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Abstract 
Social network analysis provides a broad and complex perspective on animal so-
ciality that is widely applicable to almost any species. Recent applications demon-
strate the utility of network analysis for advancing our understanding of the dy-
namics, selection pressures, development, and evolution of complex social systems. 
However, most studies of animal social networks rely primarily on a descriptive ap-
proach. To propel the field of animal social networks beyond exploratory analyses 
and to facilitate the integration of quantitative methods that allow for the testing 
of ecologically and evolutionarily relevant hypotheses, we review methodological 
and conceptual advances in network science, which are underutilized in studies of 
animal sociality. First, we highlight how the use of statistical modeling and triadic 
motifs analysis can advance our understanding of the processes that structure net-
works. Second, we discuss how the consideration of temporal changes and spatial 
constraints can shed light on the dynamics of social networks. Third, we consider 
how the study of variation at multiple scales can potentially transform our under-
standing of the structure and function of animal networks. We direct readers to an-
alytical tools that facilitate the adoption of these new concepts and methods. Our 
goal is to provide behavioral ecologists with a toolbox of current methods that can 
stimulate novel insights into the ecological influences and evolutionary pressures 
structuring networks and advance our understanding of the proximate and ultimate 
processes that drive animal sociality. 

Keywords: animal social networks, exponential random graph modeling, spatial be-
havior, social network analysis, temporal change, triadic motifs, variation

Introduction 

Despite its long-term prevalence in sociology and physics (Wasserman and 
Faust 1994; Watts and Strogatz 1998; Barabasi and Albert 1999; Newman 
2003), behavioral ecologists have only recently started to apply social net-
work theory to investigate the ecological function and evolutionary devel-
opment of social behavior (Krause et al. 2007; Croft et al. 2008; Wey et al. 
2008; Sih et al. 2009; Croft et al. 2011). Network theory provides a holistic 
way to connect the functionality of a group to the behavior of its constitu-
ent individuals (Alon 2003; Fewell 2003). Within a network framework, in-
dividual animals are modeled as nodes within a group of more than 2 indi-
viduals and represented as a graph or network. Individuals are connected 
with links based on their co-occurrences in space or on their behavioral in-
teractions. The links can be directed if the interaction has a clear instiga-
tor and a receiver or undirected if the interaction is in no particular orien-
tation. Links can also be weighted, indicating the number or probability of 
interactions among individuals, or unweighted (binary), without informa-
tion about the strength of the interaction (for more details, see Wey et al. 
2008). The emergent patterns of interactions among individuals, occurring 
dynamically across space and time, can fundamentally shape the fitness of 



P inter-Wollman et  al .  in  Behav ioral  Ecology  25  (2014 )       3

individuals within social groups and thus impact the demography and struc-
ture of populations (Lea et al. 2010; Barocas et al. 2011; Formica et al. 2012; 
Wey and Blumstein 2012). 

Network methods help characterize social structures in new ways, pro-
viding an expanded opportunity to understand the ecological function and 
evolution of complex sociality in animals. However, current research utiliz-
ing a social network approach in behavioral ecology predominantly focuses 
on descriptive approaches that identify the structure of animal interactions 
but do not necessarily test hypotheses about function of interaction pat-
terns. To understand the ecological and evolutionary processes underlying 
social network formation and organization, we need to compare social net-
works across species and study how changes in the environment, such as 
resource availability or population density, or during an animal’s ontogeny, 
such as dispersal events, influence network structure. To advance the field 
of animal social networks from describing structures to testing ecologically 
and evolutionarily relevant hypotheses, current research needs to capital-
ize on theoretical, methodological, and analytical developments in parallel 
disciplines, such as epidemiology (Bansal et al. 2007), and the social (Sni-
jders and Doreian 2010, 2012) and physical sciences (Newman 2003). Bring-
ing in new techniques for analyzing animal social networks from the previ-
ously mentioned disciplines will allow behavioral ecologists to address novel 
questions about the formation and dynamics of animal social structures. 

Here, we highlight methodological advances and conceptual challenges 
in the study of animal social networks, which are underutilized by the cur-
rent behavioral ecological literature, and suggest how further development 
of these ideas will significantly advance the field. We divide this review into 
3 broad topics. First, we summarize how methodological advancements, in-
cluding network modeling and investigation of triadic motifs, can be used 
for sophisticated analyses and comparisons of animal social networks to il-
luminate mechanisms underlying network structures. Next, we focus on con-
ceptual challenges and provide suggestions for incorporating temporal dy-
namics and spatial constraints into animal network studies, which we see 
as critical for understanding the processes that structure and maintain net-
works. Finally, we consider network variation at the individual, population, 
and species scales and describe how increased understanding of the causes 
and consequences of this variability can provide insights into the ecological 
influences and evolutionary pressures on networks. We hope to reenergize 
the use of social network theory in behavioral ecology by moving forward 
from introducing basic network methods (Wey et al. 2008) and highlight-
ing technical constraints (Croft et al. 2011). We add to previous reviews of 
the topic (Krause et al. 2007; Sih et al. 2009) by suggesting new approaches 
and statistical tools that will address the biological questions social network 
theory can elucidate. 



P inter-Wollman et  al .  in  Behav ioral  Ecology  25  (2014 )       4

In each section, we include examples of how to apply these approaches 
and recommend relevant analytical tools that will facilitate the adoption of 
these advances (Table 1). We include examples of studies that have already 
implemented these concepts to reveal their current breadth across taxo-
nomic groups (Table 2). In conclusion, we highlight unanswered questions 
that will be the focus of this next progression in socio-ecological research. 
Our goal is to summarize major methodological and theoretical advances 
in social network analysis to ensure behavioral ecologists are fluent with the 
available tools, analytical approaches, and underlying theory required to ad-
dress questions regarding the generation and function of social complexity. 

Methodological Advances: Understanding the Processes That 
Underlie Network Structures 

Association patterns among individuals are generally nonrandom (Krause 
and Ruxton 2002; Krause et al. 2007). However, we have only a few func-
tional explanations for why social networks are structured the way they are 
(one example is life-history stage; McDonald 2007). Advances in statistical 
methods suitable for network data can be used to better understand the 
factors that determine the structure of animal social networks. Here, we dis-
cuss how statistical network modeling and triadic motifs can be used to ex-
amine the mechanisms that underlie network structures and the ultimate 
function of networks. 

Moving beyond descriptive statistics 

To understand which physical and biological processes shape nonrandom 
social networks, a statistical network modeling approach can be used. In the 
past, researchers have examined network structures by comparing descrip-
tive structural statistics (e.g., node degree and transitivity) between observed 
and randomly constructed networks (Croft et al. 2008). This type of statisti-
cal approach is easy to perform and can provide valuable insights into how 
the observed social network is different from a particular null hypothesis as 
expressed by a set of random networks (Croft et al. 2011). However, most if 
not all biological networks are nonrandom; thus, using random networks as 
null models may oversimplify the real-world complexities of many animal 
social systems. The next challenge is to decipher why particular nonrandom 
structures occur. Multiple deterministic and stochastic processes likely con-
tribute to social network structure, and the effects of these processes can-
not be rigorously teased apart through exploratory analyses of descriptive 
statistics alone. Advanced statistical modeling techniques offer a potential 
solution to evaluating the synergistic effects of multiple processes on ani-
mal social network structure. 
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Exponential random graph modeling (ERGM, or p* modeling) is a well-
developed statistical technique, used extensively in the social sciences, that 
enables examination of the underlying mechanisms of network factors and 
processes that generate nonrandom network structures (Anderson et al. 
1999; Robins et al. 2007). ERGM can be used to explore how network struc-
tures emerge from external factors and test how networks are shaped by 
their function. ERGM, closely related to logistic regression, uses stochastic 
modeling to determine the probability that a social link exists among indi-
viduals based on a set of predictor variables (Robins et al. 2007). Explana-
tory variables can take a variety of forms including individual attributes (e.g., 
age, social status, and reproductive condition), dyadic covariates (e.g., spa-
tial distance, relatedness, and past interactions), and structural features (e.g., 
triad closure) (Goodreau et al. 2009). Social links can be directed or undi-
rected in ERGM but must be binary (i.e., unweighted). ERGM (implemented 
in the R package statnet) is particularly suitable for the analysis of network 
data because it incorporates the inherent dependence among individuals in 
its estimation methods. The main statistical benefit of employing an ERGM 
approach is the ability to rigorously evaluate how multiple covariates con-
tribute to the overall social network structure. For example, researchers can 
use ERGM to examine how multiple covariates such as age, social status, 
spatial distance, and relatedness differentially influence the social network 
structure of a study population or group. However, this approach has not 
yet been applied to understand what processes shape animal social sys-
tems (Table 2). 

Multiple Regression Quadratic Assignment Procedure (MRQAP) is an-
other method that can be used to investigate the synergistic effects of multi-
ple factors on network structure (Dekker et al. 2003; Dekker et al. 2007; Croft 
et al. 2011). In contrast to ERGM, MRQAP can be used with weighted (i.e., 
nonbinary) networks, in which the strength of the links is known because 
both the dependent and independent matrices can be continuous measures. 
MRQAP tests have been used to determine social affinity patterns while con-
trolling for factors such as spatial location, sex, and relatedness (Mann et 
al. 2012) and to test whether similarity in age, sex, or relatedness predicted 
networks of affiliative and agonistic interactions (Wey and Blumstein 2010). 
MRQAP can be implemented using UCInet and the sna R package. 

In an effort to move the field of animal social networks beyond the de-
scriptive stage, we encourage the adoption and development of the above 
mentioned, as well as novel statistical network modeling techniques. In do-
ing so, behavioral ecologists will enhance their understanding of the mech-
anisms underlying the structures of animal social networks and the robust-
ness of their conclusions. 
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Deconstructing networks 

Another strategy for examining the processes that shape animal social net-
works is comparing the networks of various species to understand how eco-
logical pressures and evolutionary history structure interaction patterns. One 
of the major challenges in applying a comparative approach to network 
studies is deciding which measures of network structure can be logically 
compared across multiple, potentially widely divergent, species and net-
works that vary in size and density (Croft et al. 2008). An increasingly popu-
lar approach is to deconstruct networks into subcomponents and compare 
the relative frequencies of these subcomponents across networks (Holland 
and Leinhardt 1976; Milo et al. 2002; Faust 2007). This class of analysis, com-
monly termed “motif analysis,” allows a bottom-up examination of network 
structure and function and facilitates comparison across networks to reveal 
shared, general organizing principles. 

The motif method deconstructs a network into its constituent subgraphs, 
that is, subsets of connected nodes within the network (Figure 1A). A net-
work of any size can be deconstructed into sets of dyad (2-node), triad (3-
node), or n-node subgraphs, each of which represents a unique pattern of 
interactions among individuals. Such patterns are relevant in behavioral ecol-
ogy, for example, when considering dominance networks in which transitive 
triads (A→B, B→C, and A→C, Figure 1B) represent a linear hierarchy among 
3 individuals, whereas cyclical triads (A→B, B→C, and C→A, Figure 1B) rep-
resent the absence of a clear hierarchy (McDonald and Shizuka 2013). The 
frequency of each type of subgraph can then be compared with those fre-
quencies in other empirical networks, or various random networks, to illu-
minate the underlying function of the observed network structure (Milo et 
al. 2002). Such an approach has been successfully applied to the compari-
son of the frequency of cyclical and transitive triads across multiple empir-
ical networks, revealing that animal dominance networks are orderly and 
tend to have fairly high temporal stability of the rank orders (McDonald and 
Shizuka 2012). Furthermore, the type of subgraph structure each individual 
participates in may explain its role in the network. In a directed 3-node net-
work, there are 16 possible configurations of triads, ranging from null tri-
ads (no interactions) to completely reciprocal relations between all 3 nodes 
(Figure 1B). Because the number of subgraphs increases exponentially with 
their size, analysis of subgraphs larger than 3 or 4 nodes is currently pro-
hibitory because of computational demands. However, because the goal of 
motif analysis is to compare among networks using tractable components, 
the size of the compared components is not relevant, as long as they are 
biologically meaningful. 

The study of subgraphs of 3 nodes (triads) is particularly well suited for 
examining directed social interactions in animals, for example, in the context 
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Figure 1. (A) A directed network of 25 individuals linked by 39 interactions. Two 
triad subgraphs have been highlighted: a feed-forward loop (dashed dark) and a 
fully connected triad (dotted light). (B) The 16 possible triadic configurations in a 
directed network. Circles represent individuals and arrows indicate a directed so-
cial interaction. 
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of dominance relations and information exchange. The triad analysis ap-
proach was first conducted by sociologists to study patterns of transitivity 
in human friendship choices, that is, the likelihood that if A chooses B as 
a friend and B chooses C, A also chooses C (Davis et al. 1971; Holland and 
Leinhardt 1976). Transitivity of social relations is also of interest to behavioral 
ecologists studying dominance hierarchies in animal groups. For example, 
a “linear” dominance hierarchy is one in which all triadic dominance rela-
tions are transitive, and “linearity” indices are used to measure how closely 
a group conforms to a linear hierarchy (De Vries 1995). However, measures 
of linearity become unreliable when not all individuals interact, thus creat-
ing “missing data” (Shizuka and McDonald 2012). Focusing directly on the 
transitivity of triadic relations can yield alternative measures of dominance 
hierarchy structure that are resilient to missing data (Shizuka and McDon-
ald 2012) and reveal previously underappreciated levels of similarity among 
dominance hierarchies of different taxa (McDonald and Shizuka 2013). Re-
cently, the analysis of triadic configurations or “triadic motifs” has also been 
applied to identify differences in information flow among a variety of com-
plex biological, technological, and sociological networks (Milo et al. 2002, 
2004; Faust 2007; Stouffer et al. 2007). Examining triadic motifs in informa-
tion networks of animals, for example, the interactions among social insects 
in a colony, can uncover the prevalence of triads that facilitate efficient in-
formation flow, thus illuminating the mechanisms underlying complex group 
behaviors (Waters and Fewell 2012). 

Most network analysis software, including R packages “igraph” (Csardi 
and Nepusz 2006) and “statnet” (Handcock et al. 2003), provide methods 
for counting the frequencies of triadic configurations (called “triad census”). 
These tools can be used in combination with custom randomization pro-
cedures to carry out triad motif analysis (Shizuka and McDonald 2012 pro-
vide example codes). Other software specifically designed for motif analysis 
are also widely available: Mfinder (Kashtan et al. 2004), MAVisto (Schreiber 
and Schwöbbermeyer 2005), and FANMOD (Wernicke and Rasche 2006). In 
all cases, we advocate careful consideration of randomization procedures 
to derive statistical metrics because the choice of the randomization design 
determines the null hypothesis, thus affecting the interpretation of the re-
sults (Artzy-Randrup et al. 2004). 

Temporal and Spatial Dynamics: Conceptual Challenges in the Study 
of Animal Social Networks 

Interactions among animals are dynamic processes, yet many studies of an-
imal social networks examine static structures. Animals may modify their 
social interactions in response to changes in external conditions such as 
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climate, predation pressure, and social setting. Some of these changes may 
be caused by the animals themselves as they move across habitats, poten-
tially altering their own social network structure and dynamics. It is there-
fore important to consider the temporal dynamics and spatial attributes in-
fluencing animal social networks to better understand and identify factors 
affecting sociality. Here, we discuss the temporal and spatial aspects that 
should be considered when investigating animal social networks and sug-
gest methods for addressing these challenges. 

Temporal dynamics 

Examining changes to the social structure of animals over time and across 
ecological settings can elucidate drivers and functions of social organiza-
tion (Hinde 1976; Whitehead 2008). For example, temporal changes in net-
work structure may affect the dynamics of processes such as the spread of 
disease within a population (Cross et al. 2004; Naug 2008); social interac-
tions early in life predict later social status (McDonald 2007); and environ-
mental changes may determine emergent properties of animal interactions 
such as hierarchical group structuring (Wittemyer et al. 2005; de Silva et al. 
2011). All of these dynamics shape individual interactions and consequently 
influence population organization. However, only a few studies examine the 
temporal dynamics of social networks (Table 2). Here, we summarize 2 main 
approaches to quantify and test aspects of network temporal dynamics, and 
highlight tools that can be used to address questions regarding network 
changes over time. We draw heavily from previous work in the social sci-
ences, where these methods have been developed and extensively applied 
to the study of human social structure (Snijders and Doreian 2010, 2012). 

The first approach to studying the temporal dynamics of networks is 
the discrete “snapshot” approach. Data collected over time are aggregated 
within relevant intervals to generate networks. This procedure yields a se-
ries of static representations of the social structure (Figure 2A–C). Critically, 
sampling must be carried out and partitioned at temporal resolutions ap-
propriate for the process of interest. Although there may be some biolog-
ical (Sundaresan et al. 2007; Whitehead 2008) or ecological (de Silva et al. 
2011; Holekamp et al. 2012) basis for choosing suitable time intervals, they 
depend heavily on the biological questions asked. In addition, species vary 
in the timescale on which behavior changes, for example, the time interval 
required to extract meaningful information about ant networks (Blonder and 
Dornhaus 2011; Pinter-Wollman et al. 2011; Waters and Fewell 2012) is very 
different from that for elephant networks (Wittemyer et al. 2005; Pinter-Woll-
man et al. 2009; de Silva et al. 2011). Multiple time frames may be tested to 
examine which most accurately represents the scale of change relevant to 
the question being asked (Waters and Fewell 2012). 
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Figure 2. Examples of temporal dynamics across animal social networks. (A) Net-
works in successive 2-year time blocks of long-tailed manakins (Chiroxiphia linearis). 
Permission from the National Academy of Science: McDonald DB. 2007. “Predicting 
fate from early connectivity in a social network,” Proc Nat Acad Sci USA. 104:10910–
10914. Photo by Christine Fisher. (B) Network dynamics among adult female Asian 
elephants (Elephas maximus) in the dry and wet seasons. Originally published by 
BioMed Central: de Silva S, Ranjeewa ADG, Kryazhimskiy S. 2011, “The dynamics 
of social networks among female Asian elephants,” BMC Ecol. 11:17.” Photo by Uda 
Walawe Elephant Research Project. 
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(C) Network dynamics among adult and subadult spotted hyenas (Crocuta crocuta) 
during periods of low and high prey abundance. Permission from Wiley: Holekamp 
KE, Smith JE, Strelioff CC, Van Horn RC, Watts HE. 2012, “Society, demography and 
genetics in the spotted hyena,” Mol Ecol. 21:613–632.” Photo by Kay E. Holekamp. 
(D) Information flow among ants (Temnothorax rugatulus) represented as (i) links 
over time, (ii) time-aggregated networks, and (iii) time-ordered networks. Permis-
sion from PLOS: Blonder B, Dornhaus A. 2011, “Time-ordered networks reveal lim-
itations to information flow in ant colonies,” PLoS One. 6:e20298. 
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Tools for longitudinal analyses based on the discrete snapshot approach 
are relatively well developed. Network dynamics can be visualized graphically 
using software such as Visone (http://visone. info/), which allows users to cre-
ate customized movies of temporal changes among static networks (Brandes 
and Wagner 2004). Social network change detection (SNCD) can be used to 
identity when network metrics (e.g., betweenness, transitivity) exhibit statis-
tically significant structural change between time periods (McCulloh 2009). 
SNCD, available through the software program ORA (http://www. casos.cs.cmu.
edu/projects/ora/), may be used to determine when events such as breed-
ing, dispersal, and environmental change first begin to impact animal social 
network structure. Similarly, hidden Markov models can identify structural 
change points in longitudinally collected behavioral data (Rabiner 1989). Dis-
crete networks can also be analyzed with statistically powerful methods such 
as stochastic actor-oriented modeling (SAOM, implemented in the R pack-
age, RSiena). SAOM examines how individual-based combinations of network 
processes and covariates influence the probability of animals changing their 
network links and attributes over time (Burk et al. 2007; Snijders et al. 2010). 

The second approach for studying network dynamics is the continu-
ous approach that maintains data in streams of time-stamped observations 
(Bender-deMoll and McFarland 2006; Berger-Wolf and Saia 2006; Palla et 
al. 2007; Tantipathananandh and Berger-Wolf 2009; Blonder and Dornhaus 
2011; Blonder et al. 2012). Rather than aggregating data to consider struc-
tural changes between time frames, these techniques focus on the order 
and timing of changes in relationships between nodes (Bender-deMoll and 
McFarland 2006). The continuous approach can provide detailed insight 
into situations where the timing and order of interactions is critical, such 
as diffusion of behaviors (Boogert et al. 2008) or information flow (Blonder 
and Dornhaus 2011; Figure 2D). Currently, the tools based on the continu-
ous approach are less accessible, less widely developed, and more limited 
in their utility than those based on the discrete approach. One exception is 
the R package “timeordered” developed by and for behavioral ecologists 
(Blonder and Dornhaus 2011). Despite current limited availability of analy-
sis packages, continuous analyses offer exciting new opportunities because 
they allow behavioral ecologists to model networks in a truly dynamic fash-
ion. The importance of temporal dynamics in animal social networks may 
encourage behavioral ecologists to further develop analytical approaches 
and tools that facilitate rigorous hypothesis testing concerning patterns of 
temporal change. 

Spatial constraints 

Animal social networks operate and evolve within spatial contexts (Barrat et 
al. 2005; Ohtsuki et al. 2006). The link between spatial and social dynamics 
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has long been fundamental in the study of geography (Hägerstrand 1970) 
and is an emerging theme in the study of human networks (Barrat et al. 
2005; Lauw et al. 2005; Crandall et al. 2010; Barthelemy 2011; Expert et al. 
2011). Spatial dynamics are important to consider when examining animal 
sociality because of the changes in spatial behavior during an animal’s life, 
for example, during natal dispersal or migration, that potentially affect its 
social associates. Furthermore, when individuals hold exclusive territories, 
space use may play a crucial role in defining social units, and by extension, 
network clusters or modules. Spatial proximity is important for maintaining 
cooperation (Nowak et al. 1994), and fission-fusion dynamics are defined by 
the spatiotemporal cohesion of individuals (Aureli et al. 2008). Recent tech-
nological innovations in tracking devices are revolutionizing the way we col-
lect social association data, providing detailed information on the location 
of individual animals at high spatial and temporal resolution (Pinter-Woll-
man and Mabry 2010; Haddadi et al. 2011; Aplin et al. 2012; Psorakis et al. 
2012; Rutz et al. 2012). However, integrative studies of space use and so-
cial interactions are still fledgling topics in the empirical studies of behav-
ioral ecology (Table 2). 

One hindrance to the advancement of studying the spatial constraints on 
social networks is the difficulty in separating the two. Except when networks 
are constructed based on direct behavioral interactions (Figure 2A,D), char-
acterizations of a social network often rely on the assumption that spatial 
proximity implies social affiliation (Whitehead 2008; Figure 2B,C). This widely 
applied technique, termed “the gambit of the group” (Whitehead and Du-
fault 1999), is derived from the realistic expectation that among nonhuman 
animals, individuals must be in close physical proximity to interact. Neverthe-
less, this assumption suffers from recognized weaknesses in that it ignores 
the nonsocial spatial factors affecting animal movements and co-habita-
tion, which bring individuals to the same location (e.g., a resting site) with-
out necessitating interactions. Furthermore, this approach suffers from ob-
server biases originating from the need for real-time “judgment calls” about 
what constitutes a group (Whitehead and Dufault 1999; Whitehead 2008). 

These issues in data collection are carried forward in statistical frame-
works meant to test for the presence of social structure. Null models de-
rived from permutation approaches are commonly used to assess whether 
individuals interact with one another more than expected at random (Be-
jder et al. 1998; Whitehead et al. 2005; Whitehead 2008; Sundaresan et al. 
2009). However, such permutation tests assume that any two individuals in 
the population can co-occur in the same group, without accounting for spa-
tial factors, such as the presence of resources, movement corridors, and so 
on. Such geographical attributes may attract individuals to the same loca-
tion or prevent them from ever meeting, regardless of social preference, ren-
dering results from a naive null model difficult to interpret. More stringent 
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null hypotheses should take into account the probability that 2 randomly 
drawn individuals encounter one another relative to their spatial configu-
ration (as in Pinter-Wollman et al. 2009). Furthermore, testing social affilia-
tion data against spatially explicit null models that account for patterns of 
space use could reveal associations that arise simply because individuals are 
attracted to similar geographical features. A general procedure that incor-
porates spatial and temporal variability in space use at the population level 
has not yet emerged but is an area ripe for exploration (Psorakis et al. 2012). 

Algorithms for detecting communities provide some basis for distin-
guishing space use from social preference at levels of organization larger 
than a dyad. There are now numerous methods for partitioning networks 
into subcomponents (reviewed by Porter et al. 2009 and Fortunato 2010), 
many of which rely on the topological features of the network itself, such 
as denser connections within communities than among communities. Such 
algorithms have been successfully used to discriminate social units in pop-
ulations with considerable spatial overlap that might have otherwise been 
considered a single large social unit (Oh and Badyaev 2010; de Silva et al. 
2011; Kerth et al. 2011; Mourier et al. 2012). However, for behavioral ecol-
ogists, many standard community-detection algorithms still provide an in-
complete understanding of spatial drivers because they do not use spatio-
temporal data per se. Recent approaches that do incorporate spatial data 
explicitly in defining social structure (such as those used by Lauw et al. 2005; 
Crandall et al. 2010; Expert et al. 2011; Psorakis et al. 2012) deserve greater 
attention from behavioral ecologists. By incorporating data on the distri-
butions and dynamics of ecological variables, these methods can provide a 
more complete understanding of how putatively “social” networks depend 
on, or can be distinguished from, these underlying ecological factors. 

In parallel, the branch of network analysis involving statistical model-
ing, such as SAOM and ERGM (Snijders et al. 2010), offers a promising ap-
proach to determining whether individuals in the network are responding 
to spatial and/or social preferences. For example, ERGM and SAOM can in-
clude both spatial (e.g., distance between individuals, habitat attributes, and 
so on) and nonspatial covariates in the statistical model (see above for more 
information on these techniques). Frameworks for evaluating the effect of 
social preference together with other factors governing contact patterns are 
also independently emerging from the study of collective movement in hu-
mans and animals (Couzin and Krause 2003; Getz and Saltz 2008; Bode et 
al. 2011a, 2011b). As the popularity of social network analyses grows, the 
consideration of explicit spatial information when generating networks and 
testing hypotheses is an area in need of further development in the study 
of nonhuman animals. 
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Variation Within and Among Networks: Evolution and Ecology of 
Social Networks 

Evolution acts on variation. When studying how natural selection acts on so-
cial network structure, variation is important at multiple levels, both within 
and among networks. Variation in connectivity or other centrality measures 
among individuals comprising a network influences how it operates (Wil-
liams and Lusseau 2006; Pinter-Wollman et al. 2011). Variation in network 
structure and function among social groups within a population influences 
how those groups adjust to various environments (Gordon et al. 2011), po-
tentially affecting the survival and reproductive success of individuals within 
the group and the relative success of each group within the population (Ro-
yle et al. 2012). Species differences in network structures and dynamics likely 
reflect the selective pressures under which they evolved. Thus, network struc-
ture and function may be targets of selection in ways often overlooked by 
evolutionary models. To realistically explore the evolutionary drivers of so-
cial systems and understand the various levels of selection acting on these 
systems, intraspecific comparisons within and across populations and inter-
specific comparisons of social networks are needed. 

Variation among individuals within a network 

The notion that key players, such as dominant individuals (Rowell 1974) or 
leaders (Couzin et al. 2005), may have disproportional effects on social struc-
ture has long been a hallmark concept in behavioral ecology. Traditional 
computational tools focus primarily on the outcomes of dyadic interactions 
between key players and other members of the group. However, the use of 
social network theory extends these traditional approaches by allowing be-
havioral ecologists to examine the role of key individuals, or key subgroups 
of individuals, on the emergent structure and function of the groups in which 
they reside. The implementation of new network approaches in the study of 
animal behavior highlights the important role that individual variation plays 
in network processes such as information flow (Lusseau and Newman 2004; 
Flack et al. 2006; Smith et al. 2010; Pinter-Wollman et al. 2011). Furthermore, 
studies that examine how variation among individuals in attributes such as 
age and sex affect their position in the network (Table 2) are beginning to 
shed light on how group composition may influence its success. However, 
further work is needed to understand how variation and group structure in-
fluence evolutionary processes. 

Exploring the mechanisms that underlie individual variation within a net-
work will advance our understanding of how social groups operate. How-
ever, only little is known about the mechanisms that produce variation in 
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social networks or even whether individuals persist in their social roles over 
time and across situations (Sih et al. 2009; Wilson et al. 2013). Although ge-
netic and developmental processes may cause individuals to occupy persis-
tent roles within a network, network structure must also respond to changes 
in the physical environment. Thus, ecological and social changes may act in 
concert to affect which individuals occupy central or dominant roles within 
the group. For example, when certain individuals are removed from a group, 
others may take their social role (Robson and Traniello 1999). 

One fruitful way in which behavioral ecologists may examine the effects 
of variation among individuals on network processes is by using “knockout 
experiments.” In such experiments, certain individuals or interactions are 
removed from the network to examine how they affect network processes 
(Flack et al. 2006). These experiments allow for the investigation of the dif-
ferential effects of removing various system components on the robustness 
and functionality of the social network. However, removals are not always 
feasible, for example, in field studies, when working with vulnerable spe-
cies, or when networks change rapidly. In such cases, computer simulations 
of removals or natural removals, such as those attributed to natural mortal-
ity or dispersal events, offer opportunities to understand the additive and 
nonadditive effects of certain individuals on group-level structure and func-
tion. Although the results of such simulated removals must be interpreted 
with care, these tools have been underutilized by behavioral ecologists aim-
ing to conserve species. Application of network theory could inform man-
agement decisions through inferences about the resilience of natural pop-
ulations to anthropogenic effects (as in Williams and Lusseau 2006). What 
determines whether removed central individuals are replaced and which in-
dividuals step in as replacements are still open questions. 

Variation among populations and species 

As the study of animal social networks expands, broad-scale comparisons 
of network structure within and across species will become possible. Com-
paring the similarities and differences among animal networks provides a 
framework for studying the diversity of system-level functionality. We are not 
the first to call for comparing network measures across species and popu-
lations (Krause et al. 2007). Indeed, studies comparing the social networks 
of similar species that live in different environments have revealed adap-
tive social structures shaped to the environment in which each species live 
(Sundaresan et al. 2007; Kasper and Voelkl 2009; de Silva and Wittemyer 
2012). As the field of animal social networks matures, more opportunities 
for comparative studies across taxa will arise (Table 2). As more studies of 
closely related species become available, we suggest comparing metrics 
of social structure across phylogenies to increase the breadth of questions 
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about the evolution of sociality. To facilitate comparisons of social networks 
across populations and species, it is critical to standardize sampling methods 
and to facilitate data sharing. Other fields have already made great strides 
that allow researchers to use large-scale, collaboratively maintained, data-
bases for comparative work (e.g., microarray data (Brazma et al. 2001) and 
speech corpora (LDC corpus catalogue, http://www.ldc.upenn.edu/) while 
some fields utilize universal measures (e.g., physiological studies of scaling 
laws). It is time that behavioral ecologists who examine animal social net-
works establish standards for collecting and storing social network data to 
enable large-scale comparisons across systems that are necessary for ad-
vancing our understanding of the structure and function of these networks. 

Standardizing network data is not straightforward and will require the 
consideration of many factors. For example, the frequency and time frame 
of data collection, network size, and even what constitutes a link among in-
dividuals are all factors that may vary among studies and will affect the abil-
ity to compare among them. Furthermore, the function of the group in each 
species will determine which biological questions may be answered using a 
comparative approach. To allow for comparison among networks, we em-
phasize the need to record individual-based data in a spatially and tempo-
rally explicit manner. So, instead of storing data as interactions or as group 
affiliation, each individual observed should be recorded separately, with a 
time stamp and location from which network data can later be constructed 
using various spatiotemporal filters to define an interaction. Moving forward 
toward collaborations and comparative studies, one useful tool may be shar-
ing social network data in centralized repositories such as the Dryad Digital 
Repository (http://datadryad.org/) (e.g., Holekamp et al. 2012). If these da-
tabases include proper documentation of collection methods, and assump-
tions made by the observer, each user will then be able to choose only those 
networks that are relevant to the biological question at hand. These are only 
some suggestions to begin the process of standardizing network data. Fur-
ther work is needed to develop and establish tools that will facilitate com-
parative studies on the evolution of social behavior. 

Conclusions 

The study of animal social networks is rapidly expanding. Social network 
analysis is being applied to a wide variety of taxa, and many new analysis 
methods are constantly being developed, adopted, and adapted to advance 
our understanding of animal sociality. Although novel descriptions of social 
structure in species that are as yet unstudied will continue to expand the 
foundations of the field, behavioral ecologists have now accumulated a vast 
body of data with which more general hypotheses about networks can be 
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tested. In this review, we have summarized recent methodological and con-
ceptual advancements that we believe will be useful for furthering our un-
derstanding of animal social structure. We aggregated the analytical tools 
reviewed in Table 1 and a sample of studies that incorporate these meth-
odological and conceptual advancements in Table 2. We found that many 
studies already consider individual variation, in one form or another, and to 
a lesser extent, temporal dynamics, and spatial constraints. There is a strik-
ing paucity of studies utilizing statistical network modeling and triadic mo-
tifs to examine animal social networks and very few cross-species compar-
isons (Table 2). 

Broader use of the advancements we describe will allow us to test com-
plex hypotheses about the function, mechanism, development, and evolu-
tion of animal sociality. In summarizing these advances and identifying ar-
eas in need of attention, we hope to provide researchers with a toolbox of 
up-to-date methods that can be used to spur new research programs, fur-
ther development of network analysis methods, and progress our under-
standing of the proximate and ultimate processes that shape animal sociality. 
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