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Abstract

Cheetahs and beetles run, dolphins and salmon swim, and bees and

birds fly with grace and economy surpassing our technology. Evolution

has shaped the breathtaking abilities of animals, leaving us the challenge

of reconstructing their targets of control and mechanisms of dexterity. In

this review we explore a corner of this fascinating world. We describe

mathematical models for legged animal locomotion, focusing on rapidly

running insects, and highlighting past achievements and challenges that

remain. Newtonian body-limb dynamics are most naturally formulated

as piecewise-holonomic rigid body mechanical systems, whose constraints

change as legs touch down or lift off. Central pattern generators and pro-

prioceptive sensing require models of spiking neurons, and simplified phase

oscillator descriptions of ensembles of them. A full neuro-mechanical

model of a running animal requires integration of these elements, along

with proprioceptive feedback and models of goal-oriented sensing, plan-

ning and learning. We outline relevant background material from biome-

chanics and neurobiology, explain key properties of the hybrid dynamical

systems that underlie legged locomotion models, and provide numerous
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examples of such models, from the simplest, completely soluble ‘peg-leg

walker’ to complex neuro-muscular subsystems that are yet to be assem-

bled into models of behaving animals. This final integration in a tractable

and illuminating model is an outstanding challenge.

Short title: Dynamics of legged locomotion.
Key words: animal locomotion, biomechanics, bursting neurons, central pat-
tern generators, control systems, hybrid dynamical systems, insect locomotion,
motoneurons, muscles, neural networks, periodic gaits, phase oscillators, piece-
wise holonomic systems, preflexes, reflexes, robotics, sensory systems, stability,
templates.
AMS subject classifications: 34C15, 34C25, 34C29, 34E10, 70Exx, 70Hxx,
92B05, 92B20, 92C10, 92C20, 93C10, 93C15, 93C85.

1 Introduction

The question of how animals move may seem a simple one. They push against
the world, with legs, fins, tails, wings or their whole bodies, and the rest is
Newton’s third and second laws. A little reflection reveals, however, that loco-
motion, like other animal behaviors, emerges from complex interactions among
animals’ neural, sensory and motor systems, their muscle-body dynamics, and
their environments [101]. This has led to three broad approaches to locomo-
tion. Neurobiology emphasizes studies of central pattern generators (CPGs):
networks of neurons in spinal cords of vertebrates and invertebrate thoracic
ganglia, capable of generating muscular activity in the absence of sensory feed-
back (e.g. [141, 79, 261]). CPGs are typically studied in preparations isolated in
vitro, with sensory inputs and higher brain ‘commands’ removed [79, 162], and
sometimes in neonatal animals. A related, reflex-driven approach concentrates
on the role of proprioceptive1 feedback and inter- and intra-limb coordination
in shaping locomotory patterns [259]. Finally, biomechanical studies focus on
body-limb-environment dynamics (e.g. [8]) and usually ignore neural detail. No
single approach can encompass the whole problem, although each has amassed
vast amounts of data.

We believe that mathematical models, at various levels and complexities,
can play a critical role in synthesizing parts of these data by developing unified
neuromechanical descriptions of locomotive behavior, and that in this exercise
they can guide the modeling and understanding of other biological systems, as
well as bio-inspired robots. This review introduces the general problem, and,
taking the specific case of rapidly running insects, describes models of varying
complexity, outlines analyses of their behavior, compares their predictions with
experimental data, and identifies a number of specific mathematical questions
and challenges. We shall see that, while biomechanical and neurobiological

1Proprioceptive: activated by, related to, or being stimuli produced within the organism
(as by movement or tension in its own tissues) [156]; thus: sensing of the body, as opposed to
exteroceptive sensing of the external environment.
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models of varying complexity are individually relatively well-developed, their
integration remains largely open. The latter part of this article will therefore
move from a description of work done, to a prescription of work that is mostly
yet to be done.

Guided by previous experience with both mathematical and physical (robot)
models, we postulate that successful locomotion depends upon a hierarchical
family of control loops. At the lowest end of the neuromechanical hierarchy,
we hypothesize the primacy of mechanical feedback or preflexes2: neural clock-
excited and tuned muscles acting through chosen skeletal postures. Here biome-
chanical models provide the basic description, and we are able to get quite far
using simple models in which legs are represented as passively sprung, massless
links. Acting above and in concert with this preflexive bottom layer, we hy-
pothesize feedforward muscle activation from the CPG, and above that, sensory,
feedback-driven reflexes that further increase an animal’s stability and dexterity
by suitably adjusting CPG and motoneuron outputs. Here modelling of neu-
rons, neural circuitry and muscles is central. At the highest level, goal-oriented
behaviors such as foraging or predator-avoidance employ environmental sensing
and operate on a stride-to-stride timescale to ‘direct’ the animal’s path. More
abstract notions of connectionist neural networks and information and learning
theory are appropriate at this level, which is perhaps the least well-developed
mathematically.

Some personal history may help to set the scene. This paper, and some of our
recent work on which it draws, has its origins in a remarkable IMA workshop on
gait patterns and symmetry held in June 1998, that brought together biologists,
engineers and mathematicians. At that workshop, one of us (RJF) pointed out
that insects can run stably over rough ground at speeds high enough to challenge
the ability of proprioceptive sensing and neural reflexes to respond to perturba-
tions ‘within a stride.’ Motivated by his group’s experiments on, and modeling
of, the cockroach Blaberus discoidalis [135, 136, 317, 216], and by the sugges-
tion of Brown and Loeb that, in rapid movements, ‘detailed’ neural feedback
(reflexes) might be partially or wholly replaced by largely mechanical feedback
(preflexes) [49, 227, 48], we formulated simple mechanical models within which
such hypotheses could be made precise and tested. Using these models, exam-
ples of which are described in §5 below, we confirmed the preflex hypothesis by
showing that simple, energetically-conservative systems with passive elastic legs
can produce asymptotically stable gaits [293, 292, 291]. This prompted ‘con-
trolled impulse’ perturbation experiments on rapidly running cockroaches [191]
that strongly support the preflex hypothesis in Blaberus, as well as our cur-
rent development of more realistic multi-legged models incorporating actuated
muscles. These allow one to study the differences between static and dynamic
stability, and questions such as how hexapedal and quadrupedal runners differ
dynamically (see §§3.2 and 5.3).

Workshop discussions in which we all took part also inspired the creation

2Brown and Loeb [48, Section 3] define a preflex as ‘the zero-delay, intrinsic response of a
neuromusculo-skeletal system to a perturbation’ and they note that they are programmable
via preselection of muscle activation.
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AP action potential EMG electromyograph
CNS central nervous system LLS lateral leg spring
COM center of mass ODE ordinary differential equation
COP center of pressure PRC phase response curve
CPG central pattern generator RHex name of hexapedal robot
DAE differential-algebraic equation SLIP spring-loaded inverted pendulum
DOF(s) degree(s)-of-freedom

Table 1: Acronyms commonly used in this article.

of RHex, a six-legged robot whose unprecedented mobility suggests that engi-
neers can aspire to achieving the capabilities of such fabulous runners as the
humble cockroach [285, 208]. In turn, since we know (more or less) their ingre-
dients, robots can help us better understand the animals that inspired them.
Mathematical models allow us to translate between biology and engineering,
and our ultimate goal is to produce a model of a ‘behaving insect’ that can
also inform the design of novel legged machines. More specifically, we envisage
a range of models, of varying complexity and analytical tractability, that will
allow us to pose and probe, via simulation and physical machine and animal
experimentation, the mechanisms of locomotive control.

Biology is a broad and rich science, collectively producing vast amounts of
data that may seem overwhelming to the modeller. (In [271], Michael Reed
provides a beautifully clear perspective directed to mathematicians in general,
sketching some of the difficulties and opportunities.) Our earlier work has
nonetheless convinced us that simple models, which, in an exercise of creative
neglect, ignore or simplify many of these data, can be invaluable in uncover-
ing basic principles. We call such a model, containing the smallest number of
variables and parameters that exhibits a behavior of interest, a template [131].
In robotics applications, we hypothesize the template as an attracting invariant
submanifold on which the restricted dynamics takes a form prescribed to solve
the specific task at hand (e.g. [53, 280, 255, 334]). In both robots and animals,
we imagine that templates are composed [205] to solve different tasks in vari-
ous ways by a supervisory controller in the central nervous system (CNS). The
spring-loaded inverted pendulum (SLIP), introduced in §2.2 and described in
more detail in §4.4, is a classical locomotion template that describes the center
of mass behavior of diverse legged animals [68, 34]. The SLIP represents the
animal’s body as a as point mass bouncing along on a single elastic leg that
models the action of the legs supporting each stance phase: muscles, neurons
and sensing are excluded, (Acronyms such as CNS, CPG and SLIP are common
in biology, and so for the reader’s convenience we provide a table of those used
in this review.)

Most of the models described below are templates, but we shall develop
at least some ingredients of a more complete and biologically-realistic model:
an anchor in the terminology of [131]. A model representing the neural cir-
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Figure 1: Templates and anchors: a preferred posture leads to collapse of di-
mension. The spring-loaded inverted pendulum (SLIP) is shown at left, and a
multi-legged and jointed model at right: both share the mass center dynamics
of the insect (top). Schematic adapted from [131].

cuitry of a CPG, motoneurons, muscles, individual limb segments and joints,
and ground contact effects, would exemplify an anchor. However, in spite of such
complexity, we shall argue in §3 that, under suitable conditions, animals with
diverse morphologies and leg numbers, and many mechanical and yet more neu-
ral degrees of freedom (DOFs), run as if their mass centers were following SLIP
dynamics [68, 34, 130]. Part of our challenge is to explain how their preflexive
dynamics and reflexive control circuits cause their complex anchors appear to
behave like this simple template, and to understand why nature should exercise
such a mathematically attractive reduction of complexity: a process sketched
in Fig. 1. In dynamical systems terminology, this is a collapse of dimension in
state space, which would follow from the existence of a center or inertial man-
ifold with a strong stable foliation [89, 165]. While experimental evidence for
a principle that selects postures for stereotyped movements has emerged from
analyses of kinematic data, as noted in §2.4.1, the complexity of detailed mod-
els has thus far largely prevented its theoretical analysis, but we shall give an
example for an insect CPG in §5.4.

Posture principles and the resulting collapse of dimension are examples of
motor control policies. A key instance is gait selection in quadrupeds such
as horses, which is normally explained in terms of minimization of metabolic
cost [8] (gait changes for insects will be discussed in §3.2). Such reduction
and optimization ideas are central to the development of control and design
principles in robotics and also seem likely to play a helpful role in elucidating
biological principles. There is a vast literature on motor control, parts of which
are reviewed in §2.4, where we describe both experimental evidence of and mod-
els for neuromechanical coupling via both reflexive and prereflexive feedback.
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However, as we shall see in §5.4, for our main example this integration still
remains to be done.

Legged locomotion appears to be more tractable than swimming or flying,
especially at moderate or high Reynolds numbers, since discrete reaction forces
from a (relatively) rigid substrate are involved, rather than fluid forces requiring
integration of the unsteady Navier-Stokes equations (but see the comments on
foot-contact forces in §2.3). Nonetheless, even at the simplest level, legged loco-
motion models have unusual features. Idealizing to a rigid body with massless
elastic legs, or to a linkage of rigid elements with torsional springs at the joints,
we produce a mechanical system, but these systems are not classical. As feet
touch down and lift off, the constraints defining the Lagrangians change. The re-
sulting ordinary differential equations of motion describe piecewise-holonomic3

mechanical systems, examples of more general hybrid dynamical systems [19],
in which evolution switches among a finite set of vector fields, driven by event-
related rules determined by the location of solutions in phase space. We shall
meet our first example in §2.1, and we discuss some properties of these systems
in more detail in §§4-5.

This paper’s contents are as follows. §2 reviews earlier work on locomo-
tion and movement modeling, introducing relevant mechanical, biomechanical,
neurobiological, and robotics background, and §3 summarises key experimental
work on walking and running animals that inspires and informs previous and
current modeling efforts. In §4 we digress to describe an important class of hy-
brid dynamical systems that are central to locomotion models, and we describe
some features of their analytical description, and numerical issues that arise in
simulations, ending with a sketch of the classical SLIP model. §5 constitutes
a gallery of examples drawn from our own work, concentrating on models of
horizontal plane dynamics of sprawled-posture animals, and insects in partic-
ular. We start with a simple model of passive bipedal walking, special cases
of which are (almost) soluble in closed form. We successively add more real-
istic features, culminating in our current hexapedal models that include CPG,
motoneuron and muscle models, and demonstrating throughout that the basic
features of stable periodic gaits, possessed by the simplest templates, persist.
We summarise and outline some major challenges in §6.

We shall draw on a broad range of ‘whole animal’ integrative biology, biome-
chanics, and neurobiology, as well as control and dynamical systems theory,
including perturbation methods. We introduce relevant ideas from these dis-
parate fields as they are needed, mostly via simple explicit examples, but the
reader wishing to consult the biological literature might start with the reviews
of Dickinson et al. [101] and Delcomyn [100]; the former is general, the latter
covers both insect locomotion per se and the use of ideas from insect studies in
robotics. A recent special issue of Arthropod Structure and Development [279]
collects several papers on insect locomotion, sensing, and bio-inspired robot de-
sign. For more general background, Alexander’s monograph [8] provides an ex-
cellent introduction to, and summary of, the biomechanical literature on legged

3This term was introduced by Ruina [283].
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locomotion, flight and swimming, going considerably beyond the scope of this
article. We cite other texts and reviews in §2.

Unlike genomics, locomotion studies are relatively mature: recent progress
in neurophysiology, biomechanics, and nonlinear control and systems theory has
poised us to unlock how complex, dynamical, musculo-sketelal systems create
effective behaviors, but a substantial task of synthesis remains. We believe that
the language and methods of dynamical systems theory in particular, and math-
ematics in general, can assist that synthesis. Thus, our main goal is to introduce
an emerging field in biology to applied mathematicians, drawing on relatively
simple models both as examples of successful approaches and sources of inter-
esting mathematical problems, some of which we highlight as Questions. Our
presentation therefore differs from that of many Surveys and Reviews appearing
in this journal in that we focus on modelling issues rather than mathematical
methods per se. The models are, of course, formulated with the tools available
for their analysis in mind, we sketch results that these tools afford, and we
provide an extensive bibliography wherein mathematical results and biological
details may be found.

We hope that this review will encourage the sort of multi-disciplinary col-
laboration that we – a biologist, two applied mathematicians, and an engineer
– have enjoyed over the past six years, and that it will stimulate others to go
beyond our own efforts.

2 Three traditions: biomechanics, neurobiology

and robotics

In developing our initial locomotion models, we discovered some relevant parts
of three vast literatures. The following selective survey may assist the reader
who wishes to acquire working background knowledge.

2.1 Holonomic, nonholonomic, and piecewise-holonomic

mechanics

Before introducing a key locomotion model in §2.2, the SLIP, we recall some
basic facts concerning conservative mechanical and Hamiltonian systems. Holo-
nomically constrained mechanical systems, such as linkages and rigid bodies,
admit canonical Lagrangian and Hamiltonian descriptions [150]. (Holonomic
constraints are equalities expressed entirely in terms of configuration – position
– variables; nonholonomic constraints involve velocities in an essential – ‘non-
integrable’ – manner, or are expressed via inequalities). The symplectic phase
spaces [16] of holonomic systems strongly constrain the possible stability types
of fixed points and periodic orbits: eigenvalues of the linearized ODEs occur
in pairs or quartets [16, 2]: if λ is an eigenvalue, then so are −λ, λ̄ and −λ̄,
where ·̄ denotes complex conjugate. Thus, any ‘stable’ eigenvalue in the left-
hand complex half-plane has an ‘unstable’ partner in the right-hand half-plane.
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Similar results hold for symplectic (Poincaré) mappings obtained by linearizing
around closed orbits: an eigenvalue λ within the unit circle implies a partner
1/λ outside. Hence holonomic, conservative systems can at best exhibit neutral
(Liapunov) stability; asymptotic stability is impossible.

Before proceeding to two simple examples, we remark that there is an elegant
differential-geometric framework for treating nonholonomically constrained me-
chanical systems, based on ideas of Arnold [16], cf. [235, 236] and developed by
Bloch, Crouch, Marsden and others [38, 39, 40, 36, 54]. It provides unified La-
grangian and Hamiltonian descriptions for stability and control [41, 37, 71] and
has been used to derive equations of motion, identify conserved quantities, and
analyze equilibria and periodic orbits and their stability for such problems as
the ‘snakeboard’ [224], segmented crawlers [257], and underwater vehicles [340].
However, the mathematical machinery is rather technical, and we shall not re-
quire it for the models described in this article.

2.1.1 Nonholonomic constraints and partial asymptotic stability

Nonholonomic constraints, in contrast, can lead to partial asymptotic stabil-
ity. The Chaplygin sled [256] is an instructive example that also introduces
other ideas that will recur. Here we shall follow the analysis of Ruina [283]
using straightforward Newtonian force and moment balances, although the con-
strained Lagrangian framework can also be used, as described in [36, §1.7] .

Consider an ‘ice-boarder’: a two-dimensional rigid body of mass m and
moment of inertia I, free to move on a frictionless horizontal plane, equipped
with a skate blade C, at a distance ℓ from the center of mass (COM) G, that
exerts a force normal to the body axis: Fig. 2(a). The velocity vector at C is
thereby constrained to lie along the body axis (vC = vê1), although the body
may turn about this point and v may take either sign (the skate can reverse
direction). The angle θ specifies orientation in the inertial plane and the absolute
velocity of G in terms of the body coordinate system is vG = v ê1 + ℓθ̇ ê2.

Using the relations ˙̂e1 = θ̇ ê2, ˙̂e2 = −θ̇ ê1, for the rotating body frame, we
first balance linear momentum:

F = Fc ê2 = maG = m(v̇ − ℓθ̇2) ê1 + m(ℓθ̈ + θ̇v) ê2 ; (1)

and then angular momentum about C ′, the non-accelerating point in an inertial
frame instantaneously coincident with C:

0 = (rG − rC′) × maG + Iθ̈êz ⇒ mℓ(ℓθ̈ + vθ̇) + Iθ̈ = 0 . (2)

The three (scalar) equations (1-2) determine the constraint force and the equa-
tions of motion:

Fc = m(ℓθ̈ + θ̇v) , (3a)

ṡ = v , θ̇ = ω , (3b)

v̇ = lω2 , ω̇ =
−mℓvω

mℓ2 + I
, (3c)
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Figure 2: (a) The Chaplygin sled and (b) a piecewise-holonomic pegleg walker.
The basis vectors (ê1, ê2) specify body coordinate frames and (êx, êy) span the
inertial frame. Schematic adapted from Ruina [283].

where s denotes arclength (distance) travelled by the skate and ω is the body
angular velocity.

Eqns. (3) have a three-parameter family of constant speed straight-line mo-
tion solutions: q̄ = {s̄ + v̄t, θ̄, v̄, 0}T . Linearizing (3) at q̄ yields eigenvalues

λ1−3 = 0 and λ4 = −
(

mℓv̄
mℓ2+I

)

. The first three correspond to a family of solu-

tions parameterized by starting point s̄, velocity v̄ and heading θ̄; λ4 indicates
asymptotic stability for ℓv̄ > 0 and instability for ℓv̄ < 0: stable motions require
that the mass center preceed the skate.

The global behavior is perhaps best appreciated via a phase portrait in the
reduced phase space (v, ω) of linear and angular velocity: Fig. 3. Noting that
total kinetic energy,

T =
m(v2 + l2ω2)

2
+

Iω2

2
, (4)

is conserved (since the constraint force Fc ê1 is normal to vC and does no work),
solutions of equations (3c) lie on the (elliptical) level sets of (4). The direction
of the vector field, towards positive v, follows from the first of (3c). Explicit
solutions as functions of time may be found in [83]. Taking ℓ > 0 (skate behind
COM), the line of fixed points (v̄, 0) with v̄ < 0 are unstable, while those with
v̄ > 0 are stable. Typical solutions start with nonzero angular velocity, which
may further grow, but which eventually decays exponentially as the solution
approaches a fixed point on the positive v-axis. Angular momentum about the
mass center G is not conserved since the constraint force exerts moments about
G.

Fig. 3 also shows that the v̄ > 0 equilibria are only partially asymptotically
stable; as noted above, they belong to a continuum of such equilibria and the
eigenvalue with eigenvector in the v̄ direction is zero. Indeed, the system is
invariant under the group SE(2) of planar translations and rotations, and COM
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Figure 3: A phase portrait for the Chaplygin sled in appropriately scaled coor-
dinates (in general the solutions lie on ellipses T = const.).

position xG = (x, y) and orientation θ are cyclic coordinates [150]4. This ac-
counts for the other two directions of neutral stability: s̄ and θ̄. Such translation
and rotation invariance will be a recurring theme in our analyses of horizontal
plane motions.

The full 3 DOF dynamics may be reconstructed from solutions (v(t), ω(t)) of
the reduced system (3c) by integration of (3b) to determine (s(t), θ(t)), followed
by integration of

ẋ = −v sin θ , ẏ = −v cos θ (5)

to determine the path in inertial space.

2.1.2 Piecewise-holonomic constraints: peg-leg walking

While the details of foot contact and joint kinematics, involving friction, defor-
mation, and possible slipping, are extremely complex and poorly understood,
one may idealize limb-body dynamics within a stance phase as a holonomi-
cally constrained system. As stance legs lift off and swing legs touch down the
constraint geometry changes; hence, legged locomotion models are piecewise-
holonomic mechanical systems. Here we decribe perhaps the simplest example
of such a system.

Ruina [283] devised a discrete analog of Chaplygin’s sled, in which the skate
is replaced by a peg, fixed in the inertial frame and moving along a slot of length

4However, Noether’s theorem [16] does not apply here: due to the constraint force neither
linear nor angular momenta are conserved for general motions
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d, whose front end lies a distance a behind the COM. When it reaches one end
of the slot, it is removed and instantly replaced at the other. Fig. 2(b) shows
the geometry: the coordinate system of 2(a) is retained. Ruina was primarily
interested in the limit in which d → 0 and the system approaches the continuous
Chaplygin sled, but we noticed that the device constitutes a rudimentary and
completely soluble, single-leg locomotion model: a peg-leg walker [83, 293]. The
stance phase occurs while the peg is fixed, and (coincident) liftoff and touchdown
correspond to peg removal and insertion. During stance the peg may slide freely,
as in Ruina’s example [283], move under prescribed forces or displacements l(t),
or move in response to an attached spring or applied force [293]. Here we take
the simplest case, supposing that l(t) is prescribed and increases monotonically
(the peg moves backward relative to the body, thrusting it forward). The models
of §§4-5 will include both passive springs and active muscle forces; also see [293,
§2].

Pivoting about the (fixed) peg, the body’s kinetic energy may be written as

T =
1

2
m(l̇2 + l2θ̇2) +

1

2
Iθ̇2 , (6)

so the Lagrangian is simply L = T , and since l(t) is prescribed, there is but
one degree of freedom. Moreover, θ is a cyclic variable and Lagrange’s equation
simply states that

pθ =
∂L

∂θ̇
= (ml2 + I) θ̇ = const. : (7)

angular momentum is conserved about P during each stride. However, at peg
insertion, pθ may suffer a jump due to the resulting angular impulse. Indeed,
letting θ̇(n−) and θ̇(n+) denote the body angular velocities at the end of the (n−
1)’st and beginning of the n’th strides, and performing an angular momentum
balance about the new peg position at which the impulsive force acts, we obtain
the angular momentum in the n’th stride as:

pθn
= (ma2 + I) θ̇(n+) = ma(a + d) θ̇(n−) + I θ̇(n−) .

Here the last expression includes the moment of linear momentum of the mass
center at the end of the (n−1)’st stride, computed about the new peg position:
a×m(a+ d) θ̇(n−). Replacing angular velocities by momenta via (7), this gives

pθn
=

[

ma(a + d) + I

m(a + d)2 + I

]

pθn−1

def
= Apθn−1

. (8)

Thus, provided A 6= 1, angular momentum changes from stride to stride, unless
pθ = 0, in which case the body is moving in a straight line along its axis. The
change in body angle during the n’th stride is obtained by integrating (7):

θ((n + 1)−) = θ(n+) + pθn

∫ τ

0

dt

(ml2(t) + I)

def
= θ(n+) + Bpθn

, (9)

where τ is the stride duration.
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Equations (8-9) form the (linear) stride-to-stride Poincaré map:

(

θn+1

pθn+1

)

=

[

1 B
0 A

](

θn

pθn

)

, (10)

whose eigenvalues are simply the diagonal matrix elements. Echoing the ODE
example of equations (3c) above, with its zero eigenvalue, one eigenvalue is unity,
corresponding to rotational invariance, and asymptotic behavior is determined
by the second eigenvalue A: if |A| < 1, pθn

→ 0 as n → ∞ and θ approaches
a constant value: the body tends towards motion in a straight line at average
velocity v = 1

τ

∫ τ

0
l̇(t)dt = d/τ , with final orientation θ determined by the initial

data. From (8), A < 1 for all I,m, d > 0 and a > −d, and A > −1 provided that
I > md2/16; for a < −d, A > 1. Hence, if the back of the slot lies behind G and
the body shape and mass distribution are ‘reasonable’, we have |A| < 1 (e.g., a
uniform elliptical body with major and minor axes b, c, has I = m(b2 + c2)/16
and b > d is necessary to accommodate the slot, implying that I > md2/16).

Unlike the original Chaplygin sled, this discrete system is not conservative:
energy is lost due to impacts at peg insertion (except in straight line motion),
and energy may be added or removed by the prescribed displacement l(t). How-
ever, regardless of this, the angular momentum changes induced by peg insertion
determine stability with respect to angular velocity, and, if |A| < 1, the discrete
sled asymptotically ‘runs straight.’ We shall see similar behavior in the energet-
ically conservative models of §4.4 and §5.1. Here the stance dynamics is trivially
summarized by conservation of angular momentum (7), and the stride-to-stride
angular momentum mapping (8) determines stability. In more complex mod-
els, combinations of continuous dynamics within stance and touchdown/liftoff
switching or impact maps are involved, resulting in higher-dimensional Poincaré
maps, e.g. [238, 240, 239, 241, 138, 82, 250] and see §5, but while coupled equa-
tions of motion must be integrated through stance to derive these maps, the
stability properties of their fixed points are still partly determined by trading
of angular momentum from stride to stride, much as in this simple example.

2.2 Mechanical models and legged machines

As noted in the Introduction, diverse species that differ in leg number and
posture, while running fast, exhibit center of mass (COM) motions approximat-
ing that of a spring-loaded inverted pendulum (SLIP) in the sagittal (vertical)
plane [32, 245, 34, 130]. The same model also describes the gross dynamics
of legged machines such as RHex [13, 11, 208], and as we shall show in §5, a
second template model inspired by SLIP, the lateral leg spring (LLS) [293, 291]
accounts equally well for horizontal plane dynamics. We shall briefly describe
the SLIP and summarise some of the relevant mathematical work on it, return-
ing to it in more detail in §4. Futher details of the biological data summarised
below can be found in §3.

At low speeds animals walk by vaulting over stiff legs acting like inverted
pendula, exchanging potential and kinetic energy. At higher speeds, they bounce
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Figure 4: Center of mass dynamics for running animals with two to eight legs.
Groups of legs act in concert so that the runner is an effective biped, and mass
center falls to its lowest point at midstride. Stance legs shown shaded, with
qualitative vertical and fore-aft force patterns through a single stance phase at
bottom center. The spring-loaded inverted pendulum (SLIP), which describes
these dynamics, is shown in the center of the figure.

like pogo sticks, exchanging potential and kinetic energy with elastic strain
energy [8, Chaps. 6-7]. In running humans, dogs, lizards, cockroaches and even
centipedes, the COM falls to its lowest position at midstance as if compressing
a virtual or effective leg spring, and rebounds during the second half of the
step as if recovering stored elastic energy. In species with more than a pair of
legs, the virtual spring represents the set of legs on the ground in each stance
phase: typically two in quadrupeds, three in hexapods such as insects, and
four in octopods such as crabs [124, 130]: Fig 4. This prompts the idealized
mechanical model for motion in the sagittal (fore-aft/vertical) plane shown in
the center of Fig 4, consisting of a massive body contacting the ground during
stance via a massless elastic spring-leg [32, 245] (a point mass is sometimes
added at the foot). The SLIP generalizes an earlier, simpler model: a rigid
inverted pendulum, the ‘compass-walker’ [248, 249], cf. [243, 8], which is more
appropriate to low-speed walking. In running, a full stride divides into a stance
phase, with one foot on the ground, and an entirely airborne flight phase, and
the model employs a single leg to represent both left and right stance support
legs. More complex running models have also been considered, starting with
McGeer’s study of a point mass body with a pair of massive legs attached to
massless sprung feet [237].

Although the SLIP has appeared widely in the locomotion literature, we have
found precise descriptions and mathematical analyses elusive. This prompted
some of our own studies [298, 297, 299], including a recent paper in which we
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derived analytical gait approximations and proved that the ‘uncontrolled’ SLIP
has stable gaits [143]. This fact was simultaneously, and independently, discov-
ered via numerical simulation by Seyfarth et al. [306], who also matched SLIP
parameters to human runners and proposed control algorithms [304, 305, 307].
We shall therefore spend some time setting up this model and sketching its anal-
ysis in §4.4, both to exemplify issues involved in integrating hybrid dynamical
systems, and to prepare for more detailed accounts of LLS models in §5. Here
we informally review the main ideas.

In flight, the equations of ballistic motion are trivially integrated to yield the
parabolic COM trajectory, assuming that resistance forces are negligible at the
speeds of interest. Moreover, as we show in §4.4, if the spring force developed
in the leg dominates gravitational forces during stance, we may neglect the
latter and reduce the 2 DOF point mass SLIP to a single DOF system that
may also be integrated in closed form. However, even in this approximation,
the quadrature integrals typically yield special functions that are difficult to
use, and asymptotic or numerical evaluations are required [299]. For small leg
angles, one can linearize about the vertical position and obtain expressions in
terms of elementary functions [142].

No matter how the stance phase trajectories are obtained, they must be
matched to appropriate flight phase trajectories to generate a full stride Poincaré
return map P . One then seeks fixed and periodic points of P which correspond
to steady gaits, and investigates their bifurcations and stability. It is often
possible to invoke bilateral (left-right) symmetry; for example in seeking a sym-
metric period-one gait of a biped modeled by a SLIP, it suffices to compute a
fixed point of P , since although P includes only one stance phase, both right
and left phases satisfy identical equations. However, there may be additional
reflection- and time-shift-symmetric periodic orbits that would correspond to
period-two points of P .

More realistic models of legged locomotion, with extended body and limb
components requiring rotational as well as translational DOFs, generally de-
mand entirely numerical solution, and merely deriving their Lagrangians may
be a complex procedure, requiring intensive computer algebra. Nonetheless, fif-
teen years ago McGeer [238, 239, 240, 241] designed, built and (with numerical
assistance) analysed ‘passive-dynamic’ walking machines with rigid links con-
nected by knee joints, in which the dynamics was restricted to the sagittal plane.
These machines walk in a human-like manner down a shallow incline, the gravi-
tational energy thus gained balancing kinetic energy lost in foot impacts. Ruina
and his colleagues have recently carried out rather complete studies of simplified
models of these machines [81, 138], as well as of a three-dimensional version,
which they have shown is dynamically stable but statically unstable [84, 82, 87].
They and other groups have also studied energetic costs of passive walking and
built powered walkers inspired by the passive machines [86].

In the robotics literature there are many numerical and a growing number
of empirical studies of legged locomotion, incorporating varying degrees of ac-
tuation and sensory feedback to achieve increasingly useful gaits. Slow walking
machines whose limited kinetic energies cannot undermine their quasi-static sta-
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bility (i.e., with gaits designed to insure that the mass center always projects
within the convex hull of a tripod of legs) have been successfully deployed in
outdoor settings for years [328]. The first dynamically stable machines were
SLIP devices built by Raibert two decades ago [269], but their complexity lim-
ited initial stability analyses to single DOF simplifications [207]. The more
detailed analysis of SLIP stability that we will pursue in §4.4 is directly relevant
to these machines. More recently, in laboratory settings, completely actuated
and sensed mechanisms have realised dynamical gaits whose stability can be
established and tuned analytically [334], using inverse dynamics control5. How-
ever, the relevance of such approaches to rapid running of powered autonomous
machines is unclear, since they require a very high degree of control authority.
In contrast, the analytically-messier, ‘low-affordance’ controlled robot RHex,
introduced in §1, is the first autonomous, dynamically stable, legged machine
to successfully run over rugged and broken outdoor terrain [285]. Its design
was inspired by preflexively stabilized arthropods and the notion of central-
ized/decentralized feedforward/feedback locomotion control architectures to be
outlined in §2.4 [208].

Extensions of the analysis introduced in §4.4 are relevant to RHex’s behavior
[12, 11], but a gulf remains between the performance we can elicit empirically
and what mathematical analyses or numerical simulations can explain. Mod-
eling is still too crude to offer detailed design insights for dynamically stable
autonomous machines in physically interesting settings. For example, in even
the most anchored models, complicated natural foot-ground contacts are typ-
ically idealised as frictionless pin joints or smooth surfaces that roll without
slipping. Similarly, in the models cited above and later in this paper, motion
typically occurs over idealized horizontal or uniformly-sloping flat terrain.

Accounting for inevitable foot slippage and loss of contact on level ground
is necessary for simulations relevant to tuning physical robot controls [286],
but far from sufficient for gaining predictive insight into the likely behavior of
real robots travelling on rough terrain. It is still not even clear which details
of internal leg and actuator mechanics must be included in order to achieve
predictive correspondence with the physical world. For example, numerical
studies of more realistically underactuated and incompletely sensed autonomous
runners, similar to RHex, fail to predict gait stability even in the laboratory, if
motor torque and joint compliance models are omitted [267, 268]. Modeling foot
contacts over more complex topography in a manner that is computationally-
feasible and physically-revealing is an active area of mechanics research [341]
that does not yet seem ripe for exploitation in robot controller design, much
less amenable to mathematical analysis. In any case, since the bulk of this
paper is confined to template models such as the SLIP, we shall largely ignore
these issues.

We regard the SLIP and similar templates as passive systems, since energy

5Inverse dynamics employs high power joint actuators to inject torques computed as func-
tions of the complete sensed state, together with an accurate kinematic and dynamical model
and high speed computation. These torques cancel the natural dynamics and replace them
with more analytically-tractable terms designed to yield desired closed loop behavior.
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is neither supplied nor dissipated, although in practice some effort must be ex-
pended to repoint the leg during flight. In the case of McGeer’s and Ruina’s
passive walkers, energy lost in foot impacts and friction is replaced by gravita-
tional energy supplied as the machine moves down a slight incline. As noted
above, more aggressively active hopping robots have been built by Raibert and
colleagues [269, 207]. In that work, however, it was generally assumed that
state variable feedback would be needed, not just to replace lost energy, but to
achieve stable motions at all. The studies of [306] and [143], summarized above,
and a recent numerical study of an actuated leg-body linkage [250], suggest that
this is not necessary.

The nature of directly sensed information required for stabilization – the
so-called ‘static output feedback stabilization’ problem – is a central question
of control theory that is in general algorithmically intractable even for linear,
time-invariant dynamical systems [42]. In the very low dimensional setting of
present interest, where algorithmic issues hold less sway, two complications still
impede the corresponding local analysis. First, the representation of physical
sensors in abstracted SLIP models does not seem to admit an obvious form, so
that alternative ‘output maps’ relative to which stabilizability might nominally
be assessed are missing. Second, neither the hybrid Poincaré map nor even its
Jacobian matrix (from which the local stabilizability properties are computed)
can be derived in closed form. We have recently been able to show [12] that
deadbeat6 stabilization is impossible in the absence of an inertial frame sensor,
but the question of sensory burden required for SLIP stabilization remains open.

Nonetheless, the SLIP is a useful model on which to build, and so we close
this section by summarizing the common ground among animals, legged ma-
chines, and SLIP in Fig. 5, which also introduces the symbols for neural and
mechanical oscillators that we shall use again below. While the sources and
mechanisms of leg movements range from CPG circuits, motoneurons and mus-
cles to rotary motors synchronised by proportional derivative controllers, the
net behavior of the body and coordinated groups of legs in both animals and
legged machines approximates a mass bouncing on a passive spring.

2.3 Neural circuitry and central pattern generators

Animal locomotion is not, of course, a passive mechanical activity. Muscles sup-
ply energy lost to dissipation and foot impacts; they may also remove energy: re-
tarding and managing inertial motions (e.g. in downhill walking), or in agonist-
antagonist phasic relationships, e.g. [134]. The timing of muscular contractions,
driven by a central pattern generator, shapes overall motions [17, 261, 232],
but in both vertebrates [79, 313] and invertebrates [5] motor patterns arise
through coordinated interaction of distributed, reconfigurable [233] neural pro-
cessing units incorporating proprioceptive and environmental feedback and goal-
oriented ‘commands.’

6Deadbeat control corrects deviations from a desired trajectory in a single step, so that
control objectives are met immediately.
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Figure 5: The spring-loaded inverted pendulum (SLIP) as a model for the center
of mass dynamics of animals and legged machines. Left panel shows the cock-
roach Blaberus discoidalis with schematic diagrams of thoracic ganglia, contain-
ing the central pattern generator (CPG), legs and muscles. Central panel shows
the robot RHex, with motor-driven passively-sprung legs, and right panel shows
SLIP. Single circles denote neural oscillators or ‘clocks,’ double circles denote
mechanical oscillators. Lower panels show typical vertical and fore-aft forces
experienced during rapid running by each system.
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Whereas classical physics can guide us through the landscape of mechanical
locomotion models as reviewed in §2.1-2.2, there is no obvious recourse to first
principles in neural modeling. Rather, one must choose an appropriate descrip-
tive level and adopt a suitable formal representation, often phenomenological in
nature. In this section we introduce models at two different levels that address
the rhythm generation, coordination and control behaviors to be reviewed in
§2.4 and taken up again in greater technical detail in §5.

2.3.1 Single neuron models and phase reduction

Neurons are electrically active cells that maintain a potential difference across
their membranes, modulated by the transport of charged ions through gated
channels in the membrane. They fire action potentials (spikes), both sponta-
neously and in response to external inputs, and they communicate via chemical
synapses or direct electrical contact. Neurons admit descriptions at multiple
levels. They are spatially complex, with extensive dendritic trees and axonal
processes. Synaptic transmission involves release of neurotransmitter molecules
from the presynaptic cell, their diffusion across multiple distributed synaptic
clefts, and complex receptor biochemistry within the postsynaptic cell. Texts
such as [192, 95] provide extensive backgounds on experimental and theoretical
neuroscience.

These complexities pose wonderful mathematical challenges, but here they
will be subsumed into the single compartment ODE description pioneered by
Hodgkin and Huxley [179]. This assumes spatial homogeneity of membrane
voltage within the cell, and treats the distributed membrane transport processes
collectively as ionic currents, determined via gating variables that describe the
fraction of open channels. See [1, 200] for good introductions to such models,
which take the form:

Cv̇ = −Iion(v, w1, . . . , wn, c) + Iext(t) (11a)

ẇi =
γi

τi(v)
(wi∞(v) − wi) ; i = 1, . . . , N. (11b)

Equation (11a) describes the voltage dynamics, with C denoting the cell mem-
brane capacitance, Iion the multiple ionic currents, and Iext(t) synaptic and
external inputs. Equations (11b) describe the dynamics of the gating variables
wi, each of which represents the fraction of open channels of type i, and γi

is a positive parameter. At steady state, gating variables approach voltage-
dependent limits wi∞(v), usually described by sigmoidal functions:

wi∞(v; ki0 , vith
) =

1

1 + e−ki0
(v−vith

)
, (12)

where ki0 determines the steepness of the transition occurring at a threshold
potential vith

. Gating variables can be either activating (ki0 > 0), with wi∞ ≈ 1
for depolarized voltages v > vith

and wi∞ ≈ 0 for hyperpolarized levels v < vith
,

or inactivating (ki0 < 0), with wi∞ ≈ 1 when hyperpolarised and wi∞ ≈ 0 when
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depolarised. The time scale τi is generally described by a voltage-dependent
function of the form:

τi(v; ki0 , vith
) = sech (ki0(v − vith

)) . (13)

The term Iion in (11a) is the sum of individual ionic currents Iα, each of
which takes the form

Iα(v,w) = ḡα wa
i wb

j (v − Eα) , (14)

where Eα is a (Nernstian) reversal potential, ḡα is the maximal conductance for
all channels open, and the exponents a, b can be thought of as representing the
number of subunits within a single channel necessary to open it. Hodgkin and
Huxley’s model [179, 200] of the giant axon of squid included a sodium current
with both activating and inactivating gating variables (m,h) and a potassium
current with an activating variable alone (n), and they fitted sigmoids of the
form (12) to space-clamped experimental data. Many other currents, including
calcium, chloride, calcium-activated potassium, etc. have since been identified
and fitted, and a linear leakage current IL = ḡL (v−EL) is usually also included.

The presence of several currents, each necessitating one or two gating vari-
ables, makes models of the form (11) analytically intractable. However, often
several of the gating variables have fast dynamics, i.e. γi/τi(v) is relatively
large in the voltage range of interest: such variables can then be set at their
equilibrium values wj = wj∞(v) and their dynamical equations dropped. Like-
wise, functionally-related variables with similar time scales may be lumped to-
gether [276]. This reduction process, pioneered in FitzHugh’s polynomial re-
duction of the Hodgkin-Huxley model [122, 123], cf. [282, 202, 151, 200], may
be justified via geometric singular perturbation theory [193]. We shall appeal
to it in deriving a three-dimensional model for bursting neurons in §5.4.

A deeper geometrical fact underlies this procedure and allows us to go fur-
ther. Spontaneously spiking neuron models typically possess hyperbolic (ex-
ponentially) attracting limit cycles [165]. Near such a cycle, Γ0, of period T0,
the (N + 1)-dimensional state space of (11) locally splits into a phase variable
φ along Γ0, and a foliation of transverse isochrons: N -dimensional manifolds
Mφ with the property that any two solutions starting on the same leaf Mφ0

are
mapped by the flow to another leaf Mφ1

and hence approach Γ0 with the same
asymptotic phase [164]. Writing (11) in the form

ẋ = f(x) + ǫg(x, . . .) (15)

where g(x, . . .) represents external (synaptic) inputs, choosing the phase coor-
dinate such that φ̇ = ω0 = 2π/T0 and employing the chain rule, we thus obtain
the scalar oscillator equation:

φ̇ = ω0 + ǫ
∂φ

∂x
· g(x(φ), . . .) |Γ0(φ) +O(ǫ2) . (16)

Here we implicitly assume that coupling and external influences are weak (ǫ ≪
1), and that Γ0 perturbs to a nearby hyperbolic limit cycle Γǫ, allowing us to
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Figure 6: (a) Phase space structure for a repetitively spiking Rose-Hindmarsh
model, showing attracting limit cycle and isochrons. The thick dashed and
dash-dotted lines are nullclines for v̇ = 0 and ẇ = 0, respectively, and squares
show points on the perturbed limit cycle, equally spaced in time, under a small
constant input current Iext. (b) PRCs for the Rose-Hindmarsh model; the
asymptotic form z(φ) ∼ [1 − cos φ] is shown solid, and numerical computations
near the saddle node bifurcation on the limit cycle yield the dashed result. For
details see [47], from which these figures are taken.

compute the scalar phase equation by evaluating along Γ0. For neural models in

which inputs and coupling enter only via the first equation (11a), ∂φ
∂v

def
= z(φ) is

the only nonzero component in the vector ∂φ
∂x

. This phase response curve (PRC)
z(φ) describes the sensitivity of the system to inputs as a function of phase on
the cycle. It may be computed asymptotically, using normal forms, near local
and global bifurcations at which periodic spiking begins: see [114, 46].

Figure 6 shows an example of isochrons and PRCs computed for a two-
dimensional reduction due to Rose and Hindmarsh [282] of a multi-channel
model of Connor et al. [88]:

Cv̇ = [Ib − gNam∞(v)3(−3(w − Bb∞(v)) + 0.85)(v − ENa)

−gKw(v − EK) − gL(v − EL) + Iext] (17)

ẇ = (w∞(v) − w)/τw(v) ,

where the functions m∞(v), b∞(v), w∞(v) and τw(v) are of the forms (12-13).
Since the gating variables have been reduced to a single scalar w by use of the
timescale separation methods noted above, the isochrons are one-dimensional
arcs. Note that these arcs, equally-spaced in time, are bunched in the refractory
region in which the nullclines almost coincide and flow is very slow. In fact as
the bias current Ib is reduced a saddle-node bifurcation occurs on the closed
orbit of (17), and use of normal form theory [165] at this bifurcation allows
analytical approximation of the PRC [114], as shown in panel (b).

The phase reduction method was originally devloped by Malkin [228, 229],
and independently, with biological applications in mind, by Winfree [338]; also

20



see [118, 114, 182]. It has recently been applied to study pairs of cells electrically
coupled by gap junctions [225], and the response of larger populations of neurons
to stimuli [46, 47]. We shall use it below, followed by the averaging theorem [165,
116, 210, 182], to simplify the CPG model developed in §5.4.

2.3.2 Integrate-and-fire oscillators

We shall shortly return to phase descriptions, but first we mention another
common simplification. Since action potentials are typically brief (∼ 1 msec)
and stereotyped, the major effect of inputs is in modulating their timing, and
this occurs during the refractory period as the membrane potential v recovers
from post-spike hyperpolarization and responds to synaptic inputs. Integrate-
and fire models [1, 95] neglect the details of channel dynamics and consider the
membrane potential alone, subject to the leakage current and inputs:

v̇ = ḡL(v∞ − v) +
∑

i,j

(v − Esyn,j)A(t − ti,j) . (18)

Thus, v increases towards a limit v∞ and when (and if) it crosses a preset thresh-
old vthres it is reset to 0 (another example of a hybrid system). In this model
postsynaptic (external) current inputs to the cell are typically characterised by
a function A(t) (often of the type tk exp(−kj(t−τj)), summed over input cells j
and the times ti,j at which they spike. This allows relatively detailed inclusion
of time constants and reversal potentials Esyn,j of specific neurotransmitters
without modeling the spike explicitly (e.g. [74, 50]).

2.3.3 Networks of phase oscillators

Phase oscillators have the advantage of mathematical tractability – along with
integrate and fire models they are common templates of mathematical neu-
roscience – but in the past they were rarely anchored in biophysically-based
models such as those of §2.3.1. Notable exceptions occur in the work of Hansel
et al. [170, 171, 172] and recently Kopell and her colleagues [194, 3] have used
phase reduction and the related ‘spike time response’ method to study network
synchrony ([194] is especially relevant here, being concerned with locomotory
CPGs). The PRC and averaging methodology described above provides a prin-
cipled way to achieve this, and in §5.4 we shall summarise current work on
insect CPGs [145] in which it is used to derive oscillator networks from (rela-
tively) detailed ionic current models. However, in many cases (including that of
the cockroach) the precise neural circuitry of CPGs remains unknown (although
there are exceptions, e.g. [65]), and phase descriptions are useful in such cases
where little or incomplete information on neuron types, numbers, or connectivity
is available.

In such models, each phase variable may represent the state of one cell
or, more typically, a group of cells, including interneurons and motoneurons,
constituting a quasi-independent, internally sychronous subunit of the CPG.
This was the approach adopted in early work on the lamprey notocord [76, 78],
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in which each oscillator describes the output of a spinal cord segment, or a pair
of oscillators, mutually inhibiting and thus in antiphase, describe the left and
right halves of a segment. In reality, there are probably O(100) active neurons
per segment, and the architectures of individual ‘oscillators’ can extend over as
many as four segments [80, 76]. Murray’s book [252] introduces and summarises
some of this work.

Since we will return to them in §5.4, it is worth describing phase models for
networks of oscillators in more detail. They take the general form:

φ̇i = fi(φ1, φ2, . . . , φN ) ; i = 1, . . . , N , (19)

where the fi are periodic in each variable; such a system defines a flow on an
N -dimensional torus. In many cases a special form is assumed in which each
uncoupled unit rotates at constant speed and coupling enters only in terms of
phase differences φj − φk. As noted in §2.3.1 and outlined for an insect CPG
example of §5.4, this form may be justified by assuming that each underlying
‘biophysical’ unit has a normally hyperbolic attracting limit cycle [165], that
coupling is sufficiently weak, and by appeal to the averaging theorem: see [182,
116, 118] for more details.

In the simplest possible case of two oscillators, symmetrically coupled, we
obtain ODEs whose right hand sides contain only the phase difference φ1 − φ2:

φ̇1 = ω1 + f(φ1 − φ2) , φ̇2 = ω2 + f(φ2 − φ1) ; (20)

note that we allow the uncoupled frequencies ωj to differ, but here the functions
fi = f are supposed identical. Letting θ = φ1 − φ2 and subtracting Eqns (20),
we obtain the scalar equation

θ̇ = (ω1 − ω2) + f(θ) − f(−θ) . (21)

A fixed point θ̄ of (21) corresponds to a phase locked solution of (20) with
frequency

ω̄ = ω1 + f(θ̄) = ω2 + f(−θ̄) ,

as may be seen by considering the differential equation for the phase sum φ1+φ2.
In the special case that f is an odd function and f(−θ) = −f(θ), the resulting
frequency is the average (ω1 + ω2)/2 of the uncoupled frequencies. For smooth
functions, stability is determined by the derivative f ′(θ)−f ′(−θ)|θ=θ̄ – negative
(resp. positive) for stability (resp. instability) – and stability types alternate
around the phase difference circle. Fixed points appear and disappear in saddle-
node bifurcations [165], which occur when the value of a local maximum or
minimum of f(θ)− f(−θ) coincides with ω1 −ω2. The number of possible fixed
points is bounded above by the number of local maxima and minima of this
function, but hyperbolic fixed points must always occur in stable and unstable
pairs, since they lie at neighboring simple zeros of f(θ) − f(−θ).

Coupling typically imposes a relation between the oscillator phases, deter-
mined by inverting the fixed point relation

f(θ) − f(−θ) = ω2 − ω1 , (22)
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and vector equations analogous to (22) emerge in the case of a chain of N oscil-
lators with nearest-neighbor coupling [76]. The original lamprey model of [76]
took the simplest possible odd function f(θ) = −α sin(θ) (the negative sign be-
ing chosen so that ‘excitatory’ coupling would have a positive coefficient). In this
case, a stable solution with a nonzero phase lag, corresponding to the traveling
wave propagating from head to tail responsible for swimming, requires a nonzero
frequency difference ωi −ωi+1 > 0 from segment to segment. At the time of the
original study [76], evidence from isolated sections taken from different parts
of spinal cords suggested that there was indeed a frequency gradient, with ros-
tral (head) segments oscillating faster in isolation than caudal (tail) segments.
Subsequent experiments showed this not to be the case: a significant fraction
of animals was found to have caudal frequencies exceeding rostral ones, and to
account for the traveling wave in this case Kopell and Ermentrout [116, 210]
introduced non-odd, ‘synaptic,’ coupling functions with a ‘built-in’ phase lag.
Indeed, as they pointed out, although electrotonic (gap junction) coupling leads
to functions that vanish when membrane voltages are equal, the biophysics of
synaptic transmission implies that nonzero phase differences typically emerge
even if the cells fire simultaneously.

Other groups have studied networks of planar ‘lambda-omega’ or van der
Pol type oscillators (cf. [165]) that have simple expressions in polar coordinates,
making the PRC analyses of §2.3.1 particularly simple. The bio-inspired CPG
for robotics of [52] is a recent example that can produce various gaits with
suitable coupling. But regardless of oscillator details, rather powerful general
conclusions may be drawn regarding possible periodic solutions of symmetric
networks of oscillators using the group-theoretic methods of bifurcation with
symmetry [152, 155]. Golubitsky, Collins and their colleagues have applied
these ideas to CPG models, thereby finding network architectures that sup-
port numerous gait types, especially those of quadrupeds [153, 154], although
Collins and Stewart also have a paper specifically on insect gaits [85]. Here the
symmetries are discrete, primarily the left-right bilateral body symmetry, and
(approximate) front-hind leg symmetries; we shall see examples in the insect
CPG model of §5.4. In §§2.1-2.2 and §§4-5, the continuous symmetry of planar
translations and rotations with respect to the environment plays a different role
in biomechanical models.

We end by briefly noting interesting work of Beer and others in which CPG
networks are ‘evolved’ using genetic algorithms [23, 72, 22, 188]. Within a
basic architecture new cells and connections can be established, and connection
weights changed. This method could be extended to explore multi-parameter
spaces of coupled neuromechanical systems

2.4 On control and coordination

We have seen that CPGs, including the motoneurons that generate their out-
puts, acting in a feedforward manner through muscles, limbs and body, can
produce motor segments that might constitute a ‘vocabulary’ from which goal-
oriented locomotory behaviors are built. As we shall suggest in §5.4-5.5, inte-
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grated, neuromechanical CPG-muscle-limb-body models are still largely lacking,
but the analysis of simple neural and mechanical oscillators, such as the phase
and SLIP models introduced above, can elucidate animal behavior [206] as well
as suggesting coordination strategies for robots [205]. However, assembling these
motor segments, and adapting them to environmental demands, requires both
reflexive feedback and supervisory control. We therefore end this section with
a discussion of control issues, focusing on two specific questions, namely: How
are the distributed neural processing units, referred to at the start of §2.3, co-
ordinated? What roles do they play in the selection, control or modulation of
the distributed excitable musculo-skeletal mechanisms?

Little enough is presently known about these questions that motor science
may perhaps best be advanced by developing prescriptive, refutable hypotheses.
Here ‘prescriptive’ loosely denotes a control procedure that can be shown math-
ematically (or perhaps empirically, in a robot) to be in a logical relationship of
necessity or sufficiency with respect to a specific behavior. Refutable implies
that the behavior admits biological testing. Before sketching our working ver-
sion of these hypotheses for insect locomotion in §3 we review parts of a vast
relevant literature.

2.4.1 Mechanical organization: Collapse of dimension and posture
principles

Some forty years ago, A.N. Bernstein [24, 25] identified the ‘degrees-of-freedom
problem’ in neuromuscular control, which may be exemplified as follows. Typical
limb movements, such as reaching to pick up a small object from a table, require
precise fingertip placement, but leave intermediate hand, arm, wrist, elbow
and shoulder joint angles and positions undetermined. Moreover, some limbs
have fewer DOFs than the number of muscles actuating them (e.g. 7 muscles
actuate the 3 index-finger joints that together give it 4 DOF7 [324]). How
are these (statically indeterminate) DOFs ‘programmed’ and how are multiple
muscles, possibly including co-activated extensors and flexors for the same joint,
coordinated throughout such movements? Are coordination patterns unique
within species?

Such patterns certainly exist. Empirical laws describing movement trajec-
tories both in the inertial (world) frame and within the body-limb frame have
been formulated and their neural correlates sought. For example, a power law
inversely relating speed to path curvature, originally derived from observations
of voluntary reaching movements [220], has been proposed to describe diverse
mammalian motor patterns, including walking [189]. Moreover, primate motor
cortex recordings of voluntary arm movements [296] reveal a neural velocity
‘reference signal’ that precedes and predicts observed mechanical trajectories,
prescribing via variable time delay the power law of [220]. This suggests par-
tition of a reference trajectory into modular constituents of a putative motor
vocabulary, and meshes with yet more prescriptive notions of optimal trajectory

7The metacarpophalangeal (top) joint rotates about two axes, the others about one.
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generation whose cost functionals can be shown to generate signals that respect
such power laws [319, 272].

However, interpreting these descriptive patterns is challenging. Trajectories
generated by low frequency harmonic oscillations fit to motion-capture data
in joint space also respect a power law as an accidental artifact of nonlinear
kinematics [288]. Moreover, when these fitted oscillations grow large enough in
amplitude to violate the pure power law, they do so in a punctuated manner,
again apparently accidentally evoking a composed motor vocabulary. Moreover,
in a critique of proposals addressing the role of neural precursors to voluntary
arm motion, Todorov [318] has pointed out that motor cortex signals have been
correlated in various papers with almost all possible physical task space signals:
an array of correspondences that could not be simultaneously realised. In sum,
power law and similar phenomenological descriptions do not seem to impose
sufficient constraints on the structure of dynamical coordination mechanisms to
support the refutable hypotheses that we seek.

The coordination models of central concern in this review, to be introduced
later in this section, at least suffice to explain the observed mechanical patterns
associated with collapse of dimension: the emergence of a low-dimensional at-
tractive invariant submanifold in a much larger state space. This dynamical
collapse appears to be associated with a posture principle: the restriction of
motion to a low dimensional subspace within a high dimensional joint space. A
kinematic posture principle has been discovered in mammalian walking [219],
as demonstrated by planar covariation of limb elevation angles which persists in
the face of large variations in steady state loading conditions [189]. In studying
static grasping by human hands Valero-Cuevas [324, 325, 326] has shown that
activation patterns of the seven muscles of the index finger when producing max-
imal force in five well-specified directions are subject-independent and predicted
to take the finger to its performance limits, suggesting common motor strate-
gies motivated by biomechanical constraints. Moreover, the activation patterns
employed, while uniquely determined at the boundaries of feasible force-torque
space, continue to be used to produce submaximal forces. This implies a solu-
tion to the degrees-of-freedom problem that circumvents redundancy (of three
dimensions in this case) by adopting the unique solution imposed by constraints
at the performance boundaries.

More directly relevant to the models to be described below, a study of kine-
matic posture in running cockroaches using principal components analysis [132]
also reveals very low-dimensional linear covariation in joint space (cf. [43]). Such
biomechanical discovery of dimension collapse and posture principles comple-
ments increasing evidence in both vertebrate [55, 158, 284, 56] and inverte-
brate [259] neuroscience that neural activation results in precise, kinematically
selective synergies of muscle activation. Posture principles have also proved
useful in designing controllers for legged robots [287, 286]. In §§5.3-5.4 we will
address the collapse of more complex models to the templates introduced earlier
in §2.3 and to be described in §§5.1-5.2.

The degrees-of-freedom problem has been approached theoretically by the
‘equilibrium-point’ hypothesis in the physiological literature [30], and in the
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robotics literature by constructing cost functions and performance indices [254].
Both of these imply collapse of dimension. Moreover, Arimoto has recently
suggested an alternative to the equilibrium-point hypothesis that is essentially
task-space proportional-derivative position feedback control with linear velocity-
dependent damping [15, 14]. He shows that this produces attraction to a
lower-dimensional manifold under rather general assumptions, and that use of
physiologically-realistic muscle activation functions in the ‘virtual springs’ that
define the cost function produces reaching motions similar to those of human
arms.

The question arises how to render such descriptive observations more pre-
scriptive by finding refutable hypotheses connected with them. The selection of
a motor control policy may be governed by energy costs, muscle or bone stress
or strain levels, stability criteria, or speed and dexterity requirements. Gait
changes in quadrupeds, especially horses, have been shown to correlate with
reductions in energy consumption as speeds increase [234, 183, 8, 335]. Muscle
and bone strain criteria have also been suggested [120, 28]. With regard to
stability, our own recent work using the LLS model of §5 suggests that animal
design and speed selection might place gaits close to stability optima [291, 133].
However, we are wary of the optimality framework, commonly employed in engi-
neering [51], as a foundation for the prescription of natural or synthetic motion
control, in part because it transfers the locus of parameter tuning from plant
loop parameters to the cost function, which largely determines the quality of
the resulting solution. Similarly, in biology, cost function details can signifi-
cantly modify the resulting solutions, potentially shifting the phenomenology of
describing the task to that of choosing the right cost function8.

Instead, we prefer to examine and model locomotion dynamics in regimes in
which Newtonian mechanics dominates, and hence constrains possible control
mechanisms. Specifically, at high speeds, inertial effects render passive mechan-
ics an essential part of the overall dynamics, and there are severe time constraints
on reflex control pathways. Recent impulsive perturbation experiments on run-
ning cockroaches in [191] reveal, for example, that corrective motions are initi-
ated within 10-15 msec, while corrective neural and muscle activity is estimated
to require 25-50 msec. We also believe that the rapid running regime pushes
animals close to limits of feasible neuromuscular activity, and hence constrains
the space of activations and dynamical forces available, much as in the case of
static force production [327, 326], making it more likely that lower-dimensional
behavior will emerge.

We shall therefore focus on regimes in which control target trajectories, even
if selected by higher centers, must conform to mechanical constraints. We do this
both to limit the scope of this review, and to suggest a key principle in modeling
complex behaviors: to develop and validate models in constrained (limiting)
situations before attempting to ‘explain everything.’ To repeat our remark in
the Introduction, simple models – templates – can be invaluable in revealing

8Optimization ideas can, of course, be useful in fitting model parameters if they cannot be
directly measured or estimated, e.g. [93].
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basic principles: a model that leaves nothing out is not a model! However, we
recognise that our focus on stereotypical high-speed gaits biases the scope of
the resulting models, which will, and should, fail to describe the remarkable
flexibility of low-speed exploratory behaviors. There are several recent reviews
on reflexive-based control and coordination in this regime; see [111, 108] in
particular for models and their implications for robots. While such studies have
led to elaborate feedback control schemes [92, 93, 204] that generate realistic gait
patterns, full investigations of the body-limb Newtonian dynamics of the type
emphasised here remain to be done. We note, however, that analytical maps
describing phase relationships between pairs of leg oscillators for such models
of stick insects have been derived [63].

2.4.2 Neuromechanical coupling: Centralized and decentralized co-
ordination; feedforward and feedback control

However they are formed, mechanical synergies such as templates and pos-
ture principles offer the nervous system attractive points of influence over the
musculo-skeletal system’s interaction with its environment. Recent work on
the cellular and molecular basis of sensori-motor control [59], and the use of
non-invasive imaging to reveal specific brain regions active in learning and the
planning and execution of movements [261, 199, 226], corroborate a growing
consensus within the animal neuromotor community that control is organized
in a distributed modular hierarchy [253]. In this view, complex motor functions
are governed by afferent-mediated [260] networks of variably-coupled [55], feed-
forward, pattern-generating units [161] located remotely [31] from higher (brain)
centers of function. These networks supply ‘motor program segments’ that may
be combined in various ways at cortical command. It is tempting to think of
these segments as solutions of coupled CPG-muscle-body-limb-environment dy-
namical systems, excited by appropriately-shaped motoneuronal outputs and
amplified by appropriately-tuned muscles. Indeed, as we shall argue, cortical
stimulation of such dynamical models can parsimoniously account for many of
the observed correlations, and we offer the beginnings of a prescriptive interpre-
tation in §3.3.

In reading the motor coordination literature as well as in formulating the
hypotheses of §3.3 we have found it helpful to refer to the architectural ‘de-
sign space’ depicted in Fig. 7 as a two-dimensional coordination-control plane
whose axes represent the degree of centralization and the influence of feedback.
This viewpoint, which informed development of the hexapedal robt RHex [208],
allows us to divide the studies of motor rhythms in distributed networks into
three subgroups.

The first employs networks of biophysically-based, ion channel neuron mod-
els of Hodgkin-Huxley [179] type, or reductions thereof [123, 178, 200], pat-
terned closely upon the specific physiology of isolated tissues such as lamprey
notocord [163], the arthropod stomato-gastric ganglion [303, 149], and respi-
ratory centers [60, 61, 96]. As noted in §2.3.1 above, these models, and the
experiments on which they are based, typically isolate the CPG by removing
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Figure 7: The schematic two-dimensional space of control architectures. As in
Fig. 5, single circles represent CPG oscillators, double circles represent mechan-
ical oscillators such as limb components, and triangles represent neural control
elements (analogous to operational amplifiers). From [208].
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signals from sensory neurons, and lesioning ‘control’ inputs from higher brain
centers [97, 79, 162]. Fairly detailed neural architectures and details of indi-
vidual neuron types are required for their formulation; hence they are most
appropriate for ‘small’ systems. In this work the spontaneous generation and
stability of rhythms are studied, perhaps in the presence of tonic excitation, but
their volitional control or translation into physical motion is largely ignored.

The second group focuses on modeling the internal generation of rhyth-
mic CPG patterns in the vertebrate spinal and supraspinal nervous systems by
networks of coupled phase oscillators of the type introduced in §2.3.3. Here
the neurobiology is more complex and often less well-characterised, so phe-
nomenological models are more appropriate. The work on lamprey CPG cited
there [76, 78], and substantial extensions and generalizations of it by Kopell,
Ermentrout and others (e.g. [116, 210, 117, 211, 212, 77, 213, 197]), provide
examples of this approach. As noted in §2.3.3, in going directly to phase oscil-
lators representing pools of neurons or local circuits containing several neuron
types, one frequently abstracts away from specific physiological identification,
although useful information on coupling strengths along the cord can be derived
by fitting parameters in such models [203]. These models also typically exclude
muscles and mechanical aspects of the motor system and interactions with its
environment, although in [212], for example, the effect of mechanical forcing of
a fish’s tail is modeled.

Their focus on the emergence of synchrony in distributed networks and the
necessary presumption of the primacy of neural excitation in eliciting motor
activity places these two classes of models on the feedforward level of Fig. 7,
at various points along the centralized-decentralized axis. Moreover, in both of
these approaches, the generation and stability of rhythms are studied, but not
their translation into physical motion. Indeed, in the absence of a mechanical
model, the relative influence of mechanical feedback cannot be addressed.

Integrative neuromuscular models are beginning to appear. Simple coupled
models of the nervous system and its mechanical environment have been devel-
oped by a third ‘ecological’ school [201, 21], following the lead of the Haken-
Kelso-Bunz (HKB) model of coordinated finger-tapping [167]. In these systems,
(neural) phase oscillators are coupled to phenomenological (generic mechani-
cal) oscillators representing simplified muscle-limb dynamics that may be inter-
preted as phase coordinate representations of the hybrid templates introduced
in §2.1-2.2. There appear to be few comprehensive studies of specific locomotory
systems, however, with the exception of lamprey (anguilliform = eel-like) swim-
ming, which has been modelled by Ekeberg and Grillner [110, 112], cf. [188],
and Bowtell, Carling and Williams [44, 45, 66]. In the former papers, bodies
composed of rigid links actuated by simplified spring/damper muscle models are
used and the fluid environment is represented by empirical drag and lift forces
applied along the body; a recent paper on salamander locomotion considers both
aquatic and terrestrial gaits [187] from a similar viewpoint. In [44, 45, 66], con-
tinuum body models coupled with the Navier-Stokes equations of incompressible
hydrodynamics are solved numerically with a prescribed moving boundary rep-
resenting the lamprey’s body. Models of even the former (finite-dimensional)
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type are too complex to permit substantial analysis, although sudies of lin-
earized systems can be helpful, even for continuum models [45], so this work
relies heavily on numerical simulations. Indeed, analytical treatment of cou-
pled neuro-mechanical oscillators is thus far limited to very simple single DOF
dynamical manipulation such as juggling [289, 312].

As Fig. 7 illustrates, control architectures may also be described in terms
of their reliance on sensory feedback from body mechanics and the environ-
ment. For example, proprioceptive sensing of leg forces and joint angles may
directly influence CPG and motoneurons to maintain phase relationships in a
decentralized, peripheral manner [258, 264, 20, 273], while visual and tactile
sensing, or odor tracking, may require central processing before appropriate
feedback can be applied to adjust gaits or change direction [148]. Models of
feedback circuits that provide inter- and intra-limb coordination based on pro-
prioceptive sensing have their origins in D.M. Wilson’s work [336, 337], cf. [157].
They have been extensively developed for stick insect locomotion by Cruse and
Büschges [20, 93, 111], and used to suggest rule-based pattern generating net-
works for hexapedal robots [73, 92, 108]. However, as we have noted, the sub-
stantial sensing, neural computation, and motoneuronal activation implicit in
such schemes, whether centralized or decentralized, makes them unlikely can-
didates for overall control of high-speed running [191]. Nonetheless, cockroach
antennal sensing can induce turning at high speeds with very short delays [64],
suggesting that fast direct pathways to the CPG may exist. In turn CPG activ-
ity and central commands can modulate and even reverse the negative feedback
typically exerted by proprioceptive sensors such as the stretch reflex [75].

More prescriptive versions of the power laws reviewed above emphasize op-
timal feedforward trajectory generation, although feedback is known to play
an important role in both vertebrate [344] and invertebrate [109] locomotion,
and the importance of feedforward reference signals is by no means generally
accepted [91]. The observation that certain degrees of freedom exhibit sig-
nificantly higher variability than others can be interpreted in the framework of
stochastic optimal feedback control as a hedge against noise [320]. Depending on
environmental demands, the full range from pure feedback to pure feedforward
control policies is probably employed in animal motion. Indeed, the suggestion,
based on linear systems theory, that feedback should be preferred when inter-
nal models are uncertain or unavailable, while feedforward strategies should be
more appropriate in the presence of significant sensor noise [218], seems very
reasonable. The extremes of this continuum are exemplified respectively by
‘mirror laws’ developed for juggling machines [53] and legged robots [287, 286],
and passive stabilization based on preflexes, as exhibited by the SLIP and LLS
models described in this paper. Overall, since centralised feedback circuits imply
greater time delays, as running speeds increase, we expect control to emphasise
decentralised modes, and increasingly to rely on feedforward strategies.
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Figure 8: Schematic illustration of the direct and comparative experimental ap-
proaches, with an example of investigation of the effects of moment of inertia.
In a direct experiment, a single parameter of interest is varied. In the com-
parative approach direct experimental controls are lacking, and one must use
phylogenetic information to deduce how evolution may have changed multiple
parameters. After [130].

3 Experimental evidence: Comparative studies

Simple models of legged locomotion, such as the SLIP of §2.2, have emerged from
data collected using a powerful approach: the comparative method [130]. Direct
experiments on individual animals in which a single variable is manipulated are
often effective in establishing cause and effect relationships, but large parameter
ranges can rarely be probed without disrupting function elsewhere in a finely
integrated system. There are limits, for example, to how much an animal’s mass
or moments of inertia can be changed by the addition of weights, in studying
their influence on its dynamics.

The comparative approach takes advantage of nature’s diversity to over-
come such limitations and enables the discovery of general principles as well
as remarkable exceptions to the rules. We can infer function by comparing
among species that differ widely in a variable of interest, rather than by direct
experimental manipulation of a single species. Effectively, we observe experi-
ments performed by nature, in which the ‘treatment’ has been evolution, and
naturally-occuring variations in dependent variables permit investigation and
isolation of mechanisms of interest in nearly-ideal settings of exceptional func-
tion. Fig. 8 illustrates the direct and comparative methods.

The largest variations are found in comparing animals that differ greatly in
size [290, 62]. Fortunately, variation in dependent variables as a result of size
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Figure 9: Metabolic cost of locomotion vs. body mass for a broad range of ani-
mals, showing an approximate power law relationship: cost ∝ m0.68. From [126].

often shows remarkably general correlations that can be used to infer function
and predict performance. For example, while the metabolic cost of legged loco-
motion typically varies less than ten-fold when speed, stride frequency, inclines
or added loads are altered in individuals, it naturally differs by over five orders
of magnitude, while exhibiting a single power-law relationship, when all legged
animals are compared: Fig 9.

Equally important are those animals that demonstrate spectacular perfor-
mance while deviating from the general pattern. Large, measurable differences
have evolved over millions of years in diverse species having different lifestyles
or operating in extreme environments. Characterization of these specialized
systems can allow extrapolation to others in which the properties of interest
are not as extreme, but for which functional principles are similare. For ex-
ample, hopping red kangaroos can increase speed without increasing metabolic
energy cost [94], and measurements of ground reaction and muscle forces re-
veal substantial elastic strain energy storage in the tendons of kangaroos and
wallabies [10, 6, 26]. It is therefore reasonable to conclude, at least in larger
vertebrates such as humans, that tendons serve a similar role, albeit to a lesser
extent than in specialized, bipedal hoppers.

Natural experiments are nonetheless imperfect because they lack appropriate
controls. Seldom do even closely-related species under comparison differ only in
the variable of interest. For example, two species may differ in moment of iner-
tia, and one be less stable than the other, but we cannot immediately conclude
that inertia is the sole cause: the more stable animal may have more effective
reflexive feedback control. However, the comparative method is strengthened
by knowledge of evolutionary history or phylogeny [184, 140, 223]. Techniques
in phylogenetic analysis [121, 196] can remove the effects of history or use them
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to hint at present function. If the process of interest has severe functional or
structural constraints or nearly complete adaptation has taken place, then the
potentially confounding effects of historical differences may be of little conse-
quence. If, however, constraint and adaptation have been less than completely
dominant, then the most parsimonious assumption is that the process operates
as it did in the ancestor. An evolutionary, comparative approach can aid in
answering mechanistic questions, but only if each species is studied in sufficient
depth to elucidate the mechanism and a satisfactory phylogeny exists [18, 231].
Unfortunately, agreed-upon phylogenies are rare and in-depth studies of many
species can take years.

In-depth studies also enabled by nature’s diversity. As August Krogh re-
marked at the 13th International Congress of Physiology in Boston in 1929: ‘For
many problems there is an animal on which it can be most conveniently stud-
ied’ [215]. The selection of ‘choice’ or model species is based on their amenablity
to particular experimental procedures. The giant squid axon and the gastrocne-
mius muscle of frogs are notable, relevant examples, although results from model
species that are easy to study are not necessarily generalizable. Generalization
is usually most successful at the lowest levels of organization such as cellular and
molecular structures and genetic and biochemical networks. In this regard, E.
coli , nematodes and fruit flies have proved invaluable model organisms. At the
level of organs and organisms, careful selection using existing phylogeny of more
basal species will more likely lead to general discoveries. The nervous system
of the lamprey has been argued to be such an example [79]; hence its use as a
model to probe vertebrate CPG architectures, as noted in §2.3.3. Alternatively,
direct measurements of performance for a wide range of species that differ in
size can be invaluable for identifying possible generality. For example, Fig. 9
suggests that the metabolic cost of legged locomotion appears to be indepen-
dent of leg number, leg design, skeletal type, or whether the animal is warm or
cold-blooded. Phylogenetic effects that may limit the generality of conclusions
are absent from relationships such as these. It is therefore reasonable to assume
that discoveries in insects, as discussed here, will lead to general principles for
all legged locomotors.

3.1 Mass center mechanics of legged locomotion

Cavagna et al. [69] provided early experimental evidence for the spring-mass
model of legged locomotion introduced in §2.2. The metabolic energy cost of
human running was determined by measuring oxygen consumption, and me-
chanical energy estimated from the fluctuations in kinetic and potential energy
calculated from ground reaction forces measured with a force platform. Effi-
ciencies, much higher than those estimated for muscle, supported the use of
leg springs. Similarly, using movie film and force platforms to study jumping
dogs and hopping kangaroos, Alexander [7, 10] calculated a substantial degree
of elastic recoil in ankle extensor tendons. More recently, Biewener et al. [27]
directly measured tendon force and muscle length change in hopping wallabies
and found that elastic strain energy storage in ankle extensor tendons reduces
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Figure 10: Stride length vs. speed and relative stride length vs. Froude number
for various animals. From [9].

total work by 45% during hopping at the fastest speeds.
Alexander and Jayes [9] proposed that dynamically-similar legged locomo-

tors should exhibit equal ratios of inertial to gravitation forces for equivalent
gaits. Their argument is based on the idea that the centrifugal force acting on
the body as it rotates over a rigid supporting limb of length l must balance
the ground reaction force on the limb. (For elastic legs, such as in the SLIP,
spring forces also contribute, so this argument requires modification.) Animals
as diverse as dogs and camels all lie near a single function when data on relative
stride length is plotted as a function of this ratio, v2/gl, which is called the
Froude number9: Fig 10. More remarkably, mammals with different evolution-
ary histories change gait from a walk to a trot at Froude numbers of 0.3 to 0.5,
and from a trot to a gallop between 2 and 3.

Froude number is essentially the ratio of kinetic to potential energy and is
often viewed as a dimensionless speed. Both it and its relative the Strouhal
number, which is appropriate for dynamic similarity in motions dominated by
elastic forces [8], will play important roles in nondimensionalizing the models of
§5.1.

3.1.1 Walking and running data viewed in the sagittal plane

In 1977 Cavagna et al. [68] collected ground reaction force data on two and
four-legged mammals in an effort to explain the general energetic relationship
of Fig. 9. Their data supported two basic mechanisms for minimizing energy:
an inverted pendulum, and a mass atop a spring. Walking was proposed to be
an energy-conserving mechanism analogous to an inverted pendulum, much like
an egg rolling end over end [70, 68, 174] (cf. the compass walker described by

9In hydrodynamics, where it originated, Froude number is defined as v/
√

gl [105], but here
we follow the biomechanical convention that avoids the square root [8].
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McMahon [243]). Kinetic energy and gravitational potential energy fluctuate
in anti-phase in such a mechanism, allowing exchange of energy as the animal’s
center of mass rises and falls during each step. Vaulting over a stiffened leg
in humans was once argued to conserve up to 70% of the energy that must
otherwise be provided by muscles and tendons [70], but recent models including
a double support phase and collision losses question the extent of exchange [103].

At faster speeds, animals behave more like a mass atop a springy leg [103],
in which kinetic and gravitational energy remain in phase, but fluctuate in an-
tiphase with the elastic energy stored in the spring. Cavagna et al. [68] hypoth-
esized that kinetic and gravitational potential energy lost during the first half of
the stance phase were stored as elastic strain energy at midstance and then re-
turned as the animal’s center of mass rose and accelerated forward. As noted in
§2.2, the inverted pendulum and spring-mass mechanisms have been combined
into a single model: the spring-loaded inverted pendulum (SLIP) [297]. This 2
DOF system limits on the single DOF inverted pendulum or compass walker as
stiffness increases: see §4.4 below.

3.1.2 Evidence for a general spring-loaded inverted pendulum (SLIP)
model

Blickhan and Full [33] discovered that SLIP behavior was far more general
than imagined and was not restricted to upright-posture birds and mammals.
Force platform data showed that 8-legged sideways-moving crabs can use a
pendulum-like mechanism during walking, recovering as much as 55% of the
energy otherwise supplied by muscles. At faster speeds, ghost crabs change
gait from a walk to a bouncing trot. Full and Tu [135, 136] used a miniature
force platform to show that the most prevalent taxon on earth, Insecta, bounce
dynamically as they run over a wide range of speeds. Indeed, the SLIP describes
the center of mass dynamics during locomotion in animals ranging in body size
from a cockroach (0.001 kg) to a horse (135 kg), a five decade range: Fig. 11.

An effective SLIP spring stiffness can be estimated as the ratio of the peak
ground reaction force to maximal leg compression at midstance. If Fvert denotes
the vertical whole-body ground reaction force and ∆l the compression of the
whole body leg spring, then the absolute spring stiffness is:

k =
Fvert

∆l
. (23)

Force platform data on mammals from Farley et al. [119] show that larger ani-
mals have stiffer springs: a trotting horse has a SLIP stiffness 100-fold greater
than a rat. Comparison of mammals over a thousandfold range of body mass
m shows that the SLIP stiffness increases as m

2
3 .

To compare leg stiffnesses of diverse animals, allowances for both size and leg
number must be made [34]. A dimensionless stiffness relative to size is required
to correct for body weight and length differences. Such a relative SLIP stiffness
krel can be calculated by dividing the peak whole body ground reaction force at
midstance, normalized for body weight, mg, by the compression normalized by
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Figure 11: Relative individual leg stiffness vs. body mass for various animals
and for the hexapedal robot RHex. From [34] and [208].

hip height, l:

krel =
Fvert/mg

∆l/l
. (24)

The number of legs supporting the body during stance that sum to produce
SLIP behavior varies from one in running bipeds to four in trotting crabs (see
Fig. 4 above). For example, insects trotting in a double tripod gait compress
their SLIPs by one third relative to bipedal runners. Because the relative force
is the same as in bipedal runners, the SLIP stiffness of the insect is three-fold
greater than for bipeds. Since the SLIP stiffness is determined by the number
of legs supporting body weight, a relative individual-leg stiffness krel,ind can
be estimated by dividing the relative SLIP stiffness by this number (e.g. for
an insect krel,ind = krel/3, and for a trotting quadruped or a hopper such as
the kangaroo krel,ind = krel/2). Relative individual-leg stiffness is surprisingly
similar in trotters, runners and hoppers using from one to four legs in stance:
the data summarised in Fig 11 indicates krel,ind ≈ 10. Thus, relative individual-
leg force is about tenfold greater than relative compression in six-legged trotters
(cockroaches), four-legged trotters (dogs, horses), two-legged runners (humans,
birds) and two-legged hoppers (kangaroos).

3.2 Dynamics of sprawled postures and many legs: Run-

ning insects

Insects have become model organisms for the study of locomotion, as evidenced
by advances in areas such as neurobiology [262, 263, 258, 264, 97, 98, 99,
91, 57, 58, 330, 331, 321, 322], muscle function [195, 134, 4], and biomechan-
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Figure 12: Stride frequency vs. speed for cockroaches, crabs and dogs, and
stride frequency vs. mass for a range of animals. From [124].

ics [135, 136]. Insects can exhibit extraordinary locomotor performance, are in-
expensive, hearty and abundant, have experimentally-tractable neuro-muscular
systems, and often follow remarkably general relationships, encompassing both
invertebrates and vertebrates (cf. Figs 9 and 11).

3.2.1 Evidence for equivalent gaits

Cockroaches exhibit bouncing gaits over 85% of their speed range Even at lower
speeds they do not walk like inverted pendula [135, 136], and although their
energy recovery averages only 6-15%, their dynamics suggest that arthropods
with exoskeletons can use springs and bounce during running much like mam-
mals. Equivalent gaits may exist among legged runners that differ greatly in
morphology. Further evidence of this equivalence comes from examining rela-
tionships between stride frequency and running speed, examples of which are
shown in Fig. 12.

In quadrupedal mammals, stride frequency increases linearly with speed dur-
ing trotting [176, 175], but becomes nearly independent of speed as mammals
switch to a gallop, higher speeds being obtained by increasing stride length.
Similar relationships have been found in cockroaches and ghost crabs [135, 33]:
as speed increases stride frequency attains a maximum. Comparison of maxi-
mum sustainable stride frequency and the speed at which it is attained in crabs
and cockroaches with data from mammals [176, 175] suggests the possibility of
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equivalent gait transitions in two-, four- six- and eight-legged animals. Surpris-
ingly, when the size effect is removed, legged animals attain a similar maximum
sustainable stride frequency at a similar speed [124, 125]. For example, a crab
and a mouse of the same mass change gait at the same stride frequency (9 Hz)
and speed (0.9 m sec−1) [33]. Proposed causes for the trot to gallop transition
include a decrease in metabolic energy cost [183, 8] and a reduction in musculo-
skeletal strain [120]. Blickhan et al. [35] placed strain gauges on ghost crab legs
and found an abrupt change at the trot-gallop transition, but strain increased
five-fold rather than decreased. Until the recent modeling efforts reported in
§5.3 (see Fig. 33 below), no explanation was available for the gait change in
cockroaches.

3.2.2 Individual leg function

Trotting quadrupedal mammals, such as dogs, produce nearly the same ground
reaction force pattern with each leg [68, 190], much like SLIP ground reaction
forces. In fact successful trotting quadrupedal robots have been designed that
produce similar forces on each leg, differing only in relative phase [270]. How-
ever, individual leg ground reaction forces, measured using a miniature force
platform [129] and photo-elastic gelatin [137] show that hexapedal runners do
not behave like quadrupeds with an added set of legs. At constant average
running speed, each contralateral leg pair of the cockroach is characterized by a
unique ground reaction force pattern, as indicated in the left column of Fig. 13.
The front leg decelerates the center of mass in the fore-aft direction throughout
a step, the hind leg accelerates it, and the middle leg does both, initial decel-
eration being followed by acceleration, much like legs of bipedal runners and
quadrupedal trotters. Peak vertical ground reaction forces for each leg are ap-
proximately equal in magnitude, and significant lateral ground reaction forces
are directed toward the body. Nonetheless, the differing individual leg forces in
insects combine to produce net forces on the body COM in the sagittal plane
similar to those of the single leg of a bipedal runner.

One important consequence of the large lateral and opposing leg ground
reaction forces involves muscle force production. In the cockroach, peak ground
reaction forces are oriented toward the coxal joints (analogous to hips in a biped)
that articulate with the body. This tends to minimize joint moments and muscle
forces [129]. Legs of animals do not generate vertically directed ground reaction
forces that result in large torques about the ‘hip’ as do some legged robots,
nor do they operate under the horizontal, zero-foot force criterion used in some
robot designs [329]. Insect legs push against one another, but force vectors are
aligned approximately along the legs, and directed largely toward joint centers
of rotation, much as in upright-posture birds and mammals. Hence, sprawled
posture locomotion of arthropods, amphibians and reptiles does not necessarily
result in large joint moments or muscle forces. This appears consistent with
data showing that the minimum metabolic costs of locomotion in species that
differ in posture can be similar [125], cf. Fig 9.

To discover if individual insect legs can function as springs, Dudek and
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Figure 13: Left column: the double tripod gait of insects, showing typical indi-
vidual foot force vectors near beginning, at middle, and near end of each stance
phase. Right column: the rigid body prescribed force model of Kubow and Full.
Adapted from [216].
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Full [342, 106] oscillated legs dynamically with a computer-controlled lever.
Cockroach legs, in particular, have the potential to function as passive exoskele-
tal springs in the sagittal plane because their joint axes are oriented approx-
imately vertically. Stiffness, damping, and resilience10 were measured during
vertical oscillations orthogonal to the plane of joint rotations [106, 107]. Leg
resilience was found to be high, ranging from 65-85%, and independent of oscilla-
tion frequency. A damping ratio was estimated using the stiffness and damping
coefficients from a Voigt model, assuming the body rests on a support tripod of
legs during stance phases in running [106, 107]. This suggests that the tripod
of legs used by running cockroaches is underdamped, permitting partial energy
storage and recovery.

3.2.3 Static and dynamic stability

The springy legs of insects radiating from their mass centers almost certainly
provide performance advantages beyond energy storage and return. A sprawled
posture bestows a wide base of support and low center of mass, both of which
reduce overturning moments. Additionally, most insects use an alternating tri-
pod gait over a broad range of speeds (Fig. 13); indeed, Hughes [185] stated
that six legs are the ‘end-product of evolution,’ because the animal can always
be statically stable.

However, while Ting et al. [317] found that running death-head cockroaches
Blaberus discoidalis do keep their centers of mass within a tripod of support
over a wide range of speeds, these insects are statically unstable at their fastest
speeds. Their percent stability margin (the shortest distance from COM to the
boundaries of support normalized by the maximum possible stability margin)
was found to decrease with increasing speed from 60% at 10 cm s−1 to negative
values at speeds faster than 50 cm s−1, implying static instability. Certainly,
the fastest gait of the American cockroach Periplaneta americana cannot be
statically stable, for at 1.5 m sec−1 – nearly 50 body lengths per second – this
species runs bipedally [136]. Nonetheless, in both animals, dynamic stability is
maintained throughout.

Discoveries of spring-mass behavior, static instability in a fast tripod gait,
and dynamically stable bipedal running such as those summarised above sug-
gest that energy use in insects might not be minimized, but rather managed ,
to ensure dynamic stability. Moreover, preliminary studies on cockroaches also
show that preferred speed is maintained during rapid running over rough ter-
rain [128]. A fractal arrangement of blocks reaching up to three times higher
than the COM offers little resistance: animals do not step carefully over it or
to cause their legs to adopt a follow-the-leader gait like those of some legged
robots, but continue to use the same alternating tripod gait observed on flat
terrain. Simple feedforward motor output appears to be effective in the nego-
tiation of such rough terrains when used in concert with a mechanical system
tuned to stabilize passively.

10Resilience is the ratio of work done in extending or bending a material minus the work
recovered when released, to the work done in extension or bending.
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Overall, these observations lead to the hypothesis that dynamic stability and
a conservative motor program allow many-legged, sprawled posture animals to
miss-step and collide with obstacles, but suffer little loss in performance. Rapid
disturbance rejection appears to be an emergent property of the musculo-skeletal
mechanical system.

3.2.4 Self-stabilization in the horizontal plane

To develop a more precise hypothesis on the mechanical system’s role in stabi-
lizing running, Kubow and Full [216] created a feed-forward, 3 DOF dynamic
model of a hexapod, representing a sprawled-posture insect in the horizontal
plane, as pictured in the right hand column of Fig. 13. Vertical motions and
gravity were excluded, yaw and translation instabilities being assumed to be
more critical than the insect flipping over or falling and striking its abdomen.
The model, a rigid body with six massless legs, was formulated with direct
biomechanical data taken from death-head cockroaches, including body mass
and inertia, individual leg ground reaction forces, and foot positions relative to
the body [135, 129, 34, 317, 137, 214]. Stereotyped periodic force inputs were
prescribed at foot positions fixed in inertial space throughout each step, but
force vector directions were allowed to rotate with the body as it yawed during
each stance phase. The model was driven by this feed-forward signal with no
equivalent of neural feedback among any of the components.

The resulting forward, lateral and rotational velocities were similar to those
measured in the animal at its preferred velocity. More surprisingly, the model
self-stabilized on a biologically-relevant time scale following instantaneous ve-
locity perturbations acting on its COM. The rate of recovery depended on the
orientation of the perturbation. Recovery from lateral perturbations took multi-
ple strides, whereas recovery from rotational perturbations occurred within one
step. Recovery to 63% from fore-aft perturbations was very slow, taking almost
50 strides. Heading (i.e. the compass direction of COM) never recovered from
lateral velocity perturbations. Recovery was dynamically coupled such that per-
turbations in one velocity component necessarily changed the others. Perturbed
COM positions and body angles relative to the fixed feet provided ‘mechanical
feedback’ by altering leg moment arms. This ‘anchored’ model inspired the LLS
templates that we discuss in §5, and both it and they motivated the following
experiments.

Jindrich and Full [191] perturbed rapidly running insects to experimentally
test the self-stabilization hypothesis. An apparatus was mounted onto the tho-
rax of a cockroach and positioned to propel a projectile laterally, delivering a
specific impulse in linear momentum near the the animal’s COM. Chemical pro-
pellants were used to accelerate a small metal ball, producing impulsive reaction
forces less than 10 ms in duration, but yielding an almost ten-fold increase in
lateral velocity relative to maxima observed during normal running. Lateral
velocity began to recover within 13 ms after initiation of the perturbation. This
recovery duration is comparable to all but the fastest reflex responses measured
in insects [181] and is likely shorter than a neurally-mediated correction when the
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delays of the musculo-skeletal system response are allowed for. Cockroaches re-
covered completely in 27 ms and did not require step transitions to recover from
imposed lateral perturbations. The animal’s center of mass response exhibited
viscoelastic behavior in the lateral direction with leg spring stiffnesses similar to
those estimated for unperturbed running. This rapid onset of recovery from lat-
eral perturbations supports the hypothesis that mechanical preflexes augment
or even dominate neural stabilization by reflexes during high-speed running.

The models to be described in §5 allow us take this question up again and,
as noted in §5.1.4, also suggest an explanation for the fact noted in §3.2.3 that
insects can negotiate rough terrain without departing from their preferred speed
and normal gait. Indeed, for the LLS model, we find that stability is greatest
at preferred speed, in the sense that recovery times are minimised precisely in
this range.

3.3 Towards a theoretical framework for animal experi-

ments in locomotion

We are now approaching the midpoint of this review. We have summarized a
voluminous literature on animal locomotion, generated from several disciplinary
viewpoints, emphasizing in each case the general implications for mathematical
modeling, and addressing the manner in which these diverse collections of facts
might inform the sort of mathematical models that will be described in §§4-
5. Before moving to that more technical discussion, we conclude our literature
review with a sketch of four biological hypotheses that motivate and that will
(we hope) justify the exercise. Although short of listing concrete experiments,
these propositions nonetheless suggest how a unified framework can give rise to
new ways of asking questions about the structure, organization, and function
of locomotion. The first three hypotheses were presented and discussed in the
context of legged robot design in [208].

3.3.1 Hypothesis H1: Stable dynamical system

We hypothesize that the primary requirement of an animal’s locomotive con-
trol strategy is to stabilize its body around steady-state gaits whose patterns
emerge from the dynamical system formed by mutual coupling of the neural and
musculoskeletal systems to the environment. The body and limbs follow paths
dictated by (Newtonian) mechanics of the musculoskeletal system, prompted by
feedforward input from the CNS and CPG, and modified by reflexive feedback.
This hypothesis contrasts with reference trajectory planning, described in §2.4
above, in which neural controllers command limbs to follow prescribed paths
and sensory feedback activates muscles to maintain them. Reference trajectory
planning leads to markedly different predictions of response to acute position
and velocity perturbations than our dynamical system hypothesis.

Dynamical systems theory predicts that perturbations in different directions
in phase space will recover at rates and along paths locally determined by the

42



equations of motion, and hence by the neuro-mechanical properties of the ani-
mal. For example, eigenvalues and eigenvectors of the Poincaré maps linearized
about steady gaits, as described below, predict the nature of local coupling
among state variables. Presuming a biological apparatus with sufficiently low
noise floor to probe the neighborhood governed by the linearized dynamics,
and sufficient repeatability to gather enough observations within that neighbor-
hood, the absence of the predicted patterns is immediate grounds to reject such
models. In contrast, perturbation recovery in reference trajectory planning de-
pends upon gains in the feedback control loops. Thus, while not necessitated
by theory, other considerations being equal, one expects a greater uniformity in
perturbation response time and coupling for reference trajectory control.

For periodic gaits, reference trackers seek to maintain a fixed phase relation
of animal position with respect to the reference trajectory. Thus, perturbations
from steady state are countered not merely by convergence to a limit cycle, but
also to a preferred time parametrization along it. Phase resetting [338] would
therefore immediately refute the trajectory tracking hypothesis. In contrast,
the general framework of Fig. 8 suggests nontrivial phase response in reaction
to perturbation. Since the clock ‘hears back’ from the mechanism, its dynamics
depends on the paired state, and perturbations can move it from one isochron
to another in the coupled state space (cf. §2.3.1). An exception to this occurs
in the specialized (but important) feedforward decentralized setting (bottom
left of Fig. 7) in which the feedforward nature of the clock signal may lend
it something of the character of a classical reference signal. In this case, the
internally-generated rhythm would persist despite external perturbation, and
convergence may occur to a fixed reference phase.

These two examples illustrate both the advantages and limitations of what
we have termed ‘prescriptive’ mathematical models for guiding experiments.
One can typically develop experimentally-viable tests that are mathematically
necessary (e.g., the predicted local transients are necessary to validate a pro-
posed template) and some that are sufficient (e.g., the observation of phase re-
setting is sufficient to refute trajectory tracking). However, it is most unusual to
find empirically-accessible conditions that are both necessary and sufficient for
the same hypothesis. Directionally uniform responses to perturbations suggest
but do not necessitate trajectory tracking – there might be reasons unrelated
to the structure of the linearized Poincaré map for preferential dissipation of
tracking errors in some directions. Similarly, absence of phase resetting sug-
gests but does not prove that control is dominated by trajectory tracking, since
the system could be operating in a localized feedforward mode.

3.3.2 Hypothesis H2: Collapse of dimension

We noted in §1 (Fig. 1) the challenge of explaining how simple templates such as
the SLIP apparently emerge from complex models (anchors) that include body
segments, legs, muscles and neural circuitry. Templates can resolve the redun-
dancy of multiple legs, joints and muscles by a ‘posture principle’ that imposes
symmetries and exploits synergies (§2.4.1). In §3.1 we reviewed a growing body
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of evidence establishing that diverse species differing in leg number and posture
run stably like the SLIP in the sagittal plane. The remainder of this paper
will focus on the closely-related LLS model as a template for horizontal plane
running, and will summarize our attempts to discover how this template might
arise within insects.

Explaining how simple templates emerge within complex bodies undertaking
agile maneuvers has stimulated new models, as we shall show in §5. The effort
to find control mechanisms that effectively collapse dimension must address de-
tails of morphology and command and impose specific expectations about the
role of multiple legs, the joint torques that actuate them, muscle recruitments
that produce those torques, and neural circuits that activate the ensemble. Un-
fortunately, the present lack of prescriptive hypotheses limits our ability to
draw specific conclusions on how postures might anchor templates. While robot
postures can be shown to be sufficient for anchoring templates with copious
feedback and computationally-intensive control [53, 280, 255, 334, 286], they
are not necessary and their reliance upon high control authority may be biologi-
cally implausible, as remarked in §2.2. Moreover, whereas preflexive (sensorless)
postures are empirically observed to anchor the SLIP template in RHex [13], a
mathematical basis for this observation is still unknown.

In spite of this lack, the success of the SLIP and (as we shall show) LLS
templates in modeling many-legged, sprawled-posture animals suggests that a
passively self-stabilized, feedforward, tuned mechanical system can reject rapid
perturbations and thus simplify control. Specifically, in running, we hypothesize
that preflex- and reflex-mediated joint dynamics leads to spring-mass template
motions. Existing mathematical insight dictates that sets of neurons, muscles
and joints must act synergistically, and the resulting preferred postures enable
animals to reduce the number of control signals required throughout a stride.
Limb motions tracking a reference trajectory would require many more signals,
since each degree of freedom would require a separate reference with its own
feedback channel.

In the next subsection we introduce a hypothesis that presumes this notion
of template reduction, and uses a phase variable as the single state to be inter-
nally coordinated. However, any periodic behavior, interpreted as a normally
hyperbolic attracting limit cycle of a dynamical system, induces a scalar phase
via the theory of isochrons (§2.3.1), so from a purely mathematical viewpoint,
the generality of phase allows the direct participation of the complete anchor in
limb coordination. Why, then, would templates be needed?

We believe that the communication and computational burdens implied by
high-dimensional state exchange across an entire limb and the subsequent iden-
tification of isochrons ‘on the fly’ would largely negate the virtues of phase vari-
ables for inter-limb coordination, unless intra-limb components, and the CPG
and muscle complexes activating them, are stereotypically coordinated during
high-speed running. If such a low-dimensional neuromechanical limb template
exists, however, then its further reduction to a phase oscillator (§2.3.3) would
be simple and would effectively summarise the only state variable that needs to
be communicated to other limbs to ensure coordination. Thus, if we can show
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that detailed CPG, muscle and limb models can be reduced to phase oscillators
under suitable conditions, and interlimb coordination described by these alone,
we shall have gone some way toward our goal. In §5.4 we show that CPG and
motoneuron models, at least, can be so reduced in a purely feedforward setting.

3.3.3 Hypothesis H3: Tunable coordination control architecture

Fig. 7 illustrates two key trade-offs that arise during the evolution of a loco-
motor control system: between feedback vs. feedforward control, and between
centralized vs. decentralized coordination. Numerical simulations [206] and em-
pirical work [333] suggest that these trade-offs largely determine the efficacy of
a particular machine gait in a particular environment, and there is a voluminous
neuroethology literature devoted to tracing their impact on animal locomotion,
reviewed in §2.4.2. But how does the articulation of this control space sharpen
our ability to make predictions about locomotion?

First, we hypothesize that when an animal runs fast, has noisy sensors or is
able to appropriately tune its musculoskeletal system to its environment, it will
operate primarily in a feedforward, decentralized fashion, attaining stability via
preflexes and coordination by mechanical coupling of springy legs. In contrast,
when moving slowly, with accurate sensors or in uncertain environments, ani-
mals will function in a predominantly feedback, centralized fashion via neural
reflexes and synchronized oscillators. The models described in §5 (especially
§5.4), and the physical robots that have accompanied them [11, 333], explicitly
couple neural control to the mechanical system, thus providing parameteriza-
tions that are analytically and empirically accessible on robots and, hence, may
serve as guides to the forms that these connections take in animals.

Second, we hypothesize that diverse behavioral repertoires require animals to
move within their control architecture space by tuning controls to adapt locomo-
tion to different environments and to different operating regimes within a given
environment. However, linear systems theory with its clear design prescrip-
tions cannot directly address the strongly nonlinear, coupled neuromechanical
systems of interest, and characterizations of environmental properties that de-
mand different operating points is even less well developed. Substantially more
modeling, and analytical progress, will be required before this hypothesis can
be tested more than qualitatively, e.g. by examining simulated, physical robot,
and biological behaviors that fail in specific environments with inappropriate
operating points.

Whether set correctly or not, the question of how to determine an ‘operating
point’ at all raises interesting methodological problems. In a physical or numer-
ical model, the wiring diagram of Fig. 7 is explicitly parametrized [205] and
the operating point is designated by the user. In contrast, one requires a more
abstract information-theoretic framework of a kind only recently emerging from
computational neuroscience [314] within which to develop relationships between
such diagrams and parametrizations to experimental outcomes with neural cir-
cuitry. Within such a framework, absent knowledge of the source code or even
the details of physiological connections, the operating point on our architectural
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plane can be at least partly surmised by assessing the bit rate of measured neural
signal flow [315]. Under any circumstances, the strength of the coupling gains
is limited by the channel capacity of the network that supports them. As the
time constants of external task demands become shorter, the internal synchro-
nization gains would exceed channel capacity constraints, forcing a decrease in
the degree of centralization and a concomitant increase in distributed sensing.

Within this framework, our hypotheses can be used to make specific pre-
dictions about how animals’ coordination capabilities will change or even fail
as internal noise (decrements in the available neural channel capacity) or ex-
ternal bandwidth requirements (increments in the speed and or precision of the
required mechanical coordination) are varied. In the face of the highest band-
width performance tasks, the neural communications channels may be too noisy
to permit high enough feedback or synchronization gains, and the animal may
be forced to operate in a decentralized and feedforward manner, in which co-
ordination is achieved through mechanical coupling, and stability obtained by
preflexes. As the bandwidth requirements of the task decrease, higher reflex and
synchronization loop gains could be tolerated, increasing the efficacy of feedback
and central authority.

3.3.4 Hypothesis H4: Task level control and its identification

In foraging, mating, exploring and fleeing, animals are capable of impressive
feats of navigation. To accomplish these, we hypothesize that they function
as if ‘directing’ a simple, self-stabilizing spring-mass template. Such systems
require few tunable parameters to steer (e.g., velocity and center of mass height
at mid-flight), and these act as control affordances in support of a goal (e.g.,
the body should track a nearby wall). This in turn defines a ‘higher’ task-level
description (e.g., stride-to-stride relation of the mass center to the wall as a
function of parameters). We suppose that environmental sensing loops are closed
with respect to such dynamical tasks, thus generating new attractors for the
overall neuro-mechanical system that achieve desired trajectories: e.g., sensory
signals from antennae contacting the wall may shape spring-mass parameters
from stride to stride, creating a virtual stability basin two centimeters from the
wall.

We hypothesize that these virtual task basins are ‘emergent properties’ of
control loop architectures that animals ‘follow’ in a natural manner, much as
they follow attractors emerging from their mechanical characteristics within
higher-speed preflexive regimes. This differs significantly from the conventional
notion of servo-controlled matching to pre-defined trajectories within a ‘sense-
plan-act’ scheme. We believe that it is now possible to seek and empirically
characterize these virtual task basins. Data collection and analysis methods
arising from the information-theoretic view of the animal nervous system, along
the lines described in the previous subsection, should be capable of supporting or
refuting these hypotheses. But since the variety of volitional tasks must exceed
their basic behavioral constituents, a more open-ended approach to discovering
new behavioral patterns is needed. We refer to this strategy as ‘dynamical data
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mining.’

4 Hybrid dynamical systems

The models of legged locomotion considered in this paper are more complicated
than classical (smooth) mechanical systems. Due to impacts, ground reaction
forces, and changing stance patterns, the governing equations define hybrid sys-
tems in which the continuous-time vector fields describing evolution change at
discrete times or events. Indeed, since the constraints that define these vector
fields depend on the number and identity of legs in contact with the ground,
even the dimension of the governing vector field may change at an event, and
different coordinate systems may be called for. While various definitions have
been proposed for hybrid systems, we shall follow one similar to that introduced
by Back et al. [19]. Their approach is predicated upon four requirements: (1)
existence of solutions in a general setting, (2) straightforward implementation
of simulations, (3) inclusion of systems drawn from a wide range of applica-
tions and (4) amenability to analysis using tools from singularity theory and
smooth dynamical systems. From a computational perspective, however, there
are some differences between the present situation and that of [19] in that, due
to the piecewise-holonomic constraints noted in §2.1, the equations of motion are
typically differential-algebraic equations (DAEs) rather than purely differential
equations.

4.1 Introductory examples

There are several mathematical and computational obstacles to formulating a
fully satisfactory definition of hybrid systems. The basic idea of following a
vector field until an event occurs, then ‘jumping’ to a new initial condition
for a new vector field and continuing to flow from there is clear, but it seems
impossible to fully maintain the basic properties of existence and continuous
dependence of solutions of ordinary differential equations on initial data. We
illustrate this with a pair of two-dimensional examples.

Consider first a piecewise constant vector field f defined by f(x, y) = (1,−1)
if y ≥ 0 and f(x, y) = (1, 1) if y ≤ 0, assigning different discrete states to
the upper and lower half planes. When a trajectory arrives at the x-axis, the
event changes its discrete state but leaves its location unchanged. It is evident
that there is no solution of the system with initial condition on the x-axis.
Trajectories in the upper half plane point into the lower half plane and those in
the lower half plane point into the upper half plane. The state is stuck on the
attracting line y = 0, on which the vector field is multi-valued, perhaps ‘wanting’
to switch back and forth between the two discrete states infinitely often. This
chattering conundrum is well known in engineering, and two strategies have
been developed to address it. The ‘thermostat’ strategy derives from the desire
to turn heat on when temperature is below a set point T0 and off when it exceeds
T0. Indeterminacy at T0 is overcome by overlapping the regions in which the
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heat is on and off. An offset δ is defined and switches from on to off are made
at T0 + δ and from off to on at T0 − δ, producing hysteretic cycling, whose rate
can be adjusted by changing δ.11

The second strategy for dealing with chattering is to try to constrain the
system to lie along the boundary between the two states. This is not feasible
for the thermostat, but in mechanical devices we often wish to maintain such
a constraint. The theory of sliding modes, based upon differential inequalities,
achieves this [323]. In the context of motor control, imagine a situation in
which two muscles with nearby insertion points can be contracted to achieve
motion of a limb. Since forces from the two muscles add, a suitable linear
combination of contraction can be applied to enforce the desired constraint.
Both of these strategies are clearly relevant and appropriate to biomechanical
systems. In terms of hybrid systems theory, we regard sliding modes as distinct
discrete states in their own right, with differential-algebraic equations defining
the vector field which maintains a constraint.

A second example shows that conflicting choices between ‘target’ states seem
unavoidable in hybrid systems. Consider a two-dimensional vector field describ-
ing discrete state 1 of a system. When a trajectory in the first quadrant reaches
the x-axis, we assume that there is a transition to discrete state 2, and when a
trajectory reaches the y-axis, there is a transition to a distinct discrete state 3.
When a trajectory reaches the origin, a decision must be made between transi-
tions to states 2 and 3 or the origin must be regarded as a further discrete state.
Whichever choice is made, we lose continuous dependence of solutions on initial
data. Whether this is reasonable in the example depends on the underlying
‘physics.’ The situation is reminiscent of what happens in a locomotion model
when two feet make simultaneous ground contact. In the analogous problem
of triple collisions in the three body problem [242], it is known that no ‘regu-
larization’ is possible and that solutions do not depend continuously on initial
conditions (in contrast, double collisions are regularizable).

Issues such as these leave us in a quandary regarding formal definitions of
hybrid systems. More restrictive definitions yield stronger results on existence,
uniqueness and continuous dependence on initial data, while less restrictive ones
encompass a larger set of examples. We adopt the principle that computational
simulation of models is a priority: without simulation, it is difficult to extract
useful information about model behaviors. Consequently, we choose definitions
that ease the implementation of simulations. With this in mind, we turn to the
definition proposed by Back et al. [19].

11A second approach to the thermostat problem is to define a minimum time that the heat
remains off or on. Theoretically, we regard this approach as undesirable for two reasons: it
introduces ‘delays’ into the system that complicate the theory, and the choice of off/on state
at temperature T0 is not really resolved: two different trajectories are allowed from the same
initial point.
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4.2 Formal definitions

The state space of a hybrid system is a union

V =
⋃

α∈I

Vα ,

where I is a finite index set and each Vα is a connected open set in IRnα . The
Vα are called charts. Note that the dimension of the charts may depend upon α.
A state of the system consists of an index α together with a point in the chart
Vα. We assume that a continuous time dynamical system is defined on each
chart. If these systems are defined by DAEs rather than ODEs, we regard the
chart as the set of points satisfying the algebraic constraints and suppose that
the system is (uniquely) solvable at each point of the chart. Inside each chart
Vα, we assume that there is a patch Uα, an open set whose closure Ūα ⊂ Vα

lies in the chart. We assume that the boundary of the patch is a finite union
of level sets of smooth boundary functions hα,i : Vα → IR. We further assume
that there are transition maps Tα : ∂Uα → V × I that apply a change of states
to points of the patch boundaries. Depending upon context, we may wish to
leave the transition maps undefined on (small) subsets of the patch boundaries
where the evolution of the system is not determined by underlying physics. We
assume that the images of the transition maps lie at states that are initial points
for a continuous time trajectory inside the closure of a patch. Intersection of a
continuous time trajectory with a patch boundary is called an event .

Global evolution of the system consists of concatenation of flows along con-
tinuous time trajectories to events, followed by applications of the transition
map at the event point. More precisely, a trajectory defined on the time in-
terval [t0, tn] with events at times t1 < . . . < tn−1 consists of discrete states
α0, . . . , αn−1 and smooth curves γi : [ti, ti+1] → Vαi

with the properties that

• γi is a trajectory of the continuous time dynamical system on Vαi
, and

• Tαi
(γi(ti+1)) = γi+1(ti+1).

We call the time intervals [ti, ti+1] epochs.
Steady gaits in locomotion are represented by periodic orbits, and their

stability properties are clearly of great importance. To determine stability, a
Jacobian for the Poincaré return map linearised on a periodic orbit of a generic
hybrid system can be constructed as the composition of derivatives of the flow
maps during each epoch, interleaved with derivatives of the transition maps
between the epochs. Since flow maps along the epochs lead to variable event
times, determined by when trajectories hit patch boundaries, this computation
is somewhat subtle. The derivative of the map along the flow to the event
surface is not simply the derivative of the flow map at a prespecified time, but
must be computed as follows.

Let ẋ = f(x, t) be an n-dimensional vector field with flow Φ(x, t) : IRn×IR →
IRn, and let g : IRn → IR be a smooth function whose level set g = c defines
the patch boundary hit by trajectories with initial conditions near x0. We
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assume that the level set of g is transverse to the vector field: Dg · f 6= 0, at
the point where the event occurs. We denote the time of an event along the
trajectory with initial condition x by τ(x), a function determined implicitly by
g(Φ(x, τ(x)) = c. We define Ψ : IRn → IRn to be the map that sends x to the
intersection of its trajectory with the surface g = c; i.e., Ψ(x) = Φ(x, τ(x)).
Thus g ◦ Ψ is constant, Ψ is singular and

DΨ(x) = DxΦ + DtΦ · Dxτ . (25)

Differentiating the equation g(Φ(x, τ(x)) = c gives

Dxg · (DxΦ + DtΦ · Dxτ) = 0 . (26)

Now DtΦ = f(x, τ) by the flow property and Dxg · f 6= 0, so (26) implies that
Dxτ = −(Dxg · f)−1 · Dxg · DxΦ. Using this, we compute from (25):

DxΨ = DxΦ − (Dxg · f)−1 · f · Dxg · DxΦ . (27)

These formulae are used in the numerical computations of periodic orbits
and their eigenvalues, to be described next.

4.3 Numerical Methods

Models of legged locomotion are hybrid dynamical systems in which the continuous-
time vector fields are constrained Lagrangian mechanical systems. These differ
from generic ODEs in two substantive ways, both of which must be addressed
to achieve accurate simulation.

• Events encountered by trajectories must be detected and computed accu-
rately.

• The differential-algebraic equations have index 3.

With regard to the second point, a DAE has differential index k if k differ-
entiations of the original system are required to obtain a system of ordinary dif-
ferential equations whose trajectories coincide with solutions of the DAE [168].
Mechanical systems with time-dependent holonomic constraints can be written
in the form

q̇ = u ,

M(q, t)u̇ = f(q ,u, t) − GT (q, t)λ ,

g(q, t) = 0 ,

where M is a positive-definite mass matrix, g specifies the constraint functions,
G(q, t) = Dqg and λ is a vector of Lagrange multipliers. Since λ does not
appear in the third (constraint) equation, this cannot be solved algebraically to
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eliminate λ, but by differentiating it twice with respect to time we obtain the
DAE system

[

M GT

G 0

](

u̇
λ

)

=

(

f
−(uT Dqqg u + Dqtgu + Dttg)

)

,

in which the matrix is generically nonsingular. Differentiating once more yields
a regular ODE for λ. This makes three differentiations in all. See [266, Chap.
2] for more details.

Before addressing numerical issues per se, one must first express the equa-
tions of motion in consistent forms amenable to the solution methods to be
used. For multibody mechanical systems, doing this by hand is tedious and
error-prone. In this section, we describe new methods from E. Phipps’ the-
sis [266] that have the potential to significantly outperform existing methods in
accuracy and ease of problem formulation.

Newton’s laws of motion for a constrained multibody system state that the
time-derivatives of its linear and angular momenta are given by the forces and
moments acting on the bodies. Application of these laws requires a minimal
set of coordinates that specify the state of the system. As even the simpler
examples of §5 below indicate, expressions for velocities and accelerations in
these coordinates can be lengthy, making it cumbersome to derive Newton’s
equations in this ‘direct’ manner. While automated systems have been devel-
oped to aid in these derivations, Lagrangian formulations give a more concise
approach, their main advantage being that the system’s kinetic and potential
energies can be described in terms of redundant coordinates so long as these
are subjected to the relevant constraints. The price paid for doing this is that
the resulting Euler-Lagrange equations of motion are DAEs rather than ODEs.
Moreover, even in the Lagrangian formulation, the differentiations that produce
the Euler-Lagrange differential equations yield lengthy expressions for systems
of modest size. It is therefore desirable to simulate a system automatically from
inputs that consist only of the Lagrangian and the constraints. Phipps [266]
designed and implemented codes to do just this.

Phipps computes Taylor series expansions of trajectories, as functions of
time, directly from the Lagrangian and the constraints. He allows constraint
functions that are smooth in positions and linear in velocities. In principle, this
is a straightforward process involving substitution of expansions with undeter-
mined coefficients into the Euler-Lagrange and constraint equations and solving
for the coefficients. In practice, one needs methods that handle data structures
for the Taylor series expansions and the lengthy algebra involved in solving
the equations. Such methods have been developed as part of a collection of
techniques known as automatic differentiation or computational differentiation
[159, 160]. A code that evaluates a function expressed in terms of elementary
functions contains the information needed to compute its derivatives. Automatic
differentiation codes carry out the process by applying differentiation rules for
elementary functions and binary operations in a step-by-step fashion. Many
intermediate results are generated in automatic differentiation; these need not
be explicitly displayed, but the methods are memory intensive. Indeed, the
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Euler-Lagrange equations themselves can be hidden from the user. One of the
advantages of automatic differentiation over approximation of derivatives by fi-
nite differences is that there are no truncation errors: accuracy is limited only
by round-off errors in applying differentiation rules.12

The result of applying automatic differentiation to a Lagrangian with con-
straints is a large system of equations for the coefficients of the degree-d Taylor
polynomial of a trajectory. Here d is an algorithmic parameter that determines
the asymptotic order of accuracy of the algorithm. In the case of ODEs, the
system of equations is triangular and readily solved. Equations derived from
DAEs are not triangular, so it is necessary to address their regularity and effi-
cient methods for their solution. Phipps states hypotheses that the constraints
must satisfy for regularity to hold, implying that the DAE reduces to an ODE
on a submanifold of the state space. (These are satisfied for many locomotion
models; indeed, a minimal set of generalized coordinates explicitly defines the
vector field on such a submanifold.) He then gives procedures for evaluating
this vector field and computing its Taylor series expansion.

The problem of computing events accurately is easy to solve with Taylor se-
ries methods. The representation of trajectories as a concatenation of segments
defined by Taylor polynomials is dense: its order of accuracy is maintained at
all points of the segment. Therefore, intersections of the curves defined by the
Taylor polynomials with patch boundaries locate the events to the same order of
accuracy employed in the numerical integration. This property is manifestly not
true for many numerical integration methods in which the order of accuracy is
attained only at the endpoints of an integration step. Here, the computation of
events reduces to a one-dimensional root-finding problem along curves defined
by the Taylor polynomials.

The simplest method for seeking periodic orbits (steady gaits) is to follow
trajectories for a long time, hoping that they converge to the desired periodic
orbit. This strategy works best when the periodic orbit is asymptotically stable
with return map having eigenvalues well inside the unit circle. In these circum-
stances, the orbit has a neighborhood that is attracted to it at an exponential
rate determined by the eigenvalues. However, as the examples of §2.1 and those
to come indicate, the periodic orbits of interest here come in continuous families
and there are directions which may be unstable, neutrally stable, or only weakly
stable. Thus, algorithms that compute periodic orbits directly are a valuable
tool for the analysis of locomotion models. We briefly describe methods that
can be built ‘on top’ of the Taylor series integrator described above.

Direct computation of a periodic orbit is a boundary value problem. If
Φ is the flow of an n-dimensional dynamical system, we seek solutions of the
equation Φ(x, t) = x. Boundary value methods solve discretized versions of this
equation. The most widely used method for computing periodic orbits directly is

12Since the Euler-Lagrange equations contain derivatives of the Lagrangian, automatic dif-
ferentiation codes must be capable of recursive application: if F is defined by applying auto-
matic differentiation to a function f , then we want to be able to apply automatic differentiation
to the function F . Making extensive use of C++ templates, Phipps developed an automatic
differentiation code with this capability.
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a collocation method implemented in the program AUTO [102], but this has not
yet been adapted to hybrid systems. In contrast, shooting algorithms assume
that Φ and its Jacobian can be computed via a numerical integration method
and used directly to solve the equation. In simple shooting , one tries to solve
the equation Φ(x, t) = x. One technical problem that must be addressed is
that the system is underdetermined: there are n equations but n + 1 variables
(x, t). To obtain a unique solution, one adds another equation (called a phase
condition), that is satisfied by isolated points of the periodic orbit. Simple
shooting algorithms are indeed simple to implement; the Jacobian of Φ is easy
to obtain automatically with the Taylor series methods described above. If the
return map has no unit eigenvalues and the phase condition defines a surface
transverse to the periodic orbit, then the Jacobian of the augmented simple
shooting system of equations will be regular and Newton’s method will converge
quadratically to the solution from nearby starting values.

Simple shooting methods are hopelessly ill-conditioned on many problems.
Multiple shooting methods alleviate this difficulty by breaking up the periodic
orbit into segments, solving a system of equations Φ(xi, ti) = xi+1 for points
x0,x1, . . .xN and times t0, . . . , tN with xN+1 = x0. This seems to complicate
the problem, creating a larger system of equations to solve and making the
system even more underdetermined. The payoff is that a much broader class
of problems can be solved, and extension to hybrid systems is straightforward.
Specifically, transition maps are included in the discretization (xi, ti) of the
periodic orbit by regarding the boundary functions defining events as phase
conditions for the boundary value solver. The transition maps are applied at
events and their Jacobians are inserted in the computation of Jacobians for the
periodic orbit. Guckenheimer and Meloon [166] describe implementations of
multiple shooting methods using the Taylor series integration described above.
Phipps [266] extends these multiple shooting methods to hybrid systems.

4.4 A piecewise holonomic example: the SLIP

The discrete Chaplygin sled of §2.1.2 shows that (partial) asymptotic stability
is possible in some hybrid systems, even if the continuous-time vector fields
defining each epoch are Hamiltonian. We now return to a more complex and
realistic locomotion model that also exhibits asymptotic stability, the SLIP.
However, before describing it we note that other hybrid systems have return
maps whose natural canonical structures preclude asymptotic stability. One
set of such examples are ‘billiards’ problems involving rigid bodies bouncing
elastically at collisions with each other or with prescribed boundaries [29, 310].
A particularly simple case – a single elastic ball bouncing on a sinusoidally-
vibrating table – may be simplified as the area-preserving standard map [165,
§2.4].

In order to relate to horizontal plane (LLS) models in which yawing motions
play an essential role, we describe a generalized SLIP, endowed with rotational
inertia: Fig. 14, cf. Fig. 4, although here we shall analyze only the non-rotating
or point mass case. A massless, axially-sprung leg of unstressed length l is
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Figure 14: The spring-loaded inverted pendulum (SLIP) including pitching. (a)
The stance coordinate system; (b) the stance and flight phases comprising a full
stride. Adapted from [143].

attached to an extended body of mass m and moment of inertia I at a hip joint,
H, a distance d from the COM, G. The system’s configuration is determined
by the pitch angle θ and COM position (xG, yG) referred to an inertial frame,
although during stance, it is convenient to replace the Cartesian coordinates
(xG, yG) by polar coordinates: the angle ψ between the line joining foothold O
to G and the vertical (gravity) axis, and the distance ζ from foothold to COM:
Fig. 14(a). (Note that ψ increases clockwise, while θ increases counterclockwise.)
The (compressed) spring length is

η =
√

d2 + ζ2 + 2dζ cos (ψ + θ) . (28)

For simplicity, we take frictionless joints at O and H. Cartesian coordinates
provide the simplest description during flight. The body is assumed to remain
in the sagittal plane throughout. As we have noted, more complex running
models with elastic legs that include leg masses and hip springs have also been
studied [269, 237]

A full stride divides into a stance phase with foothold O fixed, the leg under
compression, and the body swinging forwards (ψ increasing); and a flight phase
in which the body describes a ballistic trajectory under the sole influence of grav-
ity. Stance ends when the spring unloads at leg length l and the foot reaction
force drops to zero; flight then begins, continuing until touchdown, which occurs
when the landing leg, uncompressed and set at a predetermined angle β relative
to horizontal, contacts the ground: Fig. 14(b). Control is applied only to reorient
the leg during flight, prior to touchdown. The touchdown and liftoff events are
respectively determined by COM height yG first reaching l sinβ − d cos θ from
above and leg length η first reaching l from below, and COM positions and
velocities are unchanged by either event. Thus, relative to the stance phase co-
ordinate origin O of Fig. 14, at liftoff (xLO

G , yLO
G ) = (ζLO sinψLO, ζLO cos ψLO).

A similar transition map from Cartesian to polar coordinates applies at touch-
down.

Using the coordinate system of Fig. 14, the kinetic and potential energies of
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the body may be written as

T =
1

2
m

(

ζ̇2 + ζ2ψ̇2
)

+
1

2
Iθ̇2 , (29)

Vtot = mgζ cos ψ + V (η (ζ, ψ, θ)) , (30)

where V denotes the spring potential. Forming the Lagrangian L = T −Vtot and
writing ∂V/∂η = Vη, we obtain the equations of motion for the stance phase:

ζ̈ = ζψ̇2 − g cos ψ − Vη (η)

mη
(ζ + d cos (ψ + θ)) , (31a)

ζψ̈ = −2ζ̇ψ̇ + g sinψ + d
Vη (η)

mη
(sin (ψ + θ)) , (31b)

θ̈ = dζ
Vη(η)

Iη
sin (ψ + θ) . (31c)

The flight phase dynamics are determined by the ballistic COM transla-
tion and torque-free rotation equations, which may be integrated in Cartesian
coordinates to yield:

xG(t) = xLO
G + ẋLO

G t , yG(t) = yLO
G + ẏLO

G t − 1

2
gt2 , θ (t) = θLO + θ̇LOt , (32)

where the superscripts LO refer to the system state at liftoff.
Eqns. (31) are in general non-integrable [16, 165, 180] and the stance tra-

jectory must be obtained numerically, even in the special case d = 0 in which
the rotation (θ) variable decouples and the system reduces to the 2 DOF point
mass SLIP of [32, 34]. However, if d = 0 and we additionally assume that the
spring is sufficiently strong, elastic energy dominates the gravitational potential
during most of the stance phase and we may neglect the gravitational force and
moment entering Eqns. (31a-31b). In this case the COM dynamics becomes a
central force problem with cyclic angular variables [150] that vanish from the
RHS of these equations, so the moment of linear momentum of the COM about
the foot, mψ̇ζ2, is also conserved and (31a) may be integrated precisely as in the
d = 0 and truly gravity-free LLS analysed below in §5.1.1. This approximation
is assessed and discussed in detail in [299].

Geyer et al. [142] employ a different approximation, retaining gravitational
forces but linearizing about the midstance compressed state. Their approxima-
tion is effective for small angles and weak springs, and reveals the interaction
between elastic and gravitational forces. Ghigliazza et al. [143] conduct pa-
rameter studies of SLIPs with both linear and nonlinear spring laws (the latter
corresponding to pneumatic devices used in some hopping robots [269]) in terms
of a nondimensional parameter γ = kl/mg. This parameter is the product of
Strouhal (kl2/mv2) and Froude(v2/gl) numbers, and expresses the relative im-
portance of elasticity and gravitation.

Composition of the stance and flight phase dynamics yields the approximate
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Figure 15: A family of approximate one-dimensional Poincaré maps for a linear
spring SLIP with k = 10,m = 1, l = 1.5, β = π/4 and speeds v̄ ranging from
3.2 to 8. The fixed points appear in a saddle-node bifurcation, and a gap then
opens as v̄ increases. When a pair of fixed points exists, that at larger δ is
unstable; the lower δ one may be stable or unstable, and for very high speeds
only the latter exists. From [143].

touchdown-to-touchdown Poincaré map:

P :

[

vn+1

cos (δn+1)

]

=

[

vn
√

1 − 2gl
v2

n

(sin (β + ∆ψ) − sinβ) cos (δn + π − ∆ψ − 2β)

]

,

(33)
in which the system’s state at the n’th touchdown is described by the COM
velocity magnitude vn and direction δn with respect to a horizontal datum
(Fig. 14(b)). In (33) the angle ∆ψ swept by the leg is given by the quadrature

∆ψ(vn, δn) = 2

∫ l

ζb

dζ

ζ
√

[mv2
n
−2V (ζ)]ζ2

mv2
n

l2 sin2(β−δn)
− 1

, (34)

where ζb is the leg length at midstride. In reducing this 2 DOF system to a
two-, rather than three-dimensional return map, we are using the fact that the
prescribed leg touchdown angle fixes the COM position relative to the stance
coordinate origin: (xTD

G , yTD
G ) = (−l cos β, l sinβ). If pitching motions were

allowed, two further state variables, θn and θ̇n, would be required, and the map
would be four-dimensional, as for the LLS and other models of §5.

Note that, due to energy conservation and the ‘constant height’ touchdown
protocol for d = 0, the COM speed vn is the same at each touchdown: this
is true even when gravity is included during stance. The dynamics is therefore
captured by the one-dimensional map formed from the second component of (33)
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Figure 16: A family of one-dimensional Poincaré maps computed by Phipps’
method. Gravity was included during stance. Fixed parameters are m = 1 and
l = 1.5 with the gravitational constant normalized to be 1. The touchdown
speed v̄ is varied from 3.2 to 8 in steps of 0.48, to match the speeds used for
Fig. 15. Newton’s method was used to precisely compute the stable periodic
orbit with v̄ = 5.12. The non-trivial eigenvalue of its monodromy map is -0.146.

with speed vn = v̄ viewed as a parameter. Fig. 15 shows an example for a linear
spring V = k(η − l)2/2. The gap in the domain of definition for higher speeds
is caused by liftoff conditions for which the COM fails to reach the necessary
touchdown height during flight and ‘stumbling’ ensues [143]. The maps shown
here indicate that, for speeds v̄ above a critical lower limit v̄SN at which a
saddle-node bifurcation [165] occurs, a stable fixed point exists, although its
domain of attraction shrinks dramatically as v̄ increases. For other parameter
choices and spring laws, period-doubling and even chaos may occur [143]. For
v̄ < v̄SN , the forward velocity at touchdown is too low to overcome the potential
energy barrier due to the forward-oriented spring leg, and the mass (eventually)
bounces backward: hence no periodic gaits exist.

Although the quadrature of (34) can be evaluated, in the case of a quadratic
potential, in terms of Jacobian elliptic functions [293], the expressions are dif-
ficult to use and the return maps of Fig. 15 were computed by direct (fourth
order Runge-Kutta) integration of (31a-31b) for d = g = 0.

We have also computed analogous maps including gravitational effects (but
still for d = 0) using the Taylor series methods described in § 4.3. Rather
than reducing to a two- or one-dimensional map, here one finds polynomial
approximations to trajectories of this 2 DOF hybrid system in the full four-
dimensional phase space. Applying Newton’s method to the resulting return
map and computing its Jacobian, we find for example that the stable fixed point
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has eigenvalues 0, 1, 1 and approximately −0.146 at v̄ = 5.12. The (generalized)
eigenspace of 1 is tangent to the plane spanned by the vector field (i.e., the
direction along the orbit) and the family of periodic orbits obtained by varying
v̄, and the zero eigenvalue is due to the singularity of the transition map at
touchdown. The final eigenvalue is that of the reduced one-dimensional map.
Fig. 16 shows results for a range of speeds (total energies); this figure should
be compared with Fig. 15. Note the qualitative agreement and quantitative
differences.

It seems a natural generalization to leave the saggital plane and consider
fully three-dimensional SLIP models, at first as 3 DOF point masses bouncing
on passive springs, and subsequently as 6 DOF rigid bodies. However, aside
from simulation studies such as those referred to in §2.3, there appear to have
been few analyses. The thesis of Carver [67], in which control strategies for
steering and foot placement were developed, is a notable exception, and it has
also recently been shown, neglecting gravity during stance as above, that the
point mass monopod SLIP is always unstable to a mode that involves toppling
out of the saggital plane, but that it can be easily stabilized by suitable, step to
step feedback adjustments of leg angle at touchdown [301, 300]. See §5.1.5 for
more information.

The partial asymptotic stability of the saggital SLIP, and of the horizontal
plane LLS models to be studied in §5 below, prompts the following:

Question: What are the characteristics of the events and transition maps
needed to obtain asymptotically stable periodic orbits in a (conservative) piece-
wise holonomic system? In systems with symmetries, what is needed to obtain
partially asymptotically stable periodic orbits? See Altendorfer, Koditschek and
Holmes [12] for a relevant, albeit far from complete, discussion.

At this point it is worth noting an important distinction between inertial
and body frame coordinate systems. Newton’s laws must be formulated in an
inertial (non-accelerating) frame [150], while limb positions and forces generated
in muscles, or collectively by limbs, are usually most conveniently represented
in body coordinates. Proprioceptive sensing and preflex or reflex control also
take place in the body frame. In formulating Eqns. (31-32) we use only inertial
frames, but in the models of §5 we pass back and forth between inertial and
body frames using rotation matrices.

The point mass SLIP with the fixed touchdown protocol described above
is simple enough to be amenable to (almost) complete analysis, although little
is known about coupled pitching motions (in case d 6= 0), or other touchdown
protocols. Here we have assumed the simplest such, requiring a minimum of
feedback: mere knowledge of the inertial horizontal datum during flight; given
this, leg placement is effected by feedforward control. More complex procedures
have been proposed, including ones in which the leg is retracted so that it
either begins its back swing prior to touchdown [304, 305, 307, 12], or, as in the
hexapedal robot RHex [285, 286], after liftoff it continues to rotate in the same
direction, passing ‘over the shoulder.’ These effectively enlarge the domain of
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attraction of stable gaits, partly by allowing the SLIP to recover from stumbling.

5 Mathematical models for horizontal plane dy-

namics

We now move from a general survey of biomechanics and neuromuscular con-
trol of locomotion to an account of a range of models that we have developed
ourselves. We offer these as examples, starting with a simple biomechanical
template – the lateral leg spring (LLS) – and culminating in work in progress
to integrate CPG, muscles, body and limbs in a more detailed model anchored
in biology. To make the main ideas clear, we give a fairly detailed description
of the simplest model, and then successively curtail our accounts as we move to
more complex models, referring the reader to relevant literature.

As we have described, legged dynamics in the sagittal plane is often modelled
by an inverted elastic pendulum or SLIP (e.g., [68, 243, 32, 245, 34]). Since the
typical splayed insect leg posture implies sagittal static stability for the majority
of stance positions [317], in [293, 292] we introduced a similar model (without
gravity) to explore motions in the horizontal plane: the lateral leg spring (LLS)
system. Our hope is that, at least in near-steady gaits, sagittal and horizontal
plane dynamics might be only weakly coupled, so that independent analyses
will help us build towards an understanding of the full 6 DOF body motions
(see §5.1.5 below). Moreover, since in many insects leg masses are a small
fraction of body mass, we neglected limb masses. (In Blaberus, for example, if
we include the coxa joint, which does not move appreciably, with the body, total
leg mass is ≈ 5% of body mass [214, Table 1].) For additional simplicity, and
to capitalize on conservation of angular momentum in central force problems,
we at first restricted our analysis to bipedal models with a 50% duty cycle, so
that precisely one ‘effective foot’, representing three legs of a tripod acting as
one, is in ground contact at any time. If foot contact is assumed torque-free,
for such models angular momentum is conserved about the stance foot, as it is
about the peg in the model of §2.1.2.

5.1 The simplest passive model

The basic LLS model is shown in Fig. 17(a). A rigid body of mass m and
moment of inertia I moves freely in the plane under forces generated by two
massless, laterally rigid, axially-elastic legs, pivoted at a point P (generally
displaced forward or backward a distance d from the COM G), and intermit-
tently contacting the ground at feet F,F ′ with a 50% duty cycle. F,F ′ and
P are pin joints (no torques). In considering multilegged animals, we appeal
to the stereotyped use of a double-tripod gait in hexapods [136] and a double
quadruped gait in crabs [33], and represent each support set in stance by a single
effective or virtual leg. Errors induced by collapsing leg groups linked in such
stance phases to a single virtual leg are discussed below, and in §5.3 we shall
describe a hexapedal model that overcomes this problem.
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Figure 17: The LLS model: (a) The general set-up; (b) The (ζ, ψ, θ) polar
coordinate system used during left stance phase. Here leg length is η and ±β
denote leg touchdown angles. From [293].

A full stride begins at left touchdown at time t = tn with the left leg spring
relaxed at angle +β relative to body orientation; the left stance phase ends at
tn+1 when the spring is again relaxed, the body having ‘run past its foot.’ The
left leg then begins its swing phase and the right leg simultaneously touches
down at angle −β; its stance phase, and the stride, ends with spring relaxation
at right liftoff/left touchdown tn+2. We use the convention that n even (resp.
odd) refers to left (resp. right) stance. Balance of linear and angular momentum
results in three equations of motion for COM translation r(t) = (x(t), y(t)) and
body orientation θ(t) during stance:

mr̈ = R(θ(t)) f , Iθ̈ = (rF(tn) − r) ×R(θ(t)) f , (35)

where R(θ) is the rotation matrix, needed to transform leg forces f , usually
specified relative to the body, to the inertial frame; rF(tn) denotes touchdown
foot position, expressed via d, l, β and body angle θ(tn) at touchdown, and ×
denotes the vector cross-product. The ‘hip-pivot’ P may be fixed, or may move
in a prescribed manner (perhaps dependent on leg angle φ relative to body);
the specific (linear) rule

d = d0 + d1(ψ − θ) (36)

exemplifies both cases (d1 = 0: fixed; d1 6= 0: moving). We shall initially
suppose that d is fixed.

Global conservation of total energy, and conservation of angular momentum
LF = Iθ̇+(r−rF )×mṙ about the foot in each stance phase, assist in integration
of (35), which is most easily done in a polar coordinate system centered on the
foot: Fig. 17(b). We summarise the results, a complete account of which appears
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in [293]. In terms of the polar coordinates (ζ, ψ) and θ, the kinetic and potential
energies and the total angular momentum about the (left) stance foot take the
forms:

T =
1

2
m(ζ̇2 + ζ2ψ̇2) +

1

2
Iθ̇2 , (37)

V = V (η) with η =
√

ζ2 + d2 + 2ζd sin(ψ − θ) , (38)

LF = mζ2ψ̇ + Iθ̇
def
= pψ + pθ (= const.) , (39)

and Lagrange’s equations are:

mζ̈ = mζψ̇2 − Vη

η
[ζ + d sin(ψ − θ)] , (40a)

m(2ζζ̇ψ̇ + ζ2ψ̈) = −d
Vη

η
ζ cos(ψ − θ) , (40b)

Iθ̈ = d
Vη

η
ζ cos(ψ − θ) . (40c)

Reflecting about θ = 0, which takes θ 7→ −θ, we obtain an analogous description
for right foot stance; thus, appeal to our n even-left odd-right convention and
replacement of θ by (−1)nθ in (40) supplies the two vector fields that, alternately
applied, define the hybrid dynamical system. This formulation allows a general
spring potential V , but the explicit examples that follow assume a linear spring
V = k(η − l)2/2. Note that (40) is a gravity-free version of the full SLIP model
(31) in its stance phase (with a different definition of leg angle ψ).

Assuming that one stiffness parameter suffices to describe the spring, as in
the linear case, the entire model is characterised by six physical parameters: leg
stiffness, k, relaxed length, l, and pivot position relative to COM, d, along with
m, I and β. Normalizing lengths with respect to l and nondimensionalizing time
t̃, these may be reduced to four nondimensional groups:

k̃ =
kl2

mv2
, Ĩ =

I

ml2
, d̃ =

d

l
, and β ; with t̃ =

vt

l
. (41)

Here v is a representative speed (e.g. COM velocity magnitude at touchdown,

or average forward speed < v >) and
√

k̃ is a Strouhal number characterising
the ratio of storable potential to kinetic energy. Dynamically similar periodic
motions have the same Strouhal number [8]. Indeed, for fixed k̃, Ĩ , d̃ and β,
solutions of (35) describe identical paths in (r, θ)-space, scaled by l, at rates
determined by t̃. This formulation is useful for parameter studies [294], but
here we shall retain dimensional quantities to permit direct comparisons with
experimental data.

For most of the examples to follow, parameters characteristic of the death-
head cockroach Blaberus discoidalis were selected [135, 317, 214]: m = 0.0025 kg, I =
2.04 × 10−7 kg m2, l = 0.01 m, d = −0.0025 m, k = 2.25 − 3.5 N m−1, β =
1 radian (57.3o). I and m may be directly measured, and choices of l and β
are constrained by the requirement that stride length Ls = 4 cos β ≈ 0.022 m
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Figure 18: Defining a Poincaré map for the LLS model: (a) the general case;
(b) the case d = 0. From [293].

at the animal’s preferred speed of ≈ 0.25 m s−1. Stiffnesses were chosen to
given a reasonable average forward speed range for steady gaits (above < v >≈
0.15 m s−1), and to ensure that leg compressions at midstride were not excessive.
We shall refer to these choices as the ‘standard’ parameter set.

The three degrees of freedom of (35) or (40) demand specification of six ini-
tial conditions; however, as for the sleds of §4.1, the system is invariant under
SE(2) in the sense that only the COM position relative to foothold (r− rF(tn))
and body angle θ relative to inertial frame appear in the governing equations.
We find it convenient to define a reduced set of four variables that describe the
body’s ‘internal dynamics’ at touchdown: as in the SLIP of Fig. 14 these are the
COM velocity magnitude v(tn) = |ṙn(t)|, COM velocity direction or ‘heading’
δ(tn) relative to body axis, along with body orientation θ(tn) relative to the in-
ertial reference frame, and body angular velocity ω(tn) = θ̇(tn): see Fig. 18(a).
Here we retain the ‘mechanical’ terminology of [293, 292]. In traditional biologi-
cal usage, heading denotes the COM velocity with respect to compass direction,
i.e. the quantity δ + θ, and body orientation denotes the angle the body makes
with the velocity vector (δ). Note that δ is positive towards the leg that is
touching down, and δ ∈ [β − π/2, β].
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Given the total (kinetic) energy at touchdown:

E = T0 =
p2

ζ

2m
+

p2
ψ

2mζ2
0

+
p2

θ

2I
, (42)

where

ζ0 =
l sin(π − β)

sinα
and d sinα = l sin(β − α) (43)

are determined by touchdown geometry, and noting that

ζ̇ = v cos(β − δ) and ψ̇ =
v

ζ0
sin(β − δ) (44)

at touchdown, all six initial values necessary for integration of (40) may be
found from (v, δ, θ, ω) and the touchdown parameters l, β. Integration yields
left and right single stance maps FL and FR specifying these variables at each
touchdown instant tn+1 in terms of their values at the preceeding touchdown
tn, and composition yields the ‘full L-R stride’ Poincaré map P = FR ◦ FL:

(vn+2, δn+2, θn+2, ωn+2) = P(vn, δn, θn, ωn), (45)

where vn = v(tn), etc.. Note that the ‘full stride’ includes left and right stance
phases, unlike the stance-flight SLIP map of §2.2, and might more properly be
called ‘double stride.’

Four-dimensional Poincaré maps of the form (45) suffice to describe all the
models treated in this section. No matter how many or complex their legs,
muscles or neural architectures, the feet in stance ultimately supply forces and
moments to the body via equations of the general form (35), leading to incre-
mentation of the dynamical variables (v, δ, θ, ω) from stride to stride. Thus,
the locomotive behaviors of both the LLS template, and the more complex and
anchored hexapedal and neuromechanical models of §§5.3-5.4, are summarised
by the four-dimensional maps. Of course, this does not mean that the maps are
simple to compute in any of the examples, but solutions of some special cases
may be found in closed form or approximated perturbatively. To these we now
turn.

5.1.1 An integrable limit: d = 0

Using (39), Eqns. (40) can be reduced to 2 DOFs, but in general no further
constant of motion, excepting the total energy, exists. However, if the legs are
attached at the COM (d ≡ 0), the rotational DOF θ trivially uncouples and
each component pψ and pθ of LF is individually conserved (cf. (40b,c): both
ψ and θ are cyclic coordinates). The system is therefore completely integrable
and may be reduced to a quadrature using conservation of energy [150, 16]:

E =
mζ̇2

2
+

p2
ψ

2mζ2
0

+
p2

θ

2I
+ V (ζ) = E0 . (46)
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Figure 19: The single-stance return map for mass center touchdown velocities
v̄ = 0.1 − 0.45msec−1 in the case of a linear spring with m = .0025, l = .01,
k = 2.25 and β = 1. From [294].

Specifically, since ζ ≡ η, symmetry of the phase portraits about mid-stance
implies that the angle (β − δ) between the mass center velocity direction and
the leg is equal at lift-off to its value at touchdown. As may be seen from
Fig. 17(b), this implies that the angle δn+1 at right touchdown may be computed
from vn, δn at left touchdown as

δn+1 = δn + π − (∆ψn + 2β) + (θn+1 − θn), (47)

where ∆ψn = ∆ψ(vn, δn) is the net angle the leg turns through during the
stance phase. This leads to the single stance maps (n even-left, odd-right):

vn+1 = vn

δn+1 = δn + π − (∆ψ(vn, δn) + 2β) + (−1)nωτ(vn, δn)

θn+1 = θn + ωnτ(vn, δn)

ωn+1 = ωn (48)

where τ(vn, δn) denotes the stance phase duration.
Using (44) with ζ0 = l and the conserved mass center kinetic plus potential

energy, from (40) with d = 0 we compute the quadratures:

τ(v, δ) = 2

∫ l

ζb

√
mζ dζ

√

[mv2 − 2V (ζ)]ζ2 − mv2l2 sin2(β − δ)
, (49)

∆ψ(v, δ) = 2

∫ l

ζb

dζ

ζ
√

[mv2−2V (ζ)]ζ2

mv2l2 sin2(β−δ)
− 1

, (50)
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where ζb is the (minimal) spring length at mid-stride (ζ̇ = 0: Fig. 18(b)), given
by:

[mv2 − 2V (ζb)]ζ
2
b = mv2l2 sin2(β − δ) . (51)

Explicit formulae for the cases of quadratic and inverse square potentials, cor-
responding to a linear spring and a model for an ‘air spring’ [269], are given
in [293], but the former are in terms of Jacobi elliptic functions and awkward
to use. Schwind and Koditschek [299] provide useful approximations in terms
of elementary functions. An upper bound for ∆ψ is easily found by considering
the limit v̄ → ∞, in which potential energy may be neglected and the COM
travels in a straight line [293]:

∆ψ(v, δ) ≤ π − 2(β − δ) . (52)

Fig. 19 shows graphs of the resulting one-dimensional single stance return map
(the second row of (48)) for a linear spring and parameters characteristic of
Blaberus discoidalis over a range of touchdown velocities. When ∆ψ has a
unique maximum and its slope is always less than 2 (for which (52) is necessary
but not sufficient, but which holds for linear and air springs [293, 294]) then this
map is unimodal [165] and has at most one stable fixed point, an unstable fixed
point, and no other invariant sets. Moreover, there is no gap in its domain of
definition. (Compare Fig. 19 with the SLIP Poincaré maps shown in Figs. 15-16
of §4.4.)

Question: An open question which may appeal to analysts is to classify those
potential energy functions V (η− l) that, via (50-51), yield return maps possess-
ing at most a unique stable fixed point, or, more generally, a single attractor.
The latter would follow if it could be proved that δ−∆ψ has negative Schwarzian
derivative [311, 165]. Direct computation of derivatives of ∆ψ yield indeter-
minate forms that appear difficult to deal with, and the Schwarzian involves
derivatives up to order three.

Fixed points of (48) correspond to symmetric gaits in which left and right
stance phases are mutual reflections, and the COM oscillates about a straight
path: (v̄, δ̄, θ̄, 0), with δ̄ implicitly determined in terms of v̄ by

∆ψ(v̄, δ̄) = π − 2β . (53)

The eigenvalues of the linearized map DP(v̄, δ̄, θ̄, 0) are λ1−3 = 1, with eigen-
vectors (0, 0, 1, 0)T , (∂∆ψ/∂δ,−∂∆ψ/∂v, 0, 0)T and a generalized eigenvector;
and λ4 = 1 − ∂∆ψ/∂δ|(v̄,δ̄), with eigenvector (0, 1, 0, 0)T . The first of these is
associated with rotational invariance and the second with conservation of en-
ergy; the third is special to this uncoupled case; as we shall see, for d 6= 0 it
perturbs away from 1. Note that, as v̄ increases, fixed points appear at a critical
speed v̄c in a saddle-node bifurcation when (53) is satisfied and simultaneously
∂∆ψ(v̄, δ̄)/∂δ = 1. For v̄ < v̄c kinetic energy at touchdown is insufficient to
overcome the spring potential and the body bounces back. Bifurcation dia-
grams illustrating branches of steady gaits arising in a similar saddle-node are
shown below for d 6= 0.
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5.1.2 Fixed COP: d 6= 0

For d 6= 0 (40) is not longer integrable, so we resort to numerical solutions
to construct the full stride map P. Details of the methods adopted, including
finite difference methods to approximate the Jacobian DP, are given in [293].
For small d a perturbative calculation, using power series approximations for
the state variables (η, ψ, θ) on the periodic gait, confirms these results [294].
We find that the branches of fixed points persist, as shown in Fig. 20(left), and
that one of the multiple eigenvalues breaks away from 1, moving inside the unit
circle for d < 0 and outside for d > 0: Fig. 21. Thus, for hip behind COM,
rotational coupling leads to bounded yawing oscillations and the body still moves
along a straight path. Fig. 22 illustrates the effect of an impulsive body angle
perturbation applied at touchdown on the third stance phase. After 1-2 steps,
the body recovers a straight path, having suffered a net heading change due to
the angular impulse. The manner in which the touchdown states recover is also
shown. Further examples are given in [292].

The fixed COP model, with appropriate geometry, exhibits partially asymp-
totically stable motions; indeed, since it is a conservative, rotationally-invariant
system, two of the four eigenvalues strictly less than one in magnitude are the
best we can do. But how well does the gait dynamics compare with experimen-
tal data? Fig. 23 shows forces, moments and velocities during a full left-right
stride. Comparing forward and lateral velocities during the stride to those re-
ported in [135, 214] and reproduced in the model of [216], reveals that they
match reasonably closely those observed for the cockroach. Forces generated at
the foot (or equivalently, at P ) also compare fairly well to net leg tripod forces
both in orders of magnitude and time histories, although the peak fore-aft forces
(±0.0014 N) and lateral forces (±0.0041 N) have magnitudes ‘reversed’ from
±0.004 N and ±0.0032 N taken to represent typical data in [216]. However, the
yawing θ variation for the model differs markedly from observations: it approx-
imates a negative sinusoid (central bottom panel of Fig. 23(b)). This is due
to the torque, which is positive during L-stance and negative during R-stance,
since d < 0 is fixed during stance (third panel of Fig. 23(c)). Experimental
studies ([214], and see Fig. 25 below) reveal that θ behaves more like a positive
cosinusoid , with θ̇ ≈ 0 at touchdown and liftoff.

Question: While explicit quadratures can be evaluated for specific spring
laws [293], the resulting expressions are often difficult to use. Taylor series ap-
proximations of orbit segments about mid-stride were developed in [294, 295],
but these are lengthy. For SLIP [299] proposed iterative approximations and
[142] linearised for small compressions and leg angles close to vertical. For
which species are particular approximations most suitable? Can more elegant,
accurate, or general approximations be found?
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Figure 20: Families of periodic gaits for the fixed and moving COP models
with ‘standard’ parameters characteristic of Blaberus discoidalis. From top to
bottom the panels show COM velocity vector direction δ, body angular velocity
ω ≡ θ̇ or body orientation θ at touchdown, and eigenvalue magnitudes |λ|. (For
fixed COP θ = const. at touchdown; for moving COP ω = 0 at touchdown:
hence our display of ω and θ respectively.) Stable branches shown solid, unstable
branches dashed (only the neutral and least stable eigenvalues are shown here).
Note the saddle-node bifurcations at v̄c, below which periodic gaits do not occur.
From [291].
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Figure 21: Numerically (solid) and analytically (dashed) computed eigenvalues
versus nondimensional hip offset d̃ = d/l for the standard (Blaberus) parameter
set. From [294].

5.1.3 Moving COP

We have noted that the fixed COP model (Fig. 23) produces yaw oscillations
of sinusoidal rather than the observed cosinusoidal form, due to body torques
incurred by the fixed ‘hip’ P . This may be remedied by allowing a moving
COP, as in Fig. 24, for which d was specified by Eqn. (36) with d0 = 0 and
d1 = −0.0035 m, resulting in variation of d = ±0.002 m, with d ≈ 0 at mid
stance: compare the bottom panels of Figs. 23 and 24. For these computations,
we took l = 0.008 m and k = 3.52 N m−1; again l and β are constrained by the
stride geometry: see Fig. 24. Branches of gaits exist for speeds above critical
much as in the fixed COP case: Fig. 20(right).

Quantitative comparisons of lateral force and velocity magnitudes remain
good, model values being ≈ 30% higher than experimental values. However,
fore-aft magnitudes differ more appreciably, being lower than in the fixed COP
model, and lower than experimental values by factors of 2-10 when compared
over a large data set [135, 129, 214]. (There is significant variation among trials
of individual animals, and among animals, even after scaling to the mass value
(m = 0.0025kg) used in the model.) The data shown as solid curves in Fig. 25
were reconstructed for a typical run of one animal as in unpublished work of
Garcia, Full, Kram and Wong (2000), from trials of [129] and [214]. These data
were selected for their clean phase relationships, although the fore-aft values are
unusually high, and we include fore-aft data (dashed) from [135] for a second
animal, closer to the mean values adopted in [216], to illustrate the variability.

We also note that the LLS model describes only horizontal plane dynamics,
while Fig. 25 is derived from three-dimensional motions. This may partially
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Figure 25: Experimentally measured COM velocity, yaw, leg force and moment
variations over a stride for Blaberus discoidalis moving at 0.22 m s−1. The sign
convention is the same as for the models. Data for all components from a single
trial [129, 214] are shown solid, with yaw angle computed from net moments; the
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illustrate variation in magnitudes and average speed (stride durations adjusted
to match). Since lateral forces were not simultaneously measured in [135], mo-
ments could not be computed, but they exhibit less variability. From [291].
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account for the underestimate of fore-aft forces and velocity variations by our
models. More strikingly, moments and yaw angles are significantly lower than
observed (by factors of 10-20); we ascribe this primarily to the collapse of the
leg support tripod to a single virtual leg; for futher details see [291]. In §5.3 we
show that a hexapedal model can rectify these quantitative mismatches.

5.1.4 On similarity, scaling and optimality

The LLS model was developed with insects, cockroaches in particular, in mind.
However, it may have relevance for other sprawled posture animals, of differing
sizes, through similarity relations. For geometrically-similar animals, l ∝ m1/3

and I ∼ ml2 ∝ m5/3. Stiffnesses are often assumed to scale according to elastic
similarity: k ∝ m2/3 [244], and as noted in §3.1 animal gaits are usually com-
pared at equal Froude numbers, Fr = v2/gl, as in the SLIP model [32], or equal
Strouhal numbers fl/v, where f is a characteristic frequency, as in studies of
flight and swimming [8]. The relaxed leg length l defined for the LLS model is
the horizontal projection of a full leg length, and thus we may still appeal to
Froude number similarity, leading to the relation v ∝ l1/2 ∝ m1/6. (We also
obtain this directly from Strouhal number similarity). Hence the nondimen-
sional parameters k̃, Ĩ and d̃ of (41) all remain constant for geometrically and
dynamically similar animals and the model predicts that such animals should
possess the same gait characteristics and stabilities, merely scaled in size and
time (frequency). For non-geometrically similar species, the scaling relation-
ships developed in [294] also permit prediction of gait families from a single,
‘standard’ parameter set.

By studying behaviors over ranges of parameter values beyond those for
which the LLS model was developed, it is also possible to investigate questions
of optimality. In [291], for example, we study eigenvalue dependence on average
speed and moment of inertia. We find that the cockroach’s shape and preferred
speed put it close to optimality; specifically: the stride map’s maximum (stable)
eigenvalue magnitudes are smallest for nondimensional inertia Ĩ, hip parameter
d̃ and forward speed v̄ characteristic of normal operation. For example, note
that the (larger of the) two stable eigenvalues shown in each of the bottom
panels of Fig. 20 are close to their minimum values in the preferred speed range
0.2 - 0.3 m s−1. See [291, Figs. 8 and 11], and for more general discussions of
the use of simple models, [133].

5.1.5 On three-dimensional motions

At the beginning of this section we observed that studies of the LLS and SLIP
models for horizontal and sagittal plane dynamics are predicated on the as-
sumption that coupling between these motions is relatively weak, and hence
that existence and stability results for gaits in those planes should help build
toward fully coupled three-dimensional models. We now describe recent work in
this direction. Seipel and Holmes [301, 300] have studied a point mass bipedal
SLIP model with stereotypical touchdown leg placement defined by two (spher-
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Figure 26: Monopedal, kangaroo-type bipedal and tripod-supported three-
dimensional point mass SLIPs. Only partial flight phases are shown. The
monopod requires feedback at touchdown for stability; the biped and tripod are
passively stable. Adapted from [300].

ical coordinate) angles β1, β2 relative to a fixed inertial frame (β1 is a splay
angle analogous to the LLS leg touchdown angle; β2 is the leg angle in a saggi-
tal plane). This 3 DOF model has single leg (L and R) stance phases separated
by flight phases, as in the SLIP discussed in §4.4, and it limits on SLIP (when
the touchdown velocity and leg vectors lie in a saggital plane) and LLS (when
both vectors lie in the horizontal plane) at either end of a range of β2 angles.
See Fig. 26(a).

Using both the approximation of neglect of gravity during stance, which
reduces stance phase dynamics to a single DOF system and quadrature similar
to that employed above, and numerical integrations of the full system, we find
families of gaits parameterized by these angles and touchdown COM speed. The
COM paths, projected onto the saggital and horizontal planes, are similar to
those of pure SLIP and LLS motions (the flight phases collapse to zero as β2

approaches the LLS limit of 0). However, all solutions with β2 ∈ (0, π/2] are
unstable to a ‘lateral toppling’ mode. This is perhaps easiest to appreciate for
saggital plane gaits, in which the leg is placed in the plane containing the gait
path and any perturbation out of this plane is analogous to tipping an inverted
pendulum, but β1 6= 0 motions with legs alternately splayed to left and right in
successive stance phases are also unstable.

It is easy to stabilize near-sagittal motions by a simple feedback controller
that splays the touchdown leg in the direction of the perturbed touchdown COM
velocity vector, thus providing a corrective lateral spring force [300]. A similar
leg placement control strategy was devised by Kuo for a rigid leg passive walk-
ing model, which is also unstable to a lateral roll-type mode [217]. Carver [67]
describes more elaborate leg-placement controls and addresses questions of op-
timality for specific maneuvers of a 3 DOF SLIP. He considers SLIP motions
under conditions in which leg stiffness and touchdown angle can be set in re-
sponse to body position and velocity during flight, and shows that single step
deadbeat control is possible for some tasks, in contrast to asymptotic stability
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Figure 27: A compliant leg bipedal model with an actuated linear hip spring.
From [295].

of an open loop control strategy in which the COM approaches steady behavior
over many steps (cf. the maps of Figs. 15-16). In cases for which deadbeat
control fails, he shows that a ‘two step’ strategy suffices to correct deviations
from the desired motion. For example, while hopping with uniform steps in a
straight line, correcting a single out-of-line step and returning to the same line
requires two steps.

In the context of investigating advantages of multilegged ‘designs,’ we may
also ask if the use of multiple support legs during stance can provide stability
without feedback. This is indeed the case: Seipel has shown that saggital plane
COM motions in a bipedal, kangaroo-like hopper, which uses a pair of elastic
legs in stance splayed equally to left and right, are asymptotically stable, since
the legs passively generate corrective forces due to the differential displacements
induced by out-of-plane perturbations. Similar preflexive stability results hold
for actuated tripod legs similar to those to be considered in the hexapedal
horizontal plane model of §5.3. See Figs. 26(b,c).

5.2 Muscles as activated springs

In [295] we augmented the passive bipedal LLS models by adding rudimen-
tary models of muscles in the form of actuated linear springs, whose unstressed
(zero force generating) lengths change according to fixed or feedback protocols.
Specifically, the second class of models adopted in that paper assume the form
illustrated in Fig. 27. An actuated (variable length) spring pushes or pulls on an
extension of the effective leg beyond the pivot, producing forces and moments
similar to those of the musculo-apodeme complexes of [127]. For simplicity, we
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assume that the single effective leg is pivoted at the COM and, in place of the
elastic knee and two-element limb of [127], we retain the passive axial leg spring
of §5.1 [293, 294], adding a linear viscous damper to represent losses due to
muscles and flexure of the exoskeleton [139].

The nominal actuated hip spring length lh may be determined either as a
function of time alone, or may depend on time and the configuration variables,
e.g.: lh(ψ, θ, t), the explicit time dependence representing sterotyped CPG (mo-
toneuron) outputs. The kinetic and potential energies of the LLS with passive
linear leg and active hip springs are then:

T =
m(ζ̇2 + ζ2ψ̇2)

2
+

Iθ̇2

2

V =
kh

2
(−h sin(ψ − (−1)nθ) − lh(ψ, θ, t))2 +

k

2
(ζ − l)2 , (54)

In this formulation, it is assumed that the hip spring is always aligned parallel
to the body centerline, so that its actual length, measured from stance center
where the leg is at 90o to the body axis, is −h sin(ψ − (−1)nθ).

The functional form for the actuated spring length is chosen to produce a
qualitatively correct moment history: for the left (resp. right) stance phase: i.e.
negative (resp. positive) moment about the COM during the first half of each
stance phase, followed by a positive (resp. negative) moment during the second
half (cf. Fig. 25, lower right panel). This requires that lh be approximately odd
in θ about midstride and approximately equal to its actual length at both the
start and end of stride. We therefore suppose that lh depends on leg angle as
well as time, specifically setting:

lh(ψ, θ, t) = −h sin(ψ − (−1)nθ)

(

2t

ts
− 1

)2

, (55)

where ts is the desired stance period duration. This guarantees that lh is ap-
proximately odd about midstride, as evidenced by its dependence on the leg
angle relative to the body, and zero at the start of the stride and approximately
zero near the end, provided the actual stance duration is close to ts: the stance
duration ‘programmed’ by the CPG.

The formulation (55) implies a feedback law in which the current leg angle
ψ − (−1)nθ is sensed and the CPG’s ‘autonomous’ signals to the muscles are
modulated thereby. The resulting Lagrangian computed from (54), with gener-
alized damping in the first variable, yields the following equations of motion:

mζ̈ = mζψ̇2 − k(ζ − l) − cζ̇

m(2ζζ̇ψ̇ + ζ2ψ̈) = −1

2
khh2 sin(2(ψ − (−1)nθ))(1 − (

2t

ts
− 1)2)2 (56)

Iθ̈ =
(−1)n

2
khh2 sin(2(ψ − (−1)nθ))(1 − (

2t

ts
− 1)2)2 .

A typical stride, with a relatively strong muscle spring constant kh and dis-
sipation c included, is illustrated in Figure 28. The hip torques produced by
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Figure 28: COM path, velocity, yaw, and leg force and body moment variations
for steady gait of the actuated compliant leg model with a ‘strong’ actuated
linear hip spring and dissipation in the passive leg spring: c = 0.01, kh = 300,
h = 0.001, ts = 0.0475. Other parameters were set to values typical of the
cockroach Blaberus discoidalis, as described in §5.1. From [295].
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Figure 29: A periodic gait family for the compliant leg system with an actuated
hip spring. Gaits were computed by varying ts between 0.035 − 0.078, with
kh = 30, h = 0.1l, and c = 0.001. Other values were held constant at values
typical of the cockroach Blaberus discoidalis, as described in §5.1. From [295].

the actuated spring now match experimental moments about the COM reason-
ably well (compare the bottom panels of Fig. 28 with those of Fig. 25), but
the reaction forces induced at the foot have reversed the phasing of the fore-aft
force patterns, so that forces are positive in the first half of stance and negative
in the second, opposite to those observed: compare the top panels of Fig. 28
with those of Fig. 25. Weaker muscle spring constants restore the appropriate
fore-aft force patterns, but suffer the same low magnitudes as the passive LLS
model (cf. [295, Fig. 10]). Similar behavior occurs in a simpler model, also
treated in [295], in which hip torques are directly imposed. The lateral forces
and velocity variations remain approximately correct.

The observation that higher torques imposed by actuation can correct yawing
motions at the expense of producing incorrect fore-aft translational dynamics
underlines the need for a hexapedal model, in which additional actuation degrees
of freedom are available due to the multiple legs active in stance.

As in the passive models of Section 5.1, a family of gaits may be produced
by varying the desired stance period, ts. A typical example is illustrated in
Figure 29. The energy balance induced by the actuated spring now brings a third
eigenvalue, corresponding to COM speed variations, into the unit circle, leaving
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Figure 30: The mechanical model for an actuated telescopic leg (a), and coor-
dinate systems and leg numbering scheme for the hexapedal model (b). Legs 1,
2 and 3 form the left tripod, and 4, 5, and 6 the right tripod. From [302].

only the single (rotational) eigenvalue at 1. This behavior is not dependent
upon the presence of dissipation; even if c = 0, the stride duration imposed by
ts and the balance of positive and negative work done by the actuated spring
suffices to determine a stable speed.

It is not immediately obvious that actuation or prescription of leg forces
should preserve the inherent stability of the passive LLS models. Kubow and
Full [216] showed, via numerical simulations of equations of the form (35) with
alternating tripods summing to produce forces f(t) given as sinusoidal func-
tions of time in the body frame, that purely prescribed forces could produce
stable motions and select a preferred speed. In contrast, in [294] it was shown
analytically (and hence proved) that bipedal LLS models with prescribed sinu-
soidal forces that do not rotate with the body (essentially, setting R(θ(t)) ≡ Id
in (35)) are always unstable: their (unique) periodic gaits have at least one
eigenvalue outside the unit circle. These observations, and the model described
above, suggest that a subtle combination of actuation and mechanical feedback,
involving either (or both) rotation coupling and passive springs, may be required
for stability. Our next model incorporates these effects.

5.3 A hexapedal model with activated spring legs

We describe a simple hexapedal model that was proposed, and is described in
greater detail, in [302]. The basis of the model is the actuated, telescopic spring
leg illustrated in Fig. 30(a), in which a rudimentary analog of neurally-activated
muscle complexes is provided by the ‘programmable’ length l(t), and hip posi-
tion d(t). Each of these inputs may be independently prescribed, endowing the
leg with two control variables, and permitting one to match the horizontal plane
components of observed single leg forces. However, unlike the purely prescribed
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model of [216], l(t) sets only the relaxed (force-free) length; actual leg forces
depend upon relative foot-hip displacements, and thus forces can respond to
perturbations in a more natural manner. Six such units are assembled as indi-
cated in Fig. 30(b), although for simplicity we assume that the hips all move on
the body centerline.

We derive the six inputs lj(t), dj(t) for each leg tripod by requiring that the
forces generated at the feet match those of the idealized model of [216], Fjx, Fjy,
which were, in turn, derived from single leg force measurements in [129]. These
forces are sinusoids of the forms:

Fjx = Ajx sin Ωt (lateral forces, all feet) ; (57a)

Fjy = Ajy sin Ωt , j = 1, 3 (fore-aft forces, front and hind feet) ; (57b)

F2y = A2y sin 2Ωt (fore-aft forces, middle foot) . (57c)

Parameter values are given in [302].
We compute the COM path through a half stride: only one tripod need

be considered, the left here, since bilateral symmetry supplies the inputs for
the other stance phase. Neglecting body rotation, this follows simply from
integration of the first equation of (35) with R(t) = Id, using the net idealized

forces
∑3

j=1 Fjx,
∑3

j=1 Fjy:

(x(t), y(t)) =
(

−A3x(mΩ2)−1 sin Ωt,−A2y(4mΩ2)−1 sin 2Ωt + Vdest
)

, (58)

where we use the fact that certain force components cancel (A2x = −A1x;
A3y = −A1y). The average forward speed, denoted by Vdes, is a constant of
integration that may be adjusted, but initially we set it at the preferred speed
0.25 m s−1 and leg cycle frequency f = Ω/2π = 10 Hz for which the idealized
leg forces and touchdown foot positions were derived. These and other physical
parameters are given in [216] and [302].

We assume linear springs, so that, letting qi denote the vector from the i’th
foot to hip, force consistency requires:

Fjx = Fjx,des ⇒ kj(lj(t) − |qj |)
qjx

|qj |
= Ajx sin Ωt , (59)

Fjy = Fjy,des ⇒ kj(lj(t) − |qj |)
qjy

|qj |
= Ajy sin CjΩt . (60)

Here qjx and qjy are the inertial frame components of qj and Ajx and Ajy the
force component magnitudes of equations (57) (note Cj = 2 for j = 2, but
Cj = 1 otherwise). The kinematics inherent in Fig 30 allows us to express qj

in terms of the COM path of (58), the touchdown foot position, and the hip
position dj(t). Then dj(t) may be derived by dividing the equations (60) to
eliminate the common term kj(lj(t) − |qj |)/|qj |, and lj(t) found by inverting
the linear force relationship. In order to obtain closed-form expressions, we
neglect yawing throughout, incurring errors of up to ≈ 8% in approximating
the rotation matrix by the identity. Details are given in [302], and the resulting
input functions are shown in Fig. 31.
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Figure 31: The prescribed inputs, di(t) and li(t), for i = 1, 2, 3; Vdes = 0.25 m
s−1, Ω = 20π rad s−1 and k = 1 N m. From [302].

The unstressed lengths on average obey l1 < l2 < l3, echoing leg lengths in
the insect. Also, the front and back (ipsilateral) hips move backwards relative
to the body during stance, while the middle (contralateral) hip moves forwards.
Although the latter varies by over 3 cm, a greater distance than the insect’s
body length, the net movement is backwards, as in the bipedal moving COP
protocol of Section 5.1.3. Since moving centers of pressure imply torques at the
leg joints, this model suggests that the insect generates relatively large middle
leg torques.

Equipped with the inputs as explicit functions of time, we may now integrate
the fully-coupled equations of motion to obtain gaits. The body coordinate sys-
tem and state variables used in defining Poincaré maps remain the same as for
the bipedal models above (cf. Fig. 30(b)). We first confirm that, even permit-
ting yawing, inputs derived from the idealized preferred speed data of [216] do
produce gaits with force and velocity variations quantitatively similar to those
of the animal. Fig. 32 reproduces the data of Fig. 25 and also shows model re-
sults: the match is remarkably good, although the actual average forward speed
(≈ 0.26 m s−1) is slightly higher than the desired (or design) speed Vdes used
to compute the inputs.

These gaits are stable. Indeed, we may produce branches of gaits over a range
of speeds, by recomputing inputs for appropriately adjusted desired speeds, leg
frequencies, and touchdown positions. As mentioned in §3.2.1, although the
insect uses a double tripod pattern throughout the range 0.05-0.6 m sec−1, it
exhibits a gait transition around 0.3 m sec−1: below this speed is regulated
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Figure 32: Comparison of the experimental insect COM velocity, yaw, force and
moment data of Fig. 25 with solutions of the LLS Hexapod model. Model data
are shown as a red (or light gray) solid line. From [302].

by leg cycle frequency, and above it, by stride length. Varying Vdes and Ω
in a piecewise-linear manner to approximate the data of [317, Fig. 2], and
additionally changing foot touchdown positions from those of [216] by further
extending the legs at speeds above 0.25 m s−1, we obtain the branch of stable
gaits illustrated in Fig. 33.

As in Fig 29, since the actuated springs supply and extract energy via lj(t)
and dj(t), along this branch speed is also stabilized, and three of the eigenvalues
lie within the unit circle, with only the ‘rotational’ eigenvalue λ1 = 1. Moreover
the stability boundaries shown in Fig. 33 provide a rationale for the gait change,
since constant frequency or constant stride length protocols would enter unstable
regions at either low or high speeds.

In [302] the moments generated at the COM by individual legs are also
studied, and it is shown that they sum almost without cancellation to give the
net COM moment pattern shown in the lower right panel of Fig. 32, while
individual joint moments remain within reasonable bounds. Hence this model
also shows that the legs of the stance tripod work together in a relatively efficient
manner to produce feedforward force and moment patterns that result in stable
running.
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Figure 33: Bifurcation set for the hexapedal model in design speed-leg cycle
frequency space, showing boundaries of the region in which stable gaits exist,
and the speed-frequency protocol adopted. Unstable regions are shaded. The
fixed frequency protocol (dashed) encounters instability at low and/or high Vdes,
while the piecewise-linear protocol (solid) remains in the stable region, albeit
grazing the stability boundary at its break-point. Stability is further improved
by adjusting foot placements above Vdes = 0.25, as shown by modified dash-
dotted upper boundary. From [302], with experimental data of [317, Fig. 2]
indicated by dots.
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Question: Can the net COM forces and moments due to a stance tripod of
the hexapedal model be represented by a single telescopic leg with actuator l(t),
pivot position d(t) and fixed stance foot? In short, can the hexapod model be
reduced to a bipedal LLS template? If not, how well can it be approximated by
one?

5.4 Towards a neuromechanical model

Thus far we have considered rather simple mechanical models, templates in the
terminology introduced in §1 [131], although we have seen that their behaviors
are not always easy to derive analytically. Drawing on the material summarised
in §2.4, we now sketch the elements of a true neuromechanical model, an anchor
that includes CPG circuitry, motoneurons, muscles, six legs and body. This
work is still in progress; the first part of it is described in [146, 145, 147], from
which the following outline is adapted.

5.4.1 The CPG and motoneurons

The CPG model is based on the work of Pearson and Iles [262, 263, 258, 264]
and Ritzmann et al. [330, 331, 321, 322], who studied motoneuron, bursting
interneuron, and muscle activity in cockroach locomotion. Pearson and Iles,
working with the American cockroach Periplaneta americana, suggest a simpli-
fied architecture for the CPG and depressor and levator motoneurons. (Here,
since we do not explicitly model the swing phase when the leg is lifted, we
shall be concerned only with depressor motoneurons and associated muscles.)
Both slow and fast motoneurons, characterised by differing spiking patterns,
are involved. The former, with their low level, high frequency spikes, are active
during muscle contraction at all speeds, and the latter, with typically 1-6 larger
spikes per stride, become increasingly active at high speeds. The motoneu-
ron records presented in [134] are from fast cells, while the electromyographs
(EMGs) of [330, 331, 321, 322], taken from Blaberus discoidalis, primarily reflect
slow motoneuron activity, with spikes from fast motoneurons appearing in [322].

Examination of EMGs and both slow and fast motoneuron outputs reveals
that they may essentially be described by three parameters: the bursting cycle
duration or its inverse, the bursting frequency , which coincides with the animal’s
overall stride frequency (ranging from 2-14 Hz, cf. Fig. 33); the spiking frequency
or number of action potentials (APs) within bursts, and the duty cycle – the
fraction of the bursting cycle occupied by spiking. The latter two modulate the
power produced by muscles in a graded fashion, greater spike rates and longer
bursts producing greater muscle forces. Fast motoneurons may produce from
one to six spikes per cycle, and none at low speeds, while slow motoneurons
exhibit significantly faster spike rates, from 100-400 Hz [258, 264, 321, 322].

In the absence of detailed information regarding ionic currents in cockroach
neurons, we choose to model both fast and slow depressor motoneurons by a
‘generic’ three-variable ODE of the following form, in which fast gating vari-
ables have been removed by assuming instantaneous equilibration, as outlined
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in §2.3.1:

Cv̇ = −[ICa + IK + IKS + ḡL(v − EK)] + Iext ,

ṁ =
ǫ

τm(v)
[m∞(v) − m] , (61)

ċ =
δ

τc(v)
[c∞(v) − c] .

Here δ ≪ ǫ ≪ 1/C, and the fast, relatively slow, and very slow currents respec-
tively are given by:

ICa = ḡCan∞(v)(v − ECa) , IK = ḡKm · (v − EK) , IKS = ḡKSc · (v − EKS) ,
(62)

where the subscripts Ca and K denote calcium and potassium ions, IKS is a
slowly-modulated potassium current and Iext represents external synaptic and
other input currents. As in §2.3.1 the functions m∞(v), n∞(v) and c∞(v) are
sigmoids of the forms

m∞(v) =
1

1 + exp [−km(v − vm)]
, (63)

and the ‘timescale’ functions are hyperbolic secants:

τm(v) = sech(km(v − vm) . (64)

Specific parameter values appropriate for fast and slow cockroach motoneurons,
as well as CPG (inter-) neurons, may be found in [145].

The fast (v,m) subsytem of (61) is that of the Morris-Lécar equations [251],
which was developed to model barnacle muscle: hence the calcium spike mech-
anism. We believe that analogous results could be obtained with a persistent
sodium current, as in Butera et al. [60], cf. [145]. (As noted above, specific data
for cockroach CPG neurons is lacking, so we cannot identify a specific current
responsible for fast spikes.)

This model, in common with others studied by Rinzel et al. [275, 277, 278],
has a ‘recovery’ variable c, usually identified with a calcium-dependent potas-
sium current, which acts on the fast (v,m)-subsystem as a slowly-varying param-
eter that modulates the current IKS. The fast subsystem, which incorporates
the membrane voltage v and a collective relatively slow channel variable m, has
three branches of equilibria, the upper of which (w.r.t. v) undergoes a super-
critical Hopf bifurcation as c increases, producing a branch of periodic orbits.
These represent depolarised spiking, and they coexist with a lower branch of
stable (hyperpolarised) fixed points. The periodic orbit branch terminates in a
homoclinic connection to a middle branch of saddle points [165], beyond which
only the lower v (hyperpolarised) equilibria are stable. The slow variable c
increases, moving toward the homoclinic bifurcation point as long as spiking oc-
curs and membrane voltages are relatively high, but returning toward the Hopf
bifurcation point in the absence of spiking, when membrane voltages are lower.
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Figure 34: (a) The overall CPG, motoneuron and muscle model structure: fast
(Df) and slow (Ds) depressor motoneurons are inhibited by the CPG outputs.
From [145]. (b) Elements in the muscle fiber transduction model described in
§5.4.3.

At a threshold corresponding to a saddle-node bifurcation in the fast system,
the stable hyperpolarised rest point vanishes and the fast subsystem resumes
spiking. See [200, Chap. 6] for an introduction to such two-timescale bursting
models in neurobiology.

The underlying time scales are set by the parameters C, ǫ and δ, and the
behavior is modulated by conductances such as ḡKS and the input current Iext.
Following Pearson [258], we suppose that Iext and ḡKS are influenced by external
inputs from higher brain centers (a tonic excitation level, primarily a speed
control), and inhibited by CPG outputs so that the depressor muscle activity is
shut off during the swing phase.

Pearson [258, 264] also found evidence of bursting interneurons that consti-
tute part of (or are driven by) the CPG, and it is thought that bistability and
plateau potentials, on which spikes can ride, are crucial for bursting [17, 169].
Absent detailed knowledge of the neural architecture, we shall therefore also
represent each of the six subunits of the CPG by a single bursting neuron of
the form (61), with parameters chosen appropriately. We couple each ipsilateral
triplet, and each contralateral pair, by nearest neighbor inhibitory synapses, in
the manner characterised in Fig. 34(a). The same overall architecture has been
proposed for the stick-insect pattern generator [20, Fig. 4]. Following [95, p.
180], we model synaptic behavior by the first order dynamics

ṡ =
s∞(v)(1 − s) − s

τsyn
, with s∞ =

1

1 + e−ksyn(v−Epre
syn)

, (65)
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Figure 35: Membrane voltages from a network of six mutually inhibiting burst-
ing neuron models driving slow and fast bursting motoneurons. Left column
shows ipsilateral CPG neurons, right column shows contralateral CPG neurons
and fast (Df 1,4) and slow (Ds 1,4) motoneurons for units 1 and 4. Units 1, 2 and
3, and 4, 5 and 6, constituting the left and right tripods respectively, rapidly
fall into the appropriate antiphase relationships. From [145].

in which v denotes the potential of the presynaptic neuron and τsyn sets the
timescale of the postsynaptic potential. The nondimensional synaptic variable
s enters the postsynaptic cell in the first of equations (61) as

Cv̇ = −[ICa + . . . ] − ḡsyn s · (v − Epost
syn ) , (66)

where ḡsyn denotes synaptic strength and the current Isyn = ḡsyn s · (v − Epost
syn )

induced in the postsynaptic cell is typically positive (negative) for excitatory
(inhibitory) synapses [192].

The CPG circuit of Fig. 34(a) produces the requisite 180o antiphase differ-
ence between the tripods, as illustrated in Fig. 35, which shows simulations of
ipsilateral CPG outputs along the left side, and contralateral CPG and fast and
slow motoneuron outputs for the front legs. Moreover, unidirectional inhibitory
coupling to the motoneurons entrains them to the CPG, provided that the fast
motoneurons have higher bursting frequencies than the CPG bursters driving
them [145]. The slow motoneurons are set in a spiking regime, which periodic

87



Figure 36: Variation of input currents and conductances for CPG bursters and
motoneurons can span the range of variation found in the cockroach. Panels
(a,b) show bursting frequency and duty cycle as Iext varies for fixed ḡKS values
shown inset in (b); dotted lines in (b) correspond to 50% and 100% duty cycle.
Panels (c,d) show AP numbers and spike rates for fast and slow motoneurons;
simulations for two different currents Iext given in (c). Data from Pearson [258]
shown bold in (b,d). From [145].

inhibition from the CPG shuts off during the swing phase.
In [146] it is shown that the ‘behavioral’ parameters – bursting frequency,

duty cycle, spiking frequency of slow motoneurons and numbers of action po-
tentials (APs) delivered in a fast motoneuron burst – can be set as follows. The
parameters C, ǫ and δ of (61) determine the timescales of fast spikes, approxi-
mate number of APs per burst, and the baseline bursting frequency respectively,
so they can be fixed to match experimental observations at preferred running
speeds. Depending on the number of APs per burst, two régimes can be then
identified: high (∼ 15 APs) or low (∼ 4 APs). In the former, bursting frequency
is modulated by Iext, in the latter Iext influences both bursting frequency and
number of APs per burst. In the high régime gKS primarily affects the duty
cycle, in the low régime, it affects both duty cycle and number of APs per
burst.
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Based on this, a combined single-component and network strategy for lo-
comotive control via changes in biophysically relevant parameters is proposed
in [145]. Stepping frequency and duty cycle can be adjusted by the external cur-
rent Iext to the CPG interneurons and by their conductances ḡKS respectively.
Provided that the intrinsic bursting frequencies are sufficiently close, motoneu-
rons are entrained to the CPG bursting frequency and slow motoneuron spike
rates may then be tuned by their external currents, and action potential numbers
delivered by fast motoneurons by their external currents and ḡKS conductances.
While Iext is not independently tunable in vivo, synapses from CNS and pro-
prioceptive neurons can effectively adjust both input currents and conductances
of CPG interneurons and motoneurons, and so these control parameters seem
plausible.

In Fig. 36 we show that suitable variations in CPG Iext and ḡKS and addi-
tional tuning of fast and slow motoneuron conductances can accurately bracket
the data measured by Pearson [258]. The motoneuron outputs will be used to
innervate Hill type muscle models, but before we consider this we show that the
CPG-motoneuron model anchor can be reduced to a phase oscillator template
of the type given in Eqn. (19).

5.4.2 Reduction to phase oscillators

While substantial analyses can be performed on singularly-perturbed systems
such as (61), in the synaptically coupled network of Fig. 34(a) there are sixty
ODEs, three each for the six CPG neurons and twelve motoneurons and a further
six for the CPG synaptic variables (the coupling to motoneurons is one way, so
motoneuron synaptic variables do not appear). This is a formidable system, but
for weak coupling, and assuming identical neurons, the six-burster CPG circuit
can be reduced, via phase response curve and averaging methods, to ODEs in
the relative phases ψj of each ‘leg unit.’

As in §2.3.1 we write the ODEs (61) and (65) for a single burster and its
synaptic variable as:

ẋi = f(xi) +
∑

j

ḡsyn,ji gji(xi,xj) ; xi = (vi,mi, ci, si) , (67)

where gji denotes the coupling function (of strength ḡsyn,ji) from presynaptic
cell j to postsynaptic cell i, and the sum is over all cells in the network that
synapse onto i. Assuming that (67) has an attracting hyperbolic limit cycle Γ0

with frequency ω0 = 2π
T0

for ḡsyn,ji = 0, and extending the analysis of §2.3.1 in
the obvious way, we may define a scalar phase variable φ(xi) ∈ [0, 2π) for each
unit and derive a coupled set of phase equations of the form:

φ̇i = ω0+
∑

j

ḡsyn,jiZ(φi)·gji(φi, φj)+o(ḡsyn,ji) ; Z(φi(xi)) =
∂φi

∂xi
|Γ0(φ) . (68)

In deriving (68) we are projecting solutions along isochronic manifolds onto
the product of the unperturbed limit cycles: for N units, an N -dimensional
torus [338, 164].
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As noted in §2.3.1 synaptic dynamics only enters via the variables sj and
vi in the coupling defined by Equations (65-66), so only the first component of
Z(φi) survives in the dot product of (68). This phase response curve or PRC
can be approximated numerically by approaching the limit

Z1(φi) = lim
∆vi→0

t→∞

∆φi

∆vi
, (69)

or calculated by use of adjoint theory [182], as implemented, for example, in the
software XPP [115]. Defining the relative phases ψi = φi − ω0t and using the
fact that the absolute phases φi evolve faster than ψi(t), we may then average
(68) to obtain

ψ̇i =

N
∑

j 6=i

ḡsyn,jiHji(ψi − ψj) , (70)

where

Hji(ψi − ψj) =
1

T0

∫ T0

0

Z1(φi) sj(Γ0(φj)) [vi(Γ0(φi)) − Epost
syn,i] dt , (71)

and it is understood that φi = ψi + ω0t in the integrand (cf. [165, Chap. 4] and
[182, Chap. 9]). As noted in §2.3, pairwise phase differences alone appear in
the averaged coupling functions Hji due to periodicity of the integrand in (71).

For mutual coupling between two identical bursters we have ḡsyn,jiHji =
ḡsyn,ijHij , and the reduced phase equations (70) are

ψ̇1 = ḡsynH(ψ1 − ψ2) and ψ̇2 = ḡsynH(ψ2 − ψ1) ; (72)

we may subtract these as in §2.3.3 to further reduce to a single scalar ODE for
the phase difference θ = ψ1 − ψ2:

θ̇ = ḡsyn[H(θ) − H(−θ)]
def
= ḡsynG(θ) . (73)

Now, since H is 2π-periodic, we have G(π) = H(π) − H(−π) = H(π) −
H(π) = 0 and G(0) = 0, implying that, regardless of the form of H, in-phase
and anti-phase solutions always exist. For the present burster model and the
specific parameters selected in [145], these are in fact the only fixed points: see
Fig. 37. Note that, unless H(0) = H(π) = 0, we have ψ̇1 = ψ̇2 = ḡsynH(θ̄), so

coupling changes the common frequency φ̇ = ω0 + ψ̇i of the units, even when
phase locking occurs.

Stability of these phase-locked solutions is determined by the eigenvalues of
the 2 × 2 matrix obtained by linearizing (72) at ψ1 − ψ2 = θ̄:

ḡsyn

[

H ′(θ̄) −H ′(θ̄)
−H ′(θ̄) H ′(θ̄)

]

; (74)

these are 0 and 2ḡsynH ′(θ̄) = ḡsynG′(θ̄), with eigenvectors (1, 1)T and (1,−1)T

respectively. Hence the dynamics is only neutrally stable to perturbations that
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Figure 37: (a) The coupling function ḡsynHji(θ) (solid) for an inhibitory synapse;
ḡsynHji(−θ) also shown (dash-dotted). (b) The phase difference coupling func-
tion ḡG(θ) = ḡsyn[Hji(θ) − Hji(−θ)]. Note that G(0) = G(π) = 0 and
ḡsynG′(0) > 0 > ḡsynG′(π). From [145].

advance or retard the phases of both units equally, but since H ′(π) < 0 the
anti-phase solution is asymptotically stable to perturbations that disrupt the
relative phase ψ1 − ψ2.

In [145], to preserve equal net input to all units, it is assumed that ipsilateral
synapses from front and rear leg units to middle ones are half the strength of the
remaining ipsilateral and contralateral synapses. The six burster CPG circuit
of Fig. 34 then reduces to the system:

ψ̇1 = ḡsynH(ψ1 − ψ4) + ḡsynH(ψ1 − ψ5)

ψ̇2 =
ḡsyn

2
H(ψ2 − ψ4) + ḡsynH(ψ2 − ψ5) +

ḡsyn

2
H(ψ2 − ψ6)

ψ̇3 = ḡsynH(ψ3 − ψ5) + ḡsynH(ψ3 − ψ6)

ψ̇4 = ḡsynH(ψ4 − ψ1) + ḡsynH(ψ4 − ψ2) (75)

ψ̇5 =
ḡsyn

2
H(ψ5 − ψ1) + ḡsynH(ψ5 − ψ2) +

ḡsyn

2
H(ψ5 − ψ3)

ψ̇6 = ḡsynH(ψ6 − ψ2) + ḡsynH(ψ6 − ψ3) .

Seeking left-right tripod solutions of the form ψ1 = ψ2 = ψ3 ≡ ψL(t), ψ4 =
ψ5 = ψ6 ≡ ψR(t), (75) collapses to the pair of equations

ψ̇L = 2ḡsynH(ψL − ψR) and ψ̇R = 2ḡsynH(ψR − ψL) , (76)
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and the arguments used above may be applied to conclude that ψR = ψL + π
and ψR = ψL are fixed points of (76), again independent of the form of H. For
this argument to hold, note that the sums on the right hand sides of the first
three and last three equations of (75) must be identical when evaluated on the
tripod solutions; hence, net inputs must be equal. If all synaptic strengths are
assumed equal (replacing ḡsyn/2 by ḡsyn in the second and fourth equations of
(75)), then to get exact antiphase solutions it is also necessary that H(π) = 0,
which does not hold here (Fig. 37).

Linearisation of (75) at fixed points produces the eigenvalues

λ = 0, ḡsynH ′, 2ḡsynH ′, 3ḡsynH ′, 4ḡsynH ′ , (77)

the third (2ḡsynH ′) having algebraic and geometric multiplicity two. Since
ḡsynH ′(π) < 0 (Fig. 37), this establishes asymptotic stability with respect to
perturbations that disrupt the tripod antiphase relationships, and instability
of the in-phase (‘pronking’) solution. Moreover, the last and largest negative
eigenvalue for the antiphase solution has eigenvector (1, 1, 1,−1,−1,−1)T, indi-
cating that perturbations that disrupt the relative phasing of the left and right
tripods recover fastest, before those that affect phases within a tripod. Hence
the most basic element of the gait pattern is its most stable one.

Equations (72) and (75) provide examples of networks that are forced by
their symmetries to possess certain steady state solutions regardless of the pre-
cise forms of the coupling functions. The stability of the solutions, however,
does depend on the coupling. This is a typical situation in equivariant bifur-
cation theory [152, 155, 154]. In [145] we also study less symmetric networks,
in which bilateral symmetry is maintained, but ipsilateral descending and as-
cending coupling strengths differ. In this situation a phase reduction analogous
to (75) accurately predicts the coupling strengths necessary to obtain specified
phase relations among the front, middle and hind leg outputs.

We remark that, while each bursting neuron has been modelled in some bio-
physical detail in §5.4.1, the circuit of Fig. 34(a) still vastly simplifies the prob-
able architecture of the insect’s CPG. A single bursting interneuron represents
each ‘leg oscillator,’ where several neurons are probably involved. Moreover, in
studies of slow walking of stick insects, which use more precise foot placement,
there is strong evidence of individual joint oscillators within the leg units [20].
For fast running, however, multiple units are likely to be coordinated in a stereo-
typed fashion, and so even if more units were modeled, the phase reduction and
symmetry ideas introduced here may still result in considerable simplification.
For example, additional ‘feedforward’ motoneurons could be added without af-
fecting the reduced CPG phase template (75).

5.4.3 Muscles and legs

Outputs from motoneurons excite muscles, causing contraction. Muscles are
complex structures, and muscular contraction and the resulting force production
ultimately relies on molecular motors and conformational changes in proteins
that have only recently been studied in detail. Fortunately, for our purposes
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a macroscopic overview will suffice, drawn from sources assembled in the PhD
thesis of Ghigliazza [144].

Muscle fibers are comprised of bundles of myofibrils, each in turn contain-
ing longitudinal thick and thin myofilaments [243], separated by Z-disks and
assembled in cylindrical sarcomeres. The myofibrils lie in the sarcoplasmatic
reticulum (SR), which stores calcium. T-tubuli encircle the SR. Upon arrival of
a motoneuronal action potential (AP) at the neuromuscular junction, a second
AP is produced that propagates through the T-tubuli, opening gates in the SR
to release calcium ions. The calcium ions trigger conformational changes that
cause thick myofilaments to slide over the thin ones, thus shortening the muscle.
This process, described by Huxley [186] is modelled by a unidirectional cascade
of linear processes: Fig. 34(b) [173, 198]. First the motoneuron output u(t),
either a rapid spike train or a few larger APs, is converted into the T-tubuli
response β(t) according to

β̈ + c1β̇ + c2β = c3u(t) , (78)

this in turn produces SR release γ(t) via

γ̈ + c4γ̇ + c5γ = c6β(t) ; (79)

finally, the muscle activation is given by the algebraic relation

a(t) =
a0 + (ρνγ)2

1 + (ρνγ)2
. (80)

Muscle fatigue can be accounted for by the fitness variable ν(t) in (80), itself
governed by first-order dynamics [274]:

ν̇ =
1

Tf
(νmin − ν)

γ

γ0
+

1

Tr
(1 − ν)

(

1 − γ

γ0

)

; (81)

however, here we shall ignore fatigue and set ν(t) ≡ 1.
The constants cj , Tf , Tr, νmin, γ0, a0 characterise the muscle properties. Fig. 38

shows the result of a train of six fast motoneuron APs fed into this system. Note
the linear superposition, with appropriate delays, of the responses to single APs,
and the resulting smoothed rising and exponentially-decaying activation func-
tion a(t). Of course, explicit formulae can be written in terms of the collective
impulse response of the linear system (78-79).

The mechanical properties of muscle fibers themselves are generally repre-
sented by a macroscopic model due to A.V. Hill [177], cf. [243, 343, 230]. This
model, adapted to Blaberus hind leg muscle 177c, the major power generator in
stance [127, 246], was used in [295] to equip the bipedal LLS model of Fig. 27
with agonist-antagonist muscle pairs, and a slightly simpler version will be de-
scribed here [147]. Each muscle complex contains a contractile element (CE) in
parallel with passive visco-elastic elements (PE): Fig. 39. Note that, in contrast
to other muscle complex models, no additional series spring element is required
here, since insect apodemes, the analog of tendons, are relatively stiff [127, 246].
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Figure 38: Activation dynamics. Panel (a) shows the normalized spike train
input u(t) from a motoneuron, here a train of six APs with 10 msec interspike
intervals. Panels (b,c,d) show the T-tubuli depolarisations β(t), the free calcium
concentrations γ(t), and the resulting activation functions a(t). Note linear
superposition in (a-c).
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Figure 39: The muscle complex model: CE denotes contractile (active) element,
PE denotes passive viscoelastic element. See text for description.
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In the Hill model each muscle exerts a force equal to the sum of its passive
and active components:

FTotal = FPE + FCE , (82)

where FPE takes the form:

FPE = c l̇m +

{

0 , lm < lo
k(lm − lo)

α , lm ≥ lo
. (83)

Here lm, l̇m denote the muscle length and velocity respectively and lo is the
‘optimal’ length at which the active force is maximum. The second term of
(83) vanishes for lm < lo because the passive stiffness is effectively zero for
contracted muscles. Hence, to maintain nonzero stiffness around equilibrium,
muscles typically act in agonist-antagonist (opposing) pairs. The passive stiff-
ness and damping coefficients k, c and exponent α are fitted to isometric data
from unactivated muscles [139].

The active force FCE developed in each contractile element is determined by
the product of the isometric force-length (Fl) and force-velocity (Fv) relations
and the activation, a(t). Fv(l̇m) takes two forms, depending on whether the
muscle is shortening (l̇m < 0) or lengthening (l̇m > 0) [343, 247]:

FCE =







a(t) Fl(lm) b [vmax+l̇m]

b vmax−l̇m
, l̇m ≤ 0 ,

a(t) Fl(lm) [(f−1) vmax+f (1+b) l̇m)

(f−1) vmax+(1+b) l̇m
, l̇m > 0 .

(84)

Here vmax is the maximal shortening velocity above which no force is produced, f
denotes the upper limit of force produced as the lengthening velocity approaches
infinity, and b quantifies the ‘steepness’ of dependence on l̇m. In its active range
the isometric force-length function can often be modeled as a quartic polynomial:

Fl(lm) =

{

a4 l4m − a3 l3m + a2 l2m + a1 lm + a0 , lm ∈ [ lmin, lmax]
0 , lm < lmin , lm > lmax

,

(85)
where the coefficients aj are fitted to experimental data. Typically Fl(lm) drops
to zero below lmin ≈ 0.5 lo and above lmax ≈ 1.5 lo and rises to a maximum
(normalised to 1) at lm = lo. The muscle lengths lm and velocities l̇m appearing
in (82-85) will be determined via the leg geometry and kinematics appearing
in the coupled mechanical (force and moment balance) equations. The five
constants in (85) allow one to set Fl(lmin) = Fl(max) = 0, F ′

l (lo) = 0, to
normalize Fl(lo) = 1, and also permit a degree of asymmetry.

5.4.4 Towards a hexapedal neuromechanical model

In [295] it was shown that the results summarized in §5.2 for the simpler actu-
ated spring LLS of Fig. 27 – preservation of a branch of stable gaits with the
additional property of speed stabilization as per Figs. 28-29 – persist for an axial
spring whose pivot is actuated by an agonist-antagonist Hill muscle pair. As
a first step toward a hexapedal model, Ghigliazza studied a single DOF point
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Figure 40: An LLS model with telescopic legs actuated by Hill-type muscles. (a)
Geometry of a single pivoted leg. The ‘femur’ and ‘tibia’ of fixed lengths lFe, lTi

are connected by an agonist-antagonist muscle complex of variable length lm,
each half of which has the structure of Fig. 39. Contraction of the extensor,
shown bold, lengthens the leg. Given touchdown foot parameters (xF, α), the
muscle state lm can be expressed in terms of COM position xG. (b) Tripod
stance model. Adapted from [144].

mass ‘rail roach,’ constrained to move along a linear track, with tripods of mass-
less stance legs actuated by simplified extensor and flexor muscles [144, 147].
The geometry is shown in Fig. 40. Contraction of the extensor lengthens the
leg, and by applying suitable activations a(t) derived from motoneuronal out-
puts via Eqns. (78-79) as described in §5.4.3, we can investigate the dynamical
effects of different balances of positive and negative work (cf. [134]) among legs
and during the stance phase cycle.

Constraining to 1 DOF allows one to translate COM position and velocity
(xG, ẋG) directly into muscle lengths lm and shortening velocities −l̇m for each
of the three complexes associated with front (F), middle (M) and hind(H) legs,
and thus to write the equations of motion as a planar vectorfield, albeit with
explicit time dependence via the activation function a(t). Details may be found
in [147]. By starting with a single leg and first studying unactivated, purely
passive muscles, followed by constant activation, and finally by CPG-driven
phasic activation and superposition of the three legs, one assembles a reasonable
understanding of the existence and stability of periodic gaits using phase-plane
analysis [144].

A major problem in studying more detailed models of this type is the large
number of parameters involved. While those determining the activation and Hill
model can be estimated by direct measurements on single muscles [247, 246],
these estimates do not apply directly to a simplification such as that of Fig. 40
in which several muscles actuating different joints are represented by a single
complex, and four limb components (coxa, femur, tibia and tarsus) are collapsed
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Figure 41: Stable gaits under a fixed stretch liftoff protocol. (a) Phase portrait
with dashed boundaries indicating region of nonzero muscle activation and the
limit cycle (bold black). Also shown is a converging trajectory (bold grey). (b)
Time histories of speed (b1), individual force profiles for front (dashed), middle
(solid), and hind leg (dash-dotted) (b2), and total fore-aft force on COM (b3).
From [144].

to a telescopic rod. It is also necessary to choose liftoff and touchdown criteria,
involving single legs or collective stance tripod states (some of these are briefly
described in the next subsection). In the actuated model described in §5.2 we
took a fixed stance period, implicitly assuming a feedforward signal from the
CPG [295]; in that of §5.3, liftoff and touchdown were assumed to occur when
the force in any of the support legs first drops to zero [302]. Leg force, leg
stretch or angle, and CPG phase or timing criteria are all considered in [144].

Figure 41 shows an example of a stable gait under a fixed stretch protocol,
liftoff and touchdown being indicated by the vertical grey lines on the phase
portrait of panel a. Individual forces are not as smooth as desired (panel b2),
but they do exhibit the appropriate patterns, falling near zero at touchdown
and liftoff, and the net COM fore-aft force is marginally acceptable (panel b3).
However, while stable gaits were relatively easy to find for constant activation,
because positive and negative actuated work and passive elastic effects can be
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a) b) 

Figure 42: (a) Geometry of the hexapedal model with actuated muscles and two-
component legs; left stance tripod shown bold. (b) A pair of Hill type muscles
(Fig. 39) represent the depressor muscle complexes active in each leg during
stance. The pivots represent the coxa-trochanteral and femur-tibia joints, and
passive torsional stiffness and dissipation can be included in both joints.

balanced by considering contactive and expansive regions in phase space, we
were unable to find stable gaits with reasonable force profiles over a realistic
speed range for time-dependent CPG actuations. This may be due to the muscle
acting on an oversimplified leg, with fixed, torque-free pivots, or to the COM
constraint. The actuated models of [295]and [302] either specified ‘hip’ torques
directly, or indirectly via moving pivot positions, and allowed 3 DOF coupled
translations and rotations in the horizontal plane.

Thus, to properly incorporate muscles we believe that a more realistic model
than the abstracted telescopic leg of §§5.2-5.3 and Fig. 40 is required. To avoid
excessive complexity, we propose to follow Full and Ahn [127, Fig. 2] in simpli-
fying the four-component cockroach limbs to two rigid links, connected to the
body at a ‘hip,’ representing the coxa-trochanteral joint, and pivoted at a ‘knee’
or ‘ankle,’ representing the femur-tibia joint, these being the joints that display
the greatest angular variations [214]. Similarly, the depressor musculo-apodeme
complexes active during the stance phase are collapsed to an agonist-antagonist
pair of Hill-type elements that pull on the ‘lever’ of the femur: see Fig. 42. We
can also include passive damping and stiffness in the knee and hip joints.

We are currently performing simulations of bipedal and hexapedal models
with the jointed leg geometry of Fig. 42. Although we anticipate that appropri-
ate leg geometries will be necessary to generate the correct forces and moments
at the coxa-trochanteral joints, we shall continue to neglect leg masses, thus
obviating swing phase dynamics, and restricting to three degrees of freedom (in
the horizontal plane).

5.5 On proprioceptive and exteroceptive feedback

The neuromechanical model sketched in §5.4 lacks reflexive feedback and overall
CNS control. In particular, the CPG model is ‘wired’ to produce a stable
antiphase tripod gait. (It possesses other periodic gait patterns that are mostly
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unstable, although the all-in-phase pronking gait can be stabilized by adjusting
the time scale of inhibitory coupling among the six CPG interneurons [145].)
This is appropriate in the present context, since as we emphasized at the outset
and again in §2.4, this review focusses on rapid running, in which neural reflexes
are dominated by preflexive, mechanical feedback. However, if only to indicate
a little of what we have omitted, we now briefly discuss some aspects of reflexive
feedback in insects.

Tryba and Ritzmann [321, 322] present evidence of different inter- and intra-
limb (joint) phase relations during slow walking and searching behaviors in
cockroaches in which the double tripod gait characteristic of higher speeds is
replaced by more varied patterns. Extensive work on stick insects [92, 93, 20,
91] indicates that proprioceptive feedback from strain sensors (campaniform
sensillae) and hair cells and hair plates are important in regulating inter-limb
motions, load-sharing among legs, and posture control in these regimes [346,
265, 339, 273, 5, 345]. Indeed, as noted earlier in §2.4, complex models of
proprioceptive feedback and the resulting limb kinematics have been formulated
based on this work: see [111, 108] for recent reviews.

Cockroach circuitry is not as well known as that of the larger and slower stick
insect, but Pearson [262, 258, 264] shows that campaniform sensillae make ex-
citatory connections to slow depressor motoneurons and inhibitory connections
to bursting interneurons, thereby reinforcing depressor muscle activity during
stance, while tonic inputs from other leg receptors exert the opposite effect. It
is also known that overall CNS commands excite both CPG neurons and mo-
toneurons, and that, in turn, CPG outputs can significantly modulate reflexive
feedback pathways [75]. Zill et al. [347, 222, 345] provide details of these and
other sensory pathways in the cockroach, and Pearson’s review [260] cites many
further references on proprioceptive feedback. The use of body orientation and
load direction sensing to change leg phasing for improved hill climbing in the
robot RHex is discussed in [209], cf. [208].

Once our feedforward neuromechanical model is running reliably we intend to
add proproceptive feedback to both motoneurons and CPG (inter-) neurons, as
well as exteroreception from, e.g., antennae and vision, as well as higher level,
goal-oriented feedback from the CNS. Recent papers from Cowan’s lab [221,
90] describe control of a wheeled robot and of a modified LLS model of the
type considered in §5.1 using antennal sensing to evoke wall-following behavior
characteristic of cockroaches [64]. Other insect navigation control systems and
their role in designing bio-inspired autonomous robots are descibed in [332].

It will be important to first ensure that proprioceptive feedback does not
destabilize preflexively-stabilized gaits. Assuming that this is the case, the
models will allow us to examine the advantages it affords, especially at low
speeds, in increasing flexibility and resistence to large perturbations.

As we have noted, organs called campaniform sensillae detect exoskeletal
strain components [264], and this, and the multiple and single-leg force mea-
surements of [135, 136, 317] prompted our initial choice to define liftoff of stance
and touchdown of swing legs in the LLS model to occur when the force in the
stance leg(s) falls to zero. Hair cells or plates [346, 265, 339, 273] and chor-
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dotonal organs [222] detect joint angles and angular velocities. The inclusion
of such sensors, hexapedal geometry, muscles, and the CPG-motoneuron cir-
cuit described in §§5.4.1-5.4.2 suggests several additional, alternative rules for
stance-switching, e.g.:

1. When leg force magnitudes, or fore-aft or lateral force components, first
drop to zero (proprioceptive feedback);

2. When joint angles (leg stretches) first reach prescribed values (proprio-
ceptive feedback);

3. When CPG oscillator phases first reach prescribed values (pure feedfor-
ward).

The first two feedback rules may be applied when the first leg of the stance
tripod meets the chosen criterion, or when an average over the three legs achieves
it. Other criteria, or combinations of the above, are of course possible. The
legs may be constained to lift and set down as two tripods, or allowed to do so
independently. Rules of comparable and greater complexity have been proposed,
and shown to generate stable gaits, in models of stick insect walking [20, 92, 93,
111], although as we have noted these studies are kinematic rather than dynamic:
they do not consider the full Newtonian mechanics of body and limbs.

Once a periodic gait is found using, say, a stretch criterion as in Fig. 41,
liftoff joint angles and CPG phases are thereby determined and thus the same
gait must exist under the other criteria and appropriate combinations thereof.
Stability may vary, however, much as it can under hard (displacement or rigid)
and soft (traction or dead) loading in elasticity theory [316]13. In fact the
results reported in [144, 147] indicate that the force-sensing protocol seems to
lead to stable gaits more readily than the others suggested above, and we note
that stride-to-stride feedback to modify actuation onset times was required to
stabilize the actuated Hill-type LLS model of [295]. With this and the great
variety of possible reflexive feedback modes in mind, studies of different criteria
are more likely to be illuminating when informed by experiments on animals
with lesioned or otherwise-disrupted sensory pathways.

6 Conclusions: Open problems and challenges

In this article we have described several achievements in modeling the dynamics
of legged locomotion, and noted some open questions. After reviewing biome-
chanical, neurobiological, and control-theoretic background, and summarizing
results of animal studies, in §3.3 we proposed four hypotheses that guide our
approach to experimentation and modeling. The work described in §§4-5 goes
some way toward addressing the first two of these: that locomotive systems are
inherently stable; and that the neural and mechanical architectures of animals

13Soft loading permits a larger class of solutions than hard loading, so in the former, less-
constrained case, specific solutions may be unstable even if they are stable under hard loading.
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effectively collapse their potentially high-dimensional dynamical systems into
much lower-dimensional templates.

Specifically, we showed that passively-stabilized spring-loaded inverted pen-
dulum (SLIP) and lateral leg spring (LLS) models, having respectively two and
three degrees of freedom and describing motions constrained to vertical (saggi-
tal) and horizontal planes, can capture key qualitative features of mass center
motions during running. We sketched current work on fully three-dimensional
coupled dynamics, and on hexapedal models with actuated legs, that provide
quantitative mateches to data. We then showed that relatively detailed bio-
physical models of bursting neurons can be assembled into a CPG-motoneuron
circuit and reduced to a tractable phase oscillator model that enables the analyt-
ical study of gaits and phase relationships among limbs. Using phase response
curves and averaging theory, we reduced some sixty ODEs (previously pared
from over a hundred by eliminating fast time scales) to six, and then, assuming
support tripods in exact antiphase and appealing to symmetry, to a single scalar
ODE on the circle with trivially simple dynamics.

We have indicated how fast and slow motoneuron outputs of the CPG model
can innervate Hill-type muscle models and thus activate a hexapedal body with
jointed legs more representative of the insect than the telescoping springs of §5.3
and §5.4.4. Since these spike trains are determined by the CPG and the cal-
cium dynamics steps to muscle activation are linear, the resulting feedforward
neuromechanical model may be reducible to a set of six phase oscillators (cf.
Equation (75)) that excite, via Hill-type dynamics (82-85), a mechanical model
with massless legs, thus generating a four-dimensional Poincaré map much as
in §§5.1-5.3. Further reduction may even be possible for stereotyped gaits with
fixed phase relationships, although it remains to be seen to what degree the de-
tails of spike trains can be ignored and subsumed in phase reductions, especially
when proprioceptive feedback is added.

Although models such as these are radically simplified, their hybrid nature
makes them resistant to ‘closed-form’ analysis in all but the simplest limiting
cases (§§4.4 and 5.1), and while perturbation methods can extend these re-
sults [294, 295], numerical studies remain essential (hence our account of the
methods in §4.3). It is difficult to extract general information on parameter
dependence from numerical work alone, but careful nondimensionalization and
linearization in appropriate parameter ranges, suggested by comparative studies
such as those reviewed in §3, can be useful. In this regard we are currently using
the SLIP approximations proposed in [299, 142] to investigate how gravitational,
elastic and rotational effects interact to produce bouncing frequencies.

In the work described here we made the relatively vague ‘preflex hypothesis’
of Loeb et al. [49] precise by creating passive and actuated models – the latter
with predominantly feedforward forcing – and investigating the existence and
stability of periodic gaits via analytical, perturbative, and numerical computa-
tions of Poincaré maps. Since the models have massless legs, ‘logical’ rather
than dynamical liftoff and touchdown criteria must be employed, but this is
the only point at which sensory control enters. For simplicity, we have thus
far mostly assumed liftoff of stance legs and touchdown of swing legs to occur
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simultaneously when stance foot forces fall to zero, but, as noted in §5.5, other
criteria may be more realistic. Overall, the formulation of such mathematical
models forces one to specify precise mechanisms that, while inevitably idealiz-
ing and simplifying the animal’s own strategies, reveal key underlying principles.
Moreover, we believe that they will allow us to discover the relative importance
of factors such as positive and negative work (cf. [134, 4]) vs. dissipative losses
in stabilization, and to further elucidate the scaling relations of §3.

The third and fourth hypotheses of §3.3 – that, depending upon task de-
mands and sensor capabilities, reflexive controls are tuned in a space charac-
terised by centralized/decentralized and feedback/feedforward qualities (Fig. 7);
and that higher (task) level control operates by assembling goal pursuit dynam-
ics from simpler behavioral primitives – remain as outstanding challenges. They
nonetheless suggest an experimental program, and will allow us to build at least
template-type models of reflexive feedback systems and CNS controls.

In particular, to probe the space of reflexive control architectures we propose
that the dynamic clamp technique of neuroscience should be extended to neu-
romechanical systems. In dynamic clamp experiments ‘virtual’ ionic currents
are added to neurons in vitro by running real-time computer simulations of their
gating dynamics (cf. Equations (11b-12)) in response to digitized intracellular
membrane voltage measurements [281, 308, 309]. The resulting currents, after
digital-to-analog conversion, are then input to the neuron via the recording mi-
croelectrode. In this way precise manipulations of both natural and artificial
intracellular dynamics, and of intercellular (synaptic) inputs, can be achieved
and used to probe the parameter space [309]. Linux-based software is available
for implementation of this and related biological control tasks [104].

We imagine several extensions to this powerful technique. An isolated CPG-
motoneuron preparation in vitro, deprived of sensory inputs, could have them
artificially restored by introducing a mathematical model of muscles and limb-
body dynamics ‘driven’ by the motoneuron outputs. More or less rich dynamics
and environmental insults could be allowed, and different types of proprioceptive
feedback added. Less radically, one could sever a reflexive pathway and record
spike trains from, say, campaniform sensillae or hair cells, manipulate the sig-
nals by introducing delays or degrading (or improving) signal-to-noise ratios,
and reinject them at the target cells. In both cases, one literally builds a math-
ematical model into the physical loop, and varies its properties in a controlled
manner in order to probe less well-understood biological components.

Experiments such as these will, we believe, allow us to investigate proprio-
ceptive and central sensory pathways to a degree that will enable the creation
of neuromechanical models of freely-running insects with at least limited be-
havioral repertoires. The resulting models – a suite of anchors and templates –
will, in turn, further elucidate the path from neural spikes through mechanical
work to behavior. Paraphrasing T.S. Eliot [113], we will then have removed a
little more of the shadow between intent and action.
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