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Abstract 

A general paradigm, based on the concept of self-organized criticality (SOC), for 

turbulent transport in magnetically confined plasmas has been recently suggested as an 

explanation for some of the apparent discrepancies between most theoretical models of 

turbulent transport and experimental observations of the transport in magnetically confined 

plasmas. This model describes the dynamics of the transport without relying on the 

underlying local fluctuation mechanisms. Computations based on a cellular automata 

realization of such a model have found that noise driven SOC systems can maintain average 

profiles that are linearly stable (submarginal) and yet are able to sustain active transport 

dynamics. It is also found that the dominant scales in the transport dynamics in the absence 

of sheared flow are system scales rather than the underlying local fluctuation scales. The 

addition of sheared flow into the dynamics leads to a large reduction of the system-scale 

transport events and a commensurate increase in the fluctuation-scale transport events 
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needed to maintain the constant flux. The dynamics of these models and the potential 

ramifications for transport studies are discussed. 
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I. INTRODUCTION 

Anomalous transport in magnetic confinement devices has defied simple 

characterization due in part to the observation that the dominant transport scale lengths have 

scaled with machine size (Bohm or worse scaling), while the suspected transport 

mechanisms have much smaller scales (Gyro-Bohm scaling). To shed some light on this 

apparent discrepancy and to investigate the effect of sheared flow on the transport dynamics 

and these scaling, a new approach to transport has been suggested’ based on the idea of 

self-organized criticality (SOC).2*3*4 This concept seeks to describe the dynamics of the 

transport without relying on the underlying local fluctuation mechanisms. Because of the 

independence of the transport dynamics on the specific local instability, this has the 

advantage of being more universally applicable and addresses some of the universal 

features such as profile robustness. The dynamics of such systems can be computationally 

investigated with a cellular automata model of “running sandpile” dynamics. This model 

allows us to investigate the major dynamical scales and the effect of an applied sheared 

flow on these dominant scales. A correspondence between many of the important quantities 

in turbulent transport and the equvilent variables in the SOC model is given in Table 1. 

Two of the barriers in the way of understanding anomalous transport are (1) the 

questions of which instabilities are responsible for the transport and (2) the issue of the 

transport scale being reconciled with the fluctuation scale. It has long been believed that 

some linear instability (mode) is driving turbulent fluctuations, which are causing the 

anomalous transport.5 A number of instabilities have been put forward as candidates for 

dominating transport in magnetic confinement devices. In many of these modes, a linear 

marginal stability condition has been assumed for the profile. This is based on the 

assumption that the turbulent system would relax its driving gradient back to the linearly 

least unstable profile (the marginal profile), just allowing for the drive to continue. 

Ballooning modes near the p limit6 are among the modes for which this has been 

suggested. In addition, ion temperature-gradient-driven modes at the marginal limit have 
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been suggested as the dominant core transport mechanism.7,g Unfortunately, all of these 

instability mechanisms suffer from the drawback that, experimentally, the profiles seem to 

be stable to the candidate modes over much if not all of the radius.9 The second difficulty 

is related to the fact that the transport from most of these modes is governed by the 

fluctuation scales, which are typically on the order of ion gyro radii (Gyro-Bohm 

scaling).10 These fluctuation scales define the characteristic “step size” of the turbulent 

diffusion leading to a confinement time that scales with the step size. Once again the 

experimental evidence is that the confinement in real magnetic confinement devices, at least 

in the low confinement mode (L-mode), scales with the machine size (Bohm scaling)’O 

rather than with the theoretical fluctuation step size. Interestingly, there is evidence that in 

the enhanced confinement modes (H mode, etc.), which have a sheared flow coincident 

with the transport barrier, the confinement scaling seems to go from Bohm-like to Gyro- 

Bohm-like. * 1 

The major results in this paper are summarized below. It has been found that noise 

driven SOC systems maintain average profiles that are linearly stable (submarginal) and yet 

are able to sustain active transport dynamics in contrast to naive marginal stability 

arguments. This transport can occur on very fast time scales exhibiting etither very fast 

diffusive transport or even ballistic propagation. It is also found that with no sheared flow 

or sheared flow decorrelation times smaller than the natural system decorrelation times the 

dominant scales in the transport dynamics are system scales rather than the underlying local 

fluctuation scales. However, the addition of sheared flow into the dynamics leads to a 

large reduction of the system scale transport and a commensurate increase in the fluctuation 

scale transport. This may be consistent with the transition from Bohm to Gyro-Bohm 

scaling observed in improved confinement modes. Analytics on the Burgers equation1 

show this transformation with the addition of shear as this as a change in the transport 

propagation scaling exponent with the propagation going from ballistic without shear to 

diffusive with shear. 
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The remainder of the paper is organized as follows: Section II is a brief discussion 

of the heuristics of sheared flow in turbulent systems. Section III contains the SOC model 

investigated and the results from simulations without sheared flow. This is followed by 

Section IV, consisting of the results due to the addition of sheared flow to the SOC 

system. Finally, Section V is the conclusion and summary. 

11. HEURISTICS OF SHEARED FLOW IN TURBULENT SYSTEMS 

Due to in part the existence of a shear flow region coincident with the transport 

barrier in enhanced confinement modes, there has been much interest recently in the effect 

of shear flows on turbulent systems. This interaction can take a number of forms. The 

first and most often quoted is the shear suppression of the turbulence.12 This occurs when 

the flow shear scale length is less then the turbulent scale length of interest and the shearing 

rate is higher then the eddy turnover rate. In this case, the turbulent fluctuations are 

decorrelated by the shear more quickly then they would be by the turbulent interactions; 

consequently, the turbulent amplitude and scale lengths are reduced. This mechanism is 

very general and, assuming the sheared flow is stable and therefore not generating more 

turbulent fluctuations, should be a valid effect with all fluctuation models. The next and 

sometimes more important impact of the shear flow on the fluctuation amplitude is at the 

linear stabilization level. This effect is mode dependent and is therefore not as general as 

the nonlinear shear suppression, but for the modes on which it is effective there can be a 

significant impact.13 The mechanism is often straightforward, since the growth rate for 

many modes is o dependent, the addition of shear can change o and therefore change the 

growth rate or even completely stabilize the mode by raising the effective stability 

boundary. A third mechanism closely related to the first one is a direct effect on the 

transport. The previous two mechanisms reduced the turbulent transport by reducing the 

turbulence; this method can reduce the turbulent transport by changing the phase 

relationship between the advecting and advected fields. Because the transport comes from . 
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the cross correlation of two fields &e., n and $), if the phase relationship between these 

fields is changed, the transport can be also. Sheared flow can have an effect on the average 

phase between the fields, thereby changing the transport.14.15 

A final mechanism, which may be in some cases essentially the same as the first 

mechanism, by which sheared flow can have an impact on turbulent transport is the one 

that will be explored in the rest of this paper. If the transport takes place as correlated 

transport events, similar to avalanches in snow or sand, rather than as the sum of individual 

local transport, it is plausible to imagine that the sheared flow could decorrelate the long 

transport events. These correlated “avalanches” could be due to modulational interactions 

of the small-scale f l ~ c t u a t i o n s ~ ~ ~ ~ ~  or a simple sequential transport of some evolving field 

(temperature, density, etc.). The latter is very much like the traditional picture of a snow or 

sand avalanche, propagating and spreading after being initiated at one point. This is the 

model we will investigate. 

111. THE RUNNING SANDPILE MODEL 

Because of the expense and difficulty of accurately modeling large regions of a 

magnetic confinement device and because of the monumental task of dealing with and 

interpreting the data that one does get, it is often useful to construct the simplest model that 

captures the dynamics of interest. Starting from the assumptions of the importance of 

marginality to turbulent transport and the importance of turbulent transport to relaxation of 

gradients, a very simple natural model presents itself. In this model, local turbulent 

fluctuations are excited by the local gradient exceeding marginality, and the local 

fluctuations in turn relax the local gradient, transporting the excess gradient down the 

profile. This sandpile SOC model has the gradient modeled by the slope of the sandpile, 

while the turbulent transport is modeled by the local amount that falls (overturns) when the 

sandpile becomes locally unstable. The model system is driven by noise from the heating 

sources or background fluctuations, which in the sandpile model are represented by a 
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random “rain” of sand grains on the pile. This model allows us to study the dynamics of 

the transport independent of the local instability mechanism and independent of the local 

transport mechanism. Because of the relative simplicity of the model, we are also able to 

do very long time calculations and collect reasonably large statistical samples. 

A standard cellular automata algorithm18 is used to study the dynamics of the 

driven sandpile. The domain is divided into cells, which are evolved in steps. First, “sand 

grains” are added to the cells with a probability Po. Next, all the cells are checked for 

stability against a simple stability rule and either flagged as stable or not, and finally, the 

cells are time advanced, with the unstable cells overturning and moving their excess 

“grains” to another cell with the size, distance, and direction of the fall being determined by 

the overturning rules. The most simple set of rules used is: 

if z,, 2 z,,, 9 

than h,, = h,, - Nf 

and 

hit+, = h n + l +  N/ 

With h,, defined as the height of cell n, 2, being the difference between hn and hn+l, Zcrit is 

the critical gradient and N’is the amount of “sand” that falls in an overturning event 

(Fig. 1). In terms of the normal physical quantities we associate with turbulent systems, 

each cell can be thought of as the location of a local turbulent fluctuation (eddy). Z c ~ f  is the 

critical gradient at which fluctuations are unstable and grow, and Nfis the amount of 

“gradient” that is transported by a local fluctuation (local eddy-induced transport, for 

example). The average sandpile profile is equivalent to the mean temperature or density 

profile, while the total number of sand grains in the pile (the total mass) is the total 

energy/particle content of the device. The “sand grain” flux is clearly the particleheat flux 

in the turbulent system, and for later reference, the sheared flow (wind) is the sheared 

electric field often coincident with transport barriers. 
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The simulations are done in a two-dimensional system (slab geometry) where x is 

equivalent to the radial coordinate (r) and y to the poloidal angle (e). We have used a 

variety of domain sizes varying from 50 X 1 (x and y directions) to 800 x 100 with most of 

the 2-D calculations being performed at 200 x 50. The boundary conditions for the 

computation domain are periodic in the y direction, open at x = L (particles that reach the 

edge are lost), and closed at i’= 0. Computations are typically started from a marginal state 

(i.e., 2, = Zcrit - 1) and allowed to relax to the steady state. The relaxation time is a 

function of L, Po, and Nfi and an L = 200 for typical values of Po and Nfis around 40,000 

time steps. To accumulate sufficient statistics, the system is iterated for 105 to 107 time 

steps after saturation is reached. The main diagnostic for the sandpile model avalanche 

dynamics is the time history of the number of flips (overturning events), with both the total 

number in the system and the number of flips for individual y values tracked. Additionally, 

local and poloidally averaged particle fluxes are tracked at a few radial positions. Finally, 

the evolutions of both the total mass (the sum of all the grains in the system) and the 

average profiles are followed. 

To investigate the normal SOC transport dynamics and provide control results with 

which to compare computations with sheared flow, we have reproduced the previously 

published sandpile  computation^^.^ with shear free running sandpiles. Since the model 

only has four parameters, L, POL, N’ and we have performed scans of each of these 

parameters, keeping the others fixed. The results of these scans are summarized 

elsewhere.19 Below we review the results from a “typical” case and compare its dynamics 

to that of a marginal system. In our typical run, L = 200, Po = 0.0025, Nf= 3 and = 

8. This run was started marginally stable (2 = 7) and then run -105 steps into the SOC 

regime. The relaxation from the marginal profile to the SOC profile can be seen in the time 

evolution of the number of flips (Fig. 2). The SOC state is not reached until the average 

level of the number of flips saturates at approximately 30,000 time steps. 
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Figure 3 shows the marginal profile (from a system with the same parameters as the 

typical case but with Nf= 1) and the average SOC profile, both averaged over the last 

20,000 steps. It can be seen readily from the slope of the SOC profile and the number of 

flips occurring after relaxation into the SOC state that even with a significantly submarginal 

profile the system is able to robustly transport the inputted flux. This is an important 

characteristic of SOC systems and should lead to a reexamination of the relevance of some 

of the modes whose importance was discounted because the profiles were submarginal 

(i.e., ballooning modes). The one condition needed for the maintenance of a SOC profile 

rather than a marginal profile is that Nf be greater than 1. As discussed earlier, this is 

equivalent to saying that a turbulent eddy will attempt to transport enough to level the local 

gradient in one eddy turnover. If Nf= 1, then whenever a sand grain is dropped onto the 

pile it will fall all the way down to the bottom of the pile and exit at the base. This fall is 

not an organized avalanche in the sense that it will not grow as it cascades down the pile 

because only the local cell with the extra grain is unstable (supermarginal). Comparing a 

time history of overturning sites in a marginal system (Nf= 1) with a time history of 

overturning site in our prototypical SOC case (Nf= 3) clearly shows the difference. In the 

marginal case [Fig. 4(a)], all of the falls are individual isolated events (except for the 

places where two sand grains were dropped by chance in neighboring cells), while in the 

SOC case Fig. 4(b)] there clearly exist coherent avalanches of all different lengths. These 

figures are time histories of a given poloidal location with all the poloidal positions giving 

statistically the same result. The dark cells are cells that are overturning at that time step 

while the light cells are stable. It can be seen from the diagonal lines of overturning sites 

that the transport in the marginal case is continuous from the point of input (the location of 

the random grain-drop) to the bottom edge where the grain exits the system. In the SOC 

case, coherent avalanches can be seen to grow and shrink. Some are seen to propagate up 

the slope, while others propagate down or in both directions. It should be kept in mind that 

I 

the flux always moves down, for these automata rules. The upward propagation is really a 
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void moving up, which is by symmetry the same as a bump moving down. This dual 

propagation is a signature of the SOC system. Even though both cases are in steady state, 

meaning that the flux in via the random rain of grains is the same as the flux out at the 

bottom, there is clearly a more bursty character to the SOC case with the flux often exiting 

in coherent avalanches rather than the continuous single transport events that make up the 

marginal system. To quantify the distribution of these avalanche events that typify the 

transport dynamics of the flowing sandpile, we analyze the avalanches in a number of 

different ways. 

First and most simply, one can construct the probability distribution function (PDF) 

for the total number of instantaneous flips (overturning event). This is explored in more 

detail in Ref. 19. The PDF for the SOC case has a mean given by the flux into the system, 

POL, times the average time for the grains to leave the system, L/2, weighted with the 

amount transported in one flip, N’ giving a mean of PoL2/2N~ The variance for the SOC 

cases seems to scale with the mean as one would expect from a Poisson distribution. 

Because of the need for very large samples to quantify the higher order moments of the 

PDF in which differences often appear, a better method for differentiating between the 

dynamics is the correlation function. The auto-correlation function can give information 

about the average length of the avalanches (transport events), while cross-correlation 

functions between radially separated points quantifies the radial correlation length of these 

events. The average length of the avalanche (the width of the auto-correlation) is seen to be 

-1 in the marginal case, but in the SOC case it is -8 (Fig. 5). The radial correlation length 

is found to be -14 in our typical SOC case Fig. 6(a)]. Recalling that the individual cell 

represents the local fluctuation, the relatively long correlation length signifies much longer 

transport correlation lengths than fluctuation correlation lengths. This feature of SOC 

dynamics is borne out in a model realization using a 3-D resistive pressure-gradient-driven 

turbulence model. The results of this realization will be presented elsewhere. The marginal 

case has even longer radial correlation lengths because of the nature of a transport event. In 
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the marginal system, once a transport is started it continues all the way to the bottom. 

Therefore, we need another method to separate the marginal system from the SOC system. 

This can be done easily using the structure of the crosscorrelation function. Remembering 

that the SOC system avalanches propagated both up and down while the marginal system 

only propagated down, the cross-correlation function between radially separated points can 

be expected to have a peak at the lag given by the separation of the radial points (assuming 

one radial step in one time step). The marginal case will have this peak only on the lag side 

of the correlation function, while the SOC case will have a peak on both the lag side, 

signifying downward propagating avalanches, and the lead side, signifying upward 

propagation [Fig. 6(b)]. The relative heights of these two peaks give the local ratio of 

upward to downward propagation and may be used as a local measure of the profile’s 

deviation from marginal. These quantities depend weakly on the flux through the given 

radial location, which is in this case simply Pox; this leads to a radial dependence of the 

auto and cross-correlation functions in the SOC system. 

The third method for quantifying the avalanche dynamics is with frequency 

diagnostics applied to time history of instantaneous flips (only using the saturated region). 

A typical spectrum can be divided into three regions following Hwa et aZ.3 (Fig. 7). The 

first region is the high frequency end of the spectrum, which follows approximately an 0-4 

I power law. This region is identified as the noninteracting (or overlapping) avalanche 

region. If Po is made small enough, this region completely envelops Region 2 (middle to 

low frequencies), which is identified as the overlapping avalanche region. The spectral 

falloff in the overlapping region is approximately ~ 1 ,  and this is the region of primary 

interest to us. Finally, there is Region 3, the lowest frequencies. In this region the 

spectral power is relatively flat and finally rolls over at the lowest frequencies. This region 

is identified with global discharge events that have extremely long correlation times. It is 

easiest to see these discharge events by looking at the time history of the total mass (the 

integrated heights). Figure 8 shows the total mass in a case that was run for 107 time steps 
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and encompasses perhaps two of the largest “global discharge events.” Note that the 

frequency of these largest events is proportional to the rain rate (the input flux) as one 

would expect for relaxation-type oscillations because the rate of refilling of the pile after a 

massive discharge is proportional to the input flux. Region 3 is a very interesting regime 

dynamically and is the region of primary interest to those using SOC models to study 

earthquakes. However, because this region involves time scales probably much longer 

than a confinement time (which is on the order of L2, assuming transport goes one 

fluctuation size in one time step), we will only explore the high-frequency end of this 

region. 

To compare these cellular automata model results with analytic results,l we 

construct a diffusion coefficient Do. Do is built in the typical fashion from the average local 

flux and average local gradient, giving Do = <T)/<dh/dX>. However, since the system is 

in steady state, the average local flux through xo is simply the average number of grains 

falling into the region above xo, which is given by Poxo. This then allows us to write Do 

as DO = Pp&dh/dX>. It is found that <dh/dX> scales with Pgx, allowing a natural way to 

look at the diffusion by plotting Do against Pgx, which is shown in Fig. 9. It is found that 

DO has a functional dependence of (Pgx)P with j? = 0.95 in the region where Pgx is less 

than N’2. This “fast” transport which scales with the system size is in agreement with the 

analytic work by Diamond and Hahm on the Burgers equation. Very fast diffusion or 

ballistic propagation is also observed in the 3-D resistive pressure-gradient driven 

turbulence model realization of a SOC system. These results will be published elsewhere. 

IV. SHEARED SOC MODEL 

Into the basic model described above we now add a region of poloidal sheared 

flow. This is implemented by adding a constant flow in one direction to the top of the 

sandpile and a constant flow in the other direction to the bottom. The two constant flow 

regions are then connected by a shear flow region (Fig. IO) with a variety of possible 
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shear profiles. The shear is defined as the velocity increment, AV, between two adjacent 

cells in the x direction. The poloidal flow is added to the dynamics in the time advance step 

after moving any falling grains to their new positions. The impact of the shear flow is 

quantified by changing a shear parameter, S, equal to AV times the size of the shear region, 

Ls (S = LsAV). 

The effect of the sheared flow on the transport dynamics can be first and most 

easily observed in a time history of the overturning sites [Fig. 1 l(a)]. The sheared flow 

region in the middle is easily differentiated from the unsheared ends by the absence of 

correlated transport events (avalanches) in the shear zone. This can be contrasted to the 

unshcared SOC case shown in Fig. 1 l(b). While the difference in avalanche dynamics is 

visually striking and shows clearly the decorrelation of the long transport events by the 

sheared flow, to quantify the changes we must use the other diagnostics. The PDF of the 

flips displays a marked decrease in the variance for a running sandpile with flow shear 

when compared to one without shear. This trend continues when the shearing rate andor 

the size of the shear zone increases. This suggests that the larger scale transport events are 

being suppressed by the sheared flow and, since the total flux must remain the same, the 

medium- and small-scale events must increase to make up the difference. The frequency 

spectra make an even more compelling case for the impact of sheared flow on the transport 

dynamics of the running sandpile. Simply comparing the spectra for an unsheared case 

with a sheared case (Fig. 12), one can see a suppression of the low frequency end of the 

spectrum and an increase in the high frequency end. This can be quantified through the 

mean frequency a, defined as liT= J&(E)dw. Figure 12(b) shows the variation in o as 

the shear parameter is increased. This shows the decorrelation time of the transport 

decreasing as the shear parameter increases. Once again it is important to note that this 

effect is completely different from the shear suppression of turbulence. In this model the 

turbulent amplitude and stability boundry are not being affected at all; it is only the 

correlated transport events that are being modified. Therefore, this decorrelation time is not 
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the standard turbulent decorrelation time but rather a new quantity, a transport decorrelation 

time. In the shear free case, the transport decorrelation time is longer than L2, while in the 

sheared flow .case, the decorrelation time becomes shorter than L2. 

The next logical questions to ask are, (1) if the transport events are being 

decorrelated, what is the impact on the diffusion coefficient; and (2) does this build up a 

transport barrier? The answers to both of these questions are somewhat subtle. In the 

sheared flow region, there-is a substantial change in the functional form of the steady state 

sand pile slope. Therefore, the diffusion coefficient D,fchanges functional form, leading 

to an increase in the diffusion coefficient for small Pox and a decrease for large Pgx. 

Again, we find a universal curve for I"(dh/dx) when plotted versus Pox (Fig. 9). In this 

case, the slope of h cannot be described by a power function, but it is just a linear function 

of Pgx. As a consequence, the effective diffusion coefficient is 

e x  

= a + b e x *  

Asymptotically, for x + = , Den+- b-l, which becomes independent of x .  For N'= 3 

and AV = 1, a fit to all the data gives a = 4.85 and b = 1.59. This change in functional 

form is consistent with the change in dynamics predicted by analytic work on the Burgers 

equation model by Diamond and Hahm.' The analytic form of the diffusion coefficient 

goes from infrared divergent (D = kf1) in the shear free case to independent of kr (D =kro ) 

in the sheared flow case. The asymptotic limit (x  + =) of the diffusion coefficients in the 

sand pile model shows the same dependence going to a constant with shear and kr-o-98 

without. 

Due to the discrete nature of the system, the impact of increasing AV saturates when 

AV is larger than one. This is because when AV is larger than one all avalanches down to 

the cell size are decorrelated. Strong sheared flow with a given scale length will decorrelate 

all transport events with a larger scale length. Therefore, if the shear scale length is made 
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smaller than the smallest transport event (which would be unphysical in a continuous 

turbulent system), all the avalanches would be decorrelated. Because of this effect, the 

method used to investigate the dependence of the asymptotic De8on the shearing rate was 

to decrease AV below 1. The effective asymptotic diffusivity is found to decrease 

(Fig. 13) with increasing shear as DeB" (AV)-0.51. This is in comparison to the analytic 

form from the Burgers equation model by Diamond and Hahm, which gives a Den 

dependence on AV with y = 4/5. While the coefficients are not the same, given the 

differences in the models (one being continuous the other being discrete), the similarity in 

scalings is remarkable. 

In the model as presented up to this point, the inclusion of sheared flow either can 

cause a transport barrier, a steepening of the gradient with the coincident decrease in the 

diffusion coefficient, or an anti-transport barrier in which the gradient is further reduced 

and the diffusion coefficient (as defined) is therefore increased. Which occurs depends on 

the ratio of N'to Pox; when N'Pw approaches 3 (for typical parameters), the diffusion 

coefficient crosses the shear-free SOC coefficient (Fig. 9) and a transport barrier is 

formed. It should be kept in mind that the two other effects of shear on turbulent transport, 

the shear suppression of turbulence and the increased stability of the mode, are not included 

in this model. These will be dealt with briefly later. 

As mentioned before, most of these results are for cases in which Pgx does not 

exceed N'2 anywhere in the computational domain. The reason for this is to enable the 

unambiguous study of the SOC dynamics. When the average local flux exceeds N'2, a 

distinct change in the dynamics occurs. The average local gradient jumps from the 

"submarginal" SOC gradient to a super-marginal gradient. This jump is coincident with a 

region in which the avalanches are occurring almost constantly as would be implied by the 

super-marginal gradient. This region allows for a natural definition of an edge zone and 

has interesting implications for the initiation of the transport barrier at the edge in an L-H 

transition. Further investigation of this area will be published later, but it should be noted 
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that in this edge region, shear increases the gradient further, creating a transport barrier that 

forces a large pedestal to develop inside. 

As discussed before, sheared flow can have multiple effects on turbulent transport. 

By using the simple automata model, one is able to isolate the effect of the shear 

decorrelation on the transport events from any other stability effects. Those other effects 

can be added to the simple model in an ad hoc manner. In the sand pile model, the 

overturning events are analogous to the turbulent fluctuations driving the transport; 

therefore, since sheared flow can reduce the turbulence amplitude, in the sandpile paradigm 

N’ the amount moved in an overturning should be affected by the shear. Similarly, 

because sheared flow often has an effect on the linear stability of a mode, shear should 

have an impact on Zcrit, the marginal stability level. If we include in the sandpile model a 

reduction in Nfproportional to the shearing rate and an increase in Z c ~ f  also proportional to 

the shearing rate, we obtain a confluence of effects on the gradient, and therefore on the 

diffusion also, due to the sheared flow that add up to more than the sum of the individual 

changes (Fig. 14). This is mainly due to the increased avalanche rate needed to maintain 

the flux when Nfis decreased. This then forces the sheared region to be more “edge” like, 

causing the development of a large transport barrier. The inclusion of these two additional 

effects is not meant to be self-consistent but rather is a demonstration that the real impact of 

shear on transport is likely to be enhanced by the combination of effects. 

V. CONCLUSIONS 

Within the constraints of a simple cellular automata model of critical gradient 

dynamics (the running sandpile model), it is found that: 

1) Robust transport can occur in a noise driven system with profiles that are on 

average submarginal. This may be relevant to the experimental observation that 

over much of the radius the profile appears to be marginal or submarginal to 

most of the instabilities suspected of dominating transport. 

. ,  
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3) 

4) 

Transport events, avalanches, are found on all size and time scales in the 

running system. The coherence of large transport events can make the transport 

scale with the system size (Bob-like scaling), even though the local transport 

mechanism is the much smaller scale local fluctuations. Additionally, the 

dominance of the large avalanches in the transport dynamics make the flux very 

temporally bursty. 

The addition of sheared flow to the running sandpile has a fundamental impact 

on the transport dynamics. The dominant transport scales move from system 

size to smaller scales with the diffusion no longer being infra-red divergent 

(kl). The mechanism for this change is the simple decorrelation of the large 

scale transport events by the sheared flow. 

With moderately strong driving (or in the limit of large Pox), the inclusion of 

shear can cause the formation of a “transport barrier” (a region with decreased 

diffusivity) consistent with theoretical predictions. However, in this model, 

which does not include the standard sheared flow effects such as linear 

stabilization, very weak driving can lead to an increased diffusivity in the 

sheared flow region. When the other impacts of shear are included in an ad hoc 

manner, the shear region always exhibits a decreased diffusivity with the 

coincident transport barrier. 

The possibility of transport that is largely independent of the nature of the local 

instability and furthermore can occur even with average gradients that are submarginal 

should lead to the reevaluation of some modes that may have been discounted due to the 

stability of the profiles. Because the dynamics of the transport are not closely tied to the 

local dynamics (the instability driving-the fluctuations), this type of model would suggest a 

universality in transport even when the instabilities are different (i.e., across machines). 

The discrepancy between the apparent observed Bohm scaling in experiments and the 

17 



Gyro-Bohm scaling predicted by most turbulence theories may be addressed by this 

universality in the transport dynamics independent of the instability. 

Finally, the change in dominant scales in the sandpile model with the addition of 

shear is not inconsistent with the experimental observation that transport scalings seem to 

go from Bohm to Gyro-Bohm when the system goes into the enhanced confllnement mode, 

which has flow shear. While it is unlikely that this decorrelation of transport events is the 

entire answer, it does provide interesting avenues to explore both experimentally and 

theoretically. 
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FIGURE CAPTIONS 

Fig. 1 A cartoon representation of the simple cellular automata rules used to model the 

sandpile. 

Fig. 2 Time history of the total number of overturning sites at each instant. The figure 

shows the relaxation from the marginal profile in the first 30,000 time steps 

followed by the evolution within the SOC state. 

Fig. 3 The average sandpile profiles for a marginal case and a SOC case. For both cases 

&,-it = 8 and both cases are transporting the same number of grains. 

Fig. 4 A visualization of the overturning sites at all radiuses at one 8 location as a 

function of time. The bottom of the figure is the bottom edge of the sandpile. 

Light colored cells are stable while dark cells are the unstable (overturning) sites. 

a) Shows the avalanches for a marginal case. AU the grains that fall onto the 

sandpile move down the pile singly exiting at the bottom. This can be seen by the 

diagonal lines angling down as time increases. b) Shows the avalanches in a 

marginal case. The avalanches can be seen to grow to radial sizes and last 

various lengths of time. The propagation of the disturbance can be seen to move 

both up and down the slope. 

Fig. 5 The auto-correlation functions for a marginal system having a width of about 1 

and a SOC system having a width of about 10. These widths show the difference 

in avalanche lengths between the marginal and SOC systems. 

Fig. 6 a) The radial correlation length of the flux is given by the half height of the falloff 

of the cross-correlation functions with radial separation. 
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b) A typical cross-correlation function for -0 cells. Note the double peaks at 

both a lag and lead of 40 (the separation distance). These are due to the dual 

propagation nature (both up and down) of the SOC avalanches. 

Fig, 7 An autopower frequency spectrum of the flips in the saturated SOC state. This 

typical skdpile frequency spectrum shows the 3 dynamical regimes. 

Fig. 8 The time evolution of the total mass (the space integrated number of grains) 

displays less of the high frequency oscillations then the “flips” but more low 

frequency oscillations. Note that in 2x107 time steps there are only one or 2 of 

the largest relaxation type oscillations. 

Fig. 9 The diffusion coefficent as a function of flux for a case with sheared flow and one 

without sheared flow. Note the different functional forms. 

Fig. 10 A cartoon of the sandpile with a shear flow zone. The whole pile is flowing to 

the right at the top and to the left at the bottom connected by a variable sized 

region of sheared flow. 

Fig. 11 Time evolution of the overturning sites (like figure 4). The avalanches do not 

appear continous in time because only every 50th time step is shown. a) The 

shear free case shows avalanches of a l l  lengths over the entire radius. b) The case 

with sheared flow shows the coherent avalanches being decorrelated in the shear 

zone in the middle of the pile. 

Fig. 12 a) Frequency spectra with and without a shear flow region. This shows a marked 

decrease in the low frequency power (with shear) and a commencerate increase in 

high frequency power. 
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b) The insert shows the decorrelation t h e  (Td=l/a) as a function of the shear 

parameter (the product of the shearing rate and the size of the shear zone). 

Fig. 13 The diffusion coefficent as a function of the shearing rate. 

Fig. 14 The slopes of a sandpile with a shear region in the middle including all the shear 

effects (diamonds) and just the transport decorrelation and the linear effect 

(circles). 
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