger circles indicate later

iterations.

1585

RUDIN, DAUBECHIES, AND SCHAPIRE

a)

0 5000 10,000 15,000 20,000 25,000 30,000
0.5

0.6

0.7

0.8

0.9

Iterations

r t

b)

14,000 14,500 15,000 15,500 16,000
0.68

0.7

0.72

0.74

0.76

0.78

Every 14th Iteration

(d
t
 M)

19

(d
t
 M)

3

Figure 14: (a) This is the same plot as in Figure 11(j), extended to 30,000 iterations. After more than

13,000 iterations, AdaBoost finally seems to settle on the 14-cycle. (b) The same plot as

in Figure 12, but for a different set of iterations. In Figure 12 the edges corresponding

to j = 19 and j = 3 cross, whereas here, the edges are well separated. Thus, AdaBoost

is able to maintain the cycle.

1586

THE DYNAMICS OF ADABOOST

matrix M need to be in order to produce such behavior? And finally, how does AdaBoost achieve

its strong generalization performance if it does not simply maximize the margin? We hope the

analytical tools provided in this work, namely the reduction of AdaBoost to a dynamical system and

the analysis of its asymptotic behavior in special cases, will help yield answers to these interesting

questions.

Acknowledgments

This material is based upon work partially supported by the National Science Foundation under

grant numbers CCR-0325463, IIS-0325500 and DMS-9810783. Any opinions, findings, and con-

clusions or recommendations expressed in this material are those of the authors and do not neces-

sarily reflect the views of the National Science Foundation. This work is also partially supported by

AFOSR award F49620-01-1-0099.

Appendix A. Proof of Theorem 2

Let us first assume a cycle with rotating coordinates exists for this case, and then we will prove its

existence and stability. Denote the first position in our cycle as follows (we drop the (cyc) notation

here):

d1 = (β1, · · · ,βi, · · · ,βm−1,βm)T ,

where 0 < β1 < β2 < · · · < βm. Note that βm = 1
2
, again because (dT

2 M)1 = 0 and ∑i d2,i = 1. Now,

dT
1 M = ((1−2β1), · · · ,(1−2βm−1),0)T ,

so j1 = 1 and r1 = 1−2β1. Then, using the iterated map,

d2 =

(
1

2
,

β2

2(1−β1)
, · · · , βi

2(1−β1)
, · · · , βm−1

2(1−β1)
,

βm

2(1−β1)

)T

.

Assuming that the coordinates cycle,

βi−1 =
βi

2(1−β1)
for i = 2, ...,m, (8)

in order for the current iterate to agree with the next iterate. This recursive relation gives

βi−(i−1) =
βi

[2(1−β1)]i−1
,

so that

β1 =
βm

[2(1−β1)]m−1
(9)

and

βi = β1[2(1−β1)]
i−1, for i = 1, ...,m. (10)

Thus, substituting (9) into (10), recalling that βm = 1/2,

βi =
βm

[2(1−β1)]m−1
[2(1−β1)]

i−1 =
1

2
[2(1−β1)]

i−m. (11)

1587

RUDIN, DAUBECHIES, AND SCHAPIRE

It remains to show that there is a viable solution for β1 to prove the existence of a cycle. (We require

a solution to obey β1 ≤ 1/m so that it is possible for ∑i d1,i = 1.) The condition ∑i d1,i = 1 can be

rewritten as

1 =
1

2

m

∑
i=1

[2(1−β1)]
i−m.

Substituting ς = 2(1−β1) and multiplying both sides by 2ςm−1, we have a geometric series:

2ςm−1 =
m

∑
i=1

ςi−m+m−1 =
m

∑
i=1

ςi−1 =
1−ςm

1−ς
,

that is,

ςm −2ςm−1 +1 = 0. (12)

Substituting back for ς,

2m(1−β1)
m−1[(1−β1)−1]+1 = 0,

or more simply,

1−β12m(1−β1)
m−1 = 0.

To show a solution exists for m ≥ 4 (we have already handled the m = 3 case), we will apply the

Intermediate Value Theorem to the function

ϕ(β̄1,m) := 1− β̄12m(1− β̄1)
m−1.

We know ϕ(0,m) = 1 > 0. Consider

ϕ
(

1

10
,m

)
= 1−2m 1

10

(
9

10

)m−1

= 1−
(

9

5

)m
1

9
.

Plugging in m = 4, we find that ϕ(1/10,4) = −104/625 < 0. On the other hand, extending the

definition of ϕ to non-integer values of m, we have

∂ϕ(1/10,m)

∂m
= −1

9

[
ln

(
9

5

)](
9

5

)m

< 0 for all m ≥ 4.

Hence, ϕ(1/10,m) ≤ −104/625 < 0 for all m ≥ 4. By the Intermediate Value Theorem, there is a

root β1 of ϕ(·,m) for any m ≥ 4 with 0 ≤ β1 ≤ 1/10. Since

∂ϕ(β̄1,m)

∂β̄1

= 2m(1− β̄1)
m−2(mβ̄1 −1),

we have
∂ϕ
∂β̄1

(β̄1,m) = 0 only when β̄1 = 1/m, and that ϕ(·,m) decreases for 0 ≤ β̄1 < 1/m and

increases for β̄1 > 1/m (where β̄1 < 1). If m ≤ 10, since ϕ(·,m) decreases for 0 ≤ β̄1 < 1/m, the

Intermediate Value Theorem provides the unique root 0 ≤ β1 ≤ 1/10 ≤ 1/m. If m > 10, ϕ(·,m)
decreases for 0 ≤ β̄1 < 1/m and increases to the value ϕ(1/10,m), which is negative. Thus, there is

a unique root 0 ≤ β1 ≤ 1/m. Hence, the root exists and is unique for m ≥ 4. Now we have shown

the existence and uniqueness of our cycle, namely the cycle starting from

d1 =
(
β1,2β1(1−β1),4β2

1(1−β1)
2, ...,1/2

)T
.

1588

THE DYNAMICS OF ADABOOST

Of course, this is not the only periodic orbit. Any permutation of the components in d1 will lie

on a periodic cycle. If (without loss of generality) we fix the first iteration of each cycle to start with

the same first component d1,i = β1, then the number of permutations of the other components (and

thus the number of periodic cycles we have defined by relabelling the coordinates) is (m−1)!.

We now show that these (m−1)! cycles are stable. It is sufficient to show that just one cycle is

stable, since the others are obtained by simply relabelling the order of the coordinates (without loss

of generality say jt = t for t = 1, ...,m). We add a perturbation εa to d1, small enough so that none

of the jt’s chosen within the cycle are affected. (Note that choosing such a perturbation is possible,

since the map is piecewise continuous, and β1 < ... < βm without equality between the βi’s. This

will ensure that no dt lies on the boundary of a region, so that the argmax j(d
T
t M) j set contains

exactly one element.) Also, we require ∑m
i=1 ai = 0 so the perturbed starting point still lies on the

simplex ∆m. Assume ‖a‖1 is O(1), and that ε is small. Our perturbed starting point is

da
1 := d1 + εa.

Now, since r1 = 1−2β1,

ra
1 = (da

1
T M)1 = (d1

T M)1 + ε(aT M)1 = 1−2β1 + ε(aT M)1.

Again we use the iterated map. Recall that βm = 1
2
, and da

2,1 = 1
2
. For all other i,

da
2,i =

βi + εai

1+ ra
1

=
βi + εai

2−2β1 + ε(aT M)1

.

To see whether the perturbation has shrunk due to the dynamics, we compute εã := da
2 − d2. If

‖ã‖1 ≤C‖a‖1 where C is a constant less than 1, the map is a contraction. Recall that

d2 =

(
1

2
,β1, · · · ,βm−1

)T

.

Thus,

εã1 = da
2,1 −d2,1 = 0,

and for other i,

εãi = da
2,i −d2,i =

βi + εai

2−2β1 + ε(aT M)1

−βi−1.

We are done with the i = 1 term. For all other terms, we will do an approximation to first order in

ε. Using a first order Taylor expansion 1
1+x

≈ 1− x, we obtain

1

1+ ra
1

=
1

2−2β1 + ε(aT M)1

=
1

2(1−β1)
(

1+ ε(aT M)1

2(1−β1)

) ≈
1− ε(aT M)1

2(1−β1)

2(1−β1)
.

Our expansion yields:

εãi = da
2,i −d2,i ≈

(βi + εai)
(

1− ε(aT M)1

2(1−β1)

)

2(1−β1)
−βi−1.

1589

RUDIN, DAUBECHIES, AND SCHAPIRE

Grouping terms in orders of ε, we can use (8) to show the first term vanishes, and we find:

εãi ≈ 0+ ε
(

ai

2(1−β1)
− βi(a

T M)1

4(1−β1)2

)
+O(ε2), so that

ãi ≈ ai

2(1−β1)
− βi(a

T M)1

4(1−β1)2
+O(ε).

We will show that the perturbation shrinks at every iteration. Since ε is small, we do not care about

the O(ε) contribution to ãi. Recall that ∑i βi = 1, so that:

‖ã‖1 ≤ 1

2(1−β1)

m

∑
i=1

|ai|+
∣∣(aT M)1

∣∣
4(1−β1)2

m

∑
i=1

βi +O(ε)

=
1

2(1−β1)
‖a‖1 +

∣∣(aT M)1

∣∣
4(1−β1)2

+O(ε)

≤ 1

2(1−β1)
‖a‖1 +

1

4(1−β1)2
‖a‖1 +O(ε)

=
3−2β1

4(1−β1)2
‖a‖1 +O(ε).

For the third line, we used the fact that the entries of M are always within {−1,+1}. In order to

have
3−2β1

4(1−β1)2
< 1,

we would need

3−2β1 < 4(1−β1)
2 = 4−8β1 +4β2

1,

i.e.,

0 < 1−6β1 +4β2
1,

or more simply,

β1 < (3−
√

5)/4.

This condition does hold, since

0 ≤ β1 ≤ 1/10 < (3−
√

5)/4.

Thus we have shown a contraction of the perturbation at the first iteration. An identical calculation

(one must simply reorder the components in the vectors) will yield a contraction at every iteration,

so our cycle is stable. We have thus proven the existence and stability of (m−1)! cycles for the case

with m weak classifiers, each with 1 misclassified example.

Appendix B. Proof of Theorem 3

The existence of manifolds of cycles follows from the fact that M has the same 3-cycles as the 3×3

case, except that the weight is distributed among identically classified examples. (Recall that the

weights of the last q4 examples vanish, since these examples are always correctly classified.) In

order to move along the manifold, just shift the weights among identically classified examples; this

new weight vector will lie directly on another 3-cycle.

In order to show the manifold is stable, we will show that any vector da that lies sufficiently

near the manifold will be attracted towards it. More specifically, we will:

1590

THE DYNAMICS OF ADABOOST

• choose an arbitrary vector da
1 sufficiently close to the manifold of stable cycles.

• carefully choose a corresponding vector d1 on the manifold.

• show there is a contraction, sending the successive da
t vectors closer to the dt vectors at every

iteration. In this way, the path of da
t ’s will converge to the cycle obeyed by the dt’s.

Consider an arbitrary vector da
1, which we assume to be close enough to the manifold so that the

distance between vector da
1 and vector d1 (defined below) is O(ε). Define

ka
1 :=

q1

∑
i=1

da
1,i, ka

2 :=
q1+q2

∑
i=q1+1

da
1,i, ka

3 :=
q1+q2+q3

∑
i=q1+q2+1

da
1,i, and ka

4 :=
m

∑
i=q1+q2+q3+1

da
1,i.

Assume that (ka
1,k

a
2,k

a
3)

T is O(ε) close to either d
cyc
1 ,dcyc

2 ,dcyc
3 ,dcyc′

1 ,dcyc′

2 , or d
cyc′

3 from Section 4.

Since we are permitted to freely shuffle the rows and columns of M without loss of generality, we

assume that (ka
1,k

a
2,k

a
3)

T is O(ε) close to d
cyc
1 , i.e., that ka

1 is O(ε) close to k1 := (3−
√

5)/4, ka
2 is

close to k2 := (
√

5−1)/4, ka
3 is close to k3 := 1/2, and ka

4 is O(ε). Now we will carefully choose a

corresponding vector d1 on the manifold, namely

d1,i :=





k1

ka
1
da

1,i if i ≤ q1

k2

ka
2
da

1,i if q1 < i ≤ q1 +q2

k3

ka
3
da

1,i if q1 +q2 < i ≤ q1 +q2 +q3

0 otherwise





. (13)

Define a1 as follows:

εa1,i := da
1,i −d1,i =





(
ka

1

k1
−1
)

d1,i if i ≤ q1(
ka

2

k2
−1
)

d1,i if q1 < i ≤ q1 +q2(
ka

3

k3
−1
)

d1,i if q1 +q2 < i ≤ q1 +q2 +q3

da
1,i otherwise





.

The assumption that da
1 is sufficiently close to the manifold amounts to the assumption that ‖a1‖1 is

O(1). It is important to note that each of the four pieces of a1 is proportional to a piece of d1, and

thus proportional to a piece of da
1. Recalling that r1 = r2 = r3 = r = (

√
5−1)/2, we have:

ra
1 = (da

1M)1 = (d1M)1 + ε(aT
1 M)1 = r + ε(aT

1 M)1, so

1

1− ra
1

=
1

1− r− ε(aT
1 M)1

=
1

(1− r)
(

1− ε(aT
1 M)1

1−r

)

=
1

1− r

(
1+

ε(aT
1 M)1

1− r

)
+O(ε2)

1

1+ ra
1

=
1

1+ r + ε(aT
1 M)1

=
1

(1+ r)
(

1+
ε(aT

1 M)1

1+r

)

=
1

1+ r

(
1− ε(aT

1 M)1

1+ r

)
+O(ε2).

1591

RUDIN, DAUBECHIES, AND SCHAPIRE

According to the iterated map, for i ≤ q1, removing terms of O(ε2),

da
2,i =

da
1,i

1− ra
1

≈ d1,i

1− r

(
1+

ε(aT
1 M)1

1− r

)
+

εa1,i

1− r

=
d1,i

1− r

[
1+

ε(aT
1 M)1

1− r
+

εa1,i

d1,i

]

=
d1,i

1− r

[
1+

ε(aT
1 M)1

1− r
+

(
ka

1

k1

−1

)]

= d2,i

[
ε(aT

1 M)1

1− r
+

ka
1

k1

]
. (14)

Since the term in brackets does not depend on i, we know da
2,i is proportional to d2,i for i ≤ q1.

Recall that for the 3-cycle, the edge of weak classifier 1 must be 0 at iteration 2. Thus, (da
2M)1 = 0,

and ∑m
i=1 da

2,i = 1, and as before:

−
q1

∑
i=1

da
2,i +

m

∑
i=q1+1

da
2,i = 0 and

q1

∑
i=1

da
2,i +

m

∑
i=q1+1

da
2,i = 1, so

q1

∑
i=1

da
2,i =

1

2
and we also have

q1

∑
i=1

d2,i =
1

2
. (15)

Combining (14) and (15),

1

2
=

q1

∑
i=1

da
2,i ≈

[
ε(aT

1 M)1

1− r
+

ka
1

k1

] q1

∑
i=1

d2,i =

[
ε(aT

1 M)1

1− r
+

ka
1

k1

]
1

2
,

thus

da
2,i ≈ d2,i for i ≤ q1. (16)

A similar calculation for q1 < i ≤ q1 +q2 yields

da
2,i =

da
1,i

1+ ra
1

≈ d1,i

1+ r

(
1− ε(aT

1 M)1

1+ r

)
+

εa1,i

1+ r
(17)

=
d1,i

1+ r

[
1− ε(aT

1 M)1

1+ r
+

εa1,i

d1,i

]

=
d1,i

1+ r

[
1− ε(aT

1 M)1

1+ r
+

(
ka

2

k2

−1

)]

= d2,i

[
−ε(aT

1 M)1

1+ r
+

ka
2

k2

]
. (18)

And similarly, for q1 +q2 < i ≤ q1 +q2 +q3,

da
2,i ≈

d1,i

1+ r

(
1− ε(aT

1 M)1

1+ r

)
+

εa1,i

1+ r
= d2,i

[
−ε(aT

1 M)1

1+ r
+

ka
3

k3

]
. (19)

1592

THE DYNAMICS OF ADABOOST

For the remaining q1 +q2 +q3 < i ≤ m,

da
2,i =

εa1,i

1+ ra
≈ εa1,i

1+ r

[
1− ε(aT

1 M)1

1+ r

]
≈ εa1,i

1+ r
. (20)

This last set of components will always shrink as t increases, since the last q4 examples are always

correctly classified. From (16), (18), (19), and (20), we can see that each of the first three sections

of da
2 is proportional to the corresponding section of d2 to O(ε2), and that the last section of da

2 is

vanishing.

Now calculating the vector a2 to O(ε), incorporating equations (16), (17), (19), and (20):

εa2,i = da
2,i −d2,i ≈





0 if i ≤ q1

− εd1,i(a
T
1 M)1

(1+r)2 +
εa1,i

1+r
if q1 < i ≤ q1 +q2 +q3

εa1,i

1+r
otherwise





.

We will now show that a1 undergoes a contraction via the iterated map.

ε‖a2‖1 = ‖da
2 −d2‖1 ≤ ε

[(
∑m

i=q1+1 d1,i

)
|(aT

1 M)1|
(1+ r)2

+
‖a‖1

1+ r

]
+O(ε2)

≤ ε

[(
∑m

i=q1+1 d1,i

)
‖a1‖1

(1+ r)2
+

‖a1‖1

1+ r

]
+O(ε2).

Aside, we note
(
∑m

i=q1+1 d1,i

)
= 1/2+(

√
5−1)/4 = (

√
5+1)/4. Also, r = (

√
5−1)/2, so 1/(1+

r) = (
√

5−1)/2. Now,

‖a2‖1 ≤ ‖a1‖1

[
1+

√
5

4

(
√

5−1)2

4
+

√
5−1

2

]
+O(ε)

= ‖a1‖1

3(
√

5−1)

4
+O(ε) < ‖a1‖1.

Thus, we have shown a contraction at the first iteration. The same calculation (with indices changed

accordingly) is valid for each iteration, since the relation between da
2 and d2 is now the same as the

relation between da
1 and d1, that is, each section of da

2 is proportional to the corresponding section

of d2 from (16), (18), and (19) (and the last section vanishes). Since the calculation is valid for each

iteration, there is a contraction to the manifold at every iteration. Hence, the manifold is stable.

Appendix C. 4 Cycle for the 3×3 matrix in the Non-Optimal Case

In this appendix, we prove the following theorem:

Theorem 8 For the 3×3 matrix analyzed in Section 4, AdaBoost in the non-optimal case may

produce a 4-cycle which yields a maximum margin solution.

Proof We will show the existence of such a 4-cycle by presenting its coordinates, and omit a proof

of stability. One coordinate on the cycle is given by

d
cyc
1 =

(
1

2
,
1

2
−

√
2

4
,

√
2

4

)T

.

1593

RUDIN, DAUBECHIES, AND SCHAPIRE

The only choice for j1 is j1 = 2, and the edge value is (dcycT
1 M)2 = 1/

√
2, which is larger than 1/3.

Now, we compute d
cyc
2 using the iterated map:

d
cyc
2 =

(
1

2+
√

2
,
1

2
,

1√
2
− 1

2

)T

.

We now choose j2 = 1 even though it is not the optimal choice. We are justified in this choice, since

the edge is (dcycT
2 M)1 =

√
2−1 > 1/3. Now iterating again, we obtain d

cyc
3 :

d
cyc
3 =

(
1

2
,

√
2

4
,
1

2
−

√
2

4

)T

.

Again, we must choose j3 = 3 since it is the only permissible edge, (dcycT
3 M)3 = 1/

√
2. Iterating,

d
cyc
4 =

(
1

2+
√

2
,

1√
2
− 1

2
,
1

2

)T

.

With the choice j4 = 1, the edge value is (dcycT
4 M)1 =

√
2−1 > 1/3, and the next iterate of the map

will yield d
cyc
1 . We have completed the proof.

References

Leo Breiman. Arcing the edge. Technical Report 486, Statistics Department, University of Califor-

nia at Berkeley, 1997.

Leo Breiman. Arcing classifiers. The Annals of Statistics, 26(3):801–849, 1998.

Leo Breiman. Prediction games and arcing algorithms. Neural Computation, 11(7):1493–1517,

1999.

Bruno Caprile, Cesare Furlanello, and Stefano Merler. Highlighting hard patterns via adaboost

weights evolution. In J. Kittler and F. Roli, editors, Multiple Classifier Systems, Lecture Notes in

Computer Science 2364, pages 72–80. Springer, 2002.

Michael Collins, Robert E. Schapire, and Yoram Singer. Logistic regression, AdaBoost and Breg-

man distances. Machine Learning, 48(1/2/3), 2002.

Ayhan Demiriz, Kristin P. Bennett, and John Shawe-Taylor. Linear programming boosting via

column generation. Machine Learning, 46(1/2/3):225–254, 2002.

N. Duffy and D. Helmbold. A geometric approach to leveraging weak learners. In Computational

Learning Theory: Fourth European Conference, EuroCOLT ’99. Springer-Verlag, 1999.

Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line learning and an

application to boosting. Journal of Computer and System Sciences, 55(1):119–139, August 1997.

Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Additive logistic regression: A statistical

view of boosting. The Annals of Statistics, 38(2):337–374, April 2000.

1594

THE DYNAMICS OF ADABOOST

Adam J. Grove and Dale Schuurmans. Boosting in the limit: Maximizing the margin of learned

ensembles. In Proceedings of the Fifteenth National Conference on Artificial Intelligence, 1998.

Vladimir Koltchinskii and Dmitry Panchenko. Empirical margin distributions and bounding the

generalization error of combined classifiers. The Annals of Statistics, 30(1), February 2002.

T. Y. Li and J. A. Yorke. Period 3 implies chaos. Amer. Math. Monthly, 82(10):985–992, 1975.

Llew Mason, Jonathan Baxter, Peter Bartlett, and Marcus Frean. Boosting algorithms as gradient

descent. In Advances in Neural Information Processing Systems 12, 2000.

R. Meir and G. Rätsch. An introduction to boosting and leveraging. In S. Mendelson and A. Smola,

editors, Advanced Lectures on Machine Learning, LNCS, pages 119–184. Springer Verlag, 2003.

J. R. Quinlan. Bagging, boosting, and C4.5. In Proceedings of the Thirteenth National Conference

on Artificial Intelligence, pages 725–730, 1996.

G. Rätsch, T. Onoda, and K.-R. Müller. Soft margins for AdaBoost. Machine Learning, 42(3):

287–320, 2001.

Gunnar Rätsch and Manfred Warmuth. Efficient margin maximizing with boosting. unpublished

manuscript, 2002.

Saharon Rosset, Ji Zhu, and Trevor Hastie. Boosting as a regularized path to a maximum margin

classifier. Journal of Machine Learning Research, 5:941–973, August 2004.

Cynthia Rudin. Boosting, Margins and Dynamics. PhD thesis, Princeton University, April 2004.

Cynthia Rudin, Ingrid Daubechies, and Robert E. Schapire. On the dynamics of boosting. In

Advances in Neural Information Processing Systems 16, 2004a.

Cynthia Rudin, Robert E. Schapire, and Ingrid Daubechies. Analysis of boosting algorithms using

the smooth margin function : A study of three algorithms. Submitted, 2004b.

Cynthia Rudin, Robert E. Schapire, and Ingrid Daubechies. Boosting based on a smooth margin.

In Proceedings of the Sixteenth Annual Conference on Computational Learning Theory, pages

502–517, 2004c.

Robert E. Schapire. The boosting approach to machine learning: An overview. In MSRI Workshop

on Nonlinear Estimation and Classification, 2002.

Robert E. Schapire, Yoav Freund, Peter Bartlett, and Wee Sun Lee. Boosting the margin: A new

explanation for the effectiveness of voting methods. The Annals of Statistics, 26(5):1651–1686,

October 1998.

Abraham Wyner. Boosting and the exponential loss. In Proceedings of the Ninth Annual Conference

on AI and Statistics, 2002.

1595

