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Abstract

The paper studies a simple two-period principal/agent model in which

the principal updates the incentive scheme after observing the agent's first-

period performance. The agent has superior information about his ability.

The principal offers a first period incentive scheme and observes some mea-

sure of the agent's first-period performance (cost or profit), which depends

on the agent's ability and (unobservable ) first-period effort. The relation-

ship is entirely run by short-term contracts. In the second-period the prin-

cipal updates the incentive scheme and the agent is free to accept the new

incentive scheme or to quit.

The strategies are required to be perfect and updating of the princi-

pal's beliefs about the agent's ability follows Bayes ' rule.

The central theme of the paper is that the ratchet effect leads to much

pooling in the first period. First, for any first-period incentive scheme,

there exists no separating equilibirum. Second, when the uncertainty about

the agent's ability is small, the optimal scheme must involve a large amount

of pooling. The paper also gives necessary and sufficient conditions for the

existence of partition equilibria.



1 . Introduction .

In Laffont and Tirole (1984) we showed how cost observability helps a

regulator controlling a private or public firm when both adverse selection

and moral hazard affect their relationship. In particular, we showed that

under cost observability, there is a trade-off between revelation of informa-

tion through the selection of an incentive contract, and efficient ex-post

production. The optimal sharing of overruns was obtained. The analysis was

carried out in a one period model. Of course, relationships between firms

and regulators are often repeated. The purpose of this paper is to extend

our analysis of incentive contracts to a dynamic framework. '

Section 2 presents the model, which is a simplified version of our one-

^Baron and Besanko (1984) and Roberts (1983) have studied long term
relationships with full commitment under various assumptions concerning
the type of adverse selection. One main result is that, in_ the indepen-
dent case (each period a new independent variable of adverse selection
is drawn), the optimal mechanism restores the first best from the second
period on and all the inefficiency occurs in period 1 . Intuitively this
is because at the time the contract is signed, the agent does not really
have an informational advantage concerning period 2 on. In the perfect
correlation case (a variable of adverse selection is drawn at the begin-
ning for the whole relationship), the optimal mechanism is the optimal
static mechanism.

Baron and Besanko (1985) study multiperiod incentive schemes under
adverse selection for alternative assumptions about commitment. The
main focus of their paper is the "fairness case", in which the regulator
has a limited commitment in the second period: he must be "fair" to the
which is committed to stay. An interesting result of their analysis is
that separation is feasible in the first period, contrary to the case of
no commitment at all (see Proposition 1).

Freixas, Guesnerie and Tirole (1985) have studied repeated adverse
selection in the perfect correlation case with no commitment but no
moral hazard. Their analysis focuses on optimal linear incentive
schemes. (see also the literature on the ratchet effect using nonopti-
mal mechanisms Weitzman (1980), Holms trom (1982a)). Furthermore, it
considers only the two-type case, which leads to a much weaker emphasis
on pooling than the continuum of types framework envisioned in this
paper.



firm, earlier model. Each period a very valuable indivisible project must be

carried out. The ex-post cost of the project depends on two variables: the

firm's intrinsic efficiency, and its level of "effort" during the period.

The firm's efficiency is known to the firm, but not to the regulator. The

firm's effort is not observed by the regulator either. The incentive scheme

(transfer to the firm) thus depends on observed cost only. For reference,

the optimal regulatory scheme under full information about the firm is de-

rived.

Section 3 solves for the optimal incentive scheme in the static (one

period) incomplete information case, and sets up the dynamic framework. For

the rest of the paper, we consider the two-period version of the basic model.

The regulator chooses a first-period incentive scheme, which specifies a

transfer to the firm as a function of the first-period observed cost. The

firm reacts to this incentive scheme by choosing a first-period level of

effort. The regulator then rewards the firm and updates his beliefs about

the latter 1 s efficiency using the cost observation. In the second-period the

regulator chooses the optimal regulatory scheme given the posterior beliefs,

and the firm chooses a second-period effort and is rewarded.

We are thus assuming that the regulator cannot commit himself not to use

in the second period the information conveyed by the firm's first-period

performance. This assumption, which, we believe, is reasonable in a wide

range of applications, certainly deserves comment. The simplest way to moti-

vate it is the changing principal framework. For instance, the current ad-

ministration cannot bind future ones 2 (the changing principal framework also

2In this interpretation the discount factor of the principal is likely
to be lower than the firm's. This feature can be embodied at no cost to
our model, and reinforces our central theme that pooling is very likely
in ratcheting situations (the principal then finds it even more costly
to induce some separation).



applies to planning models). Non commitment situations are also very common

in relationships between private parties, and in particular in organizations.

Contracts are costly to write and contingencies are often hard to foresee,

which gives rise to the allocation of discretion to some members of the or-

ganization (as emphasized by Coase [1937], Simon [1951], Williamson [1975,

1985], and Grossman-Hart [1985]). The existence of discretion creates scope

for the parties who exercise this discretion to use the information revealed

by the other parties. 3 (We have in mind, for example, the case of new tasks

or new technologies which are costly or impossible to describe in advance,

and such that the agent's ability to handle them is positively correlated

with this ability to handle current tasks or technologies ) . As the theory of

incomplete contracts is still in its infancy, we prefer to couch the model in

a regulatory framework to motivate non-commitment.

The focus of this paper is the ratchet effect : an agent with a high

performance today will tomorrow face a demanding incentive scheme. He should

thus be reluctant to convey favorable information early in the

3As Katz-Kahn [1978] observe

;

... there is the tradition among workers, and it is not
without some factual basis, that management cannot be
relied upon to maintain a high rate of pay for those mak-
ing considerably more than the standard and that their
increased efforts will only result in their "being sweat-
ed." There is, then, the temporal dimension of whether
the piece rates that seem attractive today will be main-
tained tomorrow if individual productivity increases sub-
stantially, [p. 411]

For an interesting description of problems created by piece rates, see
Gibbons [1985].



relationship. The purpose of the paper is to formalize and confirm this

intuition. Indeed, we show that, with a continuum of potential abilities for

the agent, and for any first-period incentive scheme, no separating equili-

brium exists. Furthermore, when the range of potential abilities is small,

the principal cannot do better in the first period than imposing "much

pooling" (in a sense to be defined later). This holds even when, in the

static framework, full separation is optimal. These two results are derived

in section 4. Section 5 exhibits some further results when uncertainty is

not small. In particular, it gives necessary and sufficient conditions for

the existence of partition equilibria.

2. The Model .

We consider a two-period model in which a firm (the agent) must, each

period, realize a project with a cost structure:

c
t

= - e
t

t = 1, 2,

where e is the level of effort performed by the firm's manager in period t,

and p is a parameter known only by the manager.

Each period the manager's utility level is s-c|;(e), where s is the net

(i.e., in addition to cost) monetary transfer he receives from the regulator

^he behavior is at variance with that described in Holmstrom [1982].
This is not surprising, since our assumotions differ from his in at
least three respects. First, Holmstrom assumes that the efficiency
parameter is unknown to both the principal and the agent. Second, the
agent's cost (or profit) is observable^ but not verifiable (so s t cannot
be contingent on c t ). Third, Holmstrom's agent faces a competitive
market, in which the transfer depends on past performance, while our
agent's second-period outside opportunities are independent of the
first-period outcome. A systematic study of the effect of these points
of departure between the two models would be worthwhile, but is out of
the scope of this paper. Let us simply notice that as an outcome

i

the
agent has fairly different behaviors in the two set-ups. Holmstrom's
agent tries to prove he is efficient while ours may try to prove the
contrary.



and 4>(e) is his disutility of effort ( <J>' > 0, 4/
1

> 0). For simplicity, we

will allow any level of effort in R, and just require that 4,' is bounded

below by k e (0,1 ). Also, we assume that ty' goes to infinity when e goes to

infinity and we define e* by (J/(e*) = 1. Finally, let 6 be the discount

factor common to all parties (differences in discount factors could be cost-

lessly introduced).

The regulator (principal) observes cost but not the effort level or the

value of the parameter p. He has some prior cumulative distribution function

F (8) on [_6, J3]. We will assume that F has a density f and that f is dif-

ferentiable and bounded away from zero on [ B, B] • The probability distribu-

tion should be interpreted as an objective probability that both the princi-

pal (the regulator) and the agent (the firm's manager) share before date 1.

Let u be, each period, the social utility of the project, which can be

viewed for simplicity as a public good, i.e., as not sold on the market.

The gross payment made by the planner to the firm is s+c. We assume that

there is a distortionary cost X > incurred to raise each unit of money

(through excise taxes for example).

Consumers' welfare in period t is:

u - (1+\) ( s
t

"K:
t

) •

Under perfect information (8 = 8 = 8), a utilitarian regulator would

solve, each period t:

(2.1) Max {u - (1+\) (s
t
+p-e ) + s

fc

- <|>(e )}

V e
t

^We will assume that in the static framework it is always worth carrying out
the project. It is sufficient to take u large enough. This assumption
enables us to avoid the issue of determining the cut-off level above which
firms do not operate in the one-period framework. In Fact 2 below, we will
however consider the more general case in which the cut-off point is not
necessarily J3.



(2.2) s.t. s
t
- (Me

t
) > .

The individual rationality constraint (2.2) says that the utility level

of the firm's manager must be positive to obtain his participation (the per-

fect information problem being stationary, the allocation, and therefore, the

constraint will be the same at each period).

The optimal solution is characterized by

(2.3) s
t

= «Ke t )

(2.4) e = e*, where (Jj* (e*) = 1 .

The individual rationality constraint is binding each period because

there is a social loss due to transfers and the marginal disutility of effort

is equated to marginal cost savings.

As a preliminary, we solve the static regulation problem under imperfect

information, the dynamic problem with commitment and we set up the dynamic

problem under no-commitment.

3. Preliminary analysis .

a) §^stic_reaulation.

The regulator has two observables, namely the level of net transfer, s,

and the level of cost, c. In general, the contract will be a function s(c)

specifying the transfer received by the manager for each value of observed

cost. Let us maXe the following familiar .assumption on the prior distribu-

tion:

Assumption M : —— is non-decreasing.

Assumption M, which says that the hazard rate is monotone, is commonly made



in the incentives literature and is satisfied by many distributions. Assump-

tion M is not required for the main propositions of the paper (it is used

only in Proposition 4). We make this assumption to give separation its best

chance: as is well-known, M ensures that the principal does not want to

induce any bunching in the static case.

Appendix A rigorously characterizes the solution of the static incentive

problem under asymmetric information. We here give an informal treatment of

the main aspects.

First, the firm's profit II( p) = max {s ( c ) - 4»(p-c)j is a non-increasing

function of j3, since a more efficient firm can always produce at the same

cost as a less efficient firm by working less. From the "envelope theorem",

its derivative is equal to [— (p* (e(p))J where e(p) is the optimal effort of a

firm with type p when it faces the incentive scheme s(«). This tells us

exactly how fast the firm's rent II must grow with productivity for a given

effort schedule (for the effort schedule to be implementable , a second-order

condition is required as well; but we ignore this condition, which is checked

in the Appendix). To maximize the social welfare function

'P./P{u - (i+\)(s+p-e) + s-(p(e)}f
1
(pjdp.

the regulator must trade off two conflicting objectives: 1) production

efficiency, which requires that the marginal disutility of income <J>'(e({3)) be

equal to one for all p and 2) the elimination of costly rents II(p). To re-

duce rents for the more efficient firms, the regulator can — and will —
encourage less effort than in the first best.

The following simple results summarize the static analysis that is

relevant, to our model; they are special cases of results in Laf font-Tirole



(1984) (which allows a choice of scale and cost uncertainty) (e*(°) denote

firm P's effort for the optimal incentive scheme):

Fact 1 : Under full information about the firm's type (p = g = p), the firm

obtains no rent, and its effort is optimal: <K(e*(3)) = !•

Fact 2 : If 3 denotes the supremum in [ 3/ 3^ °f types that are willing to

participate (i.e., not to exercise their exit option) for the opti-

mal incentive scheme, then 11(3) = 0.

Fact 3: There is no distortion for the most efficient firm:

4>' (e*(J3)) = 1 .

Fact 4 : Under assumption M and if <\>' " > 0, e*(3) is non-increasing. This

implies that the optimal incentive scheme fully separates the vari-

ous types. Together with fact 3, this also implies that for all 3,

ii>' (e*(3)) < 1 • Furthermore, for an "unexpected type" 3 < _3_, firm

3's rent for one optimal scheme (which allows only costs in the

expected range) is

n(3) = IHJ3) + <Me*) - cKe*-(_S-3)).

Fact 1 was proven earlier. Facts 2 and 3 are familiar from the incen-

tive literature. Fact 4 is used only to prove Proposition 4. Fact 1 con-

tains the earlier observation that the agent does not enjoy any rent when the

principal has full information. Fact 2 says that under asymmetric informa-

tion the least productive of the active types does not obtain any rent. Fact

3 is the classic "no distortion at the top result." Fact 4 simply says that

under assumption M, the optimal effort is suboptimal. It also gives the rent

for an unexpected efficient type, who is forced to mimic the behavior of the



£ type.

b ) Dynamic_0£timiza^ion_with_ComEiitment

.

In this subsection only, we consider the case in which the regulator is

able to commit himself to an intertemporal incentive scheme. In particular,

he can commit himself to a second period scheme which is not optimal given

his information. Let us notice that the regulator offers twice the same

scheme (similar reasonings can be found in Baron-Besanko (1984) and Roberts

(1983)). Thus commitment in this model eliminates dynamics and ratcheting.

Let {t (8),c (8)} and {t ( B) , c„( B) } denote the first- and second-period

transfers and costs for firm B under commitment. For both the firm and the

regulator, this dynamic outcome is equivalent to the stationary (or static)

random mechanism which gives

{t^p), Cjtp)} with probability j^

and

ft (B), c (B)} with probability —

—

1

2 2
' 1+6

to a firm of type B. By construction, this static mechanism is incentive

compatible. Since the objective functions are concave in t and c in turn,

this random static mechanism is dominated by the following deterministic

incentive mechanism:

in both periods. Thus, the previous dynamic incentive scheme was not opti-

mal. So it is optimal for the regulator to commit himself not to use the

information revealed by the firm in the first period.
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We will assume in the rest of the paper that the regulator cannot com-

mit himself to a second-period incentive scheme. He chooses the second-peri-

od incentive scheme optimally given his beliefs about the firm's type at that

date. As explained above, these beliefs depend on the first-period cost, and

on the firm's equilibrium first-period strategy (the firm's actual choice of

effort cannot be observed by the regulator). For any first-period incentive

scheme s (c ), each firm (3 chooses a level of effort taking into account both

the effect on the first-period reward and on the regulator's inference about

its efficiency. Lastly, the regulator chooses the first-period incentive

scheme knowing that the firm will take a dynamic perspective.

We allow the firm to quit the relationship (and to obtain its reserva-

tion utility 0) at any moment. Let xt
= 1 if ^ie firm accepts the incentive

scheme at t, and xt
= ° if i fc quits.

To summarize, the regulator's strategies are incentive schemes

{s
1
(c ) ,s_(c„) } and the firm's strategies are effort levels and acceptance

choices {(e , % ) , (e_, \) } conditional on the firm's type. These strategies

must form a perfect Bayesian equilibrium : PI) (e ,x 9
) is optimal for the

firm given s„(«), P2) s_ is optimal for the regulator given his beliefs

F («| c ), P3) (e ,x n
) is optimal for the firm given s (•) and the fact that

the regulator's second-period scheme depends on c , P4) s is optimal for

the regulator given subsequent strategies, and B) F («| c ) is derived from

the prior F , the firm's strategy given by P3) and the observed cost c, using

Bayes' rule 6
.

6See Kreps-Wilson (1982).
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1

A continuation equilibrium is a set of strategies and updating rule that

satisfies P1 ) , P2 ) , P3) and B). In other words, it is an equilibrium for an

exogenously given first-period incentive scheme.

4. Ratcheting and pooling .

This section characterizes equilibria. For notational simplicity, we

drop the index for the first-period incentive scheme: s(c). In Proposition

1, we consider s(c) as given.

Proposition 1. For any first-period incentive scheme s(c), there exists no

separating continuation equilibrium.

Proposition 1 shows that even when, in the static case, full separation

is feasible and desirable (as in the case under assumption M) , it is not even

feasible in the dynamic case. The intuition behind the proof of this propo-

sition is the following. If the agent fully reveals his information in the

first period, he enjoys no second period rent (see Fact 1). Thus, he must

maximize his first-period payoff. Now, suppose an agent with type p deviates

from his equilibrium strategy and produces at the same cost as if he had type

( (3 + dp), where dp > 0. From the envelope theorem, he loses only a second-

order profit in the first period. On the other hand, he enjoys a first-order

rent in the second period, because the principal is convinced he has type

(P + dp). Thus, he would like to pool with agent (p+dp). The proof makes

this intuition rigorous:

Proof of Proposition 1 . Consider two types of firms: p < p'. Type p produc-

es at cost c and receives s. Type P' produces at cost c 1 + c and receives



s'. If the equilibrium is separating, c signals that the firm nas type 6

;

and similarly for (P',c'). So, in the second period, the firms are put at

their individual rationality level, i.e., make a zero profit. Imagine that

type (3
1 deviates and chooses to produce at cost c. In the second period this

firm makes a zero profit, as the second-period incentive scheme is designed

to extract all the surplus from the more efficient firm p. However, if firm

P deviates in the first period and produces at cost c', then it will make a

strictly positive profit in the second period (since the less efficient firm

makes a zero profit). We denote this profit Il(p| p') > 0. Optimization by

both types of firms requires that:

(4.1) s - cMP-c) > s' - cKP-cM + 5II(p| P')

and

(4.2) s'- cKP'-c') > s - iKP'-c) •

Adding (4.1) and (4.2) we obtain:

(4.3) (cMp-c') + (Kp'-c)) - (cKP-c) + cMP'-c')) > .

Convexity of ty and (4.3) then imply that c < c'

.

Thus, if {c(p),s(p)| denotes the first-period allocation, c must be an

increasing function of p. Therefore, c is dif ferentiable almost everywhere.

On the other hand, s must be decreasing (otherwise an agent of type p would

imitate an agent of type P
1

; p' > p), and therefore is dif ferentiable almost

everywhere. Consider now a point of differentiability p, say. If firm p

deviates and behaves like firm (p-dp) (dp > 0), it does not get a profit in

the second period. Thus:

(4.4) s(p) - cKp-c(p)) > s(p-dp) - cKp-c(p-dp)) .

Taking the limit as dp goes to zero:

(4.5) s'(p) + 4,'(p-c(p))c , (p) > .
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If firm P deviates and behaves like firm (p+dB), it obtains a second period

surplus. Although its magnitude turns out to be irrelevant, this second

period surplus is easy to compute: in the second period, firm p must mimic

firm (f3+dj3)'s outcome. Thus it saves dp on effort. As the planner (believes

he) has complete information on the firm, the marginal disutility of effort

is equal to one. Thus Il(p| P+dp) = dp. We thus obtain

(4.6) s(p) - cMp-c(P)) > s(p+dp) - <|,(p-c(p-K3p)) + 6dp

or by taking the limit as dp goes to zero:

(4.7) > s'(p) + 4»' (p-c(p))c'(p) + 6 ,

which contradicts (4.5).

Q.E.D.

Proposition 1 shows that at least some pooling is necessary: there

exists no non-degenerate subinterval of [_p_, p] over which separation occurs.

The next proposition shows that, for small uncertainty ((p-p_) small), the

principal imposes "much pooling," in a sense defined below. At this stage,

it is worth emphasizing that under assumption M, the principal induces full

separation in the static case, even for small uncertainty.

We will say that a continuation equilibrium exhibits infinite reswitch-

ing if there exist two equilibrium cost levels c and c and an infinite

ordered sequence in [ P, p] : |PV } V such that producing at cost c (respec-

tively, c ) is an optimal strategy for B (respectively, 6 ) for all k.

An equilibrium which exhibits infinite reswitching is, thus, very complex; in

particular, there does not exist a well-ordered partition of the interval

[_P_, p] into subintervals such that every type in a given subinterval chooses

the same cost level (partition equilibrium). An example of an equilibrium



exhibiting infinite reswitching will r>e provide! in Appendix E.

We will say that, for a given (small) z, a continuation equilibrium

exhibits pooling ove r a large scale (1-e) if there exist; a cost level c and

two values 8 < 2 such that (S -S )/(8-_3) > 1-e, and c is an optimal strate-

gy for types B. and 8_. In other words, one car. find two types w.nich are

arbitrarily far apart and pool. Note that, of course, a full pooling equili-

brium (all types choose the same cost target) involves pooling over a large

scale (for £ = C)

.

L»et us now state Proposition 2. To this purpose, we consider a sequence

of economies with fixed 8, and we let the lower bound of the interval 6
~-n

converge to S (the density is thus obtained by successive truncations of the

initial density: f j*( B) = f (B)/(l-F (6 )), defined on [B ,?]).

Proposition 2 (snail uncertainty) : For any z > 0, there exists B < 8 such

that for all n such that 3 > B_, and for any first-period

incentive scheme s(c), there exists no continuation equili-

brium which yields the principal a higher payoff than his

optimal full pooling contract and which:

either: a) involves less than a fraction (1-e) of firms

producing at the same cost; or

b) does not exhibit both infinite reswitching and pooling

over a large scale (1-e).

Thus, for snail uncertainty, the equilibrium must either be almost a

full pooling equilibrium (almost all types have the same cost target) or ex-

hibit infinite reswitching (complexity) arid pooling over a large scale.



Proof of Preposition 2: The starting point cf tne proof consists in noticing

that when 8 tends to 3, the distortion in tne principal's profit relative to

full information and associated with the best (full) pooling scheme tends to

0. 7 Thus, to prove the proposition, it suffices to prove that the distortion

remains finite as long as the continuation equilibrium does not satisfy

either a) or b).

Consider a first-period incentive scheme s(c), and two distinct levels

of cost c and c that belong to the equilibrium path (i.e., that are best

strategies for some types of agent) for some n (we will delete the subscript

n in what follows). Let 8 (i = 0,1) denote the supremum of types 8 for which

playing c is optimal, and who are still active in the second period (i.e.,

are willing not to exercise their exit option) when they play c . 8 will be

called the "supremum for c ". 8 does not obtain any second period rent when

playing c (see Fact 2). Assume for the moment that 8 > 6 . Thus, firm 8

does not obtain any second period rent when playing c either. Letting II(B|

c ) denote firm B's second-period rent when it has played c in the first

period, we have:

'For instance, the principal can require a cos* target c = p-e* and give
transfer s = 4>(e*). The first-period distortion (which exceeds the second-
period one) is equal to:

E[(1 + \)(<Ke*) - 4>(e*-(£-3)) + (P-B))

+ X.(c[)(e*) - cKe*-(£-S)) )] + 0, when j^ goes to 8.

One can show that the optimal full pooling cost target c satisfies:

;| •(0-c)f
l
(p)dp = 1-^2- j|(4>'.(£-c) - di'{p-c))f

l
(p>dp
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(4.8) s(c°) - tK3°-c°) > s(c
1

) - o(E°-c
1

)

and

(4.9) s(c
1

) - (J;(3
1
-c

1

) > sic ) - ^(P
1

-c°) + 5H( r
1

|
c°) .

Adding (4.8) and (4.9), we get

(4. TO) 4,(S -c
1

) - cKS^c 1

) + (H3
1 -: ) - (K3°-c°> > c~(8

1

|
c°) .

Firm B , if it chooses c , can always duplicate what: firm 3 does: thus, if

e(B
I

c ) denotes firm 3 ' s effort in the second period, we have:

(4.1!) n(^
|
c°) > 4/e(B°| c )) - c/e(S°|c°) - ( P

°-
P
1

)

)

> <J,'(e(6°| c°) - (3°-g1 ))(8°-p 1
)

> kl? -?
1

),

using the convexity of i\>, and the assumption than <\>' is bounded below by k.

Combining (4.10) and (4.11), we obtain:

(4>12)
6(3°-c

1

) - 6(3
1
-c

1

) + c^-c ) - <H5°-c°)
> k > Q ^

Let us now come back to the sequence of economies. Consider a sequence

of costs and suprema of types that choose these costs: (c , c , 8 , B ). We
n n *n r n

want to show that in the limit, c and c must be "sufficiently far apart."
n n

Using a Taylor expansion as B and 3 are close to B, and inequality (4.12),
n n

we get

(4.13) ^'(B-c
1

) - 4,'(l-c°) > k' > .

n n

(4.13) implies that there can be at most one of the two cost levels that
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belongs to the equilibrium path and that belongs to the interval [3-e*-',

p-e*+Cj/ where (6-e*) is the optimal effort in the licit (when n goes to

infinity) and ' is a given strictly positive constant. Thus, the fraction of

firms that choose the other cost level must be negligible if the distortion

relative to the first best is to converge to zero (which must be the case if

the equilibrium dominates the full pooling optimum).

More generally, we must allow for the possibility that the suprema of

types playing some costs and still active in the second period be equal.

(4-13) applies only when these suprema differ pair-wise. However, it tells

us that, for a given n, there exists B and a set C of equilibrium cost

levels such that the corresponding suprema for all these cost levels coincide

and are equal to 8 , and these cost levels are chosen by a fraction (1-e) of

types, where e can be taken arbitrarily small if the equilibrium dominates

the full pooling optimum.

That the equilibrium must exhibit pooling on a large scale follows:

since cost levels in C are chosen by a fraction (1-e) of types and all cost

levels have the same supremum, there exist at least one cost level which is

an optimal strategy for two types sufficiently far apart.

Last, if the equilibrium does not exhibit infinite reswitching, for any

two cost levels c and c in C , c is strictly preferred to c in an
n

interval ( 8, 3 ) and 8 cannot be the supremum for c . Hence, there can exist
n n

only one cost in C , which means that the equilibrium is, up to e, a full

pooling equilibrium.

Q.E.D.



Let us discuss Proposition 2. For small uncertainty, the principal must

either impose, up to a fraction E of the firms, a cost targe" (full pooling)

or resort to an equilibrium with an infinite atount cf reswitching and still

much pooling. Appendix B constructs such an equilibrium, which is depicted

in Figure 1. The principal offers two {cost, transfer} pairs.

Insert Figure 1

.

The two costs are c and c. Firms in [ g; 3) strictly prefer c. Firms in [pS?]

are indifferent between c and c and randomize between these two costs. Ap-

pendix B shows that this first-period randomization can be chosen so that the

principal's posterior, and thus, the firm's second-period rent, maintain the

equality between U and U over this interval. It can also be shown that c and

c can be chosen arbitrarily close (by choosing ? close to S); hence, a priori

this equilibrium need not be suboptimal for small uncertainty.

We have been unable to show that full pooling is optimal for small

uncertainty. We would, however, like to argue that it has robustness

properties that, in practice, are likely to make it preferred to its complex

contenders. The latter needs a very fine knowledge of the game in order to

create the right equilibrium configuration. A unique cost target, by

contrast, will be more robust to small mistakes in the description of

uncertainty. Note that Proposition 2 implies that if the regulator is

constrained to induce a "simple" equilibrium (pooling or partition), he

chooses to impose a cost target (pooling).

In the class of full pooling equilibria, the best cost target is easy to

characterize (see footnote 7). If such a cost target is imposed, the firm's

first-period effort decreases with efficiency (while it increases with

efficiency in the static model). Furthermore, in spite of the ratchet ef



Figure I Non Partition Equilibrium
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feet, there is no underprovision of effort in the first period. Indeed, it

is possible to show that under a quadratic disutility of effort and a uniform

prior, the average marginal disutility of effort over the population of types

is the same as in the static (or full commitment) case. And, for
fj

close to

P, the firm works harder than in the first best! This is due to the fact

that the regulator foresees this ratchet effect and forces the less efficient

types to work, very hard to avoid an excessive amount of shirking by the effi-

cient types. Lastly, most efficient types work harder in the second period,

while the least efficient types work harder in the first period. The vari-

ance of earnings (s ) over the population of types grows over time (while it

is constant under commitment). The optimal full pooling equilibrium in the

uniform quadratic case is represented in Figure 2.

Insert Figure 2

5. Further results .

a) Partition vs. non-partition equilibria.

The natural type of equilibrium to look for in incentive problems is the

partition equilibrium, in which \B, p] can be divided into a (countable)

number of ordered intervals such that in the first period all types in an

interval choose the same cost level, and two types in two different intervals

choose different cost levels (for examples of partition equilibria in sender-

receiver games, see Crawford-Sobel [1982]). The case of full pooling is a

degenerate partition equilibrium in which there is only one such interval.

We now derive necessary and sufficient conditions for the existence of

a partition equilibrium when the disutility of effort is quadratic (or, more

generally, a-convex, ° as the reader will notice).

°(|> is a-convex if ty" > a everywhere,



a effort
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optimal full pooling

e* =

e {(B) under
commitment
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-£

First Period ( S,= S2 )

A effort

a

e(/3) under
optimal full pooling

i—£
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Figure 2. Quadratic-uniform case- small uncertainty
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2
Propos ition 3 (necessary condition) . Assume <\, is quadratic (<j.(e) = ore /2),

and the equilibrium is a partition eauilibrium. If c, and c„ are- k I

two equilibrium cost levels, |c, -c„
|

> 6/ a .

Proposition 3 states that the minimum distance between two equilibrium

costs in a partition equilibrium is equal to the discount factor divided by

the curvature of the disutility of effort.

Proof of proposition 3 . Let {p^j denote the cutoff points and {c, } the equi-

librium costs in a partition equilibrium. Agents with types in
(

P

v ,

P

v .. )

choose cost c. (where P < p\ ). Agent p is indifferent between c and

c, . . It is easily seen that c, increases with k: firm p, does not have a

second-period rent when choosing c, or c, _ (from fact 2):

£(c
k ) " ^ ( Pk+ l"

c
k ) > s(c

k-1 } " ^Pk+l^k-l 5 '

Also, firm p\ does not enjoy a second-period rent when choosing c, , but

enjoys a strictly positive rent when choosing c, . Thus,

S ^ C
]C-1 ) " l);( Pk"c k-T ) > s(c

k ) ~ <^ ( Pk~ck ) '

Adding these two inequalities and using the convexity of ty leads to c, >

Ck-T

Next, define the function A,(p) on [p>r Pv+i] :

A^p) 5 {s(ck ) - (Mp-ck ) + 6n(p[ ck )} - (s(ck_ 1
)-(Kp-ck _ 1

)}.

To interpret A, (p), remember that the principal's posterior beliefs about the

agent's type when the agent chooses c, is the prior truncated on [P-k._ 1 /PvJ*

Thus, the agent with type & , and a fortiori with type p > pk , enjoys no
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second-period rent when he chooses c. . When he chooses c, , however, the
X " 1 K.

posterior puts all the weight to [Pk » Pk ,] and the agent enjoys a rent that

we denote Il((3| c, ) . Thus, A ( (3) is the difference in intertemporal profits

for agent P in
[ (3 , R

J
when he chooses c and c . By definition,

A. ( R
, ) = 0. If we want the agent with type ( R,+e) to choose c , it must be

the case that A/ ( R
, ) > 0, or;

(5.1) -«J,« (P^-Cj^) + 6n i

(pk |c
k ) + c|,« (

P

k-ck_ 1
) > .

From Fact 3 ("no distortion at the top" result), we know that

IT' ( R,
|
c.) = -1 . Thus, a necessary condition is:

(5.2) a{ck~ ck-1 ) ~ 5 > °*

Q.E.D.

Proposition 4 (sufficient condition) . Assume <\> is quadratic [4)(e) = ae /2)

and assumption M is satisfied. If the principal offers a finite

set of allowed cost-transfer pairs {s, , c, } such that | c, -c
p

|
> 6/a

for all (k,J!.), there exists a partition equilibrium.

The proof of Proposition 4 is provided in Appendix C. It is a construc-

tive proof, which works by "backward induction" from R. It starts by notic-

ing that type R, who never enjoys a second-period rent, maximizes its first-

period profits. It then constructs the cut-off points of the partition equi-

librium by moving towards R.

We thus see that, contrary to the case in which sending a message is

costless (as in Crawford-Sobel [1982] ), the existence of a partition equi-

qHere, the sender is the agent and the receiver the principal. The
message is the first-period cost.
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Librium requires some stringent assumption. Indeed, it is possible to con-

struct first-period incentive schemes for which there exists neither a parti-

tion equilibrium, nor a full-pooling (degenerate partition) equilibrium : see

Appendix D.

b) The finite case

We have verified that the intuition and the characterization results

obtained for the continuous case also hold for the large, but finite case

(finite number of types for the agent and finite number of potential cost-

transfer pairs for the principal). For instance, Proposition 1 can be stated

informally:

Proposition 1
'

: Let [c_,c] denote an arbitrary cost range and [j3_, p] the un-

certainty range. Assume that the set of potential efficien-

cies in the uncertainty range is finite, and that the prin-

cipal is bound to offer a finite number of {cost, transfer}

pairs, where the costs belong to the cost range. For a

sufficiently large number of potential efficiencies, there

exists no separating equilibrium.

Proof of Proposition 1

'

: see Appendix E.

Thus, with a finite number of types, separation may be feasible, but as

the grid becomes fine, equilibrium costs must go to - => or + => to allow se-

paration. This clearly cannot be optimal for the principal. We checked that
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(the natural analogs of) Propositions 2, 3, and 4 also hold in the finite

case, but their statements are cumbersome.

For comparison, we should mention that we solved the two-type case.

Even under our assumptions, incentive constraints are, in general, binding

"upwards" and "downwards" (contrary to the static case). This leads to seve-

ral potential equilibrium configurations. For instance there can exist

continuation equilibria that exhibit "double randomization": Both types

randomize between two cost levels in the first period (in the spirit of the

continuation equilibrium exhibited in Appendix B) . We were able to obtain

the optimal scheme numerically. But more generally, the number of potential

equilibrium configurations grows rapidly with the number of types, and a

numerical analysis becomes hard to perform.
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Appendix A

Characterization of the Optimal Static Incentive Scheme

Let us assume that the principal has beliefs dF(p) on the interval [p,p]

(dF need not be the truncated prior)

.

Let us first inquire about what type of function e*(j3) can be implement-

ed. The transfer s is a function of c = P-e*(p) only. If we want to imple-

ment e*(P) we must have

(A.1) s(p-e*(p))-<J*(e*(p)) > s(p-e)-cKe) for all e.

Consider p, p' with P > p'. In particular , it must be the case that

agent p is better off by choosing e*(p) rather than the level of effort which

would identify him with agent p', i.e.,

(A. 2) e*(p'|p) = p-p'+e*(p')

(A.1) becomes in this case

(A. 3) s(p-e*(p))-cb(e*(p)) > s (p ' -e*( p '

) ) -c^p-p ' +e*( p '

) ) .

Reasoning symmetrically we obtain

(A. 4) sCP'-e*(P
,

))-*Ce*(P')) > s (p-e*(P) )-c|>(p '-P+e*(P) ) -

Adding (A. 3) and (A. 4) we have:

(A. 5) (Ke^p'^-cJ^p-p'+eMp')) < -<p(e*(p))+4-(p"-p+e*(p)) .

The convexity of 4> then implies that c(p) is nondecreasing and, there-

fore, differentiable almost everywhere.

The transfer s must be a nonincreasing function of c because it is al-

ways possible for an agent p with a low cost (in terms of disutility of ef-

fort) to imitate agents with a higher cost.

Consider a point of differentiability of the level of utility of agent

p. Then:

(A. 6) I7(p) = s(p-e*(p))-cKe*(p)) .
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nt 6 chooses e by maximizing {s( c)-<i>(e) } with respect to e, we have

(A.7) - ff - *'(e) -

(A. 8) n(0) -|f (l-l*(P))-c|/(e*(p))e*(P) = -<i/(e*(P))

from (A.7)-

The individual rationality constraint is

(A. 9) n(p) > for all p.

The second period optimization problem of the regulator can be written:

P

(A. 10) Max / B
{u-(l+X)(B-e+cp(e))-\n}dF(p)

s.t. n(p) = -c|j'(e) dF. ae

e(p) = I dF. ae

n(p) > for all p

I < 1 .

In this optimal control problem E, is the control and IT and e the state

variables. Without restrictions on the shape of F( • ) , the constraint E, < 1

may be binding in some intervals (i.e., the solution involves bunching) and

the solution to (A. 10) requires the use of methods described in Guesnerie and

Laffont (19S4).

Let us assume for the moment that F( • ) is twice continuously differen-

tiable and is such that ^ < 1 is never binding.

Then (A. 10) can be rewritten more simply

P
(A. 11) Max / (u-(l+X)(p-e+cp(e))->Jl}dF(p)

st. n(p) = -4/(e) dF. ae

H(P) > for all p,
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where e is now the control variable and IT the state variable.

The Kamilxonian for this problem is:

(A. 12) H = [u-(l+X)rS-e+cKe))-XIl)] || - u<J/(e)
cip

(where u(B) > 0)

.

The first order conditions (these conditions are sufficient for (A.11)

because the maximized Hamiltonian is concave in n) can be written:

(A. 13) (1+X)(1 - *'(e)) || = m*"(b) ae

(A. 14) ^
= X

if
ae

Since II is nonincreasing, Il(8) > will be binding only at p and

therefore, u(B_) = 0.

Thus , we have

:

(A-15) *'(•) =1 -^^|} t-(.)

2

For example, if the distribution F is uniform and 4> = -5— ,

x(e-e)
u =

•
-

'
- A ^-s)

More generally, define

3 5 inf {b|f(B+e) > for all e > 0} .

B is the real lower bound of the support of F. The following is the tradi-

tional "no distortion at the bottom" result (Fact 3)

:

Leona 1 . -|| (jB) = -4>'(e(S)) = -1 .

Proof . This results from the first-order condition and the fact that the

ignored constraint clearly is not binding: (F/f) is close to zero and non-

decreasing around J3.

Q.E.D.
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n

Next, note that if ( -*
J is ncn-decreasing and \ is "net too Dig,"

(A. 15) and the terminal condition cl/(e(8)) = 1 yield a solution e(S) which

decreases with 8. This in particular implies that the ignored constraint

(e < 1) is indeed non binding. Thus, we obtain:

, F N

Lemma 2 : If ( 7 J is non-decreasing, f is bounded away from zero and contin-

uously differentiable , and X is "not too big," the marginal disutility of

effort is non-increasing and does not exceed one (the first best level).

The following two properties hold for all distributions dF. Let p < 8

be defined by

8 = sup{8|F(8-E) < 1 for all e > 0} .

£5 is the "real" upper bound of the interval.

Lemma 3 - n(p) = .

Proof . We know that n(p) > 0. Imagine that n(p) = II > 0. Beduce the

transfer by II uniformly over all costs. Since n( B ) is a decreasing function

of 8> aH types that are at least as efficient as 8 are willing to partici-

pate. The other types (which have measure zero) can always guarantee them

selves zero by not participating. The uniform reduction in transfer is so-

cially desirable.

Q.3.D.

Lemma 3 is straightforwardly extended to the case in which the cut-off

point is lower than p (some firms with types lower than 8 do not produce).

This results in Fact 2.

Lastly, let us show that, under assumption M, there exists an optimal

incentive scheme such that an unexpected type 8 < P chooses to mimic agent 8'

Assume that all cost levels that differ from the set {S-e*(8)} are

P £ [3,8]
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prohibited (i.e., correspond to huge negative transfers). Then, agent can

only duplicate an equilibrium cost. But, we know that:

(A. 16) s(£-e*)-cj>(e*) > s(j$-e)-(|»(e)

for all e such that there exists in [_0, p] such that B-e = 0-e*(0). If

assumption M holds, e*(|0 < e* , and therefore, e < e* . The last step of the

proof consists in noticing that (A. 16), the convexity of 4>, and the fact that

e < e* imply that

:

(A. 17) s(0-e*)-<|>(e*-(l-0))

> s(p-e*(0))-<|,(e*(0)-(0-0)) •

Thus, the last part of Fact 4 is demonstrated.

Q.E.D.

Appendix B

Example of a Non-Partition Equilibrium

The non-partition equilibrium we construct is depicted in Figure 1

.

The first-period incentive scheme offers two levels of cost c < c, and

associated transfers: s < s. Let n(p|c) and n(p|c) denote firm p's second

period rent when it has chosen c or c in the first period. And let

U(p) = s-cKp-c)+6n(p|c)

and

U(p) = s-4,(p-c)+6E(p|c) .
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2 _
Assume that <l> is quadratic: 6(e) = e /2, that 8-5 = 1 and that the

prior f\ is uniform on [E_,S>]: f
1

= 1 .

The continuation equilibrium we construct has the following property:

firms in [£,]?] produce at cost c. Firms in ["p,j3] are indifferent between

producing at c and producing at c. They randomize in such a way that the

posterior distributions on [p,p] given c and c are uniform on this interval.

Let us introduce some more notation before constructing the equilibrium.

Let g and g denote the unconditional densities of firms choosing c and c:

g(P) +g(P) =
1 f° r &H P* And l e "t £ s^d f denote the conditional (posterior)

densities given that c and c have been chosen in the first period. Since the

densities are uniform, we have:

1

if p e [e,p] f(B)

(P-P)+(P-P)g

f(P) = .

where g is the (uniform) density on [p,p] of firms choosing cost c

If P E [P,P] f(p) = S-

(P-P)+(P-P)g

f(p) = —
P-P

We now put conditions on the parameters g (the uniform unconditional

density given c is chosen), p and the costs and transfers levels, so that

this is indeed an equilibrium. These conditions are:

(B.1) s-cKP-c) = s-cp(p-c)

Condition (B.1) says that firm p is indifferent between the two cost levels

(remember that firm p never has any second-period rent). Condition (B.2)
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insures that the indifference between costs c and c is kept from 3 to g, as

we now show. Let e(8) and e(p) denote firm P's second-period effort when it

has chosen cost c or c.

Let us show that, for all S in [p,p], U(p) = U(p). Given (E.1), it

suffices to show that, for all B in [p,p~], U(p) = U(B), or

(B.3) -4/(B-c)-64/(e(8)) = -<J/ (B-c)-54,' Rp)) ,

where we use the fact that the derivative of the second-period rent is equal

to. minus the marginal disutility of effort (see section 2). Next, the pos-

terior densities satisfy condition M on [8_,BJ. From Appendix A and using the

fact that 4> is quadratic, we know that:

and

,.(e( P )) -1 -^pl,
1 X

f(p)

where F and F are the cumulative distributions corresponding to f and f; on

(p-P)+(p-p)g
F(B) =

(p-e)+(p-p)g

and

So, on [p,p]:

and

F(p) = t±
P-P

R —

R

*"Ce(P)) = 1 -^ C(—)Mp-p))

*'(S(p)) - 1 -^ (p-p)



(B.3) "then becomes (using the fact that <\> is quadratic):

6 —— - c " c
'

which is nothing but condition (B.2).

To complete the proof that this is indeed an equilibrium, we must first

show that the parameters can be chosen so that g is less than 1 , and also

that for p in [ji,p], U(p) > U(p).

It is easy to ensure that g = -—- is less than one. It suffices to
1 + A. ^

c-c

take 8 close to _B_. To check that firms in [p_,B] prefer to choose c, it suf-

fices to show that, on this interval, U(p) < U(p), or

-4/(p-c)-6cj/(e(p)) < -c|/(p-c)-60/(e(p)) .

Since condition M is satisfied for the posterior distribution given c, we

have, for 8 in [8_,8]:

<j/(e(p)) = 1 - y^ (p-8) .

On the other hand, e(S) = e(8)-((3-B) (in the second period, 8, which is to

the left of the real lower bound P of the posterior distribution, does pro-

duce at the same cost as 8). So:

Using the fact that
<J>

is quadratic, the condition for U(B) < U(B) becomes,

for any p in [ B_, p] :

c-c > 6(^-) (p-p) ,

which is satisfied from condition (B.2) and the fact that g < 1

.

Q.E.D.
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Appendix C

Proof of Proposition L,
t, sufficient conditions

for the existence of a partition equilibrium)"

Let c denote the arg max {s( c)-<K p-c) } where c z T, the set of allowed

costs. If there are ties, take c to be the lowest of the arg max. Firm j§

chooses c , since whatever the planner's beliefs in period 2, it will get a

zero surplus in that period. Let 3 =
P-

Let Il(p|[p,P ]) denote firm p's second-period profit when the planner's

posterior distribution is the prior distribution truncated at p (i.e., the

planner knows that the firm's type belongs to the interval [p,p]). IT is

continuous in P, and is equal to for P = P (from Fact 2). Define the

function h (p)

:

(C.1) h°(p) = s%(p-cV6n(p|[p,p°]) - max {s( c)-c|,( p-c) } .

c<c

We know that n is continuous and that from the definition of c , h (p)

is strictly positive for p close (or equal) to p . Let p = max {p|h (p) =

and h (P-e) < for any sufficiently small e > 0} , and let c denote the

corresponding cost (as before, in case of ties, choose the lowest such cost).

If there exists no such p above _B or if there exists no c < c so that h is

not defined, then the equilibrium is a pure pooling one. Assume that p > p.

Let us notice that if in (C.1) we maximized over c > c rather than over

c < c , h (p) would always be positive: we have:

s -cj,(p-c ) + 6n(p|[p,p ]) > s%(p-c°) .

But, for all c, from the definition of c :

s%(p°-c°) > s(c)-4,(p°-c) .

Using P < p and c > c and the convexity of 4>, then leads to
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n
s -cp(g-c ) > s(c)-(|>(p-c.) .

1

Thus, in our quest for p , we can restrict ourselves to costs under c . This

property (with the same proof) will hold at each stage of our algorithm.

Next, define the function h (p):

h
1

(p) = s
1

-ci.(p-c
1

)+6n(p][p,p
1

]) - max fs(e)-4»(p-c)}

c<c

h is continuous; and from the construction of c , h is strictly posi-

tive for p slightly under P . Let p = max {p<p |h (p) = and h (p-c) <

for any sufficiently small ej , and let c denote the corresponding cost (in

case of ties, choose the lowest such cost).

k k
(P ,c ) is then constructed by induction until either there exists no

k k k k k
P > p that satisfies h (p ) = and h (p -e) < for small c, or there is not

allowed cost level left.

k+ 1 k
The partition equilibrium we propose has type p in ( p >P ) choose cost

c (the zero-probability cut-off types are indifferent between two cost

levels). When cost c is played, that does not belong to the equilibrium

path, Bayes rule does not pin posterior beliefs down. We will assume that

the principal then believes that the agent has type _P (the reader who worries

about the plausibiltiy of this conjecture should remember that the principal

is always free not to allow such cost levels, so that the problem does not

arise)

.

Let us first show that a type p in [p >P ] does not prefer a cost c <

k k+1
c . From the construction of p , we know that

k /„k+1 k. CT, /o k+1 , r „k+1 „k-iv r , N /„k+1 Nl
s -cf,(p -c )+6IT(p |[p ,p J) = max {s(c)-cKP -c)} •

k+1 „k-
Uow, define for p e [p ,p ] ,

A
k(p)

= s*-4,(p-c*)+Sn(p|[p
K

',p*]) - max {s(c)-c|,(g-c)}
c<c
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Thus, A (3
K+1

) = C Let us show that A'.' (3) > 0:,k+

1

a'(p) = -^ ,

(p-c
k

)
+ 6n

,

(p|[6
k+1

) e
k
])^'(p-c) ,

for some c < c

k

Next , IT'(3|[p
v

, p ]) is equal to minus the marginal disutility of ef-

fort by agent p in the second period. Since the posterior beliefs are the

truncated prior on [p >P ]> assumption M (monotone hazard rate) is satis-

fied, as is easily checked. From Fact 4, the marginal disutility of effort

is lower than 1. Thus:

A^(p) > -6+a(c
k
-c) > ,

since the distance between the allowed costs exceeds 6/a

.

Second, we must show that a type p in [f3 ,P ] does not prefer a cost

k n ,i -
c > c - We prove this by "backward induction" from p. Let us suppose that

r k --\

we have shown that for any p in |_p » Pj> P prefers to play its presumed op-

timal cost to playing a higher cost. (To start the induction, remember that

this property holds on [p ,p], by definition of p ) . Define on [p »

B

J and

k
for c > c ;

A,(3,c) E {s
k
-dJ (p-c

k
)
+6n(p|[p

k+1
,p
k
])}k v

- {s(c)-4,(p-c)+Sn(p|c)} ,

where n(p|c) is agent p's second-period rent when it chooses cost c in the

first period. Notice that, by induction and from the fact that c is an

optimal strategy for p ,

A
k(p

k
,c) > .

r k+1 ki
To prove our property, it suffices to show that A'(p,c) < on [_P »3 _!•

But , we have

:

A/(p,c) < -4,
,

(p-c
k
)+cp

,

(P-c)-6n , (p|c) .

k v

If c does not belong to the equilibrium path, from our updating rule, we have



-z£

n'(3|c) = 0. If c Delongs to t.ie equilibrium patn, c = c with I < k, tnen

n'(p|c) = -a,'(e*-(B*
+1

-0)) > -1

(see Fact 4: the (3-agent mimics the cost chosen by the lower possible type

given the second-period posterior beliefs). In both cases, n'(p|c) > -1 , so

that

A£(p,c) < 6-a(c-c
k

) < .

Thus, the agent with type (3 does not want to choose c > c either.

Q.E.D.

Appendix D

Example of Inezistence of a Partition or Fooling Equilibrium

2
Let us assume that <l> is quadratic: 6 = e /2, say, and that |3 is uni-

formly distributed on [l,2J. Suppose that the principal offers two cost-

transfer pairs {c
n
,s n J and {c,,s ,}. Assume w.l.o.g. that c_ > c. . If c^-c,

< 6, we know from Proposition 3 that there exists no (non degenerate) parti-

tion equilibrium. Let us now show that one can choose the parameters so that

there ezists no pooling equilibrium either. Assume that the transfers satis-

fy:

(D.1) s -<p(2-c ) = B
l
-*(2-c

1
)+e ,

where e is strictly positive and small. Equation (D.1) says that type J3
= 2

slightly prefers c (remember that this type never enjoys a second-period

rent). Thus, a full pooling equilibrium must be at cost cn
-

To give the full pooling equilibrium at c n its best chance, let us

assume that when the agent plays c. (a zero probability event), the principal



believes he has type _B_ = 1 , so that the agent does not enjoy a second-period

rent. Let n(8|[l,2]) denote agent p's rent when the posterior coincides with

the prior, and define:

MP) = {s -4) (p-c )+6n(3|[i,2])}-{sra,(p-c
1
)}

to he the difference in intertemporal payoffs for agent p. We know that

A (2) = e. We have:

A'(p) = (c -c
1
)+6n ,

Cp|[i f 2]]

using the computation in Appendix A. In particular,

*'^ = co-i -ik •

Thus, for 6 > (c-y-c.) > 6/(1 +\), there exists e sufficiently small such that

A(p) becomes negative to the left of 2. Then there is no pooling equilibrium

at c either.

Q.E.D.

Appendix E

Proof of Proposition 1

Consider a finite number of costs {c, } which are chosen on the

equilibrium path. And let

p, = sup {pip produces at cost c and is active in the second period}.

Note that p, obtains a zero surplus in the second period if it plays c, (see

Fact 2). So for all (k,£), with obvious notation, we have:

f *•

^ (E.1) sk-4>(Pk-ck) > sji-cp(Pk-ox)



and

(2-2) 'x-^h'^ * Sk-^^-C
k } •

Adding (E.1) and (E.2) gives:

(E.3) d'(^k-c Jl
)+«|.(p

Jl
-ck )-<|i(Pk-ck )-(p(p

Jl
-&

Jl
) >

(E-3) an^ "the convexity of <l> imply that:

(E.4) P k
< P x

* c
k < c

x
.

So there is an increasing relationship between the cost levels chosen on

the equilibrium path, and the supremum of the types that choose these costs.

Now, consider two "adjacent" levels of cost belonging to the equilibrium

path: c, < c, 4
. We have* k k+1

(E-5) •k+ i-*(Pk+1-
cW " Sk^ ( Pk+ 1- c

k } *

Furthermore, we can refine (E.2): type p. , after deviating to c, ., can

always mimic what type P k+1
does ^n the second period. Given that the latter

has a zero surplus and that it makes some effort e (p, ), we get:

(E.6) s
k-*(Pk

-c
k ) > s

k+1 -c!,(ik
-c

k+1 )

+ 6[^(e
2(pk+1

))-4,(e
2 (pk+1

)-AB
k )] ,

where Ap
fc

= Pk+1 ~Pk
•

Adding (E-5) and (E.6) we have:

(E.7) _4,(p
k
_c

k )
+6(pk+1

-c
k
)-c),(p

k+1
-c

k+1 ) + 4,(pk-ck+1 )
'

> 6[c(,(e
2 (P k+1

))-4,(e
2 (Pk+1

)-APk )] .

Now assume that the equilibrium is a separating equilibrium. Then, from

Fact 1, e
2 (pk+1 ) = e*, i.e., <|>' (e

2 (Pk+1 ) ) - 1 • It is clear from (E.7) that

the right hand side is of the first order in Ap . Thus, if (c - c ) is
XL i£"** 1 r*.

not bounded away from zero, the left hand side cannot exceed the right hand

fc953 060



side (take a Taylor expansion for LS
y

snail). But, as the grid size goes totz

zero, the range of cost cust become infinite

.

Q.E.D.
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