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Abstract

It is common practice to identify the number and sources of shocks that move implied

volatilities across space and time by applying Principal Components Analysis (PCA) to pooled

covariance matrices of changes in implied volatilities. This approach, however, is likely to result

in a loss of information, since the surface structure of implied volatilities in the maturities and

moneyness dimension is neglected. In this paper we propose to estimate the implied volatility

surface at each point in time nonparametrically and to analyze the implied volatility surface

slice by slice with a common principal components analysis (CPCA). As opposed to traditional

PCA, the basic assumption of CPCA is that the space spanned by the eigenvectors is identical

across groups, whereas variances associated with the components are allowed to vary. This

allows us to study a p variate random vector of k groups, say the "volatility smile" at p di�erent

grid points of moneyness for k maturities, simultaneously. Our evidence suggests that surface

dynamics can indeed be traced back to a common eigenstructure between covariance matrices

of the surface "slices", which allow for the usual shift, slope, and twist interpretation of shocks

to implied volatilities. This insight is a suitable starting point for VaR Monte Carlo Simulations

of delta-gamma neutral, vega sensitive option portfolios.
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1 Introduction

Understanding volatility of �nancial assets has become a �rst rank issue in modern �nancial theory

and practice: Whether in risk management, portfolio hedging, or option pricing, a precise notion

of the market's assessment and expectation of volatility is clearly inevitable. Much research has

been spent on realized historic volatilities, (Roll, 1977, and references therein). However, since it

seems unsettling to draw conclusions from past to expected behavior of volatility, recently, the focus

shifted to implied volatilities (Dumas, Fleming, and Whaley, 1998). To derive implied volatilities

the Black and Scholes formula is solved for the volatility parameter � of the underlying asset price

dynamics using observed option prices. Inferring volatility directly from observed option prices is

more natural as the option value is decisively determined by the market's assessment of current

and future volatility. Hence implied volatility may be interpreted as the market's expectation of

average volatility over the remaining lifetime of the option.

As is well known, the volatilities implied by observed market prices exhibit a pattern that is

far di�erent from that actually assumed for deriving the Black Scholes formula: instead of being

constant across strikes and time to maturity, implied volatility appears to be non 
at, a stylized

fact which has been called "smile" e�ect. Especially, options far out of the money have higher

implied volatility than those with an exercise price at the money, though having the same features

otherwise.

Various attempts have been made in order to explain this departure from the Black and Scholes

model, the most prominent of which is to assume stochastic volatility (Hull and White, 1987;

Johnson and Shanno, 1987; Scott, 1987; Wiggins, 1987; H�ardle and Hafner, 2000). Recently, this

interpretation has been supported by the work of Dumas, Fleming, and Whaley (1998) who present

evidence against the deterministic volatility function hypothesis.

However, unlike Hull and White (1987) and others, the approach taken in this paper is not

to explain deformations or deviations of implied volatilities from the common Black and Scholes

model, but to regard implied volatilities observed in the markets as yet another �nancial variable

interesting by itself. Clearly, this notion seems to be unsatisfactory from a theoretical standpoint,

however, it is not without merit: First, Black Scholes implied volatilities play an important rôle
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for practitioners, since they serve a valuable one-to-one mapping from the spaces of option prices,

strike prices, interest rates, and maturities to the (positive) real line. This reduces considerably the

amount of information to be taken into account when taking investment decisions. Moreover, with

growing liquidity of organized option markets, traders are interested in investing in "volatility"

itself, i.e. in setting up portfolios that only have a vega sensitivity. This volatility again may

be measured in terms of implied volatilities, such as in the VDAX, a product of the EUREX.

Second, from a theoretical point of view, new attention has been drawn to implied volatilities

with the emergence of the market models of volatility. Originally inspired by the market models

of the term structure of interest rates (Miltersen, Sandmann, and Sondermann, 1997; Jamshidian,

1997), they were set into the current framework by Ledoit and Santa-Clara (1998) and Sch�onbucher

(1999) amongst others. Market models of volatility assume the existence of a suÆcient number of

traded plain vanilla options which are used as input variables to price exotic and illiquid options

consistently with the smile.

Yet, practically, to set up a model that truly re
ects the dynamics of implied volatilities { be

it for trading, pricing or risk management { one has to identify the number and shapes of the

shocks that move the volatility surface across space and time. Borrowing from the literature of

the term structure of interest rates (Rebonato, 1998; Bliss, 1997), the most common technique

employed is principal component analysis (PCA). When applied to the term structure of implied

volatilities of ATM options (Avellaneda and Zhu, 1997; H�ardle and Schmidt, 2000; Sylla and Villa,

2000) or to a smile at a given maturity (Alexander, 2001), this approach carries directly over

from the interest rate literature. However, there is an important di�erence between principal

component analysis of interest rates and implied volatilities: Implied volatilities have both a strike

and a term structure dimension, and hence essentially constitute a three dimensional data set,

a fact that has to our knowledge been only accounted for by stacking and grouping of variables.

Derman and Kamal (1997) analyze changes in implied volatilities by stacking the surface into

a vector with a dimension equal to the number of grid points in the strike dimension (here a

delta metric) times the number of grid points in the term structure of the options. Thus, surface

dynamics are given by a multi-variate time series and standard PCA can be applied. However, this

approach neglects the natural group structure in maturities. The grouping approach is taken by

Skiadopoulos, Hodges, and Clewlow (1999) who form three large "maturity buckets" in the surface,

average implied volatilities of options whose maturities fall into them and apply PCA to each bucket

covariance matrix separately. Besides neglecting the surface structure, this approach may result in

a hybrid set of principle components disturbed by both within and between group variation and are

hence diÆcult to interpret (Basilevsky, 1994, p. 313). Most importantly, however, both approaches
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fail to separate between common and speci�c factors that drive the implied volatility surface, a

task which is at the heart of our study.

We depart from the research mentioned before in two important ways: First, we estimate

nonparametrically the implied volatility surface day by day with a procedure laid out in H�ardle

and Vieu (1992); H�ardle and Tsybakov (1997); A��t-Sahalia and Lo (1998, 2000). In smoothing

the volatility surfaces, we recover the time series of implied volatilities f�̂t(�; �)g
T
t=1

on a given

grid of moneyness � and maturity � . Second, we apply an old technique of multi-variate analysis

to the implied volatility surface: common principle component analysis. This method seems to

be the preferred modeling approach approach of implied volatilities, as it exploits a natural group

structure in the data and does not rely on a pooling methodology. Third, in the maximum likelihood

framework we use, we may test the speci�cation of our models.

Common principle component analysis (CPCA) is based on the assumption that covariance

matrices share a common structure across groups. The basic idea of CPCA is that the space spanned

by the eigenvectors is identical across groups, whereas variances associated with the components

are allowed to vary. With CPCA, we may analyze a p variate random vector of k groups, say

k maturities of implied volatilities simultaneously. Hypothesis testing for this structure has been

derived and allows us to test for the validity of the CPCA speci�cation versus other possible

structures. More precisely, we may test for the hypothesis of only q � p� 2 common eigenvectors,

while the remaining p � q eigenvectors are speci�c in each group. This model has been called

partial common principle components model of order q, pCPC(q). The decisive advantage of the

common principal components framework is that it is mathematically appealing, and empirically

parsimonious.

Our evidence suggests that the CPC model is appropriate for analyzing the implied volatility

surface, especially for the shorter maturities. We interpret our �ndings as supporting our notion

that pooling can distort estimates. As generally found, the shift, slope, and twist interpretation of

implied volatilities, known from the literature of the term structure of interest rates is also revealed.

Moreover, the common factors extracted from the volatility surface are suitable a starting point

for VaR Monte Carlo Simulations of delta-gamma neutral, vega sensitive option portfolios.

In the following section, we give a graphical motivation that suggests naturally the hypothesis

of a CPC model to be natural. Section 3 describes the CPC and the partial CPC model, parameter

estimation, and a hierarchy of covariance matrices linking the various models. In Section 4 the

empirical results are presented, and Section 5 concludes.
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2 An Intuitive Motivation of Common Principal Components

Principal component analysis, as originated by Hotelling (1933) and Pearson (1901) is a one-group

method. In many applications, however, the data obviously fall into groups in which the same

variables are measured. Since for options at each point in time only a very limited number of

maturities exist, whereas in the strike dimension a large number of options is available, one may

consider the implied volatility surface as falling into maturity groups. In this case it is natural to

assume that the covariance structure between groups should be similar to some extent. The CPC

model hypothesizes that the space spanned by the eigenvectors from group covariance matrices is

common to all groups, while eigenvalues are di�erent. In this section, we will demonstrate how this

assumption arises from maturity groups of implied volatilities.

Denote f�̂t(�; �)g
T
t=1 the time series of implied volatilities at time t as a function of moneyness �

and maturity � measured in months. Moneyness is de�ned as � = K
Ft
, where K is the option's strike

price, and Ft = Ste
r� the implied future price. As we recover implied volatilities on a constant grid

of moneyness �i and moneyness �j (see appendix), the times series of volatility returns, i.e. log-

di�erences of implied volatilities, f�ln �̂t(�i; �j)g
T
t=2

, are well de�ned. In Figure 1, we show a scatter

plot of f�ln �̂t(0:90; 1)g
T
t=2

against f�ln �̂t(1:10; 1)g
T
t=2

in the left panel, and in the right panel

a scatter plot of f�ln �̂t(0:90; 3)g
T
t=2

against f�ln �̂t(1:10; 3)g
T
t=2

, i.e. for two di�erent maturity

groups, one and three months respectively, we plot the volatility returns of two di�erent moneyness

against each other. Additionally we display the principle axes and the ellipses of constant standard

distance, the so called square root of the Mahalanobis distance, (Mardia, Kent, and Bibby, 1992),

from the respective mean vector, i.e.

n
(x� xj)

T
S
�1

j (x� xj)
o
�

1
2
= 2 j = 1; 2

where x = � ln �̂t(�; �). Sj is the sample covariance matrix and xj the mean vector in group j.

The ellipse may be interpreted as the approximate 95% con�dence region if our sample were drawn

from a bivariate normal distribution.

As can readily be seen, the principle axes or the eigenvectors �j = (
j1; 
j2), are almost parallel

(Figure 1; Table 1). Variability, however, either re
ected in the size of the eigenvalues �ji or

in the size of the ellipses, is di�erent across groups. This illustrates the well-known fact that

volatility returns for short maturities are more volatile and hence more spread out in space than

for long maturities. Given these insights, it seems natural to assume a model where di�erences

of the eigenvectors are attributed to sampling variability and are restricted to be common, while
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Scatterplot: 1 month maturity
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Scatterplot: 3 months maturity.
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Figure 1: Principle axes obtained by separate PCA for groups of 1 month and 3 months maturity;

moneyness is � = 0:90 against � = 1:10, ODAX 1999.

eigenvalues are allowed to be di�erent. This is shown in Figure 2, which illustrates the same scatter

plots with principle axes and ellipses estimated under the restriction of a common transformation

of both groups, i.e. by assuming the model

	1 = ��1�
T

and 	2 = ��2�
T �i = diag(�i1; �i2);

where � is an orthogonal transformation matrix and �i = diag(�i1; �i2) the matrices of eigenvalues

in group i = 1; 2. Results are displayed in Table 2. This is exactly the CPC model for the dimension

p = 2; the formal presentation of the p-dimensional case is delayed until Section 3.1.

Since higher dimensional illustrations are limited to the dimension of three, consider the parallel

coordinate plots in Figures 3 to 5. Here, we display the p = 6 coordinates of the eigenvectors associ-

ated with the three largest eigenvalues. They were obtained by applying a PCA to each covariance

matrix of implied volatility returns separately in the maturity groups of one, two, and three months.

Each group contains the full set of the moneyness grid, � 2 f0:85; 0:90; 0:95; 1:00; 1:05; 1:10g, which
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Maturity group 1 months 3 months

Si; �̂i; xi � 102

Sample covariance S1 =

 
0:182 0:137

0:137 0:290

!
S2 =

 
0:141 0:109

0:109 0:238

!

Mean x1 =
�
�0:052 �0:063

�
x2 =

�
�0:054 �0:078

�

Matrix of eigenvectors �̂1 =

 
0:563 0:827

0:827 �0:563

!
�̂2 =

 
0:546 0:837

0:837 �0:546

!

Characteristic roots �̂1 =
�
0:383 0:089

�T
�̂2 =

�
0:309 0:070

�T

Table 1: PCA applied separately to the groups of 1 and 3 months time to maturity; each group

contains time series of f�ln �̂t(0:90; �)g
T=254
t=2 and f�ln �̂t(1:10; �)g

T=254
t=2 , ODAX 1999.

Maturity group 1 month 3 months

	̂i; �̂i � 102

Estimated Covariance 	̂1 =

 
0:179 0:136

0:136 0:293

!
	̂2 =

 
0:144 0:110

0:110 0:235

!

Matrix of eigenvectors �̂CPC =

 
0:555 0:832

0:832 �0:555

!

Characteristic roots �̂2 =
�
0:383 0:089

�T
�̂2 =

�
0:309 0:070

�T

Table 2: CPCA applied jointly to the groups of 1 and 3 month time to maturity; each group contains

time series of f�ln �̂t(0:90; �)g
T=254
t=2 and f�ln �̂t(1:10; �)g

T=254
t=2 , ODAX 1999.
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Scatterplot under CPC: 1 month maturity
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Scatterplot under CPC: 3 months maturity.
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Figure 2: Principle axes obtained under the CPC model for groups of 1 month and 3 months

maturity; moneyness is � = 0:90 against � = 1:10, ODAX 1999.

was taken on a constant scale. (A log-scale would also be a valid choice.) For better comparison

the scale on the axes is the same in all plots. Again, if the assumption of a common eigenstructure

holds, we should expect the plots to deliver almost parallel lines. Clearly, this is the case.

The eigenvectors allow for a distinct interpretation: The �rst factor loadings are all of the

same sign and are hence interpreted as a shift. The second eigenvectors exhibit a Z-shaped slope,

centered at the money (corresponding to index 4), and the third characteristic vector displays a

twist formation, again centered at the money. We will discuss these �ndings and their implications

in greater detail in Section 4.

The main advantages of the CPC approach are: First CPC allows for jointly estimating com-

mon factors, i.e. it takes advantage of the principle of parsimony (Dempster, 1972) which says

that whenever two competing models �t the data about equally well, the one involving the smaller

number of parameters to be estimated should be preferred. Or, to put it di�erently: if the infor-

mation from several samples can be combined to estimate the same parameters, then the estimates

thus obtained are in general more stable, that is, they have smaller variability. Second, one avoids
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Parallel Coordinate Plot: 1. Eigenvector
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Figure 3: Set of �rst eigenvectors obtained by separate PCA for 1 month (blue), 2

months (green), 3 months (red) maturity; index 1 to 6 is corresponding to moneyness � 2

f0:85; 0:90; 0:95; 1:00; 1:05; 1:10g, ODAX 1999.

the consequences of pooling samples from di�erent populations. Recall that one may either pool

samples directly as Skiadopoulos, Hodges, and Clewlow (1999) or the sample covariance matrices of

each group (Thorpe, 1983). In the �rst approach directions of the principle components are deter-

mined by between-group as well as by within-group variability. The latter avoids this shortcoming

of mixing between-group and within-group variability. However, Airolidi and Flury (1988, p. 31)

out that "... pooling the variance-covariance matrices is not appropriate unless all populations

are assumed to have identical variability". Otherwise, the group with the highest variability will

determine largely the directions of the extracted components. In the context of implied volatility

this can be an issue, since variability in front contracts is higher than for the longer maturities.

Both approaches, however, are likely to result in a loss of information, if populations are di�erent.

Notably, a very intriguing feature of the CPC approach is the models allow for being ordered

in a hierarchical fashion, as will be stated more precisely in Section 3.3. From this point of view,
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Parallel Coordinate Plot: 2. Eigenvector
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Figure 4: Set of second eigenvectors obtained by separate PCA for 1 month (blue), 2

months (green), 3 months (red) maturity; index 1 to 6 is corresponding to moneyness � 2

f0:85; 0:90; 0:95; 1:00; 1:05; 1:10g, ODAX 1999.

a well organized analysis of covariance matrices can be accomplished. This helps understand the

relationship between various subsets of the time series of the implied volatility surface.

3 Common Principle Components Analysis of Implied Volatilities

As above, denote �̂t(�; �) the implied volatility at time t recovered on a given grid of moneyness

�j 2 f0:85; 0:90; 0:95; 1:00; 1:05; 1:10g and maturity �i 2 f1; 2; 3; 6; 9; 12g [in months] by a Nadaraya-

Watson estimator (see appendix for details). Next we form maturity groups indexed by �i and

stack implied volatilities to multiple time series of the smile X�i . The smile is observed at each

�i. Hence in our empirical framework, we can compute k = 6 sample covariance Si each belonging

to a di�erent maturity group i. The hypothesis of a common principle component model for the
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Parallel Coordinate Plot: 3. Eigenvector
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Figure 5: Set of third eigenvectors obtained by separate PCA for 1 month (blue), 2

months (green), 3 months (red) maturity; index 1 to 6 is corresponding to moneyness � 2

f0:85; 0:90; 0:95; 1:00; 1:05; 1:10g, ODAX 1999.

population covariance matrices 	i can formally be stated as

(1) HCPC : 	i = ��i�
T
; i = 1; :::; k:

	i are positive de�nite p� p population covariance matrices, � is an orthogonal p� p matrix and

�i = diag(�i1; :::; �ip) is the matrix of eigenvalues. Assume that all CPCs are well de�ned and all

�i are distinct.

3.1 Estimating a common eigenstructure

Let Si be the (unbiased) sample covariance matrix of implied volatilities, which are assumed to

stem from an underlying p-variate normal distribution Np(�;	i). Sample size is ni(> p). Then

the distribution of Si is a generalization of the chi-squared variate, the Wishart distribution, with
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(ni � 1) degrees of freedom (Muirhead, 1982, p.86), denoted by

niSi � Wp(	i; ni � 1):

For the k Wishart matrices Si the likelihood function is given by

(2) L (	1; :::;	k) = C

kY
i=1

exp
n
tr

�
�
1

2
(ni � 1)	�1

i Si

�o
j	ij

�

1
2
(ni�1)

where C is a constant not depending on the parameters. Maximizing the likelihood is equivalent

to minimizing the function

g(	1; :::;	k) =

kX
i=1

(ni � 1)
n
ln j	ij+ tr(	�1

i Si)
o
:

Assuming that HCPC in equation (1) holds, yields

g(�;�1; :::;�k) =

kX
i=1

(ni � 1)

pX
j=1

 
ln�ij +



T
j Si
j

�ij

!
:

Next, the orthogonality constraints of � have to be imposed. This is achieved by the Lagrange

method, where we denote �j the Lagrange multiplyer of the p constraints 
Tj 
j = 1, and �hj the

Lagrange multiplyer for the p(p � 1)=2 constraints 
T
h

j = 0 (h 6= j). Hence the function to be

minimized is given by

(3) g
�(�;�1; :::;�k) = g(�) �

pX
j=1

�j(

T
j 
j � 1)� 2

pX
h<j

�hj

T
h 
j:

Taking partial derivatives with respect to all �im and 
m, it can be shown that the solution of the

CPC model can be written as the generalized system of characteristic equations

(4) 

T
m

 
kX
i=1

(ni � 1)
�im � �ij

�im�ij
Si

!

j = 0; m; j = 1; :::; p; m 6= j;

which needs to be solved using

�im = 

T
mSi
m; i = 1; :::; k; m = 1; :::; p

and the constraints



T
m
j =

8<
:0 m 6= j

1 m = j

:
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Flury (1988) proves existence and uniqueness of the maximum of the likelihood function, and

Flury and Gautschi (1986) provide a numerical algorithm, which has been implemented in XploRe

(http://www.i-xplore.de.).

The maximum likelihood estimates of 	i are given by 	̂i = �̂�̂i�̂
T
; i = 1; :::; k: For the

asymptotic distribution theory of 
̂ij and �̂ij , we refer the reader to Flury (1988). Sample common

principle components of the maturity groups are given by Y�i = �̂TX�i where X�i 2 R
6 is the

multiple time series of the implied volatility smile at maturity �i.

3.2 Partial Common Principle Components

There is an obvious generalization of the CPC model: Instead of assuming the transformation

matrix to be the same for all groups, one could hypothesize that only some q < p vectors are

common, while others a speci�c. In terms of the analysis of implied volatilities this means that

e.g. one source of the shocks, say the shift, is common to the whole surface, thereby pushing the

surface up and down by a common degree, while slope or twist shocks di�er across maturity groups.

Since for shorter contracts the smile is more concave than for longer maturities, this hypothesis

might apply to implied volatilities. Formally, for a partial CPC model of order q, pCPC(q), the

hypothesis is given by

HpCPC(q) : 	i = �(i)�i�
(i)T

; i = 1; :::; k ;

where the 	i are positive de�nite population covariance matrices, and �i = diag(�i1; :::; �ip), again

the matrix of eigenvalues. �(i) = (�c;�
(i)
s ) are orthogonal p � p matrices, where �c is p � q

and denotes the matrix of eigenvectors common to all groups, and �
(i)
s the p � (p � q) matrix

of eigenvectors that are speci�c. By orthogonality the pCPC(p � 1) model implies the pCPC(p)

model, i.e. ordinary CPC. Therefore, q is restricted to the range 1 � q � p � 2; meaning that a

minimum dimension of p = 3 for any pCPC model is required. When comparing a higher pCPC(q)

with a lower pCPC(q-1) model, we assume throughout that the analysis follows the order given by

the size of the corresponding characteristic roots. Of course, one cannot be sure that any other

eigenvectors is common, with the �rst few being speci�c. Nevertheless, it is a very natural way to

start the analysis, especially when one is only interested in the �rst few principal components.

Establishing the likelihood function essentially follows the same lines as in the CPC model aside

from respecting the additional orthogonality constraints of the speci�c factors 

(i)
s . For the common
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eigenvectors m; j � q, one obtains the same system of equations as in (4), however, a more intricate

second equation links common and speci�c components, making a solution laborious (Flury, 1988).

3.3 Testing Relationships between Covariance Matrices

The maximum likelihood delivers a convenient framework for testing the speci�cation assumed.

For example, the log-liklihood ratio statistic for testing the HCPC against the unrestricted model

(unrelatedness between covariance matrices) is given by

TCPC = �2 ln
L(	̂1; :::; 	̂k)

L(S1; :::; Sk)
=

kX
i=1

(ni � 1) ln
j	̂ij

jSij
;

where L(S1; :::; Sk) denotes the unrestricted maximum of the log-likelihood. Since the number of

parameters estimated in the CPC model is p(p�1)=2 (for the orthogonal matrix �) plus kp (for the

eigenvalues �i), and the number of parameters in the unrelated case is given by kp(p� 1)=2 + kp,

the statistic TCPC is asymptotically �2 with (k � 1)p(p� 1)=2 degrees of freedom as min (ni)!1

(Rao, 1973).

It is important to notice that the CPC and pCPC(q) models presented so far can be ordered in a

hierarchical fashion, which allows a detailed analysis of the involved covariance matrices of di�erent

maturity groups. This hierarchy highlights the relationships between various subsets of the implied

volatility surface, and whether there is at all a potential gain in inspecting the surface as a whole.

The highest level of similarity would be to assume equality between covariance matrices of di�erent

maturity groups 	i. In this case the number of parameters to be estimated is p(p+ 1)=2, and one

may obtain the parameters by one single PCA applied to one pooled sample covariance matrix of

all k groups. From a modeling perspective this would lead to a model using only one maturity

or, equivalently, one pooled maturity bucket across moneyness. A second possible relationship is

proportionality of all 	i, i.e. 	i = �i	1; i = 2; :::; k. This model may be regarded as an o�spring

of the standard CPC model obtained by imposing additional constraints on the eigenvalues, i.e.

by imposing �ij = �i�1j ; �i > 0 for i = 2; :::k and j = 1; :::; p. The number of parameters

here is p(p + 1)=2 + (k � 1). In this case again, one set of implied volatilities together with the

proportionality constants �i characterize the dynamics. It is �rst in the third level, the CPC level,

i.e. 	i = ��i�
T
; i = 2; :::; k, that the idea of a 'surface' is properly captured: for, though groups

obey to a common transformation, they have their own sources of risk, between which no relation

is assumed a priori. The following levels in the hierarchy are given by the pCPC(q) models starting
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higher Model lower Model Degrees of freedom

Equality Proportionality k � 1

Proportionality CPC (p� 1)(k � 1)

CPC pCPC(q) (1 � q � p� 2) 1

2
(k � 1)(p� q)(p� q � 1)

pCPC(1) Arbitrary covariance matrices (p� 1)(k � 1)

Table 3: Testing sequentially against the next lower model in the hierarchy and corresponding

degrees of freedom.

from q = p�2 down to q = 1. The relations between di�erent groups disappear subsequently, until

the last level: the 	1; :::;	k do not share any common eigenstructure.

One may appreciate the hierarchical structure of this set of assumptions by realizing that if two

matrices share two principal components in common, then they necessarily share one component.

Moreover, if two matrices are proportional, then they satisfy the CPCmodel, and all of the pCPC(q)

models. From the nested structure, it is possible to decompose the total chi square into partial chi

squares as

Ttotal = T (inequality of proportionality constants j proportionality)

+ T (deviation from proportionality j CPC)

+ T (nonequality of last p-q components j pCPC(q))

+ T (nonequality of the �rst q components):

The decomposition of the log-likelihood and the corresponding degrees of freedom are displayed in

Table 3 (Flury, 1988, p. 151).

In the step-up procedure, which is suggested by this decomposition, one tests sequentially one

model against the next lower model in the hierarchy. One stops as soon as the higher model is not

rejected against the lower one. However, one should be cautious, since these sequential tests are

not independent from each other. This is why one should apply a model selection approach based

on the Akaike or Schwarz Information Criterion (AIC, SIC, Section 3.4). Since from a hypothesis

testing point of view, the most natural way to proceed is to test directly against the unrelated

model, we performed these tests as well. By the summation property a test against any lower

model is simply given by adding up the chi square test statistics and the degrees of freedom in

between.

15



3.4 Alternative Model Selection: Akaike Information Criterion and Schwarz

Information Criterion

Alternatively the Akaike information criterion (Akaike, 1973) may be used for model selection. The

AIC is de�ned by

AIC = �2 (maximum of log-likelihood) + 2 (number of parameters estimated) :

According to this criterion, the model with the lowest AIC should be chosen. Following Flury

(1988), we use a modi�ed Akaike information criterion. Let us assume that we have I hierarchically

ordered models to compare, with r1 < ri < ::: < rI (i = 1; :::; I) parameters in model i. We de�ne

the AIC to be

AIC (i) = �2 (Li � LI) + 2 (ri � r1)

where Li is the maximum of the log-likelihood function of model i. Then selecting the model with

the lowest AIC is equivalent to selecting the model with the lowest AIC (i). Moreover we have

AIC (I) = 2 (rI � r1) and AIC (1) = �2 (L1 � LI)

such that AIC (I) is twice the di�erence of the number of parameters of the two extreme models,

whereas AIC (1) is equal to the chi-square test statistic for comparing these two models.

Another model selection approach is the Schwarz Information Criterion (Scharz, 1978, SIC). It

is de�ned as

SIC = �(maximum of log-likelihood)

+ (number of parameters estimated)� ln(number of observations):

The SIC, which is derived from Baysian principles, gives a more severe complexity penalty as the

AIC. Following the line of thoughts developed above, we de�ne our modi�ed SIC as

SIC(i) = �2 (Li � LI) + 2 (ri � r1) ln(N);

where N =
Pk

i=1
ni denotes the overall sum of observations across the k groups. According to this

de�nition of the SIC, the model with the lowest SIC is the best �tting one.
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Mean Standard deviation Minimum Maximum

Implied volatility 30.27% 8.41% 11.51% 79.97%

Moneyness 0.94 0.17 0.37 1.50

Time to maturity (years) 0.48 0.44 0.03 2.02

Table 4: Summary statistics of the ODAX 1999 implied volatility data. Source: EUREX, Thomson

Datastream; own calculations.

4 Empirical Results

4.1 Presentation of the Database

Our data set contains daily data on DAX options from the German-Swiss Futures Exchange,

EUREX for the entire year 1999 (254 trading days). Options are European style. Interest rate

data and spot prices were provided by Thomson Financial Datastream.

For data preparation, the following procedure is applied to the 120,401 observations of the

initial database (Skiadopoulos, Hodges, and Clewlow, 1999): First, we replace the prices of all in-

the-money options, whose prices might possibly contain a liquidity premium, with the corresponding

prices implied by the put-call parity. Speci�cally, we replace the price of each in-the-money call

option by its out-of-the-money put price. After this procedure, all the information contained in

liquid put prices is extracted and preserved in the corresponding call prices via the put-call parity.

Put prices may now be discarded without any loss of reliable information. Second, we omit options

quoted less than one tick (e 1/10), those with an implied volatility greater than 80% (extreme

far out of the money options) and those with a time to maturity of less than 10 days because

of their sensitivity to small errors. This �ltering method leaves us with a �nal sample of 57,702

observations, i.e. around 230 per day. Table 4 describes the main features of our data set. Since

the options are of European style, we calculate the moneyness metric as the strike price K divided

by the (implied) futures price F , i.e. Ki

Ft
. Finally, we are using the daily closing notation of the

DAX from the German Stock Exchange and the term structure of the EURIBOR interest rate on

a daily basis. After approximating the riskless rate of a given maturity by linear interpolation, we

calculate implied volatilities by solving the Black Scholes formula for the volatility parameter �

using the market prices. We apply a nonparametric smoothing method (H�ardle and Vieu, 1992;

H�ardle and Tsybakov, 1997; A��t-Sahalia and Lo, 1998, 2000) to obtain for each day the surface

values of implied volatilities on a given grid on moneyness and maturity (see appendix). For the
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Maturity groups Mean Standard deviation Skewness Kurtosis Minimum Maximum

1 -0.00032 0.051 0.026 3.259 -0.212 0.273

2 -0.00040 0.047 0.024 3.232 -0.212 0.261

3 -0.00052 0.044 0.010 3.248 -0.207 0.242

6 -0.00070 0.038 -0.002 3.167 -0.176 0.197

9 -0.00082 0.034 -0.027 3.175 -0.160 0.168

12 -0.00100 0.029 -0.046 3.228 -0.138 0.128

Table 5: Summary statistics of log-di�erences of the ODAX 1999 implied volatility data. Mean,

standard deviation, skewness, and kurtosis averaged across moneyness except for minimum and

maximum. Source: EUREX, Thomson Datastream; own calculations.

moneyness � , we chose a grid of f0.85, 0.90, 0.95, 1.00, 1.05, 1.10g and for maturity � a grid of

f1, 2, 3, 6, 9, 12g months. Due to the absence of data for a couple of observation dates, we did

not extend the smile to � = 1:15. With this choice of a grid, the procedure leaves us with 36 time

series of the implied volatility surface. From the perspective of our CPC model, this time series

may be regarded as 6 multi-variate time series of the smile or the changes of the smile for a given

maturity. This data set is stored in the �nancial data base MD*Base located at the Center for

Applied Statistics and Economics at Humboldt University, Germany.

Summary statistics of the log di�erences used for estimation are given in Table 5. Note that

there seems not to be a large deviation from normality: skewness is positive for the short and

negative for the long maturities, however quite close to zero, and kurtosis is close to 3. We also

performed Jarque-Bera-Tests on each single time series to test for normality in the data (Bera and

Jarque, 1982). In only 6 out of 36 cases the hypothesis of normality was rejected at the 10% level

of signi�cance, which justi�es the maximum likelihood estimation technique.

4.2 The Common Principal Components Analysis

Consider �rst the data already presented in the separate PCA in Section 2. Covariance matrices

were computed from log-di�erences of the multi-variate time series of implied volatilities. Table 8

to 10 (in appendix) display the three samples and estimated covariance matrices. The common

eigenvectors and eigenvalues are given in Table 11. In Table 6 we display the model selection

procedure. The Step-up approach suggests a model, when the higher model is not rejected against
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Model

higher lower Chi. Sqr df p-val AIC SIC

Equality Proport. 237.0 2 0.00 352.0 352.0

Proport CPC 82.7 10 0.00 118.0 141.0*

CPC pCPC(4) 7.1 2 0.03 55.7 191.0

pCPC(4) pCPC(3) 0.2 4 1.00 52.6* 210.0

pCPC(3) pCPC(2) 8.1 6 0.23 60.4 263.0

pCPC(2) pCPC(1) 4.5 8 0.81 64.4 335.0

pCPC(1) Unrelated 11.9 10 0.29 75.9 436.0

Unrelated 84.0 557.0

Table 6: Decomposition of the chi square test statistic (step-up & model building approaches) - 1,

2, and 3 months maturity

the lower one, which is a pCPC(4) model here. The AIC is lowest for this model, but also very

close to the AIC of the CPC model. The SIC, penalizing complexity more strongly as the AIC,

even favors a proportional model, but a CPC model still appears to to very well. Testing a CPC

model directly against a the unrelated model yields TCPC = 31:8, which corresponds to a p-value

p = 0:38 of the �2 at 30 degrees of freedom. Interestingly, the equality and the proportional model

are rejected against the unrestricted model. To sum-up, each selection criterion advises us to accept

a model which imposes a common eigenstructure for implied volatility dynamics. The criteria only

vary in the degree of additional constraints which one can assume, ranging from a proportional,

over a CPC or a pCPC(4) model.

As is seen from Table 11 and in Figure 6, where we present the parallel coordinate plot for

the three eigenvectors associated with the three biggest characteristic roots under CPC, the �rst

components exhibit the shift, Z-shaped slope and twist structure we mentioned earlier. The �rst

factor loadings are all of the same sign, giving biggest weight to the 1.05 moneyness (corresponding

to index 5). The second eigenvectors exhibits a Z-shaped slope, as factor loadings have opposite sign

at each side of the smile dynamics. This is in line with Skiadopoulos, Hodges, and Clewlow (1999);

H�ardle and Schmidt (2000); Sylla and Villa (2000), but interestingly ours is quite symmetric and

well centered at the money (index 4), which bears a weight of almost zero. The third characteristic

vector displays the twist formation, giving a large weight to at the money implied volatility returns

and large weights of opposite sign to the outer parts of the smile dynamics.
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 CPC Coordinate Plot: First three Eigenvectors
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Figure 6: First three eigenvectors as obtained by CPC for 1 month (blue), 2 months

(green), 3 months (red) maturity; index 1 to 6 is corresponding to moneyness � 2

f0:85; 0:90; 0:95; 1:00; 1:05; 1:10g, ODAX 1999.
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Figure 7: Eigenvalues and the variance explained as obtained in the CPC model
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Eigenvalues di�er in size dropping from the shortest maturity to the biggest. To evaluate the the

percentage of variance explained up to the jth component in the kth group we computed
Pj

i=1 �kiPp

i=1 �ki

as a measure of variance explained. Altogether the �rst three eigenvalues, j = 3, explain between

98:5% (one month maturity), 98:9% (two months maturity), and 99:2% (three months maturity) of

the dynamics of the implied volatility surface. The relative proportion explained increases slightly

the longer the maturity, as can be seen in the right panel of Figure 7: Whereas the �rst PC explains

74:5% of all variability of the one-month maturity, already 77:5% are explained in the three-month

maturity. At closer inspection, this holds true for the �rst two eigenvalues in all groups, meaning

that while variability in PCs drops, the longer the maturity, the portion of variance explained by

the �rst PCs increases. Beginning from the third eigenvalue this seems to be reversed. This is one

of the reasons why the proportional model or even the equality model for the implied volatility

surface cannot hold true, leaving us with the more general CPC model.

Naturally, one asks how the CPC model extends to longer maturities. However, as we learned,

when adding the six months and higher maturities to the short ones, the CPC models where

rejected highly signi�cantly. This is why we analyzed the long maturities in a separate model with

the covariance matrices of the six, nine and twelve months. Model selection is presented in Table 7.

The step-up approach suggests a pCPC(4) or even CPC model at a 5% level. However, when

testing directly against the unrelated model they are both rejected. AIC is lowest for the pCPC(1)

and testing the pCPC(1) against the unrelated model, yields a TpCPC(1) = 19:7 at 10 degrees of

freedom and a p-value of 0.03. Hence one may accept a pCPC(1) model for the long maturities.

Indeed, at closer inspection of the eigenvectors obtained by a separate PCA, it is apparent that

only the "shift" vector is similar. See Table 12 for the transformation matrix, where 
̂
c
1
is the

�rst common eigenvector, and 
̂
(i)

2
and 
̂

(i)

3
denote the speci�c ones. As can be seen, the latter

di�er. Possibly, the increased distance between maturities (three months as opposed to one month

as before) might "loosen" the common structure inherent in shorter maturities to some extent.

However, following the SIC, which again favors more simple models, a proportional or CPC model

�ts best.

Overall, we again �nd strong evidence for the common eigenstructure in the implied volatility

surface dynamics. To check for robustness, we divided the sample in three non-overlapping sub-

samples and estimated the CPC models in each of them. As factor loadings turned out to be

of negligible di�erence and model selection stayed the same in each sample, we believe that the

structure revealed remains stable across a considerable amount of time (here the entire year 1999).
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Model

higher lower Chi. Sqr df p-val AIC SIC

Equality Proport. 251.0 2 0.00 486.0 486.0

Proport CPC 81.0 10 0.00 239.0 262.0*

CPC pCPC(4) 5.1 2 0.08 178.0 313.0

pCPC(4) pCPC(3) 3.2 4 0.52 177.0 335.0

pCPC(3) pCPC(2) 104.0 6 0.00 182.0 385.0

pCPC(2) pCPC(1) 21.9 8 0.01 89.4 360.0

pCPC(1) Unrelated 19.6 10 0.03 83.6* 444.0

Unrelated 84.0 557.0

Table 7: Decomposition of the chi square test statistic (step-up & model building approaches) - 6,

9 and 12 months maturity

This is an important result as the common structure can be a reliable starting point for modeling

and simulating implied volatility dynamics.

5 Conclusions

In this paper, we present a model that is capable of modeling the implied volatility surface dynam-

ics, by reducing its dimension to a small number of factors common to several maturity groups.

This is accomplished by working with a multi-variate principal components technique that is de-

signed for the multi-group case: common principle components. The common principal component

analysis (CPCA) exploits a group structure given by the data, and allows for jointly estimating

a common eigenstructure across groups. This allows us to model the implied volatility surface

returns simultaneously for di�erent maturity groups. In a CPCA framework several models with

varying degrees of similarity in the eigenstructure can be compared and tested. The time series

of implied volatility returns we use are obtained by a nonparametric kernel smoothing procedure

from German DAX option data from 1999.

Our �ndings are summarized as follows: The CPC model or a pCPC(4) model, where only four

eigenvectors are shared across groups, is well justi�ed for modeling the short maturities across the

smile dynamics of implied volatilities. In line with earlier literature, the shocks driving the implied
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volatility surface can largely be attributed to a shift, Z-shaped slope and twist shock. For the longer

maturities a pCPC(1) can be a valid choice. Hence, the preferred modeling strategy is to assume

that implied volatility surface dynamics obey a common eigenstructure or, equivalently, are driven

by a small number of common factors. Results proof to be stable across di�erent sub-samples of

the time period considered.

The results have direct implications for the market models of volatility that aim at pricing

illiquid or exotic options with observed implied volatilites. By our evidence, the dimension of these

models can be considerably reduced, because a common eigenstructure applies across di�erent

maturities. Moreover our evidence suggests that variances of the random sources are not to be

linked in a proportional, but in a nonlinear, though monotone fashion. The remaining randomness

could be modeled with a white noise process.

The power to reduce the dimension of implied volatility surface dynamics is also a suitable

starting point for VaR calculations in Monte Carlo based methods. Developing a Monte Carlo

simulation for delta-gamma-neutral, vega sensitive portfolios along the lines of Jamshidian and

Zhu (1997) is straight forward: Delta-gamma-neutral, vega sensitive portfolio changes can be ap-

proximated by a �rst order tailor expansion of Black and Scholes option prices. For two (or three

at the most) sources of risk simulate Brownian motions in each group, and apply the estimated

transformation matrix to recover volatility changes, from which possible portfolio changes can be

obtained by the �rst order approximation. Thus the evidence presented provides valuable insights

for risk modeling.

A Appendix

A.1 Implied Volatility Surface Smoothing and Bandwidth Choice

We shortly present the kernel regression procedures we employed in order to obtain our implied

volatility surface time series on a given grid of maturities f�ig and moneyness f�jg.

For a partition of explanatory variables (x1; x2) = (�; �), i.e. of moneyness and maturity, a

two-dimensional Nadaraya-Watson kernel estimator of �̂ is given by (H�ardle, 1990; H�ardle, M�uller,

Sperlich, and Werwatz, 2001)

�̂(x1; x2) =

Pn
i=1

K1(
x1�x1i
h1

)K2(
x2�x2i
h2

)�̂iPn
i=1

K1(
x1�x1i
h1

)K2(
x2�x2i
h2

)
;
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where �̂i is the Black Scholes volatility implied by observed options prices. K1(u) and K2(u) are

univariate kernel functions, and h1 and h2 are the bandwidths chosen. We use quartic kernels of

order 2, i.e.

Ki(u) =
15

16

�
1� u

2
�2
I(juj � 1):

As from an empirical point of view, the choice of the kernel function has little in
uence on the

results (H�ardle, 1990), this choice was lead by reasoning that the quartic kernel generally behaves

well in practical applications.

For bandwidth selection we employed the following procedure: As a starting point of the opti-

mal bandwidths we computed a cross validation for each of the 254 observation dates by using a

penalizing functions approach, i.e. we minimized the prediction error

p(h1; h2) = N
�1

NX
j=1

f�j � �̂h1;h2(Xj)g
2 � �(N�1

h
�1

1
h
�1

2
K1(0)K2(0));

where �(u) = exp(2u) is the Akaike penalizing function (Akaike, 1970). Since possible choices of

penalizing functions have the same �rst order expansion, they asymptotically behave in the same

way. Next we averaged the bandwidths across observation dates, which yielded h
�

1
= 0:042 for

moneyness and h
�

2
= 0:092 for maturity, at a standard deviation of s(h1) = 0:012 and s(h2) =

0:010 respectively. As the standard deviation of estimated bandwidths proved to be quite low,

we used one single bandwidth for all estimation dates. However, bandwidths were still insuÆcient

in the maturity dimension due to the special structure of the data: the data points behave like

"pearls in a necklace" in the three-dimensional space of the volatility surface. However, penalizing

approaches, as other cross validation procedures, evaluate the quality of the estimations right at

actually observed data points. As estimates at the grid points deviate from the actual observations,

the bandwidth in maturity dimension obtained by cross validation can be too small. Hence in

maturity dimension, we chose to oversmooth. In �nally using h�
2
= 0:35 for the surface up to the

three months horizon, and h
�

2 = 1:1 for the long maturities, we also accounted for the fact that

observations are closer in the front contracts than in the long term contracts (1 month distance

compared to 3 months).
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A.2 Tables

S1 =

0
BBBBBBBBB@

0:1402 0:1460 0:1505 0:1217 0:1002 0:1221

0:1460 0:1822 0:2145 0:1784 0:1347 0:1366

0:1500 0:2145 0:2863 0:2360 0:1532 0:1328

0:1218 0:1784 0:2360 0:3000 0:3033 0:2208

0:1002 0:1347 0:1532 0:3033 0:4086 0:3023

0:1221 0:1367 0:1328 0:2208 0:3023 0:2898

1
CCCCCCCCCA

	̂1 =

0
BBBBBBBBB@

0:1505 0:1539 0:1554 0:1276 0:1096 0:1408

0:1539 0:1851 0:2121 0:175 0:1351 0:1485

0:1554 0:2121 0:2756 0:2218 0:1434 0:1363

0:1276 0:175 0:2218 0:2754 0:2839 0:2205

0:1096 0:1351 0:1434 0:2839 0:3996 0:3127

0:1408 0:1485 0:1363 0:2205 0:3127 0:3211

1
CCCCCCCCCA

Table 8: Sample covariance S�102 and estimated population covariance 	̂�102: 1 month maturity

S2 =

0
BBBBBBBBB@

0:1183 0:1305 0:1428 0:1194 0:0959 0:1093

0:1305 0:1621 0:1919 0:1588 0:1183 0:1230

0:1428 0:1919 0:2465 0:1954 0:1247 0:1212

0:1195 0:1588 0:1954 0:2411 0:2531 0:2038

0:0959 0:1183 0:1247 0:2531 0:3581 0:2813

0:1093 0:1230 0:1212 0:2038 0:2813 0:2642

1
CCCCCCCCCA

	̂2 =

0
BBBBBBBBB@

0:1228 0:1340 0:145 0:1213 0:0987 0:1149

0:134 0:1638 0:1916 0:1578 0:1183 0:1267

0:145 0:1916 0:2434 0:1916 0:1217 0:1227

0:1213 0:1578 0:1916 0:2346 0:2468 0:2041

0:0987 0:1183 0:1217 0:2468 0:353 0:2841

0:1149 0:1267 0:1227 0:2041 0:2841 0:2729

1
CCCCCCCCCA

Table 9: Sample Covariance S � 102 and estimated Covariance 	̂� 102: 2 months maturity
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S3 =

0
BBBBBBBBB@

0:1010 0:1162 0:1321 0:1123 0:0886 0:0974

0:1162 0:1415 0:1667 0:1367 0:1007 0:1092

0:1321 0:1667 0:2050 0:1572 0:0985 0:1086

0:1123 0:1369 0:1572 0:1879 0:2033 0:1825

0:0886 0:1007 0:09849 0:2037 0:3018 0:2540

0:0974 0:1092 0:1086 0:1825 0:2540 0:2376

1
CCCCCCCCCA

	̂3 =

0
BBBBBBBBB@

0:0981 0:1139 0:1306 0:1107 0:0863 0:0920

0:1139 0:1411 0:1679 0:1382 0:101 0:1058

0:1306 0:1679 0:2094 0:1617 0:1012 0:1072

0:1107 0:1382 0:1617 0:1955 0:2095 0:1825

0:0863 0:1010 0:1012 0:2095 0:3038 0:2503

0:0920 0:1058 0:1072 0:1825 0:2503 0:2269

1
CCCCCCCCCA

Table 10: Sample Covariance S � 102 and estimated Covariance 	̂� 102: 3 month maturity
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�̂CPC =

0
BBBBBBBBBBBBBBBBBBBBBBBBB@

0:275 �0:299 0:525 �0:601 0:318 0:31

(0:0085) (0:0119) (0:0153) (0:0149) (0:0174) (0:0114)

0:334 �0:402 0:176 �0:091 �0:451 �0:696

(0:0099) (0:0089) (0:0091) (0:0139) (0:0201) (0:013)

0:379 �0:567 �0:278 0:374 �0:207 0:524

(0:014) (0:0107) (0:0134) (0:0108) (0:0177) (0:0073)

0:457 �0:014 �0:493 �0:03 0:665 �0:324

(0:0038) (0:0139) (0:0072) (0:0197) (0:0104) (0:0192)

0:504 0:546 �0:25 �0:39 �0:44 0:199

(0:0135) (0:0133) (0:0139) (0:0129) (0:0112) (0:0133)

0:455 0:359 0:557 0:581 0:13 �0:008

(0:0099) (0:015) (0:0151) (0:0137) (0:0146) (0:0077)

1
CCCCCCCCCCCCCCCCCCCCCCCCCA

�̂1 =

 
1:197 0:289 0:097 0:018 0:004 0:001

(0:1064) (0:0257) (0:0086) (0:0016) (0:0004) (0:0001)

!T

�̂2 =

 
1:057 0:266 0:052 0:012 0:003 0:001

(0:0940) (0:0236) (0:0046) (0:0011) (0:0003) (0:0001)

!T

�̂3 =

 
0:910 0:236 0:020 0:007 0:002 0:001

(0:0809) (0:0210) (0:0018) (0:0006) (0:0001) (0:0001)

!T

Table 11: Common transformation �̂ and eigenvalues �i � 102 from a CPC with groups of 1, 2,

and 3 months maturity; standard errors in parenthesis.
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Maturity

group i 1 2 3 1 2 3

�̂
(i)

CPC
=

0
BBBBBBBBB@

0:3127 0:3128 0:3150 0:3295 0:5379 0:4904 �0:1298

0:3425 0:3980 0:4000 0:4056 0:1411 0:1300 �0:0873

0:3783 0:5429 0:5395 0:5225 �0:3112 �0:2655 �0:0463

0:4399 0:0079 0:0114 0:02141 �0:4812 �0:4855 0:5133

0:4869 �0:5526 �0:5451 �0:5270 �0:2738 �0:3111 0:4111

0:4594 �0:3787 �0:3901 �0:4190 0:5359 0:5826 �0:7354

1
CCCCCCCCCA

�̂1 =

 
0:675 0:177 0:024 0:005 0:001 0:0005

(0:0401) (0:0105) (0:0014) (0:0003) (0:00006) (0:00003)

!T

�̂2 =

 
0:548 0:148 0:011 0:003 0:001 0:0004

(0:0326) (0:0088) (0:0007) (0:0002) (0:00004) (0:00002)

!T

�̂3 =

 
0:389 0:113 0:004 0:001 0:001 0:0002

(0:0231) (0:0067) (0:0003) (0:0001) (0:00003) (0:00001)

!T

Table 12: Estimated eigenstructure �̂
(i)

CPC
=
�


c
1
; 


(i)

2
; 


(i)

3

�
and eigenvalues of the pCPC(1) model

for 6, 9, and 12 months maturity (i = 1; 2; 3) { common and �rst three speci�c eigenvectors of each

groups. Remaining speci�c vectors omitted for sake of clarity.
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