

The Dynamics of Fluidized Particles

Recent years have seen major progress in the development of equations to describe the motion of fluid-particle mixtures and their application to a limited range of problems. With rapid advances in numerical methods and computing power we are now presented with new opportunities to use direct integration of these equations in the solution of complex practical problems. However, results so obtained are only as good as the equations on which they are based, so it is essential to have a clear understanding of the underlying physics and the extent to which it is reflected properly in these equations.

In *The Dynamics of Fluidized Particles*, the author formulates these equations carefully and then to describe some important existing applications that serve to test their ability to predict salient phenomena. This account will be of value to both novices and established researchers in the field, and also to people interested in applying the equations to practical engineering problems.

Roy Jackson is a Professor of Engineering & Applied Science Emeritus at Princeton University. He has received many academic honours, including the School of Engineering Distinguished Teaching Award from Princeton University, and is a fellow of the Royal Society. The American Chemical Society has also recently published a "festschrift" in honour of his many research contributions.

CAMBRIDGE MONOGRAPHS ON MECHANICS

FOUNDING EDITOR

G. K. Batchelor

GENERAL EDITORS

S. Davis

Walter P. Murphy Professor Applied Mathematics and Mechanical Engineering Northwestern University

L. B. Freund

Henry Ledyard Goddard University Professor Division of Engineering Brown University

S. Leibovich

Sibley School of Mechanical & Aerospace Engineering Cornell University

V. Tvergaard

Department of Solid Mechanics The Technical University of Denmark

The Dynamics of Fluidized Particles

ROY JACKSON

Princeton University

CAMBRIDGE UNIVERSITY PRESS

Cambridge, New York, Melbourne, Madrid, Cape Town,
Singapore, São Paulo, Delhi, Tokyo, Mexico City

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521781220

© Cambridge University Press 2000

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2000

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data
Jackson, R. (Roy), 1931The dynamics of fluidized particles / Roy Jackson.
p. cm. - (Cambridge monographs on mechanics)
Includes bibliographical references.
ISBN 0-521-78122-1 (hb)
I. Fluidization. 2. Fluid dynamics. I. Title. II. Series.
TP156.F65 J33 2000
660'.284292 - dc21 99-086301

ISBN 978-0-521-78122-0 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. Information regarding prices, travel timetables, and other factual information given in this work is correct at the time of first printing but Cambridge University Press does not guarantee the accuracy of such information thereafter.

In memory of Susan

Contents

Preface	
1 The mathematical modelling of fluidized susp	pensions 1
1.1 Introduction	1
1.2 A simple application of equations of the	two-fluid type 4
1.3 Scope of this text	13
References	15
2 Equations of motion	17
2.1 Averaged equations	17
2.2 Buoyancy	26
2.3 Explicit closures of the equations	32
2.3.1 Closure for small Stokes number	34
2.3.2 Closure for large Stokes number	36
2.3.3 Other comments on explicit closur	res 46
2.4 Empirical closures	48
2.5 Approximations	56
2.6 Discussion of averaging procedures	59
References	62
3 Fluidization and defluidization	65
3.1 Introduction	65
3.2 The observed behaviour of dense particle	e assemblies
under deformation	66
3.3 Constitutive relations for dense, slowly d	leforming
granular materials	70
3.4 The processes of fluidization and defluid	ization 78
3.4.1 Theory	78

vii

VI	11	Contents	
		3.4.2 Predictions	82
		3.4.3 Experiments	90
	Ref	erences	97
4	Sta	bility of the uniformly fluidized state	99
		Introduction	99
	4.2	Small perturbations of the uniformly fluidized state	103
		The dispersion relations	107
	4.4	The stability of the uniformly fluidized state	117
	4.5	Behaviour of the dominant disturbance in unstable beds	124
	4.6	Experimental evidence	130
	4.7	Some other aspects of stability	142
		4.7.1 Stability analyses including a balance of	
		pseudothermal energy	142
		4.7.2 Beds with an extended interval of stable expansion	144
		4.7.3 Circulatory instabilities	145
	Ref	erences	150
5	Bul	obles and other structures in fluidized beds	153
	5.1	Introduction	153
	5.2	Davidson's analysis of the motion of fully	
		developed bubbles	157
	5.3	Other early analyses of bubble motion	163
	5.4	Experimental tests of theories of the motion of a fully	
		developed bubble	176
	5.5	Extensions of stability analysis and the genesis of bubbles	
		and other structures	182
		5.5.1 Introduction	182
		5.5.2 Nonlinear treatments of one-dimensional waves	183
		5.5.3 Computational exploration of two-dimensional	
		transients and fully developed structures	199
		5.5.4 Structures other than bubbles	221
		5.5.5 Other work on two-dimensional disturbances	
		and bubbles	224
		erences	230
6	Ris	er flow	233
	6.1	Introduction	233
	6.2	Fully developed "laminar" flow of a gas-particle mixture	
		in a vertical pipe	236
	6.3	Approximate treatment of pseudoturbulent flow of a	
		gas-particle mixture in a vertical pipe	256
	6.4	The model of Hrenya and Sinclair	278

Contents	ix
6.5 Computational fluid dynamic modelling of riser flow	288
References	295
7 Standpipe flow	298
7.1 Introduction	298
7.2 Analysis of a simple standpipe system	303
7.2.1 Definition of the problem	303
7.2.2 Motion of material in the feed hopper	306
7.2.3 Motion of material in the standpipe	308
7.2.4 Motion of material in the discharge region	309
7.2.5 Matching conditions	310
7.2.6 Sketch of the solution procedure	311
7.3 Predicted behaviour of the unaerated standpipe	313
7.4 Predicted behaviour of the aerated standpipe	321
7.5 General comments	328
References	330
Author Index	333
Subject Index	

Preface

This book addresses the motion of systems of solid particles immersed in a fluid that may be a liquid or a gas. The focus is on the range of particle concentrations of greatest interest in the operation of process plants, that is, solids volume fractions anywhere from a few percent to random close packing. As typical process applications we might mention hoppers and bunkers, dense fluidized beds, pneumatic transport lines, circulating fluidized beds, standpipes, cyclones, riser reactors, and slurry pipelines, but the same ideas can be used in nonprocess applications such as sediment transport, landslides, and avalanches. The book is intended as an introduction to this field for graduate students and others entering it for the first time but, by drawing together widely scattered material, it is hoped that it may also serve as a useful overview for more experienced workers. Most of the material is covered somewhere in the existing literature, to which the reader's attention is directed, but some appears here for the first time, for example, parts of Chapters 3 and 4.

Many of the figures are taken from other publications and my thanks are due to the copyright holders for permission to reproduce this material. In certain cases these permissions are acknowledged in the captions of the figures in question but, in addition, I am indebted to the following organisations and individuals: Academic Press for Figures 5.1, 5.6, 5.7, and 6.32; Birkhäuser Verlag for Figure 5.26; The Institution of Chemical Engineers for Figures 5.4, 5.5, 5.8, 5.9, 5.10, 5.14, 5.15, and 5.16; T. B. Anderson for Figures 4.8, 4.10, and 4.11; Y-M. Chen for Figures 7.4 and 7.5; B. Glasser for Figure 5.44; G. D. Cody for Figure 3.20; and T. J. Mountziaris for Figure 7.12.

I would not have undertaken the task of writing this book without urging by George Batchelor, whose influence has been a guiding light since my student days. A serious start on the work was made during a half year spent as a Visiting

xii Preface

Fellow Commoner at Trinity College, Cambridge, in 1994 and I am grateful to the College for providing this opportunity for uninterrupted thought.

Such understanding of the subject as I have owes much to informal interactions over the years with my graduate students, and also with colleagues in academia and industry, among whom I should mention Sankaran Sundaresan, John Davidson, John Hinch, Jennifer Sinclair, Bud Homsy, Don Koch, John Gwyn, George Cody, and the late Yuri Buyevich. In particular, my collaboration with Sankaran Sundaresan over the past decade has been a source of special pleasure. At a more general level the intellectual atmosphere of the Chemical Engineering Department at Princeton and stimulating discussions with Dudley Saville, Ioannis Kevrekidis, Pablo Debenedetti, Bill Russel, and Sandra Troian have served to sharpen my fluid-mechanical wits in many ways. In addition Pablo Debenedetti, in his role as department chairman, has been most supportive of my literary efforts. Finally, I must acknowledge the invaluable help provided by Patti Weiss, who has taken care of many of those time-consuming details under whose weight the project might otherwise have foundered.