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Abstract—‘Approximate message passing’ algorithms proved  Note that AMP is an approximation to the following
to be extremely effective in reconstructing sparse signalffom  message-passing algorithm. For allj [N] anda,b € [n]

a small number of incoherent linear measurements. Extenses (here and belowN] = {1,2 N}) start with messages
numerical experiments further showed that their dynamics & Ty

0
accurately tracked by a simple one-dimensional iterationérmed ¥j—a
state evolution. In this paper we provide the first rigorous

= 0 and proceed by

foundation to state evolution. We prove that indeed it holds 2= Ya— Z Ay, (1.2)
asymptotically in the large system limit for sensing matri@s with FEINI\i
iid gaussian entries. .
: : . ) +1 ot
While our focus is on message passing algorithms for com- T, = me( Z Avizpyi)-
pressed sensing, the analysis extends beyond this setting, a be[n]\a

general class of algorithms on dense graphs. In this context . .
state evolution plays the role that density evolution has fosparse  AS argued. n [.DMMJ-O], AMP aCCUratf?'y approximates mes-
graphs. sage passing in the large system limit. An important tool for

the analysis of message passing algorithms is provided by
I. INTRODUCTION AND MAIN RESULTS density evolution [RU08]. Density evolution is known to dol
. . . asymptotically for sequences of sparse graphs that aréiyloca
Given ann x N matrix 4, the compressed sensing tree-like. The factor graph underlying the algorithm (li&)

construction problem requires to reconstruct a SParseNeCli,ca- indeed it is the complete bipartite graph. Statastigol

N . :
xo_i R fLom a (slmall) veggor of Ilnea(; ?]bsferl\llat'.onsplays the role of density evolution for dense graphs, and can
y = Azp € R". Recently [DMMO9] suggested the following be regarded (in a very precise sense) as the limit of density

first orderapproximate message-passing (AM#gorithm for evolution for dense graphs

. . . " 0.
recijonstructlggebo given4, y. Start with an initial guess” = 0 For the sake of concreteness, we will focus on the algorithm
and proceed by (I.1). Nevertheless our analysis applies to a much larger

2t = (A2 4 2t (1.1) family of message passing glgorithm_s on der_lse _graphs, for
1 instance the multi-user detection algorithm studied inj83j,
2=y — Azt + gzt-lmg_l(A*zf-l +at7h)), [NS05], [MTO06], [TO05] and the algorithm of [GWO06] (see

the longer version of this paper for more details [BM10]). It
for an appropriate sequence of threshold functi¢ng},>o. is important to mention that the algorithms (1.1) and (1.2 a
The goal is to show that! converges tary (cf. [DMM09] completely different from gaussian belief propagation XBP
for details). Here we assume that the columnsAthave More generally, none of the existing rigorous results for BP
¢, norm (approximately) equal td, and, given a vector can be used here.

v € RY we write f(z) for the vector obtained by applying It is truly remarkable that density evolution (in its spécia
componentwise. Furthed, = n/N, (v) = N~* vazl v; and incarnation, SE) holds for dense graphs. This upsets a very
A* is the transpose of matriA. popular piece of wisdom: ‘density evolution (and message

Two type of findings were presented in [DMMO09{1) passing) work®ecausehe graph is locally tree-like, and does
For random or pseudo-random matricds the behavior of not work on graphs with many short loops.’
AMP algorithms is accurately described by the so calledésta .
evolution’ (SE) formalism;(2) The sparsity-undersamplingA- Main resuit
tradeoff of AMP as derived from SE coincides, for an ap- Given a probability distributiomy,, let 72 = E{X2}/9,
propriate choice of the functiong, with the one of (much and define recursively far > 0,
more complex) convex optimization approaches.

These findings were based on heuristic arguments and TE = EE{[nt(XO‘i‘TtZ) - X0}, (1.3)
extensive numerical simulations. In this paper we provige t 0
first rigorous support to finding (1), by proving that SE halis with Xy ~ px, andZ ~ N(0, 1) independent. Also a function
the large system limit, for a special class of sensing megric¢ : R™ — R is called pseudo-Lipschitaf there exist a



constantL such that for allz,y € R, |¢(x) — ¢(y)] < Since h',2' are column vectors, the equations for
max(||z|], |y, L) ||z — y||- 20 ..., zt"Landhl, ... h' can be written in matrix form as:

Theorem 1. Let {A(N)}x be a sequence of sensing matrices ~ [h" — ¢°|h> —¢'|- -+ |n' — ¢" '] = A" [m°] ... |m' 7],
A € RN indexed byN, with iid entries 4;; ~ N(0,1/n),

and assumey/N — § € (0, 00). Consider further a sequence
of signals{zo(N)} n, that have i.i.d. entries with distribution

X, M,
(202" + AmO] - 2 Amm TP = A0 gt

px,, and have uniformly bounded fourth moment. Then, for Y: Q:
any pseudo-Lipschitz function : R?> — R and all ¢, almost o in shortY; = AQ, and X, = A*M,. For each matrix\/
surely we defineM = M*M.
N We also introduce the notation! for the projection ofmn’
im — tros) = | o¥/, and definen’, = m'—mt. Similarl
lim — Zw(% 20.) = E[(n;—1(Xo + 7-172), Xo)] - (1.4) onto column space d¥/; and definen’, = m'—m/. Similarly,
N—oo N defineq’, ¢!, to be the parallel and orthogonal projections of

Up to a trivial change of variables, this is a formalizatio’ onto column space G%. . .
of the findings of [DMMO9] (cf. in particular Egs. [7], [8] and For vectorsu,v € R™ define (u) = > .2, u;/m and
Finding 2 in that paper). (u,v) = Y" | uv;/m. For random variableX’, Y the notion
X 'y means thail andY are equal almost surelf < vV

Note 1. Theorem 1 holds whefizo(N)} n is not necessarily that they are equal in distribution.

i.i.d., but its empirical distribution converges weakly & . .
probability distributionpy, (cf. [BM10]). B. Main technical Lemma

B. Alternative representation of AMP We prove the following more general result.

Let it = 2g — (A* 211 + 271, f(z) = f(z,20) = 2o — Lemma 1. Let{A(N)} be a sequence of sensing matrices as
n(zo — x), and g(x) = —z. Also definem! = g(zt), ¢* = in Theorem 1, witlm /N = §. Assumex, to have i.i.d. entries
f(h?), and Ay = L(f'(h')). Therefore, we will obtain the with distributionpx,,, having finite fourth moment. Then the
following equivalent version of AMP. Start with® = Az, following hold for allz € NU {0}

(or Ao = 0, ¢° = z) and proceed by (a) .
Rt = A*m! 4 ¢! W e, £ ah™ 4+ Aml 4 Quadia (1) (11L1)
2t = A¢t — \ym!! (1.5) i(l)
Note 2. (a) It is simple to see that algorithn{s5) and (1.1) e, , < > Biz' + Agl + My (1) (11.2)
are equivalent with a simple change of variable. We only use i=0

(1.5) to simplify the analysis ofl.1). However, sincgo = 20 \here A is an independent copy of and coefficientsy;, 3;
is unknown in practice, one should u@éel) to recoverzg. satisfym! = 22;8 a;m’ andq! = Zf;é Biq'. The matrixQ,
(b) Our results hold for a more general case of a sequenceﬁf@) is such th

scalar functions{ fy, g o with A — f,(q") andm () at its columns form an orthogonal basis for the
t gt 120 A M- =9:%)  column space M,;) and Q:Q; = NI, (M; M, = nl,).
(cf. the longer version of this paper [BM10]). pace o). (M:) Q@@ ¢ (MM, = nl,)

Here 6,(1) € R! is a finite dimensional random vector that
II. ANALYSIS converges to 0 almost surely @ — oo.
For any pseudo-Lipschitz functiogg : R*+? — R and

. I . b
The proof is based on a conditioning technique developed( ) R

by Erwin Bolthausen for the analysis of the so-called TA@Z R

equations in spin glass theory [Bol09]. Related ideas cam al 1 Y s,

be found in [Don08]. Am > n(hi. ... b 20:) 2 E[¢n(r0Z, . . e 2, Xo)]
First we introduce some new notations and then state and =1

prove a more general result than Theorem 1. (11.3)
A. Definitions nll_g}OEZ@(Z?,---,Zf) = El¢.(1020, ... 7 21)],
When the update equation fdr‘*! in (1.5) is used, all =1 (11.4)

values ofz0, ..., 2" and alsoh!,. .., h* have been previously A A '
calculated. Additionally any deterministic function ofeth where Zy, ..., Z; (Zo,...,Z;) haveN(0, 1) distribution and
(m°,....,m! and ¢',...,¢") is known as well. Hence, we are independent ok,

can consider the distribution df‘*! when it is conditioned (c) For all 0 < r,s < ¢ the following equations hold and
on all these known variables and. In particular, define all limits exist, are bounded and non-random.

&4,.1, to be theos-algebra generated by’ ..., 2%+~ (thus I il g sily ASe s s

AR A . im (h"" A =" lim (m",m?), 1.5
includingm?, ..., m*~1) andz® h',..., A2 (thus including N%oo< ) n—>oo< ) (11.5)
0 b . o A 1

q’,...,q"). We are interested in finding the distributions of lm (27 2% 2 2 Lim (0" ¢ 1.6
random variables’|s, , and,h'|s, ., .. n—>oo< 2%) ) N—>oo<q ) (11-6)



(d) For all 0 < r,s < t, and for functiony : R? — R
almost everywhere differentiable with bounded derivatikie
following equations hold and all limits exist, are boundedia
non-random.

lim (A" o(hst 20)) 2 lim (R"TL AT/ (BT, 20)),

N—o0 N—o0
(11.7)
i (p(1,0)) 2 lim (27,2 (2", 0))
(11.8)

any constant vectob € R the distribution ofz conditioned
on Dz = b satisfies:

d % *\ — ~
2|p2=p = D*(DD*) "6 + Pp.—o(2)

wherePp._q) is the orthogonal projection onto the subspace

{Dz =0} andz is a random vector of iidN(0, o). Moreover,
D*(DD*)~!b = argmin, {[|z[|*/Dz = b} .

Lemma 2 follows from applying Lemma 3 to the operator
D that mapsA to (AQ, M*A). Note that for finite values of
t as N — oo the matricesM; and@; are non-singular almost

where ¢’ represents derivative with respect to the firssurely. To the interest of space we leave a detailed proof of

coordinate.

Note 3. (a) Above and in the followind |s 2y means that
for any integrable functiorp and for any random variable’
measurable o6, E{¢(X)Z} = E{¢(Y)Z}.

(b) Egs. (I1.7) and (11.8) have the form of Stein's lemma

[Ste72] (Lemma 6 in our Section II-D).

C. Proof of Theorem 1

Consider first the case in which/N = § andz° has iid
entries with distributiorpy,. By definitionz!+! = n(A* 2! +

ty _ pt+1 i A
a') = n(xzo — '), Therefore, applying Lemma 1(b) to theIet mFZE;& ami

function ¢(yo, - . ., Y1, %0,:) = ¥(n(zo,: — i), o,;) We obtain

1

N
Jm 2l 2 E (¥ (X0~ 7i12), Xol)

with Z ~ N(0,1) independent ofX,,, which yields the claim
asZz< -7,
|

D. Useful properties

In order to -calculate zf|s,,,h'" s, ,
Algt,t7A|6t+1,t'
Lemma 2. Let (¢1,t2) = (¢,t) or (t1,t2) = (¢ + 1,¢). Then
the distribution of the conditional random variabl¢|s,, ,,
satisfies

we find

A|6t1,t2 g Et17t2 + ,Pth,tg (A) (“9)

Here A £ A is a random matrix independent &f;, ;,. Also,
Ey, 1, = E(A|Gy, +,) is equal to

Etl’tz = Y;fl (@tl)_lQ; + Mtz (J/\th)_lX:;
— My, (M) "M} Y3, (Qn) ' Q5. . (11.10)

Lemma 2 to a longer version of this paper.

Lemma 4. The following holds

Efym' = X (M)~ Mym] + Qua1(Qer) 1Y yml

(I1.11)

Eirg' 2 Yi(Qn) ' Qiql + My(My) ' X[t (1112)
Proof: Writing m! = m! + m! and using
(110) and the fact thatM;m'| = 0, we obtain
By mt=Qu1(Quy1) 'Y ym . On the other hand

: M,a&. Then using A*M, = X,

(1.9), and [Py, . (A)]*m! 0 we have, conditionally
4 ama L xa L

on 6t+1,t1 E;‘+17tmﬁ A*mﬁ = =
X (M;M) "My M,a = X (M;M,)~*M;mt. Since all
sides are measurable @y, ¢, Eq. (11.11) follows.
Similarly, useq’ = ¢! + ¢!, ¢' = Q.3 andQiq¢, = 0 to
obtain (11.12). [ |
We will also use the following strong law of large numbers
(SLLN) which follows from [HT97][Theorem 2.1].

Theorem 2 (SLLN, [HT97]). Let {X,; : 1 <i < n,n >

1} be an array of random variables withX,, 1,..., X, »)

mutually independent with mean equal zero for each
and E|X,,;|*™ < C for somex > 0, C < oo. Then
LS Xim — 0as. forn — oo.

a |la

Next, we present a standard property of Gaussian matrices
without proof.

Lemma 5. For any deterministicu € RY and p € R"
with ||u|| = ||v|| = 1 and a gaussian matrixd distributed

as A we pavev*flu 4 Z/\/n where Z ~ N(0,1) and
lim,, 00 || Aul|? = 1 almost surely.

Lemma 6 (Stein’s Lemma [Ste72]) For jointly gaussian

Further, Py, . is the orthogonal projector onto subspacdandom variablesZ;, Z, and anyC" function¢ : R — R

Vi, = {AlAQy 0,A*M;, = 0}, defined by
Py, ., (A) = P]fhz APétl. Here Py; = 1— Py, Péh =
I — Py, , and Py, , Py, are ortﬁogonal projector onto
column spaces of);, and M, respectively.

Recall the following well-known formula.

Lemma 3. Let = € R™ be a random vector of iidN(0, «)

the following holds E[Z;p(Z3)] = Cov(Z1, Z2)E[p' (Z2)].

E. Proof of Lemma 1

The proof is by induction ont. Let H;,; be the property
that (11.1), (11.3), (11.5) and (I1.7) are correct. Simillgr let Z,
be the property that (11.2), (1.4), (11.6) and (11.8) hold:he
inductive proof consists of the following three main stefds.

variables and letD € R™*™ be a linear operator. Then for Z, holds. (2) If Z,., #, hold for all» < ¢t ands < t then Z;



holds. (3) If Z,, H, hold for all* < t ands < t then#,,, coefficient of eachn’~! converges td). This coefficient in
holds. the left hand side is equal t%(Mt)_lHt*qiL — (=Bl

Step 1:Z,. Note thatz? = Ax. ) . t 1,77 N ot
(a) &g is generated by = z,. Also ¢° = q(j since, Which can be written a3, _, 4 [(Mt/”) L (h",q" —

)

is an empty matrix. Hence’|s, , = Axo = Aql. Y"4"0 Bsq®)—Ae(—B2)"#*. To simplify the notation denote the
(b) Lety : R — R be a pseudo-Lipschitz function with Con'matrlx Mt/n by G. Thereforelim y_,.. Coefficient ofm’
stantL, and assume w.l.0.gx(0) = 0. Conditioning ong” = g equal to

g, the random variable® = """ | ¢((Azo);)/n is a sum of
iid random variables. By Lemma BAx); < Z||zoll/ /1 . _ Loy
for Z ~ N(0,1). By the SLLN: iy o0 [[zo[2/n %2 dm {D (G Der(h ¢! Zﬂsq “M Beye}-
E(X2)/d = 18 < oo. Hence, for allp > 2, there Tzl

exist a constaniC, such thatE|(Az)|? < C,. There- But using induction hypothesig{,(d), the term (h".q" -
fore E|¢([Azol:)|? < max(L3E|(Azo)i|, ]EI(ACCo) 1 < C ST B /o s 1almost surely equal to the limit of
for a constantC. Now, we can apply Theorem 2 to get(h". k')A — > i_y B«(h",h*)A,. This can be modified,
lim, oo 2 370 [6(29) — Eag(2?)] = 0 whence, by the usmg induction hypothesis;(c), to (m"~'m!=1)\, —

above calculémlon S 0[35<m’“ L ms=1)\, almost surely, which can be written

asGr A — Zizé BsGr.s\s. Hence

t—1

i 5360 Elo(r2)]

lim Coefficient ofm~! %=

N—o00
t—1
(c) Using Lemma 5Jim,, (2%, 20)=lim,, o [|Azol|?/n . e
2 limy o0 (g%, ¢°)/8 2 E(X3) /6. A { Z JerlGride = ;ﬂSG* Al = Me(=B0) 7}
(d) Using part (a) fot = 0, and¢(z) = zp(z, 0) we obtain i1
limy,— oo <Z?, 0(2°,0)) &5 E(r0Z¢(10Z,0)), which is equal to 5 lim (Nl — Zﬁs/\sh:s _ AZ(_ﬁZ)]Ilit} as
8E[¢ (10Z,0)] using Lemma 6. On the other hand, in proof N—roo =0

of (b) we showedim,, ,..(z°, 2°) = 72. We can also show

as - _ Similarly, usingg’(z) = —1, (I1.14 be sh b
that lim,, o0 (¢/(2°,0)) %2 E[/(r07,0)] (cf. Lemma 5 in o USiN9g (2) (I1.14) can be shown by

[BM10)). = Jim {((@i) 7N 25 e + (—an)'e} 0.
Step 2: Z,. This part is analogous to step 1 albeit more >
complex. "

The remaining follows from the fact that

(a) Note that — Sy -
Mt(Mt)ilM:Aqi = MtOt(l) and MtOt(l) + Mtﬁt(l) =

Yi=Zi + [0|Mi1]Ae, X = Hy — Q, (1.13)  M,5,(1) (cf. [BM10] for more details).
where Z, = [:%]---|zt"1], A, = diag\o, ..., \_1) and (c) Forr_,s < t we can use |nduct|o_n hypothesis. FoE
_ t t,r < t, using Lemma 7 fot that was just proved,

Hy = [h]---|n].
Lemma 7. The following holds (2!, 2" Bi(2, 2") + (P Adt

— ~ t,t K3 q s % + o 1 m,z
(a) ht+1|6t+1,t gHthlMt*mf.+P5t+1A*Pﬁftmt+Qt6t(1). |G Z M 4L Z ( )<

d Sov—

(b) 'l = Zi(Q1) ' Qial + Pas, APg,a" + Mii(1). Now, by induction hypothesig; _(d) each term(m’, ") has

Proof: In light of Lemmas 2 and 4 we a finite limit. Thus lim,, .o >"i—g o(1)(m?, 27) = 0. We can
have ht+1|ct+” 4 Xt(M*Mt) IM;ym!  + also show thatAq® , Pi; =" >—>0a|mostsurely using Lemma

Q@) "V By, AP’ ' andl,, & 5. T v can vse ducton ypoles() or 2(c) for
yANYA

V(@)™ th‘. + My (M)~ lXikCIL + PM APS,q" - A1,

Now using equations (I1.13), we only ‘need to show . . ae 1 }

—Qt(Mt) 1M*"%+Qt+1(Qt+1) /E/thL‘f'q = Q:0:(1) nh_)rr;(z 2= nh_{%ogzﬁi@ q")

and [O|Mt71]At(Qt)71QIq|t‘ +Mt(Mt)71X:q_i —)\tmt’l = i=0 1

M,;0:(1). Recall thatm! = M;a andg' = Q3. On the other lim 6<q q).

hand Yy mt = Z; ,m' becauseMym' = 0. Similarly, e

X;q¢, = H;q' . Hence we need to show Last line uses the definition of, and¢’ Lq¢".

. o~ = For the case of = s = ¢, we have
—Qtd + Qu1(Qu41)” Zipami +q = Q0 (1) (11.14)
[O1Me—1]Aef + Me(Me) ™ Hiqh = dem"™" = Midi(1). (115) (¢ oty 4 Z BiBj(z", 27) + (Pii, A\, Piz, Ad') + o(1).

Here is our strategy to prove (11.15) (proof of (1.14) is =0
similar). The left hand side is a linear combination of vesto Note that we used similar argument (Lemma 5 and
m%,...,m!~1. For any/ = 1,...,t we will prove that the Z;_;(c)) to show the contribution of all products of the form

®
i

1 a.s.
llm <ql\’q > =

n— 00 5



(M;0:(1),-) and <P1ﬁ{t[lqi,zi> a.s. tend to0. Now, using using what we just proved for the pseudo-Lipschitz function

induction hypothesis and Lemma 5 d(yos ---,y:) = yi, we have
- (@) | e E S Zy+6°dL)12)? 2 lim (', 2" (1.7
Jim (2", 2")]e, , = lim. _Zoﬁzﬂj 5+, km gL {(ZJﬁrTr P07 gL[[2)7 = lim (25,25 (11.17)
1,)= r=
as. (a7, 4') + lim (¢, 4q1) On the other hand in part (c) we provéeh,, . (2, 2%) £
n—oo 4 n—oo 4§ limy, 00 671 (f(RY), f(R1)).
as (" q") By the induction hypothesisH,(b) for the pseudo-
T s 60 Lipschitz function ¢(yo,...,v:) = f(y:)?> we get

(b) For simplicity, we drop the subindex: from limn—socd '(f(A"), f(h')) "= 6~'E(f(r:-1Z)). So by the
¢.. Using part (@) we can writep(z?,...,2!)|s definition (1.3), both sides of (11.17) are equal 3.
as 6(=0,... U8 4+ Agt Jr“M;atz(l)]f’)t. (d) Very similar to the proof of Zy(d), using part

% r=0Pr -Li i i ;. R
First we would like to drop the error term\/;o:(1). (b) for the pseudo-Lipschitz functioy : R - R

For simplicity let a;,, = (29,...,2/7" 2!e,,) and that is given byt¢(y0""’yt) = yplys,0) we can
b = (.2 LB+ Agy)). Since O MMnsaolen9(20) = EinZio(r 0]

for jointly gaussian Z;, Z; with distribution N(0,1).

Using Lemma 6, this is almost surely equal to
th%ov rtZt,rSZS)E( (TSZS,O)) And another application of

art (b) foro(yo, ..., y:) = ysy: transforms Co(/rtZt,TSZS)

to lim,, 00 (2%, 2%). Also, E(¢' (5 Zs,0)) can be shown to be
) L equal tolim,, . (¢’(2%,0)) almost surely. This finishes the
K> th m”,m")]?o(1), (11.16)  proof of (d) (cf. [BM10] for more details).

Step 3:H:+1. Due to symmetry, proof of this step is exactly
similar to the proof of step 2.

¢ is pseudo-Lipschitz with constantL we have
[¢(an,i) — D(bni)| < max(L, [|ainll, [|bs, n”)|2r o lo(1).
Therefore, using Cauchy-Schwartz inequality twice,
differencen™!| 3" | d(an,) — iy ¢(bn,i)| is less than

where K is the largest of L, > " | |la;n||*/n and
Z %Hbm” /n. Also note that n™' 31, [lainl® < REFERENCES
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