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Although both betweenness and closeness centrality are claimed to be important for the

effectiveness of someone’s network position, it has not been comprehensively studied which

networks emerge if actors strive to optimize their centrality in the network in terms of

betweenness and closeness. We study each of these centrality measures separately, but

we also analyze what happens if actors value betweenness and closeness simultaneously.

Network dynamics differ considerably in a scenario with either betweenness or closeness

incentives compared with a scenario in which closeness and betweenness incentives are

combined. There are not only more stable networks if actors’ betweenness and closeness

are combined, but also these stable networks are less stylized.

Keywords: betweenness centrality, closeness centrality, network dynamics, network formation, social

networks

1. INTRODUCTION

Freeman (1979) already realized that to describe the centrality of actors in a
network, one network measure is not sufficient. Even when only considering the
communication activities in a network, it makes sense to distinguish different mea-
sures. More specifically, he distinguished degree centrality for the extent to which
an actor is active in the process of communication in the network, betweenness
centrality as the extent to which an actor is essential to channel information between
other actors, and closeness centrality as a measure of independence of an actor to
receive information quickly from any position in the network. Subsequently, it
was realized that central positions in the network can provide benefits for the actors
in these positions, but that depending on the application different types of central
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positions are beneficial. For example, Burt (1992) showed that controlling infor-
mation exchange between other actors can be beneficial for promotion within a firm.
Although Burt operationalized control of information using his formalization of
structural holes, betweenness centrality can also be considered as a measure for such
a control of information. In other circumstances, closeness can be more beneficial.
For example, if information needs to travel along shorter paths, the information is
more reliable compared with information that has to travel along long paths. There-
fore, if fast and accurate access to information is necessary and especially if network
channels are noisy, closeness centrality will be beneficial.

Given that it is meanwhile acknowledged that certain network positions
provide benefits for actors, it is also plausible that actors consciously choose their
relations to optimize their network positions in an incentive-guided manner (see
Flap, 2003). In the last 15 years, the developments on modeling incentive-based
network formation have been tremendous in sociology and in economics. The two
textbooks by Goyal (2007) and Jackson (2008) are examples for the development
in economics. The special issue of Social Networks (see Snijders & Doreian, 2010)
provides a broad overview of recent developments in sociology.Wewill not review this
literature here again but connect to the most related studies below.

1.1. Motivation

We add to the theoretical research on network dynamics in three ways. First,
although Freeman (1979) has been arguing already in the late 1970s what the ben-
eficial features are of different central positions in networks, it has not been studied
in detail how the classic centrality measures can drive network formation. This exer-
cise complements the theory of centrality that originally measures the effect of net-
work positions on individual opportunities (see, e.g., Wasserman & Faust, 1994),
but not the effect of individual behavior on network structure. If network dynamics
show that advantageous network positions are not stable in a dynamic context, effects
of advantageous network positions on individual opportunities might be smaller than
expected. The reason is that the advantages of the network positions can only be
exploited for a short time.

Second, the centrality indices are based on network statistics that are applicable in
many different contexts—from ancient marriages (Padgett & Ansell, 1993) to research
and development collaborations (Walker, Kogut, & Shan, 1997). Correspondingly,
centrality-oriented linking behavior covers basic types of linking behavior, beyond a
single application. One type of linking behavior is oriented toward access to resources
via short paths (closeness). Another type of linking behavior is oriented toward becom-
ing a mediator or broker by lying between others (betweenness). By using closeness and
betweenness centrality as operationalizations for these two types of incentives, we devi-
ate from most of the current literature on strategic network formation. This enables us
to compare, for example, network dynamics based on betweenness with network
dynamics based on structural holes (Buskens & Van de Rijt, 2008). Studying resem-
blances and discrepancies not only serves to assess the robustness of previous results
but might also be informative for the theoretical distinction between different measures.

Third, after comparing the dynamics of closeness and betweenness, we analyze
the combination of closeness and betweenness incentives to determine network
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formation. For contexts in which different types of incentives are salient simul-
taneously, it would be misleading to analyze them separately because combining
closeness and betweenness incentives leads to qualitatively different network dyna-
mics compared to looking at each of the incentives separately. So far, there is hardly
any research on the interplay between different types of incentives to predict network
formation processes, although it is likely that multiple incentives are important
simultaneously.1 For example, considering the Medici’s position in the marriage
network in Renaissance Florence, Padgett and Ansell (1993) illustrate that for the
trading abilities betweenness played a major role, but for actors with low between-
ness, it was important to be at least close to the other actors.

1.2. Relation to the Literature

In this article, we will introduce a model in which actors strive for closeness and
betweenness (centrality), while links are costly. Several models on strategic network
formation resemble this ‘‘centrality model.’’ The dynamics of intermediation rents in
terms of structural holes is studied by Buskens and Van de Rijt (2008) and Goyal and
Vega-Redondo (2008), as well as by Willer (2007) and Kleinberg, Suri, Tardos,
and Wexler (2008).2 Each of those models uses a different operationalization of
structural holes. None of the models uses betweenness centrality, although Burt
not only proposes some new measures for brokerage but also employs betweenness
(Burt, 2002). Hummon (2000) and Doreian (2006) study the dynamics of the
‘‘connections model,’’ originally introduced by Jackson and Wolinsky (1996).
Covering incentives for short paths, the connections model is closely related to
closeness incentives (as examined in a comparison of these two models in Buechel,
2008). Moreover, Fabrikant, Luthra, Maneva, Papadamitriou, and Shenker (2003)
introduce a model where actors’ utility is decreasing with their average path length
(the network statistic on which closeness is based on). This model is adapted to
bilateral link formation and further studied by Corbo and Parkes (2005). Finally,
Holme and Ghoshal (2006, 2009) study a model (within a different framework,
though) where actors optimize their closeness, while links are costly.

What has not been done in the literature is to contrast and to combine the
dynamics of ‘‘closeness-type’’ incentives to (with) the dynamics of ‘‘betweenness-
type’’ incentives. We explicitly investigate how the dynamics of closeness differ from
the dynamics of betweenness and examine what happens if both centrality incentives
matter simultaneously. To study which networks emerge for different incentives, we
use three complementary tools. First, we derive general propositions on properties of
stable networks using analytic tools. Second, we enumerate all stable networks with
eight or less actors and different relative weights for closeness and betweenness.
Finally, we simulate a dynamic process to estimate the likelihood of different stable
networks in the theoretical conditions that we consider.

1A first step in this direction is made by Sato (1997), who analyzes a combination of brokerage and

closure for small networks.
2The model of Kleinberg et al. (2008) is less comparable because it studies the unilateral (not the

bilateral) formation of network links.
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As we will show, emerging networks for pure closeness incentives are rarely
star networks, but frequently star-like networks in the sense that they are sparse
and connected. Also, the dynamics of pure betweenness lead to a special class of
networks (complete bipartite networks) in most of the settings. For a combination
of closeness and betweenness incentives we observe that there are more and qualitat-
ively different stable networks.

The next section introduces the model and the methods. Section 3 contrasts the
closeness dynamics with betweenness dynamics. Section 4 examines the interaction
of closeness and betweenness dynamics, and Section 5 concludes.

2. MODEL AND METHODS

2.1. Basic Definitions

2.1.1. Networks and Features of Networks. We consider a finite set of
actors N with typical elements i or j and size n� 3. The bilateral relationships among
these actors are modeled as an undirected (and dichotomous) network. Let G be the
set of all those networks and G a typical element. With ij2G we denote the presence
of the link between actors i and j in G. Let G [ ij be the network obtained when the
link between actors i and j is added to network G, while G\ij denotes the network
when the link between actors i and j is removed from network G.

A path between two actors i and j is a sequence of distinct actors i1i2i3. . .ik such
that i1¼ i, ik¼ j, and ililþ12 g 8l2 {1,. . ., k� 1}. The distance dG(i, j), or simply d(i, j)
between two actors is the length of their shortest path(s), where the length is the
number of links in the sequence.3 Neighbors have distance 1; neighbors of neighbors
that are not directly connected are at distance 2; and pairs that cannot reach each
other via any number of other actors are defined to have distanceM, a number larger
than any possible actual distance in a network. We work with the conventions M¼ n

and d(i, i)¼ 0 8i2N. Let the diameter of a network be the maximal distance between
two connected actors in the network. A network is called connected if there exists
a path between any two actors in the network. A set of connected actors is called
a component if there is no path to actors outside of this set. A link is called a bridge
if its deletion increases the number of components in a network.

Let us define some network architectures that will be used throughout the text.
In the complete network Kn every possible link is present, while in the empty net-

work, the complement of the complete network, Kn no link is present. A network
is a tree if all links are bridges and the network is connected. If all links are bridges
and the network consists of multiple components, the network is called a forest.
A network is complete bipartite (Kn1,n2) if it can be partitioned into two (nonempty)
groups of actors (of sizes n1 and n2) such that no link is present within a group and
all links are present across groups. A special case is the balanced complete bipartite
network Kn1,n1

with n¼ 2n1. When referring to complete bipartite networks (CB), we
assume that there are at least two actors in each group. If one group consists of one
actor, this is called a star network K1,n� 1 (in which one actor is linked to every other

3Below, we introduce notation for properties of actors in a network G omitting G if there is no

confusion about which network is considered.
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actor, while there are no other links). A circle of size k(�3) is a sequence of k distinct
actors i1i2 . . . ik such that ililþ12G 8l2 {1,. . ., k}, where ikþ1 :¼ i1. A circle network
Cn is a network with no links besides a circle of size k¼ n. Eliminating one link of
a circle network leads to a line network Pn.

2.1.2. Degree, Closeness, and Betweenness. The degree dG(i) or simply
d(i) of an actor i is the number of links actor i has in network G. An isolate is an
actor with d(i)¼ 0 and a pendant is an actor with d(i)¼ 1 (the link to this latter actor
is called a loose end). The average degree of a network is defined as

dðGÞ :¼ 1
n

P

i2N dðiÞ. Network density is defined as DðGÞ :¼ dðGÞ
n�1 , the average degree

as a proportion of the maximal possible average degree. Degree can be considered as
a measure of centrality (Freeman, 1979). But besides the beneficial aspects of many
links, there are also costs (time, effort) involved. We assume that the costs of main-
taining relationships are the same for any link independent of the number of links an
actor has and exceed those benefits that are restricted to direct contacts.4 This means
that maintaining links is costly.5

The idea of closeness reaches back to the origins of social network analysis. An
actor is considered as ‘‘central’’ in a social network if his distance to other actors is
small (Sabidussi, 1966). Freeman (1979) uses the inverse average distance (of an

actor to all actors in the network) to formalize closeness n�1
P

j2N dði;jÞ

� �

. As argued

in Buechel (2008), it is equally reasonable to operationalize closeness as the reverse

average distance �
P

j2N dði;jÞ
n�1

� �

. The advantage of the latter definition is that any

change in closeness is proportional to a change in average distances (as also argued
in Valente & Foreman, 1998). Usually closeness is not defined for actors that are not
connected via any number of others. We extend closeness to all undirected networks
using M as the distance of not connected pairs. In this article, we use the normalized
version of the reverse average distance. Closeness of actor i in network G is in that
case equal to

CCðiÞ ¼
M

M � 1
�

P

j2N dði; jÞ
ðM � 1Þðn� 1Þ : ð1Þ

CC (i)¼ 0 for isolates, while CC(i)¼ 1 for an actor who is directly connected to
all others in the network. As examined in Buechel (2008), this choice of operationa-
lization (as opposed to Freeman’s definition) affects the results but does not funda-
mentally change them. The reason for this consistency is that in our analysis of
closeness the results are strongly driven by the ordering of closeness centralities in
different network positions and the results are to a lesser extent driven by the precise
differences between the centralities.

4Without this assumption every actor wants to be directly linked to every other actor, indepen-

dently of any other benefits. Alternatively, one could assume increasing marginal costs of links, but we

do not need this more complex cost structure to develop our main point.
5We only consider costs for link maintenance and do not take into account specific costs for

creating or deleting links.
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Betweenness was introduced by Anthonisse (1971) and Freeman (1979) and
used in many studies thereafter (e.g., Song, Nerur, & Teng, 2007). The betweenness
of an actor i is proportional to the number of pairs j and k for whom i lies on the
shortest path (also called ‘‘geodesic’’). If j and k have more than one geodesic, the
fraction of shortest paths going through i is used. Formally,

CBðiÞ ¼
2

ðn� 1Þðn� 2Þ
X

j<kðj 6¼i;k 6¼iÞ

gijk

gjk
; ð2Þ

where gjk is the number of geodesics between j and k, and gijk indicates the number of

shortest paths between j and k that go through i; the fraction
gi
jk

gjk
is replaced by zero,

when gjk¼ 0. The constant before the fraction normalizes betweenness to be between
0 (an actor is on no shortest path between two other actors) and 1 (the center in a
star network).

2.2. Utility Function and Actor Behavior

We assume that closeness and betweenness are the benefits derived from the
network structure, while direct links are costly. Let c> 0 be the costs of one link
and k 2 [0, 1] the relative importance (weight) of betweenness versus closeness
benefits. In this ‘‘centrality model’’ we represent the behavior for any actor i by
the following utility function:

uiðGÞ ¼ ð1� kÞCCðiÞ þ kCBðiÞ � cdðiÞ: ð3Þ

We analyze the model for all possible parameter combinations, as they rep-
resent different contexts including high costs and low costs for maintaining links
as well as pure closeness incentives (k¼ 0), pure betweenness (k¼ 1), and both close-
ness and betweenness being important (0< k <1).6

In this formulation the utility function is linear in closeness, betweenness, and
degree. This assumption implies that the effect of a change in one centrality measure
is independent of the level the three centrality measures have. For example, the costs
of a link are independent of the number of links an actor already has and inde-
pendent of his closeness and betweenness. Such a formulation is a convenient choice,
but clearly restricts generality.7

In our model actors have homogeneous preferences. It is an interesting
question to ask how networks evolve when actors differ in their preferences (see,
e.g., Galeotti, Goyal, & Kamphorst, 2006). But since applications of our model
are very different in nature, we put emphasis on the different contexts that influence

6Instead of setting the slopes (k and 1� k) in relation to each other, we could also have defined

them independently. Both notations allow us to represent exactly the same behavior and there is no dif-

ference when examining stability (and efficiency). The relative notation can be advantageous for compara-

tive statics because c then measures the costs in comparison to one unit of benefit.
7Goyal and Joshi (2006), De Jaegher and Kamphorst (2008), and Buechel (2008) study models

where the assumption is partially relaxed (by allowing for increasing and decreasing marginal returns).
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everybody’s choice, not on the difference between actors (as also argued in Burger &
Buskens, 2009).

Finally, we assume that actors in our model decide about links myopically.
This means that actors consider the consequences of their actions on the current net-
work structure, but do not anticipate the potential reactions of others (cf. Jackson &
Wolinsky, 1996).

2.3. Methods to Study Emergence

To study which networks are likely to emerge for different incentives under the
assumptions specified above, we employ three complementary methods: formal
derivations, enumeration, and simulation. We introduce in this subsection each
method while we sometimes provide a basic result as an illustration. Sections 3
and 4 summarize the results for different parameters using each method.

2.3.1. Formal Derivations. To find the networks that are likely to emerge, the
first step is to exclude all those networks in which individual actors have incentives and
possibilities to change the network. Jackson and Wolinsky (1996) proposed such a
stability condition that takes into account that, typically for social networks, the estab-
lishment of a relationship needs the agreement of both actors involved, while the dis-
solution can be done unilaterally. Accordingly, a network G is (pairwise) stable if

(i) 8 ij 2 G; uiðGÞ � uiðGnijÞ and ujðGÞ � uj GnijÞ andð
(ii) 8 ij =2 G; uiðG[ijÞ > uiðGÞ ) ujðG[ijÞ < ujðGÞ:

To establish stability one typically needs the maximal incentive (change in
benefits) of any actor to sever a link and the maximal incentive (change in benefits)
of any two actors to add a link and compare them to linking costs c. Because benefits
are based only on closeness and betweenness, the crucial aspects for a focal actor
i are the change in distances

P

j2N dði; jÞ (¼̂¼ nonnormalized closeness) and the

change in the number of shortest paths he is on
P

j<kðj 6¼i;k 6¼iÞ
gi
jk

gjk
(¼̂¼ nonnormalized

betweenness), what we call his ‘‘brokerage.’’ Plugging in these changes into the
utility function above yields the following condition: if a new link for some actor

i in some network G means a decrease in distances of X and an increase in brokerage

of Y, this actor is willing to form the link only if

c � ð1� kÞ½X �
ðM � 1Þðn� 1Þ þ

k2½Y �
ðn� 1Þðn� 2Þ : ð4Þ

Although deriving the changes in distances and brokerage for a given situation
might be tedious, it is a straightforward task.

Formal derivations are first of all used to establish the existence of stable networks
and to characterize a significant boundary of the parameters. In particular, the following
proposition specifies forwhich costs the complete network is uniquely stable.Clearly, for
costs smaller than the derived threshold, no interesting results can be expected.
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Proposition 1. In the centrality model there exists at least one stable network

for any parameters (k, c) 2 [0, 1]�Rþ. Moreover, if c < 1�k
ðn�1ÞðM�1Þ, the complete

network Kn is uniquely stable.

The proof of all propositions can be found in the Appendix. The existence of
a stable network is assured by three simple networks—the complete network, the
empty network, and a star network—of which at least one is stable. The complete

network is stable for c � 1�k
ðn�1ÞðM�1Þ. When this condition holds with equality, actors

are indifferent between keeping and removing a link with the minimal possible
benefits—that is a link that only serves to reducing the distance to one other actor
by the amount of one, while it does not provide any brokerage. Above the upper
bound for the stability of the complete network there is (possibly) a multitude
of stable networks. We explore those networks further in Sections 3 and 4. For
sufficiently high c, the empty network is uniquely stable, since no link benefit can
justify its costs. The proof of existence is completed by showing that the star network
is stable when the complete and empty network are not stable.

It is straightforward to analyze for which parameter settings a certain network
is stable and not stable (we do this exercise in Subsection 4.1 for some prominent
networks). Moreover, the formal derivations are used to characterize the stable
networks by properties they must or must not satisfy.

2.3.2. Enumeration. For small n, one can check the stability for any possible
network structure using brute force computer power. We apply this for n� 8. To pro-
vide an overview of the stable networks that exist, we checked in which range of costs
c each network is stable for a fixed k 2 {0, 0.1, 0.2,. . ., 0.9, 1} and usingM¼ n. We call
networks ‘‘stable for k’’ if there exists a cost range with positive support in which the
network is stable. By excluding those networks that are only stable for an infinitely
small cost range, that is, one single cost value, we do not expect to lose reasonable
candidates for the emerging networks, because the networks would lose their stability
due to the smallest perturbations in the cost c.8 Table 1 shows how many different
stable networks exist fixing k 2 {0, 0.5, 1} and combining all cost levels.9

8We cannot make the same robustness check for perturbations of k. To run the enumeration, we

either have to fix k and search for ranges of c for a given network, or fix c and search for a ranges of

k. We chose to fix k, because there are some canonical candidates of k to be analyzed, i.e., k¼ 0 and

k¼ 1, while this is not true for c.

TABLE 1 Number of Stable Networks for a Network of Size n

Network size n 5 6 7 8

Stable networks for k¼ 0 (Closeness) 6 12 21 45

Stable networks for k¼ 0.5 9 20 45 117

Stable networks for k¼ 1 (Betweenness) 4 9 18 37

Total number of nonisomorphic networks 34 156 1,044 12,346

Fraction (of stable networks for k¼ 0.5) 26% 13% 4.3% 0.95%

9With the described procedure, we find all stable networks, except those that are stable for some k

that we did not consider, while they are not stable for all k’s we did consider. This number of networks is

likely to be small because most of the stable networks we find are stable for multiple values of k.
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While the total number of nonisomorphic networks explodes with size n, the
number of stable networks increases much more gradually. So our stability notion,
despite being a minimal requirement, can already exclude many networks from being
part of a prediction even without fixing the cost parameter c.

While the enumeration provides a full picture of the candidates for emerging
networks, it does not reveal which networks are most likely the endpoint of
a dynamic process in which, for example, in any period two actors randomly meet.
Each meeting is a possibility for those actors to change their relationship. We use
simulations to elaborate on the expected structural features of emerging networks
for different parameter values in such a dynamic process.10

2.3.3. Simulation. The third method to investigate the emergence of stable
networks is a simulation of myopic improvement dynamics. To run a simulation,
one has to fix both behavioral parameters, weight k and costs c (as well as the basic
settings, n and M). Then, the simulation takes the following steps:

1. Start with some network.
2. Pick a pair of actors {i, j} at random (every pair with equal probability).
3. If ij does not exist, form the link ij if both i and j improve their utility (at least

one strictly); if the link ij exists, sever the link if either i or j improves strictly
by severing it; keep the current status of the link in all other cases.

4. Go back to step 2 and repeat the steps for the actual new situation until no pair of
actors wants to change anymore.

The procedure starts with one given network and follows a sequence of
deviations toward some stable network (cf. Doreian, 2006; Willer, 2007). Similar
simulations can be found in Hummon (2000) or Buskens and Van de Rijt (2008).

It is the nature of such a simulation that one has to choose a few parameter
settings out of a continuum of possibilities. As in the enumeration, we fixed M¼ n

in any simulation. As parameter setting we chose the weights k¼ 0, 0.1, 0.5, 0.9, 1
and four cost levels (c¼ very low, low, medium, high) which are illustrated by the dots
in Figure 1. The weights include models where closeness and betweenness incentives
are analyzed separately as well as models in which they are combined with different
weights—one balanced model k¼ 0.5, and cases that check for nonlinearities in the
dynamic process when going from a model with only closeness or betweenness to
a combined model. The cost levels are defined according to analytical considerations

as follows (in increasing order): very low :¼ 1
23n

� e, low :¼ 1
22n

� e, med :¼ 1
21n

� e,

and high :¼ 1
20n

� e, where e¼ 0.001, so, e.g., for n¼ 5 costs levels are c¼ 0.024,

0.049, 0.099, and 0.199. The subtraction of E¼ 0.001 only serves to avoid potential

10The formal derivations and the enumeration are based on the notion of pairwise stability, which is

conceptually not very restrictive. However, we do not work with stronger notions of stability for three rea-

sons: (a) As the enumeration shows, only a small subset of all networks is pairwise stable. (b) We let the

enumeration also check for unilateral stability (Buskens & Van de Rijt, 2008), which is a stronger stability

concept than pairwise stability, but it turns out that this refinement does not heavily decrease the number

of equilibrium networks in our model. (c) The simulation partially serves as an equilibrium selection device

and provides itself an indication for the more or less important stable networks.

THE DYNAMICS OF CLOSENESS AND BETWEENNESS 167

D
o
w

n
lo

ad
ed

 b
y
 [

8
5
.1

7
6
.1

7
2
.5

4
] 

at
 1

5
:0

9
 2

4
 J

u
n
e 

2
0
1
3
 



situations in which actors are indifferent between having or not having a particular
link. For k¼ 1 there was an additional run for ‘‘epsilon costs’’ c¼ E¼ 0.001, that is,
a cost level sufficiently small such that any increase in betweenness benefits would
justify its costs (for not too high n). By starting twice (or three times) with each
configuration, there are 2(4�5þ 1)¼ 42 (respectively 63) runs per starting network.

Figure 1 illustrates the three methods in the parameter space with weight
k on the horizontal axis and cost c on the vertical axis. The dots stand for the
21 settings of the simulation. The enumeration ‘‘collects’’ all stable networks
along the vertical lines. By formal derivations we find thresholds, for example,
for the uniqueness of the complete network, which can be represented by regions
in the parameter space.

As starting networks for the simulation we took all nonisomorphic networks
for network size n¼ 3,. . ., 8 and a sample stratified by density of around 2,500
networks for network sizes 14 and 20. To give a specific example: For n¼ 14 we used
a sample of 2,432 starting networks. Each of them was used for 42 runs. On average
it took 137 (median is 56) iterations to reach a stable network.

The purpose of the simulation is two-fold. First, for small network sizes, for
which we know all stable networks from enumeration, we use the simulation to
attach probabilities of emergence. The second purpose of the simulation is to run
computational experiments. Starting with the same network structures but using
different utility parameters provides important insight how changes in the utility
of actors affect the emerging network structure. In the following we employ all three
methods presented here (formal derivations, enumeration, and simulation) to answer
specific questions about the consequences of closeness and betweenness incentives
on the network dynamics.11

FIGURE 1 Setting of the parameters for the simulation and the enumeration method (color figure

available online).

11In this article, we selected the most important results to illustrate the difference between various

centrality models. For example, we only present the enumeration and simulation results for n¼ 8. Some

additional results that corroborate the main message of the current article can be found in Buechel

(2009). Further results can also be requested from the authors.
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We argue that each of the three methods has its significant strengths and
weaknesses such that omitting one of them would not lead to a sufficient examin-
ation of our model. Clearly, without formal derivations, enumeration and simulation
are black boxes leading to data which can be described but not generalized. Omitting
the enumeration, we do not get a full picture of the candidates for stable networks.
This is an issue because the dynamics of the simulation are not only driven by the
utility function—the point of interest—but also by the process of link formation.12

That is, the rule that a pair of actors is drawn to revise their relationship might
induce different network structures than, for example, the rule that a single actor
is drawn who can change the relationship that is most valuable for him. Finally,
without the simulation, we assess a dynamic question (which networks emerge when
. . .) by only static methods. Moreover, we would not have had numerical examples
for n� 10 such that we might miss important features of emerging networks.

3. CLOSENESS VERSUS BETWEENNESS INCENTIVES

This section first describes the dynamics of closeness incentives and then turns
to betweenness dynamics.

3.1. Dynamics of Closeness

For pure closeness incentives (k¼ 0), actors face a trade-off between short
distances and linking costs. This is equivalent to a linear version of the model intro-
duced in Buechel (2008) and almost equivalent to the model proposed by Fabrikant
et al. (2003), where the benefit function is also linearly decreasing with the sum of
distances.13 In the original formulation of the Fabrikant model, analyzed by Corbo
and Parkes (2005) for bilateral network formation, the distance of not connected
actors is set to M ¼ 1 while this assumption is relaxed by Brandes, Hoefer, and
Nick (2008). Corbo and Parkes (2005) identify some classes of stable networks
and also mention the difficulty in finding all stable networks.

Moreover, actors striving for short paths is similar to the utility function of the
connections model, discussed in Jackson and Wolinsky (1996) and Hummon (2000),
where the value of each connected actor decreases with his distance.14 The star
network is the predominantly discussed stable network of the connections model,
but different other stable networks were found (see Hummon, 2000). In Buechel
(2008) it is shown that the set of stable networks of the (symmetric) connections
model almost coincides with the set of stable networks in the model with linear close-
ness benefits (which is the centrality model for k¼ 0).

However, it has not been characterized what the stable networks look like.
So the question remains whether the star or star-like networks are a typical

12We thank Ulrik Brandes for pointing out this issue.
13For k¼ 0 the benefits are just an affine linear transformation of benefits in the Fabrikant model,

while for the costs c anyhow any possible value is considered. As a consequence, the two models lead to the

same sets of stable and efficient networks. However, they do not lead to the same absolute values of utility,

for example, when computing ratios of the values of different networks, as Corbo and Parkes (2005) do.
14Consistently, Borgatti and Everett (2006) list the benefits of the connections model among the

‘‘closeness-like’’ centrality indices.
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outcome for closeness-type incentives and which other networks can occur. The
star belongs to the family of the tree networks. Among the trees, the star is the
network with the minimal sum of distances. Therefore, star-like networks can
be described as connected, sparse with short distances. Below we analyze to which
extent the stable and emerging networks for closeness incentives (k¼ 0) satisfy
these three properties.

3.1.1. Formal Derivations. For c < 1
ðn�1Þ all stable networks must be

connected because the marginal benefit of linking to an actor in a different

component is at least M�1
ðn�1ÞðM�1Þ ¼ 1

n�1 (see Buechel, 2008, Prop. 5). This threshold

is slightly above c¼ high (so we obtain connected networks for all cost levels of
the simulation when k¼ 0).

Concerning distances, one can find an upper bound for the diameter in a stable
network.15 The following proposition is based on the minimal benefit two actors—
who are separated by a given distance—gain from linking.

Proposition 2. In the centrality model with k¼ 0, the following holds: The diameter

of a stable network is smaller or equal to p, with p ¼ maxf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4cðn� 1ÞðM � 1Þ þ 1
p

; 1g.

Let us study the implications of this result in a numerical example: for

c ¼ low ¼ 1
22n

� E � 1
22n

� �

, the boundary is p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðn�1ÞðM�1Þ
n

þ 1
q

. That means that

the maximal distance between connected actors that can emerge in a simulation with
M¼ n¼ 8 is two and in a simulation with M¼ n¼ 14 this is three. For c¼medium,
the maximal possible distance is three for size 8 and five for size 14.

The sparsity of stable networks also can be shown analytically. For each
level of c, we find an upper bound for the average degree d(G). We cannot
exclude a high degree actor directly because a star-like position leads to high
benefits which can compensate for the costs. But there is a link between the
existence of small circles and the average degree that we can use to get the
following result:

Proposition 3. In the centrality model with k¼ 0, the following holds: If

c > 9n
16ðn�1ÞðM�1Þ, dðGÞ < 1

2 nþ 1
2 for any stable network G and if c > 4n

5ðn�1ÞðM�1Þ,

dðGÞ < ffiffiffi

n
p

for any stable network G.

The first part of the statement does not drastically restrict the candidates for
emerging networks. It restricts the density D(G) of the stable networks not to be
higher than around 60%. The second part applies for higher costs, for example,
c¼ high. It restricts the stable networks of size 8 to have less than 11 links, networks
of size 14 to have less than 25 links.16

15The corresponding result is already stated in Fabrikant et al. (2003).
16The result on average degree and the result on the diameter get stronger for bigger sizes of the

networks. For n¼M¼ 100 and c¼ low the diameter is not larger than 9; and c¼ high restricts the density

to be less than around 10%.
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3.1.2. Enumeration. While the formal derivations provide upper bounds,
the enumeration reveals to what extent the set of all stable networks for closeness
incentives satisfies the three properties of interest (sparsity, connectedness and short
distances). Table 2 shows the enumeration results. The first column describes the
properties of all nonisomorphic networks and serves as a benchmark; the second
column contains all stable networks for closeness incentives.

The first two rows of the table show that out of the 12,346 nonisomorphic
networks, only 253 (that is 0.2%) networks are trees. While for the set of stable
networks for pure closeness k¼ 0 there are 19 trees, which makes 42%.17 To interpret
the rows in the middle, note that a tree of size 8 is connected with exactly 7 links. The
table shows that, indeed, most stable networks are connected and sparse with an
average of 9 links per network. The last two rows assess the distances. The average
distance, AV’DIS, measures the distance between any pair of actors in a network
(usingM¼ n¼ 8 for not connected pairs); AV’DIS’C only considers connected pairs.
The set of stable networks exhibits relatively high distances. While a star has an
average distance of 1.75, in the set of stable networks there are many with higher
distances. In fact, only three of the 45 stable networks exhibit a lower average
distance than an arbitrarily chosen network. This is the only aspect of star-like
networks that is not clearly matched in the set of stable networks. The stable
networks are sparse and connected, but do not exhibit short average distances
compared to an arbitrary network. Of course, one needs to realize that denser
networks tend to have shorter distances.

The enumeration results (above) do not differentiate by the level of c. Analyti-

cally, it is easy to show that trees can only be stable in the range c 2 1
ðM�1Þðn�1Þ ;

1
ðn�1Þ

h i

(for k¼ 0).18 Above this range there are only few stable networks. For example,
using again the enumeration for n¼ 8, there are three networks that are stable for
higher costs. Those are the empty network, the circle network and a network consist-
ing of a circle of size 7 plus one isolate. Let us now analyze which networks emerge
within the cost range of trees.

3.1.3. Simulation. We ran a simulation with three settings of c where trees
are stable, starting with any possible network for n¼ 8. Table 3 shows the frequency

TABLE 2 Properties of Stable Networks for Pure Closeness Incentives k¼ 0

(Enum. n¼ 8)

All networks Stable networks

Number of networks 12,346 45

Number of trees 253 19

Number of connected networks 11,117 43

Mean number of links 14 9.09

Mean of AV’DIS 1.779 2.149

Mean of AV’DIS’C 1.563 1.982

17For other weights (k¼ 0.1, 0.2,. . ., 1), the fraction of trees is not above 22%.
18Below that cost range the complete network is uniquely stable as shown in Proposition 1; above

this range no network with loose ends can be stable as will be shown in Remark 2.
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with which a tree and specifically the star network emerges as well as the number of
links and average distance of the emerging networks. The average distance equals the
average distance between connected actors since all the emerging networks must be
connected for c < 1

n�1.
Table 3 shows that the star network itself is not a good prediction for the

dynamics of closeness.19 Trees are the dominant structure for high levels of c. The
fourth row shows the average number of links for the emerging networks. The
emerging networks are sparse, but become denser when c is reduced.

By drawing all of the frequently emerging networks in this simulation, we made
the following observations: For c¼medium, the dominant architecture consists of
loose ends and some links forming a circle of size 4 or 5 (but not smaller). For
c¼ low, we find more of these circles in the dominant architecture, but there are
typically no loose ends.

Summarizing, the expectation that the dynamics of closeness lead to star-like
networks is partially confirmed by the three methods. Stable networks be sparse
and must not contain long distances (formal derivations). Virtually all stable net-
works are connected and sparse (enumeration). The star network rarely emerges,
although for high costs, the typical emerging networks are trees (simulation).

3.2. Dynamics of Betweenness

For pure betweenness (k¼ 1), every actor is striving for brokerage opportu-
nities. This is similar to three models that are based on Burt’s idea of structural holes.
Buskens and Van de Rijt (2008) find that complete bipartite networks are the most
likely outcome of network dynamics. Willer (2007) finds the circle network as the
most likely to emerge, but since he only considers networks up to size n¼ 4, the circle
network cannot be distinguished from a balanced complete bipartite network. In the
model of Goyal and Vega-Redondo (2008), actors not only seek brokerage opport-
unity but also derive benefits from the size of their component and try to avoid being
mediated by others. With a strong notion of stability, they find the star network
as most likely outcome. Since in our model for k¼ 1 actors only optimize their
brokerage benefits, we expect that the dynamics most closely resemble the results
of Buskens and Van de Rijt (2008).

TABLE 3 Fraction of Trees Emerging for Closeness Incentives (Sim. n¼ 8)

Low cost Medium cost High cost

Stable networks 12 10 20

Trees emerging 1.0% 11.4% 90.7%

Star emerging 1.0% 0.6% 0.1%

Number of links 12.29 8.58 7.09

Average distance 1.56 1.90 2.34

19This result is consistent with the argument of Watts (2001) analyzing the dynamics of the connec-

tions model. In particular, she shows that for a dynamic process like the one we consider here (in the simu-

lation), the probability that the star network is reached, converges to zero for n going to infinity.

172 B. BUECHEL AND V. BUSKENS

D
o
w

n
lo

ad
ed

 b
y
 [

8
5
.1

7
6
.1

7
2
.5

4
] 

at
 1

5
:0

9
 2

4
 J

u
n
e 

2
0
1
3
 



Bipartite networks are characterized by not containing any circle of odd length.
Since this precludes 3-circles, bipartite networks cannot be extremely dense. However,
complete bipartite networks are quite dense and contain only distances of length 1 and 2.

3.2.1. Formal Derivations. Similar to the case of closeness incentives, one
can formally restrict the distances of stable networks by considering what two
(distant) actors gain from linking.

Proposition 4. In the centrality model with k¼ 1, the following holds: (i) Any

network with a diameter of size p(�4) or larger is not stable if c <
ðbp2c�1Þbp2c
ðn�1Þðn�2Þ. Moreover,

(ii) for sufficiently low c, any network with a diameter of three or larger is not stable.

Proposition 4 (ii) shows that, in line with the expectation of complete bipartite
networks, only distances of 1 and 2 occur between connected actors in stable
networks. If the stable networks are complete bipartite, they are also connected
and furthermore a pair of actors at distance 2 is not directly linked since 3-circles
are precluded in bipartite networks. However, formal results on the (non)existence
of circles in stable networks (as well as results on the average degree of stable
networks) are more challenging for betweenness incentives. To establish which other
stable networks exist for small network size, we turn to the enumeration.

3.2.2. Enumeration. Table 4 shows to which extent the stable networks for
k¼ 1 satisfy the expected properties of being connected, not containing a 3-circle,
and having a diameter of 2.

First, it is notable that almost 50% of the stable networks are disconnected.20This
fact has to be considered when interpreting the other statistics. Themean density for the
stable networks is lower than in an arbitrary network, but this can be explained by the
overrepresentation of disconnected networks. The last rows of the table show that
a considerable number of stable networks satisfy the requirement of not containing
a circle of length 3 (and that stable networks have fewer 3-circles on average). The
middle rows of the table show that the distances (between connected actors) of the stable
networks are short and, indeed, there are few networks with distances larger than 2.

Those results give a first suggestion that the stable networks resemble complete
bipartite networks. Let us now check how many of the emerging networks really are

TABLE 4 Properties of Stable Networks for Pure Betweenness Incentives k¼ 1 (Enum.

n¼ 8)

All networks Stable networks

Number of networks 12,346 37

Number of connected networks 11,117 19

Mean number of links (for connected subset) 14 (14.41) 12.7 (16.16)

Mean of AV’DIS’C 1.563 1.466

Fraction of networks with diameter of 2 38.6% 86.5%

Mean fraction of 3-circles 13.3% 9.0%

Number of networks without any 3-circle 3.3% 54%

20We will provide an explanation for this observation in Subsection 4.4.
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complete bipartite when starting with different values of c. In our model, it can be shown

that any complete bipartite network can only be stable for c � 2�4
n

ðn�1Þðn�2Þ. Nonetheless, as

the enumeration reveals, there are not many stable networks above this range: only 9 out
of 37 stable networks for n¼ 8. Of the other 28 stable networks, many resemble com-
plete bipartite networks. Some of them do not belong to this class in a strict sense,
for example, a network with two isolates and a (4:2)-complete-bipartite component.

3.2.3. Simulation. We ran the simulation for three settings of c, where com-
plete bipartite networks might be stable. Table 5 presents the frequency of emergence
for different sets of complete bipartite networks (with at least two actors in each
group). It is notable that for c¼ low the empty network emerges in 20.8% of the cases
and for costs higher than depicted (c¼medium and c¼ high) the empty network
emerges in 99.9% (resp. 94.0%) of the simulation runs, while also the circle network
is stable. As the table shows, the class of complete bipartite networks is, indeed, the
dominant structure. Moreover, it can be observed that for small costs c, rather the
connected ones emerge; for higher costs c, rather the ones with the same group size
emerge. The balanced complete bipartite network (which has groups of the same size
and is connected), is the most frequently emerging network.

The expectation that the dynamics of betweenness lead to complete bipartite
networks is confirmed. The stable networks exhibit similar properties; that is, they
are dense, have short distances, and frequently do not contain 3-circles (formal deri-
vation and enumeration). The typical emerging structure, besides the empty net-
work, is a complete bipartite component with possibly some isolates (simulation).

Having characterized the emerging networks for pure closeness incentives and
for pure betweenness incentives, the next question is how those results carry over to a
scenario with combined incentives.

4. INTERACTION OF CLOSENESS AND BETWEENNESS INCENTIVES

In this section we let the relative importance of closeness and betweenness vary,
i.e., 0< k <1.

4.1. Formal Derivations

Let us first have a look at some prominent networks.

. In the empty network Kn, adding a link only increases closeness for the actors
involved, while their betweenness remains zero. Therefore, the empty network is

TABLE 5 Fraction of Complete Bipartite Networks (CBs) Emerging (Sim. n¼ 8)

Epsilon costs Very low costs Low cost

Stable networks 19 9 4

All CBs with or without isolates 40.4% 78.3% 61.1%

CBs (2:6, 3:5, 4:4) without isolates 29.0% 38.7% 0.9%

Balanced CBs (4:4, 3:3, 2:2) with or without isolates 13.4% 37.6% 61.1%

Balanced CB (4:4) without isolates 12.5% 25.4% 0.9%
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stable if this marginal benefit derived from a change in closeness centrality is
smaller than the linking costs.

. Similarly, in the complete network Kn, removing a link decreases the closeness of
the actor involved, while his betweenness remains zero.

. Since any link is a bridge in the star network K1,n�1, the dissolution of a link leads
to a substantial reduction of closeness for both actors involved. The addition of
a link does not increase the betweenness and hardly increases the closeness of
the two (peripheral) actors.

. In the circle network Cn, an additional link across the circle provides a significant
amount of both closeness and betweenness benefits. Removing a link also reduces
both betweenness as well as closeness for both actors involved. Rather than
dissolving a link, two actors are willing to form an additional one, across the
circle. Therefore, the circle network can be expected to be stable only for relatively
high linking costs.

. In the balanced complete bipartite network Kn1,n1, all actors have some between-
ness as well as high closeness, because distance is at most 2 and each pair that
is at distance 2 is mediated by all the actors in the other group. Adding a link
is not very beneficial in terms of closeness and betweenness, while the loss of
removing a link is a bit larger. Consequently, if links are rather cheap, but not
too cheap these networks can be stable.

These observations lead to Proposition 5 presenting the parameter combina-
tions for which the five prominent network structures are stable.

Proposition 5. In the centrality model the following holds:

1. The complete network Kn is stable if and only if c � 1�k
ðn�1ÞðM�1Þ.

2. The empty network Kn is stable if and only if c � 1�k
n�1.

3. A star network K1,n�1 is stable if and only if 1�k
ðn�1ÞðM�1Þ � c � minf1þk

n�1 ;
ð1�kÞ½Mðn�1Þ�2nþ3�

ðn�1ÞðM�1Þ g.

4. Let n be a multiple of 4. Then a circle network Cn is stable if and only

if
ð1�kÞ½18n2�1

2nþ1�
ðM�1Þðn�1Þ þ 2k½18n2�3

4nþ1�
ðn�1Þðn�2Þ � c � ð1�kÞ½14n2�1

2n�
ðM�1Þðn�1Þ þ

2k½18n2�1
2nþ1

2�
ðn�1Þðn�2Þ .

5. The balanced complete bipartite network Kn1;n1 (for even n) is stable if and only

if 1�k
ðn�1ÞðM�1Þ � c � 2ð1�kÞ

ðn�1ÞðM�1Þ þ
2k½1�2

n
�

ðn�1Þðn�2Þ.

Figure 2 illustrates Proposition 5 depicting the parameter space with weight
k on the horizontal axis and cost c on the vertical axis. It indicates the ‘‘regions’’
of the parameter space where the complete network, the star network, the balanced
complete bipartite network and the circle network are stable.21 The empty network
is stable above the dotted line.

21Results look different for small network size and slightly different for networks with an odd

number of actors.
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The complete network is stable for k <1 if costs c are low enough. The empty
network is trivially stable for k¼ 1 and stable for k <1 if costs are not too low.22 The
lower bound for the star network and the balanced complete bipartite network
coincides with the upper bound for the complete network. The upper bound for
the star network is first increasing and then decreasing in k. We will return to this
point in Subsection 4.4. For k¼ 1, the star network is not stable. Figure 2 indicates
that the balanced complete bipartite network and the circle network, both can
be stable for any weight k. While the circle networks are high cost phenomena,
the complete bipartite networks are low cost phenomena.

The result shows that for the five prominent networks the conditions for
stability (lower or upper bounds of c) are linear in k (respectively, piecewise linear
in k for the star network). While three of them can be stable for any k, the star
and the complete network are only stable if k <1. We use the enumeration to
examine how many other networks are stable for certain k’s.

4.2. Enumeration

By enumeration we can compare all stable networks for different incentives.
Figure 3 depicts the number of stable networks for different k’s (for n¼ 8). The
networks are shaded by the range of k for which they are stable. The first observation
is that there are more stable networks for each level of mixed incentives than for pure
incentives (k 2 {0, 1}). All 45 networks that are stable for closeness incentives (k¼ 0)
are also stable for some other k. Eight of them are stable for any k (e.g., the empty
network); 15 are stable for any k, but pure betweenness (like the star or the complete

FIGURE 2 ‘‘Parameter map’’ with stability for some prominent networks (color figure available online).

22The condition for stability of the complete network of Proposition 5.1 coincides with the

condition for its uniqueness of Proposition 1 (setting the inequality strict). This is not true for the empty

network: the threshold for uniqueness is larger (in terms of costs) than the threshold for stability.
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network). For pure betweenness (k¼ 1), there are 37 stable networks. Fifteen of them
are not stable for any other k (we used). These networks consist of disconnected
components in which actors want to connect the components as soon as a small
amount of closeness incentives is introduced. Only three networks of the other
categories are found stable for only one weight. The other stable networks for
betweenness are typically also stable for any other k (e.g., the balanced complete
bipartite network or the empty network). Thus, there is strong indication that the
stable networks across certain k’s do not differ heavily, except for the case of pure
incentives. Since most of the stable networks are neither stable for pure closeness
nor for pure betweenness but for mixed incentives, many candidates of emerging
networks are not covered by pure incentives.

Measuring certain properties of the set of stable networks further indicates that
pure incentives are special cases. As an example, Figure 4 shows the boxplots of the
density (indicating the mean and the quartiles) for the different sets of stable
networks. (A mean density of 0.4 means that in a particular set of networks [on

FIGURE 4 Distribution of density in stable networks (enum. n¼ 8; color figure available online).

FIGURE 3 Number of stable networks by k (enum. n¼ 8; color figure available online).
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average] 40% of all possible links are present.) While the stable networks for different
mixed incentives have a similar distribution of density, the density of the stable
networks for pure closeness (k¼ 0) and for pure betweenness incentives (k¼ 1)
differs. Stable networks for betweenness incentives are denser on average, while
variance is larger.

We can summarize that introducing a bit of betweenness (closeness)
incentives into a pure closeness (betweenness) model heavily increases the number
of stable networks and that stable networks for mixed incentives do not have the
same properties as the stable networks for pure incentives. In that sense, the
enumeration reveals that, although the weighting of benefits in our model is
smooth (the benefits are a linear combination of closeness and betweenness), the
results exhibit jumps. Before explaining why such phenomena occur, let us have
a look at the simulation results.

4.3. Simulation

A necessary condition for a network to emerge in a dynamic process (like the
simulation we use) is stability. So the stable networks found in the enumeration (for
a certain k) are now the candidates for emerging networks in the simulation (for this
k and different settings of c).

Table 6 presents the simulation results for n¼ 8. CONNECTED stands for
the fraction of connected networks; LINKS for the number of links (which is
proportional to the density); DEG’VAR stands for the variance of degree; AV’DIS
measures the average distance (between all pairs) in a network; AV’DIS’C stands for

TABLE 6 Properties of Emerging Networks (Sim. with n¼ 8)

WEIGHT COSTS CONNECTED LINKS DEG’VAR AV’DIS AV’DIS’C

All networks 90% 14.0 0.42 1.78 1.56

0 (Closeness) Very low 100% 28.0 0.00 1.00 1.00

Low 100% 12.3 0.75 1.56 1.56

Medium 100% 8.6 1.04 1.90 1.90

High 100% 7.1 1.05 2.34 2.34

0.1 Very low 100% 28.0 0.00 1.00 1.00

Low 100% 12.3 0.76 1.56 1.56

Medium 100% 8.7 1.04 1.88 1.88

High 100% 7.2 1.01 2.30 2.30

0.5 Very low 100% 17.4 0.66 1.38 1.38

Low 100% 11.5 1.43 1.61 1.61

Medium 100% 8.4 1.10 1.93 1.93

High 100% 7.2 0.97 2.30 2.30

0.9 Very low 100% 15.1 0.65 1.47 1.47

Low 100% 12.4 1.41 1.64 1.64

Medium 100% 8.1 1.52 2.04 2.02

High 0% 0.4 0.03 7.76 2.00

1 (Betweenness) Epsilon 83% 17.2 1.03 1.69 1.36

Very low 45% 13.2 1.17 2.65 1.41

Low 1% 6.5 1.35 5.39 1.42

Medium 0% 0.0 0.00 7.99 1.71

High 0% 0.4 0.03 7.73 2.00
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the average distance between connected actors. Since the simulation starts with any
possible network for n¼ 8, the first row stands for the properties of the starting
networks, while the values of the emerging networks can be interpreted as esti-
mations for an arbitrary starting network.

Throughout any weight k, there are some clear-cut relations between the costs
of linking c and the properties of the emerging networks. The higher the costs, the
lower the density and the higher the average distances. Higher costs also increase
the probability that an emerging network is disconnected.23

The effects of different incentives, however, are not trivial. Changing the
setting from k¼ 0 to k¼ 0.1 increases the candidates for emerging networks from
45 to 118 (as found by enumeration), but the properties of the emerging networks
(e.g., LINKS) do not seem to be heavily affected. For the change from k¼ 1 to
k¼ 0.9 there is a more drastic effect, for example, for the property CONNECTED:
The emerging networks for pure betweenness incentives are frequently disconnected.
Besides connectedness, none of the properties is influenced by the weight k in one
specific direction.

4.4. Interplay of Closeness and Betweenness Incentives:

Connectedness

In this section we have observed that the interaction between closeness and
betweenness incentives leads to nontrivial dynamics. The enumeration reveals that
most of the candidates for emerging networks are not found for pure incentives but
for mixed incentives. Moreover, the emerging networks for k¼ 1 (pure betweenness)
substantially differ from the emerging networks in the other settings. To understand
why such phenomena occur when mixing different incentives, let us analyze the
interplay of closeness and betweenness incentives focusing on one structural feature:
connectedness. We first explain why many of the stable and emerging networks for
k¼ 1 are not connected and then show why many of the stable networks for k <1 are
not stable for k¼ 1.

Table 7 shows the number and fraction of stable networks that are connected.
One can observe that most of the stable networks are connected, except for k¼ 1.
Among the stable networks for k¼ 1, 18 are disconnected; for k¼ 0.9 this reduces
to three (enumeration for n¼ 8). For many mixed incentives k 2 {0.3,. . ., 0.8} only
the empty network is not connected and stable. Thus, there seems to be an inverse
‘‘u-shaped’’ relation between the weight k and the number of connected networks:
For mixed incentives, networks are more often connected than for pure incentives.

TABLE 7 Connectedness of Stable Networks (Enum. n¼ 8)

0 0.1 0.3 0.5 0.7 0.9 1

Number of connected networks 43 116 118 116 94 65 19

Fraction of connected networks 96% 98% 99% 99% 99% 96% 51%

23We did not run simulations for very high costs, where the empty network is expected to emerge in

most cases.
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To form a connected network, the addition of bridges (links connecting two
components) is necessary. An actor who forms a link to the other component can
increase his closeness and his betweenness substantially depending on the sizes of
the two components. Consider two actors i and j in different components of size
lþ 1 (respectively rþ 1). It can be shown that in the centrality model actor i gains

from a link to j by at least ð1� kÞ ðrþ1ÞðM�1
2r�1ÞÞ

ðM�1Þðn�1Þ þ k
2lðrþ1Þ

ðn�1Þðn�2Þ.
24 The minimal threshold

is attained when the r-component forms a line, because then the marginal closeness
for actor i is minimal. Since there is a strong incentive to establish bridges, c must
be very high in order to avoid that two actors in different components form a link.
This is expressed in Remark 1.

Remark 1. In the centrality model the following holds: If c < ð1� kÞ 2M�3
ðM�1Þðn�1Þ

þk 4
ðn�1Þðn�2Þ, the stable networks contain at most one nontrivial component.

From the remark we can conclude that if a stable network is not connected,
it usually consists of isolates (singleton components) in addition to one larger
component. In fact, the enumeration does not yield any stable network with multiple
non-trivial components. Why we would rather observe isolates in the stable networks
for k¼ 1 and for k¼ 0 but not for mixed incentives is explained below.

4.4.1. Integration of Isolates. Consider a network G with an isolated actor
i and an actor j who is already part of a larger group. Then, when closeness only
matters (k¼ 0), actor i has a strong interest in the link ij, as this link is his first
connection to the network (without ij, CC (i)¼ 0). Actor j’s interest is restricted:
creating ij means being directly connected to i, but does not have an impact on
any other distance (there is no indirect benefit). So for high enough linking costs
c, i is willing to link with j, but j rejects this offer. When betweenness only matters
(k¼ 1), actor j has a high interest in the link ij, because it provides a substantial
amount of betweenness. On the other hand, i is not interested in this link as his
betweenness is zero with or without ij. So the link will not be formed. Finally, when
both incentives matter (k 2 [E, 1� E]), the link can be formed because both actors
do have a rather high interest in this link, but for different reasons: i wants to
have access to the community (closeness incentives); j enjoys mediating i with all
his connections (betweenness incentives).

This example suggests that networks with isolates are rather not stable for
mixed incentives because two actors will add a link, while this is not necessarily true
for k¼ 1 and k¼ 0. In fact, we have observed that several networks with isolates
are stable for k¼ 1 but not for k <1—this is because introducing closeness benefits
(k <1) would justify also for the isolated actor to add a link.

While the integration of isolates sheds some light on the puzzle why we observe
that many of the stable networks for k¼ 1 are not stable for k <1, it does not directly
explain why we observe that many of the stable networks for k <1 are not stable
for k¼ 1.

24Interestingly, adding actors (increasing the l and r) has an additive effect on the change in

closeness, but a multiplicative effect on the change in betweenness of i and j.
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4.4.2. Stability of Loose Ends. The integration of an isolate is the comp-
lementary action of cutting a link to a pendant (actor at a loose end). Since cutting
a link can be done unilaterally, the stability of a network with pendants is based on
the minimum of two marginal benefits as shown in Remark 2.

Remark 2. In the centrality model the following holds: If c > minf1þk
n�1 ;

ð1�kÞ½Mðn�1Þ�2nþ3�
ðn�1ÞðM�1Þ g, no network with pendants (actors of degree one) is stable.

As can be seen in Figure 2, the upper bound for the star network is exactly the
boundary for loose ends. The costs for which no network with pendants can be
stable is piecewise linear in k, increasing first and then decreasing. The argument
is the same as before (cf. the integration of isolates). For pure closeness incentives
the neighbor of the pendant has limited interest in the link. This interest increases
with the introduction of betweenness benefits. When k approaches one, the pendant’s
interest in the link diminishes because the weight of closeness is decreasing and his
marginal betweenness is zero.

For k¼ 1, this threshold is zero such that no network with pendants can be
stable (since we always assume in our model that c> 0). This excludes, among other
networks, all trees from being stable. Therefore, several stable networks for k <1 are
not stable for k¼ 1. Moreover, it need not always be pendants who render many
networks unstable. Generally, for k¼ 1 many networks fail to be stable because
actors do not have any incentive to keep a link, because the link is not a shortest
path between any two other actors.25 Introducing a bit of closeness benefits can
justify keeping these relationships.

Analyzing the interplay of closeness and betweenness incentives provides an
example of why network dynamics of multiple incentives are more complex than
the dynamics of each type of incentives separately. Moreover, it shows another
point. Although all actors do have the same preferences, that is, the same utility
function, the formation of links can be driven by very different motives, based on
different network positions.

5. CONCLUDING REMARKS

The innovations of this article are three-fold. First, although both betweenness
and closeness centrality are cornerstones of social network analysis, it has hardly
been explicitly studied which networks will emerge if actors follow incentives for
these two positional advantages. We formulate such a model and derive the stable
networks for each of the incentives separately. By also including costs for the number
of links, we have covered degree centrality, the third centrality measure from the
classic article by Freeman (1979). The characterization of the emerging networks
can be illustrated in Figures 5 and 6 depicting two of the most frequently emerging
networks. Typically, the dynamics of closeness lead to sparse networks, which are
connected (trees). In the depicted network, the closeness centrality of actor 8 is high,
while the centrality of all other actors is moderate. The dynamics of betweenness

25In 75% of all nonisomorphic networks (n¼ 8), some actors are willing to sever a link even for the

smallest costs c¼ E for pure betweenness k¼ 1.
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typically lead to networks with isolates and a dense component which is bipartite
(there are two groups without intragroup links). In such a network betweenness
centrality is zero for the isolates and positive (but not high) for all actors in the
component.26 The distribution of the (betweenness) benefits depends on the group
sizes in the bipartite component. In the depicted network, groups are of equal size
with the implication that betweenness benefits are evenly distributed.

Second, we discuss the relation between our findings and earlier findings on
related models. For closeness, there are some closely related exercises (Fabrikant
et al., 2003; Corbo & Parkes, 2005) and the results of our model are comparable

FIGURE 5 Very frequently emerging network for closeness incentives (sim. n¼ 8; color figure available

online).

FIGURE 6 Very frequently emerging network for betweenness incentives (sim. n¼ 8; color figure available

online).

26Indeed, the network depicted in Figure 5 has much higher average betweenness than the network

depicted in Figure 6.
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to these earlier results although none of these earlier studies explored the emerging
stable networks using a combination of formal derivation, enumeration, and com-
puter simulation. The earlier results only provided partial characterizations of stable
networks, while we were able to summarize the complete set of stable networks at
least for small network size. Our results as well relate to studies on the connections
model (Jackson & Wolinsky, 1996) because also in that model actors’ incentives are
based on short distances. Although the stable network predominantly discussed in
the literature for the connections model is a star network, we find that with closeness
incentives the star can be stable but is not one of the frequently emerging networks.
The star differs from the typically emerging networks in our simulations by its short
distances and its extreme centralization (benefits in the star network are higher but
less evenly distributed compared to our findings).

Incentives for betweenness are related to models based on structural holes
because in both types of models actors strive to be between other actors. Our results
strongly resemble results also found by Buskens and Van de Rijt (2008) for the dyna-
mics of structural holes, namely, that the frequently emerging networks are complete
bipartite networks and, in particular, the network with equal group sizes emerges
frequently. This is less than self-evident from the outset because structural holes (as
defined by Burt, 1992, and used by Buskens & Van de Rijt, 2008) are only about
mediation over short distances while betweenness also values mediation over long
distances. In our study, as well as in Buskens and Van de Rijt, star networks are not
stable or are stable only for very small networks in contrast to results of Goyal and
Vega-Redondo (2008) who find the star as the main stable network. The reason why
Goyal and Vega-Redondo do not find complete bipartite networks as stable
networks is most likely that in complete bipartite networks (except for stars) it is the
case that everybody is mediating everybody.

Third, and maybe most importantly, there has hardly been any theoretical
work that studies the interplay between different types of incentives to predict
network formation processes. When combining incentives for closeness and between-
ness, we find results that are not straightforward extensions of considering them
separately. For a combination of closeness and betweenness incentives, many
networks emerge that do neither emerge under closeness nor under betweenness
incentives. We provide an explanation of this phenomenon based on the observation
that two actors, despite similar preferences, can have quite different motivations of
action. In the particular example of an isolated actor linking with a well-connected
actor, the motivation of the isolated actor is access to the group (derived from close-
ness centrality), the motivation of the well-connected actor is his mediating position
(derived from betweenness centrality) between the group and the isolated actor.

This last result shows that for understanding the emergence of real world net-
works, it can be crucial to consider multiple important network characteristics sim-
ultaneously. So far, most theories on network dynamics have studied a single type of
incentive, which mostly resulted in very stylized networks such as stars or complete
bipartite networks. While one suggestion to obtain more realistic networks is to
assume that actors have heterogeneous preferences in networks, our study shows
that with multiple incentives, this assumption is not necessary. The path dependency
of the network formation process leads to different incentives being salient depending
on the network position. This thus provides an alternative for obtaining networks
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with less stylized or more heterogeneous network positions to be stable even without
starting with actors having heterogeneous preferences.
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APPENDIX: PROOFS OF THE PROPOSITIONS

A.1. Proofs of Section 2

Proposition 1. In the centrality model there exists at least one stable network for any

parameters (k, c) 2 [0, 1]�Rþ. Moreover, if c < 1�k
ðn�1ÞðM�1Þ, the complete network Kn

is uniquely stable.

Proof of Proposition 1. The two statements are independent.

. Existence follows almost directly from Proposition 5 of Section 4. For k¼ 1, the

empty network Kn is stable at any cost c, because a first link does not provide any

betweennness. For k <1, the empty network Kn is stable if c � 1�k
n�1 ¼: infðKnÞ, the

complete network Kn is stable if c � 1�k
ðn�1ÞðM�1Þ ¼: supðKnÞ and the star network

K1,n�1 is stable if inf K1;n�1

� �

� c � min sup1 K1;n�1

� �

; sup2 K1;n�1

� �� 	

, with

infðK1;n�1Þ :¼ 1�k
ðn�1ÞðM�1Þ, sup1(K1,n� 1) :¼ 1þk

n�1 ; and sup2(K1,n�1) :¼ (1 – k)
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½ M
M�1 � 2n�3

ðM�1Þðn�1Þ�. It remains to be shown that if Kn and Kn are not stable, K1,n�1 is

stable. This follows directly from inf (K1,n�1)¼ sup(Kn), sup1(K1,n�1) � inf Kn

� �

as
1þk
n�1 � 1�k

n�1, and sup2(K1,n�1)� inf Kn

� �

(by definition n� 3 and M� n� 1, which

implies Mðn�1Þ�2nþ3
M�1 � 1).

. (a) The complete network is stable if no actor wants to cut a link. For c � 1�k
ðn�1ÞðM�1Þ

this is true because the change in distances of cutting a link is 1, while the change
in brokerage is 0. (b) Take any network G 2 G\{Kn}. 9 (i, j): d(i, j)> 1. By

connecting their closeness increases by at least 1
ðn�1ÞðM�1Þ. So for c < 1�k

ðn�1ÞðM�1Þ
the network will be unstable as i and j strictly improve by forming the link. &

A.2. Proofs of Section 3

Proposition 2. In the centrality model with k¼ 0, the following holds: The diameter

of a stable network is smaller or equal to p, with p ¼ maxf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4cðn� 1ÞðM � 1Þ þ 1
p

; 1g.

Proof of Proposition 2. We show that in a network with a diameter of d> p, there
exists a pair of actors who can increase their utility by forming a link. Take any net-
work G with a diameter of d> p� 1.27 Let i and j be two actors at maximal distance
(d(i, j)¼ d) and consider one shortest path between them. By forming the link ij,
actor i does not only decrease his distance to j, but also to some actors on this short-
est path. Let D(d) stand for the change in distances stemming from that path. It is
easy to derive that

DðdÞ ¼ 2þ 4þ 6þ . . .þ d � 3þ d � 1 ¼ 1
4 d

2 � 1
4 ; for odd d

1þ 3þ 5þ . . .þ d � 3þ d � 1 ¼ 1
4 d

2; for even d:




ð5Þ

This implies that from network G to network G [ ij the closeness of actor i

changes by at least d2�1
4ðM�1Þðn�1Þ. This also holds for j. It remains to be shown that

the marginal costs c are lower than this marginal benefit.

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4cðn� 1ÞðM � 1Þ þ 1
p

implies that c ¼ p2�1
4ðM�1Þðn�1Þ. Since p< d, the marginal

costs are smaller than the marginal benefit. &

Proposition 3. In the centrality model with k¼ 0, the following holds: If

c > 9n
16ðn�1ÞðM�1Þ, dðGÞ < 1

2 nþ 1
2 for any stable network G and if c > 4n

5ðn�1ÞðM�1Þ,

dðGÞ < ffiffiffi

n
p

for any stable network G.

The proof of Proposition 3 relies on the following lemma:

Lemma 1. In the centrality model with k¼ 0, the following holds for q 2 N with

q� 3: If c >
n½q�2þ1

4ðq�3Þ2�
qðM�1Þðn�1Þ , then any network with a circle of size q or smaller is not

stable.28

27Recall that the diameter is not M by definition.
28By definition of circles, we do not consider ‘‘circles’’ of size 2, 1, or 0.
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Proof of Lemma 1. Consider a circle Cq of size q, with 3� q� n. Let Nq denote the
set of q actors in the circle and let N�q be the n� q other actors. For a network that
contains this circle G�Cq, and a link ij2Cq, let w(i, j, G) be the change in closeness
for actor i when link ij is removed from network G, i.e. w(i, j, G): ¼CC(i)(G)�CC(i)
(G\ij). Note that w(i, j, G) 6¼ w(j, i, G) in general. Clearly, G is only stable if w(i, j,
G)� c for any ordered pair (i, j) such that ij in Cq.

Let n1 be the number of actors in N�q who are connected with Nq (in network
G�Cq). And assume for the moment that q is odd.

. Suppose n1¼ 0. Then wði; j;GÞ ¼ ðq�2Þþ1
4ðq�3Þ2

ðM�1Þðn�1Þ ¼: w for any pair (i, j) such that
ij2Cq. The derivation is very similar to that of the proof about the diameter in
Proposition 2.

. Suppose 0< n1� q. Then min
ði;jÞ:ij2Cq

wði; j;GÞ � 2w. If n1¼ q, it is possible to increase

the change in closeness for any actor by a factor 2; that is, there is a network with

wði; j;GÞ ¼ 2w for any (i, j) such that ij2Cq. To see this let each actor in Nq be
linked with exactly one of the n1 actors and there are no additional links. In this
particular network, the n1 additional actors are equally allocated around the cir-

cle. If there is a pair (i, j) in a network such that wði; j;GÞ > 2w, there must be

another pair (i0, j0) with wði0; j0;GÞ < 2w because in that case the additional actors
are concentrated on a particular side of the circle. If n1< q, the increase might

even be smaller than 2w for all actors on the circle.
. Similarly, suppose q< n1� 2q. Then min

ði;jÞ:ij2Cq

wði; j;GÞ � 3w, where the equality

can be obtained if n1¼ 2q and a component of two actors is attached to each actor
on the circle without links between these attached components (and without any
other links between actors in Nq).

. More generally, suppose n1� zq for some natural number z. Then

min
ði;jÞ:ij2Cq

wði; j;GÞ � ðzþ 1Þw, where the equality can be obtained if n1¼ zq and a

component of z actors is attached to each actor on the circle without additional
links.

. Finally, suppose n1¼ n� q. Then min
ði;jÞ:ij2Cq

wði; j;GÞ � ðn�q
q

þ 1Þw ¼ n
q
w. If n

q
is a

natural number, the condition can hold tightly. (One can construct such a network
by arranging the actors in N�q into q components of size n

q
þ 1 and adding exactly

one link from each actor in Cq to exactly one group.) If n
q
is not a natural number,

the inequality still holds true because it implicitly assumes that change in closeness
(w(i, j, G)) can be distributed equally, which is then not possible.

We have so far established that for any G�Cq with q odd we have

min
ði;jÞ:ij2Cq

wði; j;GÞ � n

q
w ¼ n½q� 2þ 1

4 ðq� 3Þ2�
qðM � 1Þðn� 1Þ : ð6Þ

If q is even, the derivation is analogous and leads to a threshold that is slightly
smaller than w. Thus, the statement above also holds in this case. If c > n

q
w, any

network containing a circle of size q is not stable (since there is an actor i with
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a neighbor j such that c>w(i, j, G)). Moreover, the expression w is increasing in q.
Thus, for any network with a circle smaller than q, this is also true. &

Proof of Proposition 3. To prove the result, we employ Lemma 1 and combine it
with the following theorem (Th. 1.3.4 in Diestel, 2005): Let dðGÞ ¼ 1

n

P

i2N dðiÞ be the
average degree and q(G) the size of the smallest circle in G, which is defined to be
large if there are no circles. Let d 2 R and q 2 N. Then,

if [A] d(G)� d(�2) and [B] q(G)� q, then [C] n� n0,

with n0 ¼
1þ d

P

k¼0;���;q�3
2
ðd� 1Þk for q odd

2
P

k¼0;���;q2�1ðd� 1Þk for q even:

8

<

:

We now transform the logical structure of [A] and [B] implies [C] into
not[C] and [B] implies not[A].

To get [B], we fix a certain q, here q¼ 4, 5, and use the proposition that for

c >
n½q�2þ1

4ðq�3Þ2�
qðM�1Þðn�1Þ there are no circles of size q or smaller in stable networks (see

Lemma 1 above). To get not[C], we choose d such that n0¼ nþ 1 (this is possible
as n0 is a function of d and q). These conditions together imply not[A], that means
that d(G) < d.

We now use this procedure for different values of q: Let q¼ 4. Then [B]

reduces to c > 9n
16ðM�1Þðn�1Þ. not[C] is achieved by choosing d ¼ 1

2 nþ 1
2 because it

implies that n ¼ n0 � 1 ¼ �1þ 2
P

k¼0;1ðd� 1Þk ¼ 2d� 1. not[A] means that d(G)

< d. So we get the result: If c > 9n
16ðM�1Þðn�1Þ, dðGÞ < 1

2 nþ 1
2.

Let q¼ 5. Then [B] reduces to c > 4n
5ðM�1Þðn�1Þ. not[C] is achieved by choosing

d ¼ ffiffiffi

n
p

because it implies that n ¼ n0 � 1 ¼ d
P

k¼0;1ðd� 1Þk ¼ d2. not[A] means

that d(G) < d. So we get the result: If c > 4n
5ðM�1Þðn�1Þ, dðGÞ <

ffiffiffi

n
p

. &

Proposition 4. In the centrality model with k¼ 1, the following holds: (i) Any

network with a diameter of size p(�4) or larger is not stable if c <
ðbp2c�1Þbp2c
ðn�1Þðn�2Þ. Moreover,

(ii) for sufficiently low c, any network with a diameter of three or larger is not stable.

Proof of Proposition 4. For part (i) we show that in a network with a diameter d,
two (connected) actors at maximal distance increase their benefits at least with
ðbd2c�1Þbd2c
ðn�1Þðn�2Þ by establishing a link between them. This implies for c below that level that

the network is unstable. If a network has a larger diameter than d, it also contains
two actors at distance d.

Take any network G with a diameter of d� 4. Let i and j be two actors at
maximal distance d(i, j)¼ d and consider one of their shortest paths. Consider two

actors i0 and j0 on that geodesic such that dði; i0Þ þ dðj; j0Þ < d�1
2 (i0,j0 6¼ i, but j0¼ j

is allowed). It holds that i is not on any shortest path between i0 and j0. It must also
hold that d(i0, j0)¼ d� d(i, i0)� d(j, j0). The distance cannot be shorter because this
would imply that there exists a shorter path for i and j to connect. The distance
cannot be longer since there is this path on the geodesic.
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Establishing ij adds a new path from i0 to j0 (that uses i). This path is of length
d(i, i0)þ d(j, j0) þ1 :¼ p(i0, j0). It is shorter than their former shortest path, as straight-
forward transformations show:

dði; i0Þ þ dðj; j0Þ < d � 1

2
, dði; i0Þ þ dðj; j0Þ þ 1 < d � dði; i0Þ � dðj; j0Þ ð7Þ

, pði0; j0Þ < dði0; j0Þ: ð8Þ

Thus,
gi
i0 j0 ðG[ijÞ
gi0 j0 ðG[ijÞ �

gi
i0 j0 ðGÞ

gi0 j0 ðGÞ ¼
1
1 � 0 ¼ 1. In other words, actor i increases his broker-

age since he is on all shortest paths between i0 and j0 now, which he was not before. In
order to compute the minimal change in brokerage, one can compute the number of
pairs whose distance shortens in dependence of d. The straightforward derivation
yields the following (where v(d) is the number of pairs whose distance shortens
coinciding with the change in brokerage and bxc stands for x rounded to the next
lower integer):

vðdÞ � 1þ 2þ 3þ 4þ . . .þ bd
2
c � 1 ¼ 1

2
bd
2
c � 1

� �

bd
2
c ð9Þ

This implies that from network G to network G [ ij the betweenness of actor

i increases by at least
ðbd2c�1Þbd2c
ðn�1Þðn�2Þ. Since k¼ 1, the marginal benefits are at least as high

as the marginal costs c. The argument holds for both actors i and j such that G is not
stable.

For part (ii)29 assume that for G 2 G 9 i, j: 2< d(i, j)<M. Let NG(i): ¼ {k2N:
ik2G}, be the set of neighbors of i in network G and similarly NG(j). By the existence
of a path longer than 2 (between i and j), we know that NG(i) 6¼ ; and NG(j) 6¼ ;. As
this path is a geodesic, we know that 9 k: k2NG(i) and k 62NG(j); and 9 l: l2NG(j)
and l 62NG(i). In fact, NG(i) \ NG(j)¼;which implies that d(k, j) �2. Let G0:¼G[ij,
be the network when we add the link ij. Then the path kij is a geodesic between k and
j in G0. This generates some betweenness value for i. The same holds for j. As the
marginal costs c are lower than any marginal benefit, we conclude ui(G)< ui(G

0)
and uj(G)< uj(G

0), which contradicts stability. &

A.3. Proofs of Section 4

Proposition 5. In the centrality model the following holds:

1. The complete network Kn is stable if and only if c � 1�k
ðn�1ÞðM�1Þ.

2. The empty network Kn is stable if and only if c � 1�k
n�1.

3. A star network K1,n�1 is stable if and only if 1�k
ðn�1ÞðM�1Þ � c � minf1þk

n�1 ;
ð1�kÞ½Mðn�1Þ�2nþ3�

ðn�1ÞðM�1Þ g.

29Part (i) does not count the marginal benefits i derives from pairs (i0 and j0) for which the estab-

lishment of ij means an additional shortest path. Those pairs also increase the marginal benefit of i, but

the amount depends on the number of shortest paths. For part (ii) we also consider such pairs.
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4. Let n be a multiple of 4. Then a circle network Cn is stable if and only if
ð1�kÞ½18n2�1

2nþ1�
ðM�1Þðn�1Þ þ 2k½18n2�3

4nþ1�
ðn�1Þðn�2Þ � c � ð1�kÞ½14n2�1

2n�
ðM�1Þðn�1Þ þ

2k½18n2�1
2nþ1

2�
ðn�1Þðn�2Þ .

5. The balanced complete bipartite network Kn1;n1 (for even n) is stable if and only if

1�k
ðn�1ÞðM�1Þ � c � 2ð1�kÞ

ðn�1ÞðM�1Þ þ
2k½1�2

n
�

ðn�1Þðn�2Þ.

Proof of Proposition 5. The results of Proposition 5 present lower and=or upper
bounds of costs where a network is claimed to be stable. For conciseness, we denote
with inf(G) the claimed lower bound of a network G and analogously the claimed
upper bound with sup(G).

1. The complete network Kn can only be altered by deletion of a link. Any actor
deleting any link increases his distances by 1 and does not change his brokerage.
Therefore, no actor will sever a link for c� sup(Kn) and every actor wants to sever
a link for higher costs.

2. The empty network Kn can only be altered by the addition of links. Any actor
adding a link decreases his distances by M� 1, while his brokerage remains zero.
Thus, no actor will do that for c � infðKnÞ and any pair of actors is willing to add
a link for c < infðKnÞ.

3. In a star network K1,n�1 only peripheral actors can add links. Any actor adding a
link reduces his distances by 1 and does not change his brokerage. This leads to
the inf(K1,n�1). The central actor severing a link increases his distances by M� 1
and decreases his brokerage by n� 2. A peripheral actor cutting a link increases
his distances by M� 1þ (n� 2)(M� 2) and does not change his brokerage.
Plugging into the utility function yields that no actor wants to sever a link for
c�min{sup1(K1,n�1); sup2(K1,n�1)}, while some actor is willing to sever a link
for higher costs.

4. Any actor severing any link increases his distances from the circle to the line net-

work. For n even this is a change in distances of 1
4 n

2 � 1
2 n and a change in broker-

age from 1
8 n

2 � 1
2 nþ 1

2 to zero, yielding the upper bound. Two actors forming a

link benefit the further away they are. For n a multiple of four, two actors on
opposite sides (i.e. they have two shortest paths) can form a link building a net-
work with two circles of odd length. Their change in distances can be derived as
1
8 n

2 � 1
2 nþ 1, while their brokerage changes by 1

8 n
2 � 3

4 nþ 1.30

5. In complete bipartite networks, additional links are only possible within a group.
Since everybody is already indirectly linked, any actor adding a link reduces
his distances by 1 without changing his brokerage. This yields the inf(Kn1;n1 ). Since
both groups consist of at least two actors (n� 3 and even), cutting one link ij only
affects the distance between i and j. Their distance changes by 2. The brokerage

for an actor i changes by ðn2 � 1Þðn2Þ
�1 ¼ 1� 2

n
, because he was on one of n

2 shortest

paths between j and each of the n
2 � 1 actors in the other group. An actor is

indifferent about cutting a link if c ¼ 2ð1�kÞ
ðn�1ÞðM�1Þ þ

2k½1�2
n
�

ðn�1Þðn�2Þ ¼ supðKn1;n1Þ. There-
fore, for c< inf(Kn1;n1), two actors form a link; for c> sup(Kn1;n1 ), an actor will

30In the same way slightly different inequalities can be derived for other network sizes.
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sever a link, and no actor can improve by changing a link for inf(Kn1;n1)�
c� sup(Kn1;n1 ). &

Remark 1. In the centrality model the following holds: If c < ð1� kÞ
2M�3

ðM�1Þðn�1Þ þ k 4
ðn�1Þðn�2Þ, the stable networks contain at most one nontrivial component.

Proof of Remark 1. Consider a network with two components of size 2 and an actor
i in one of them. By linking to the other component, actor i0s distances decrease by
2M� 1� 2, while his brokerage increases by 1�2. This yields the minimal change in
benefits for any link between two nontrivial components, since components larger
than 2 imply stronger improvements. &

Remark 2. In the centrality model the following holds: If c > minf1þk
n�1 ;

ð1�kÞ½Mðn�1Þ�2nþ3�
ðn�1ÞðM�1Þ g, no network with pendants (actors of degree one) is stable.

Proof of Remark 2. Take any network G with a pendant i and his neighbor j. We
show that the condition implies that one of the actors wants to sever link ij.

1. Actor i does not reduce brokerage by severing this link. Removing the link
increases his distances at least by M� 1 (when actor j is also a pendant) and at
most byM� 1þ (n� 2)(M� 2) (when actor j is directly linked to all other actors).

Therefore, actor i will not keep the link if c > ð1�kÞ½Mðn�1Þ�2nþ3�
ðn�1ÞðM�1Þ .

2. For actor j, severing the link increases his distances by M� 1 and hence decreases

his closeness by 1
n�1. Moreover, he was on the shortest path between i and any

other actor in this component. The more actors in this component, the higher
the incentive to keep this link. The maximum brokerage of n� 2 is attained for
a connected network. Therefore, actor j certainly wants to sever the link for

c > 1�k
n�1 þ

2kðn�2Þ
ðn�1Þðn�2Þ rendering the network unstable. &
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