
The dynamics of modulated wave trains

Arjen Doelman

Department for Modelling, Analysis and Simulation

Center for Mathematics and Computer Science (CWI)

1098 SJ Amsterdam, The Netherlands

Björn Sandstede

Department of Mathematics & Statistics

University of Surrey

Guildford, GU2 7XH, UK

Arnd Scheel

Department of Mathematics

University of Minnesota

Minneapolis, MN 55455, USA

Guido Schneider

Mathematisches Institut I

Universität Karlsruhe

76128 Karlsruhe, Germany

January 10, 2005

Abstract

We investigate the dynamics of weakly-modulated nonlinear wave trains. For reaction-diffusion sys-

tems and for the complex Ginzburg–Landau equation, we establish rigorously that slowly varying mod-

ulations of wave trains are well approximated by solutions to Burgers equation over the natural time

scale. In addition to the validity of Burgers equation, we show that the viscous shock profiles in Burgers

equation for the wave number can be found as genuine modulated waves in the underlying reaction-

diffusion system. In other words, we establish the existence and stability of waves that are time-periodic

in appropriately moving coordinate frames which separate regions in physical space that are occupied by

wave trains of different, but almost identical, wave number. The speed of these shocks is determined by

the Rankine–Hugoniot condition where the flux is given by the nonlinear dispersion relation of the wave

trains. The group velocities of the wave trains in a frame moving with the interface are directed toward

the interface. Using pulse-interaction theory, we also consider similar shock profiles for wave trains with

large wave number, that is, for an infinite sequence of widely separated pulses. The results represented

here are then applied to the FitzHugh–Nagumo equation and to hydrodynamic stability problems.
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Notation

Throughout this paper, we denote possibly different constants by the same symbol C. We denote by Hm
ul

the space of locally square-integrable functions on R whose first m weak derivatives exist and are uniformly
bounded in local L2 spaces and for which the spatial translation y 7→ u(·+ y) is continuous with respect to
the Hm

ul -norm. Their norm is defined by

‖u‖Hm
ul

= sup
x∈R

‖u‖Hm(x,x+1)

where the Sobolev norm ‖ · ‖Hm(x,x+1) is, for each fixed x ∈ R, given by

‖u‖Hm(x,x+1) =
m∑

j=0

‖∂j
xu‖L2(x,x+1).

We also use the weighted Sobolev spaces Hm(n) which we equip with the norm

‖u‖Hm(n) = ‖u ρn
w‖Hm

with ρw(x) =
√

1 + |x|2.

u(x, t) solution to reaction-diffusion system
u0(ωt− kx; k) wave train (2π-periodic in argument θ)
θ = ωt− kx travelling-wave coordinate (wave train)
k wave number
ω temporal frequency
ωnl(k) nonlinear dispersion relation
cp = ωnl(k)/k phase velocity
cg = dωnl(k)/dk group velocity
λ temporal eigenvalue
λlin(ν) linear dispersion relation computed in frame with speed cp
ν complex spatial Floquet exponent
` imaginary part of spatial Floquet exponent ν = i`
Φ(X,T ) slowly varying phase
q(X,T ) slowly varying wave number
0 < δ � 1 multi-scale expansion parameter
(X,T ) = (δ(x− cgt), δ2t) slow space and time variables
c∗ speed of viscous shock
ω∗ frequency of viscous shock
ξ = x− c∗t travelling-wave coordinate (shock)
τ = ω∗t rescaled time (2π-periodic)
σ = τ − k0ξ co-rotating coordinate (wave train)
û(`) = [Fu](`) Fourier transform of u(x)
ǔ(x, `) = [J u](x, `) Bloch transform of u(x)

When we fix a wave number k0, we will denote the associated frequency, group and phase velocities evaluated
at k0 by ω0 = ωnl(k0), c0p and c0g, respectively. When confusion is unlikely, we will drop the index 0.
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1 Introduction

We begin in §1.1 with a grasshopper’s guide which contains a brief outline of our results and the plan of
the paper. In the rest of the introduction, starting with §1.2, we explain our results and their proofs in
more detail. We finish the introduction in §1.6 with references to related work and a brief discussion of open
problems.

1.1 Grasshopper’s guide

The issue investigated in this paper is the dynamics of slow modulations of nonlinear, spatially-periodic
travelling waves, in the following referred to as wave trains, in reaction-diffusion equations

∂tu = D∂xxu+ f(u), x ∈ R, u ∈ Rd.

Let u(x, t) = u0(ωt−kx; k) be such a wave train whose profile u0(θ; k) is 2π-periodic in θ, and whose temporal
frequency ω and the spatial wave number k are related through the nonlinear dispersion relation ω = ωnl(k).
We define the group velocity of the wave trains via cg = ω′nl(k) and denote their linear dispersion relation
by λlin(ν). If we modulate the wave number k of the wave trains over large spatial scales, we are led to an
ansatz of the form

u(x, t) = u0(ωt− kx− Φ(X,T ); k + δ∂XΦ(X,T )), (X,T ) =
(
δ(x− cgt), δ2t

)
with 0 < δ � 1, which turns out to satisfy the underlying reaction-diffusion system formally to leading order
provided the wave-number modulation q(X,T ) = ∂XΦ(X,T ) is a solution of the (viscous) Burgers equation

∂T q =
1
2
λ′′lin(0)∂XXq −

1
2
ω′′nl(k)∂X(q2).

In this manuscript, we investigate the following issues:

• Validity results for Burgers equation (setup: §4.1; results: §4.4; proofs: §5):
We establish rigorous error estimates for the approximation of slowly-varying modulated wave trains
via Burgers equation over the natural time scale of order δ−2. The error estimates are uniform in
the spatial variable x provided the wave-number modulation q(X,T ) approaches limits as X → ±∞.
These results are formulated and proved separately for the complex Ginzburg–Landau equation (§3)
and for general reaction-diffusion systems. For the latter case, we also present approximation results
for the inviscid Burgers equation over time scales of order δ−1 (§6).

• Modulation equations near sideband instabilities (§7):
When the underlying wave trains become sideband unstable, Burgers equation does no longer provide
an accurate description of the dynamics of slow modulations. Instead, depending on the form of the
linear dispersion relation, it is the Korteweg–de Vries or the Kuramoto–Sivashinsky equation that takes
its role. We discuss their validity properties for reaction-diffusion systems.

• Existence and stability of weak shocks (setup: §4.1; results: §4.5; proofs: §8):
We show that the viscous shock fronts in Burgers equation correspond to genuine modulated waves
of the underlying reaction-diffusion system. In other words, we construct stable waves that are time-
periodic in an appropriately moving coordinate frame and whose profile converges, as x → ±∞, to
two wave trains with different, but almost identical, wave number. The speed of these interfaces is
determined by the Rankine–Hugoniot condition with the flux given by the nonlinear dispersion relation
of the wave trains. The group velocities of the asymptotic wave trains, computed in a frame moving
with the interface, are directed toward the interface.
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• Global analysis of trains of well-separated pulses (§9):
In the limit of infinite wavelength (or zero wave number), wave trains are made up by an infinite number
of well-separated pulses whose dynamics can be described formally by a lattice dynamical system. In
this description, modulated fronts that connect two such wave trains can be found as heteroclinic orbits
to a certain delay equation. We show that these heteroclinic solutions exist between any two wave
trains.

• Applications (§10):
The results presented here are applied to the FitzHugh–Nagumo equation and to the Taylor–Couette
problem.

1.2 Slowly-varying modulations of nonlinear wave trains

We shall investigate the dynamics of weakly-modulated nonlinear wave trains in partial differential equations
(PDEs) on the real line. To set the scene, suppose that we are given a reaction-diffusion system

∂tu = D∂xxu+ f(u), x ∈ R, u ∈ Rd. (1.1)

Starting point of our investigation are wave trains which are solutions u(x, t) = u0(ωt− kx) of (1.1) that are
2π-periodic in their argument θ = ωt − kx. Thus, ω may be interpreted as the temporal frequency of the
wave train and k as its spatial wave number; their quotient cp = ω/k gives the wave speed, or phase velocity,
of the nonlinear wave. Typically, wave trains exist for an entire range1 of wave numbers k, and both the
profile u0(θ) and the frequency ω will depend on the choice of k. To reflect this fact, we write the travelling
wave as

u(x, t) = u0(ωt− kx; k) (1.2)

and denote the frequency ω selected by the wave number k by ωnl(k); we shall refer to this function as the
nonlinear dispersion relation.

We will assume that the wave trains are spectrally stable: If we transform (1.1) into the frame θ = ωt− kx

and linearize the resulting equation about the wave trains u0(θ; k), we obtain the linear operator

Lu = k2D∂θθu− ω∂θu+ f ′(u0(θ; k))u. (1.3)

Since the coefficients appearing in (1.3) are periodic in θ, a complex number λ ∈ C is in the spectrum of L,
considered for instance on L2(R) if, and only if, there is a wave number ` ∈ R and a nonzero 2π-periodic
function v(θ; `) such that

Lu = λu, u(θ) := ei`θv(θ; `).

Elements λ of the spectrum of L come in curves λ(i`) that are parameterized by ` ∈ R. In particular,
translation invariance of (1.1) implies2 that there is a spectral curve λlin(i`) with λlin(0) = 0; the associated
eigenfunctions v(θ; `) have the expansion

v(θ; `) = ∂θu0(θ; k)− `∂ku0(θ; k) + O(`2).

Spectral stability of the wave train therefore means that the spectrum of L lies in the open left half-plane
except for the curve λlin(i`) for which we assume that λ′′lin(0) > 0.

1See §4.1 for details
2See §4.1 for details
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The fact that wave trains exist for wave numbers k in an open, nonempty interval of real numbers has very
interesting consequences. We may, for instance, pick two wave numbers k− and k+ from the admissible range
and prepare an initial condition which coincides with u0(−k−x; k−) on R− and with u0(−k+x; k+) on R+,
perhaps with some smooth transition between the two patterns near x = 0. The dynamical behaviour of the
resulting solution will reflect the interaction properties of the two wave trains with wave numbers k− and
k+. Worded differently, the region where the transition from wave number k− to k+ occurs can be thought
of as the interface between the two patterns described by the chosen wave trains. Of interest is then the
dynamics of this interface.

More generally, we are interested in the dynamics of modulated wave trains. To motivate the ansatz in
which we shall seek solutions, we begin with a brief heuristic discussion of local wave numbers; Figure 1.1
contains a graphical illustration. Since u0(θ) is 2π-periodic in its argument, we can interpret the number k
in the wave train u0(−kx) as the number of waves per unit interval: its wave number, in other words. For
functions of the form u0(−φ(x)), we may therefore regard the derivative ∂xφ(x) as the local wave number of
u0(−φ(x)) near x. This concept becomes more plausible and credible if ∂xφ varies very little in x. Thus, pick
a function Φ(X) and choose a small multi-scale parameter δ with 0 < δ � 1. The function u0(−kx−Φ(δx))
has indeed, locally at x, a wave number that is given by k + δ∂XΦ(δx). This interpretation may become
more clear when specializing to Φ(X) = X in which case u0(−kx − Φ(δx)) = u0(−(k + δ)x) so that local
and global wave numbers coincide.

Thus, exploiting the freedom we have in selecting the wave number, we choose a smooth real-valued function
Φ(X) and consider a slowly modulated wave train of the form

u(x) = u0(−kx− Φ(δx); k + δ∂XΦ(δx)) (1.4)

for 0 < δ � 1, where we think of δ as a small parameter that determines the length scale over which the
wave number is modulated by the function ∂XΦ. For δ > 0 sufficiently small, it is reasonable to expect that
the solution of (1.1) with initial condition (1.4) remains a slowly modulated wave train: it should still be
of the form (1.4) for a function Φ(X) that now also depends on time. If this is true, then it ought to be
possible to derive an effective evolution equation for the time-dependent modulation Φ.

Evolution equations that describe slowly-modulated wave trains have indeed been derived in the literature,
and we shall now describe the outcome of these analyses. First, we make the modulation ansatz

u(x, t) = u0(ωnl(k)t− kx− Φ(X,T ); k + δ∂XΦ(X,T )) (1.5)

for 0 < δ � 1. The variables (X,T ) represent the relevant length and time scales over which the slowly-
varying modulation of the wave number evolves. The correct choice for (X,T ) turns out to be

(X,T ) =
(
δ(x− cgt), δ2t

)
, (1.6)

where
cg = ω′nl(k) (1.7)

is what we shall refer to as the group velocity of the wave trains. In these coordinates, the local wave number
q(X,T ) := ∂XΦ(X,T ) satisfies, to leading order and on a formal level, Burgers equation3

∂T q =
1
2
λ′′lin(0)∂XXq −

1
2
ω′′nl(k)∂X(q2), (1.8)

3The term Burgers equation is often reserved for the inviscid Burgers equation without the diffusion term in (1.8). We

break with this convention and shall refer to (1.8) as Burgers equation.
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while the phase Φ(X,T ) itself satisfies the integrated Burgers equation

∂T Φ =
1
2
λ′′lin(0)∂XXΦ− 1

2
ω′′nl(k)(∂XΦ)2. (1.9)

At this point, two questions arise naturally:

• First, assuming that the description via (1.8) is correct, what do we learn from it with regard to the
dynamics of modulated wave trains of the reaction-diffusion equation (1.1)?

• Second, can we prove that (1.5) and (1.8) together describe the dynamics of modulated wave trains
accurately? In other words, given a solution q(X,T ) to Burgers equation, is there a solution to the
reaction-diffusion equation (1.1) which differs from (1.5) by terms that go to zero sufficiently fast as
δ → 0?

1.3 Predictions from Burgers equation

To address the first question (whose answer will motivate why we may want to look into the second issue),
we briefly review4 some key features of solutions to Burgers equation. First, note that solutions q(X,T ) of
Burgers equation with sufficiently localized initial data decay to zero in L1 ∩ L∞ as T → ∞. In terms of
(1.1), this means that localized perturbations of the wave number of wave trains will decay to zero.

Localized solutions Φ(X,T ) of (1.9), which correspond to solutions q = ∂XΦ of (1.8) with vanishing spatial
mean, look very much like a Gaussian when renormalized appropriately and, in particular, remain localized
near X = 0 for all T . Taking into account the frame (1.6) in which Burgers equation has been derived, we
see that localized perturbations of the phase of wave trains decay to zero in L1 ∩ L∞ while being localized
near x = cgt when suitably renormalized. This justifies the term group velocity for the quantity cg: it is the
velocity with which localized perturbations in phase or wave number propagate in time (see also Figure 1.1).
Note that localization of the wave number q(X,T ) simply means that the wave trains at X = ±∞ are the
same. The phase Φ(X,T ) is localized precisely when q(X,T ) has vanishing spatial mean:

Φ(X,T ) =
∫ X

−∞
q(Y, T ) dY, Φ(∞, T )− Φ(−∞, T ) =

∫ ∞

−∞
q(X,T ) dX.

Localization of the phase function Φ(X,T ) therefore means that the wave trains at X = ±∞ are in phase,
and the effect of (1.5) is simply to move some of the interior waves forth and back. We refer to Figure 1.2
for an illustration.

Next, we shall focus on nonlocalized solutions of Burgers equation. Of particular interest are the viscous
Lax shocks of (1.8). For any two given numbers q−, q+ ∈ R, Burgers equation admits a travelling wave
q(X,T ) = q∗(X − c∗T ) with q∗(X − c∗T ) → q± as X → ±∞ if, and only if,

ω′′nl(k)(q+ − q−) < 0. (1.10)

Thus, q− < q+ for ω′′nl(k) < 0 and q+ < q− for ω′′nl(k) > 0. If (1.10) is met, the wave speed c∗ is given by

c∗ =
1
2
ω′′nl(k)(q+ + q−), (1.11)

and the front q∗(X − c∗T ) is asymptotically stable. Burgers equation (1.8) is a viscous conservation law,
and it is not hard to see that the inverse slopes of the characteristics of (1.8) to either side of the front q∗
are given by

c±g = ω′′nl(k)q±.

4Details can be found in §2.
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cp cg

Figure 1.1: The left panel shows a wave train that travels with its phase velocity cp, while the right panel

contains a modulated wave train with its local wave number q shown on top. The slowly-varying modulation

of the wave number propagates with the group velocity cg.

modulation with zero mean modulation with nonzero mean

wave number

modulation wave

wave train

Figure 1.2: The difference between localized modulations with zero (left) and nonzero (right) mean is il-

lustrated. The upper row shows the local wave number as a function of x, the resulting modulated wave is

plotted in the center row, and the original wave train is shown in the third row for comparison. Note that

phases of the modulated wave and the wave train at x = ±∞ coincide for wave-number modulations with

zero mean, while modulation with nonzero mean generate a phase difference equal to the mean.

k+ k−

c∗

k

ω

k− k+

c∗

k

ω

ω′′nl(k) > 0

ω′′nl(k) < 0

Lax shock

Lax shock

interface

interface

c∗ ≈ cg

c∗ ≈ cg

Figure 1.3: The relation between concave (top) and convex (bottom) dispersion relations and the resulting

weak-shock profile is illustrated. The velocity c∗ of the interface, given by the Rankine–Hugoniot condition

(1.13) and therefore by the slopes labelled c∗ in the insets, is close to the group velocity cg = ω′
nl which is

positive for the dispersion relations shown to the left.
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In particular, using (1.10) and (1.11), we have

c−g > c∗ > c+g , (1.12)

and the characteristics therefore point toward the front interface which confirms that the fronts q∗ are viscous
Lax shocks. Of course, if (1.10) is not met, then the characteristics point away from the transition area near
X = 0, and we expect the solution q(X,T ) of (1.8) to behave in a way that is similar to rarefaction waves
in conservation laws.

Starting from a wave train with wave number k in the reaction–diffusion system, the Lax shocks q∗(X−c∗T )
of the associated Burgers equation correspond formally, via (1.5), to coherent structures of the reaction-
diffusion system (1.1) that move with speed c∗ = cg + δc∗ and connect the wave train with wave number
k− = k + δq− at X = −∞ to the wave train with wave number k+ = k + δq+ at X = ∞ (see Figure 1.3).
Since the group velocities of the asymptotic wave trains are given by

ω′nl(k + δq±) = cg + ω′′nl(k)δq± = cg + δc±g ,

we can therefore conclude from (1.12) that

ω′nl(k + δq−) > cg + δc∗ > ω′nl(k + δq+).

Using the definitions k± = k + δq± and c∗ = cg + δc∗, we finally get

ω′nl(k−) > c∗ > ω′nl(k+).

Using the interpretation of the group velocity as the speed with which perturbation propagate along the
wave train, we therefore see that the asymptotic wave trains transport perturbations toward the interface
that separates them since its speed is c∗ = cg +δc∗. Coherent structures with this property are often referred
to as sinks [50].

This ends our discussion of the dynamics of Burgers equation and how it relates to the underlying reaction-
diffusion equation. In the next section, we shall now outline our approach for proving validity of Burgers
equation as the system that governs modulations of nonlinear wave trains and the existence of the Lax shocks
we discussed above in the reaction-diffusion equation.

1.4 Verifying the predictions made from Burgers equation

We will prove in §8 that the coherent structures which we discussed in the previous section indeed exist.
More precisely, for given constants k− and k+, we are interested in solutions to (1.1) of the form u(x, t) =
u∗(x− c∗t, ω∗t), where u∗(ξ, τ) is 2π-periodic in τ and

u∗(x− c∗t, ω∗t) → u0(ω±t− k±x− φ±; k±)

as x → ±∞ for appropriate phase constants φ± ∈ R. Solutions u∗(x − c∗t, ω∗t) of the above form are
spatially asymptotic to the wave trains with wave numbers k− and k+. They are also temporally periodic
with frequency ω∗ when considered in a coordinate frame that moves with speed c∗. It turns out that the
assumption of temporal periodicity determines the wave speed via the Rankine–Hugoniot condition

c∗ =
ωnl(k+)− ωnl(k−)

k+ − k−
, (1.13)

which coincides with the speed prediction (1.11) once the moving frame (1.6) is taken into account. The
temporal frequency ω∗ is given by

ω∗ =
ωnl(k−)k+ − ωnl(k+)k−

k+ − k−
.
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We shall show that u∗ exists, and is nonlinearly stable with respect to (1.1), whenever the wave numbers k±
are sufficiently close to each other5 and the Lax condition

ω′nl(k−) > c∗ > ω′nl(k+)

is satisfied. Thus, the group velocities of the asymptotic wave trains, computed in a frame moving with the
interface, are again directed toward the interface, which illustrates further why these structures correspond
to the Lax shocks of Burgers equation.

Note that we can only prove the existence of u∗ when k+ and k− are close to each other5, so that the coherent
structures are really weak shocks. It is an interesting consequence of (1.13) that c∗ → cg(k0) as k± → k0.
Thus, the speed of the interface between the two asymptotic wave trains becomes the group velocity cg when
the wave trains approach each other.

The idea of the existence (and stability) proof is to use spatial dynamics and the Kirchgässner reduction
[18, 29, 41]: If the weak shocks were independent of time, they would satisfy an ordinary differential equation
(ODE) in the spatial variable ξ = x − c∗t. Since the weak shocks are periodic in time, a similar approach
works: Writing the weak shock as u∗(ξ, τ) = u∗(x − c∗t, ω∗t), we see that (u, v)(ξ, τ) = (u∗, ∂ξu∗)(ξ, τ) has
period 2π in τ and satisfies the modulated-wave equation

∂ξu = v (1.14)

∂ξv = −D−1[−ω∗∂τu+ c∗v + f(u)],

where (u, v)(ξ, ·) lies for each ξ in the space H1
per(0, 2π)×H1/2

per (0, 2π) of functions that are 2π-periodic in τ .
In this spatial-dynamics formulation, wave trains correspond to periodic orbits of (1.14), while weak shocks
are heteroclinic orbits that connect them. Since (1.14) is autonomous in ξ, periodic orbits of (1.14) will
always have one neutral Floquet exponent. If we choose c∗ := cg(k0) to be the group velocity of the wave
train with wave number k0, then the periodic orbit corresponding to this wave train turns out to have two
neutral Floquet exponents, and the vector field on the two-dimensional center manifold coincides with the
equation describing viscous shock profiles in Burgers equation! Thus, we obtain the weak shocks from the
Lax shocks of the flow on the center manifold.

Next, we discuss the validity of the Burgers equation itself over time intervals [0, T0/δ
2] for some fixed T0 > 0.

To illustrate the key ideas and difficulties, we focus first on the complex Ginzburg–Landau equation (CGL)

∂tA = (1 + iα)∂xxA+A− (1 + iβ)A|A|2,

where A(x, t) is complex-valued. For simplicity, we consider the wave train with wave number k = 0 which
is given explicitly by

A0(x, t) = e−iβt

and whose group velocity vanishes. Exploiting the invariance of the CGL with respect to A 7→ Aeiγ , we
introduce the amplitude and phase deviations (r, φ) of this wave train via

A(x, t) = (1 + r(x, t))ei(−βt+φ(x,t)).

Substituting this ansatz into the Ginzburg–Landau equation and using the local wave number ψ = ∂xφ as a
new variable, we obtain the equation

∂tr = ∂xxr − 2r − ψ2 − ψ2r − 2α(∂xr)ψ − α∂xψ − α(∂xψ)r − 3r2 − r3 (1.15)

∂tψ = ∂xxψ + ∂x

(
α∂xxr

1 + r
− αψ2 +

2(∂xr)ψ
1 + r

− 2βr − βr2
)
,

5More precisely, when both the wave numbers and the profiles of the associated wave trains, in the 2π-periodic θ-variable,

are sufficiently close to each other.
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which depends only on r and ψ = ∂xφ but not on the phase φ itself. Thus, we have successfully decomposed
the underlying PDE into an equation for the local wave number ψ and an equation for the remainder r.
Note that the equation for ψ is a conservation law, which somewhat resembles Burgers equation, while the
equation for r is exponentially damped due to the linear term −2r.

Given a solution q(X,T ) of Burgers equation on the time interval [0, T0], we now wish to examine whether
there is a solution (r, ψ)(x, t) of (1.15) that stays close to the slowly-varying modulation (0, δq(δx, δ2t)) for
t ∈ [0, T0δ

−2] and 0 < δ � 1. Our approach follows closely the general strategy that has been developed over
the past decade to establish validity of amplitude and modulation equations. First, using a formal power-
series expansion in the scaled variables (X,T ), we can calculate corrections to the initial approximation
(0, δq(δx, δ2t)) to obtain functions (rn, ψn)(X,T ) that satisfy (1.15) up to residuals of the order O(δn) (with
n chosen as large as we wish). This suggests that we try to control the full solution by making the ansatz

(r, ψ)(x, t) = (rn, ψn)(x, t) + δn+1(Rs,Rc)(x, t) (1.16)

for solutions of (1.15), which leads to a certain evolution equation for the error (Rs,Rc). Roughly speaking,
we expect that the equation for Rs will again be exponentially damped, and that its solutions therefore
stay bounded by Gronwall’s lemma as long as its right-hand side remains bounded, while the equation for
the error Rc will retain the conservation-law structure exhibited by (1.15). Corroborating these assertions
requires diagonalizing (1.15) in an appropriate sense which we postpone until the actual proof. Instead, we
shall focus on the model problem

∂tRc = ∂xxRc + ∂x

(
δaRc + O(δ2)

)
, a = a(x, t) ∈ L∞(R× R+) (1.17)

which turns out to share the key features with the actual equation for Rc.

The issue at hands is to control the growth of the solution Rc of (1.17) over the time interval [0, T0/δ
2].

Using the variation-of-constant formula, we find

Rc(t) =
∫ t

0

e∂xx(t−s)∂x

[
δa(·, s)Rc(s) + O(δ2)

]
ds.

The estimate
‖e∂xxt∂x‖L2→L2 ≤ C0√

t

of the linear semigroup gives

‖Rc(t)‖L2 ≤
∫ t

0

C0√
t− s

[
δ‖a‖L∞‖Rc(s)‖L2 + O(δ2)

]
ds ≤ C1 +

∫ t

0

δC0√
t− s

‖Rc(s)‖L2 ds, ∀ t ∈ [0, T0/δ
2].

We can now use the version6 of Gronwall’s inequality proved in [22] to conclude boundedness of the error
Rc(t). This is further illustrated by the calculation∫ t

0

δC0√
t− s

ds ≤ δC0

√
t ≤ C0

√
T0

which is valid for t ∈ [0, T0/δ
2].

In summary, it is the factor ∂x in (1.17), i.e. its conservation-law structure, that allows us to conclude that
the error stays bounded over the desired time interval. We shall see in §3.9 that the leading-order term in
the equation for the error of the Ginzburg–Landau equation is indeed of order O(δ) so that we could not
possibly infer boundedness over time intervals of length δ−2 if the factor ∂x were not present.

6See Lemma 3.12 in §3.9
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To apply the same analysis to reaction-diffusion equations, we need to extract an equation of conservation-
law form for the local wave number. This is accomplished in §5: Starting with an arbitrary slowly-varying
phase function φ(x, t), we change the independent variable x via x = y + φ(y, t). The resulting PDE in the
y-variable turns out to depend only on the derivatives of φ but not on φ itself. This allows us to derive an
effective equation for the wave number upon using Bloch-wave transforms and mode filters.

Burgers equation is formulated in terms of the wave number, and any validity result therefore needs to
take into account the reconstruction of the phase Φ from the wave number ∂XΦ. This reconstruction turns
out to impose a number of limitations on how well the dynamics in the reaction-diffusion system can be
approximated via solutions of the associated Burgers equation: While our approximation results are uniform
in the variable y that we introduced above, it turns out that we cannot expect uniform validity for x ∈ R
but only for x in intervals of large but finite length. Moreover, we have to allow a global x-independent shift
between the approximation and the solution. For this shift, we can only prove an O(1)-estimate on the time
interval of the order O(1/δ2).

We emphasize, however, that the quality of the approximation by Burgers equation improves dramatically
for solutions with additional properties. One example are solutions to Burgers equation that converge
sufficiently fast toward, possibly different, limits as X → ±∞. In particular, this class of solutions includes
sufficiently localized solutions Φ(X,T ) of the integrated Burgers equation (1.9). For all the above solutions,
the approximation is uniform in x ∈ R.

1.5 Related modulation equations

We derived the Burgers equation by choosing a scaling of the (x, t) that resembles the self-similarity scaling
of the linear heat equation. Alternatively, following [23], we may also employ the ansatz

u(x, t) = u0(ωnl(k)t− kx− Φ(X,T )/δ; k + ∂XΦ(X,T )), (X,T ) = (δx, δt) (1.18)

which leads to the inviscid Burgers equation7

∂T q + ∂Xωnl(k + q) = 0 (1.19)

for the wave number q = ∂XΦ. Equation (1.19) is a hyperbolic conservation law and therefore allows the
formation of shocks. Thus, we can only expect to obtain validity results that hold over time intervals [0, T1/δ]
where T1 > 0 is sufficiently small depending on the chosen solution q(X,T ). This is indeed the result that
we shall establish in §6 for reaction-diffusion equations. While the profile of solutions is again approximated
well, its position is known only up to an error of the order O(‖q‖2/δ). We emphasize though that this
estimate is good enough to prove that the group velocity provides the speed with which perturbations are
transported along the wave train. Lastly, we remark that a similar approximation result has been proved in
[40] for the complex Ginzburg–Landau equation.

The description via Burgers equation breaks down once the wave trains undergo sideband instabilities which
occur when the coefficient λ′′lin(0) changes sign. In particular, Burgers equation (1.8) becomes ill-posed near
these instabilities, which shows the need of taking higher-order derivatives into account that regularize the
equation. Depending on the next nonvanishing term in the linear dispersion relation λlin(ν), it is either the
Korteweg–de Vries equation (KdV)

∂T q −
1
6
λ′′′lin(0)∂XXXq +

1
2
ω′′nl(k)∂X(q2) = 0

7Strictly speaking, the term inviscid Burgers equation refers to the conservation law with nonlinearity q∂Xq (i.e. with a

quadratic flux). Within the context of this paper, we think of Burgers equation as a shortcut for the modulation equation for

the wave number and shall therefore, with a slight abuse of notation, always refer to (1.19) as the inviscid Burgers equation.
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or the Kuramoto-Sivashinsky equation8

∂T q −
1
24
λ′′′′lin(0)∂XXXXq + κ2∂XXq +

1
2
ω′′nl(k)∂X(q2) = 0

which describe the dynamics of modulated sideband-unstable wave trains. Validity results for both of these
equations are presented in §7 though the results for the KdV equation are again quite unsatisfactory due
to its hyperbolic nature. Since we chose not to exploit the regularity properties of the KdV equation, our
results are limited to time intervals [0, T1δ

−3] where 0 < T1 � 1 is sufficiently small.

1.6 References to related works

The mathematics and physics literature contains a large body of works pertaining to phase and modulation
equations. We shall put here our work in perspective by citing those papers that influenced us most but do
not attempt to give a comprehensive literature review.

Howard and Kopell [23] were, to our knowledge, the first to consider phase equations in reaction-diffusion
equations. They formally derived the inviscid Burgers equation for reaction-diffusion systems using multi-
scale expansions similar in spirit to the approach pioneered by Whitham [56] in his work on conservative
PDEs. Howard and Kopell also proved the existence of weak shocks in λ-ω systems where weak shocks
satisfy an ODE. Lastly, they commented on the difficulties that arise for general reaction-diffusion systems
when weak shocks are sought via the spatial-dynamics approach since the resulting equation is ill-posed.

Kuramoto [31] investigated more systematically the different types of phase equations that arise through
formal multi-scale expansions depending on the symmetries of the underlying PDE and the stability and
symmetry properties of the underlying periodic pattern (see also [43] for a comprehensive overview).

Other formal derivations of various phase equations for the Ginzburg–Landau equation and for general
reaction-diffusion equations can be found, for instance, in [3, 4, 20, 30, 35]. For further references, we refer
to the survey articles and textbooks [1, 10, 33, 34, 44, 45]. These also contain references to many of the
works that have focused on multi-dimensional phase equations, starting with the seminal paper [11] by Cross
and Newell.

There do not appear to be many mathematically rigorous results regarding the existence of weak shocks or
the validity of phase equations. Kapitula proved in [25] the nonlinear stability, in polynomially weighted
spaces, of the weak shocks in λ-ω systems that were found by Howard and Kopell. In [27], he considered the
existence and stability of not necessarily weak shocks for the nearly real cubic Ginzburg–Landau equation.
Van Baalen [2] proved validity of the integrated Kuramoto-Sivashinsky equation for the phase (but not the
wave number) near the k = 0 wave train of the CGL. Lastly, Melbourne and Schneider established in [39, 40]
the validity of the phase diffusion equation and the inviscid Burgers equation near the k = 0 wave train of
the real and the complex Ginzburg–Landau equation, respectively.

2 Burgers equation

As outlined in the introduction, solutions q of Burgers equation describe the local wave number of an
underlying travelling spatially-periodic pattern. In this section, we review properties of these solutions.

2.1 Decay estimates

8We shall give the precise definition of the diffusion coefficient κ2 in §7
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We begin by reviewing the stability properties of the constant solutions q(X,T ) = q0 of Burgers equation

∂T q = ∂XXq + ∂X(q2) (2.1)

that were obtained in [6].

Thus, denote by q̃(X,T ) the deviation from the constant solution so that q(X,T ) = q0 + q̃(X,T ) satisfies
(2.1). We see that q̃(X,T ) satisfies the PDE

∂T q̃ = ∂XX q̃ + 2q0∂X q̃ + ∂X(q̃2) (2.2)

which can be transformed back to (2.1) by the transformation

X 7→ X + 2q0T. (2.3)

Hence, without loss of generality, we can restrict ourselves to the stability of q = 0 in the equation

∂T q̃ = ∂XX q̃ + ∂X(q̃2). (2.4)

The results for general q0 can then be obtained by transforming (2.4) into a comoving frame of reference via
X 7→ X − 2q0T .

Note that the mean
∫

R q(X,T ) dX is conserved by Burgers equation (2.4). In particular, the subspace of
functions with vanishing mean value is invariant under the evolution of (2.4). Solutions to the linearized
equation

∂T q̃ = ∂XX q̃

with vanishing mean satisfy the decay estimate

‖q̃(·, T )‖L∞ ≤ C

1 + T
‖q̃(·, 0)‖L1

for some constant C > 0. For these decay rates, the nonlinear terms ∂X(q̃2) turn out to be asymptotically
irrelevant so that solutions to the nonlinear system (2.4) with zero mean have the same asymptotics as
solutions to the linearized system with zero mean.

Proposition 2.1 ([6]) For each ε ∈ (0, 1/2), there exist positive constants C1, C2 such that the following
is true. If

‖q̃(·, 0)‖H2(2) ≤ C1,

∫ ∞

−∞
q̃(X, 0) dX = 0,

then there exists an A ∈ R such that∥∥∥(1 + T )q̃
(√

TX, T
)
−AXe−X2/4

∥∥∥
H2(2)

≤ C2

(1 + T )
1
2−ε

.

Consequently,

‖q̃(X,T )‖L1 ≤ C2√
1 + T

, ‖q̃(X,T )‖L∞ ≤ C2

1 + T
.

Remark 2.2 The local phase Φ, which is related to the wave number q through q = ∂XΦ, satisfies the
integrated Burgers equation

∂T Φ = ∂XXΦ + (∂XΦ)2. (2.5)

For this equation, we have the following asymptotics. For each initial condition Φ(·, 0) for which ‖Φ(·, 0)‖H2(2)

is sufficiently small, there exists an A ∈ R such that∥∥∥(1 +
√
T )Φ

(√
TX, T

)
−Ae−X2/4

∥∥∥
H2(2)

≤ C2

(1 + T )
1
2−ε

,

so that the renormalized phase converges toward a Gaussian.
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Next, we consider localized solutions q̃ ∈ L1 of (2.4) with nonzero mean. The Cole–Hopf transformation

Q(X,T ) = e
R X
−∞ q̃(Y,T ) dY

transforms (2.4) into the heat equation
∂TQ = ∂XXQ.

Since Burgers equation conserves the quantity
∫

R q̃(X,T ) dX, we are interested in the long-term profiles of
solutions to the heat equation with initial conditions that satisfy

lim
X→−∞

Q(X, 0) = 1, lim
X→∞

Q(X, 0) = 1 +A.

The results in [6] show that

lim
T→∞

Q
(√

TX, T
)

= 1 +A erf(X) + O
(

1√
T

)
.

Using that the inverse Cole–Hopf transformation is given by

q̃(X,T ) =
∂XQ(X,T )
Q(X,T )

,

we see that solutions q̃ to Burgers equation (2.4) with localized initial conditions in H2(2) satisfy

lim
T→∞

√
T q̃
(√

TX, T
)

=
A erf ′(X)

1 +A erf(X)
=

d
dX

ln(1 +A erf(X)) =: f∗A(X)

with rate O(1/
√
T ). The limiting profile f∗A(X) satisfies limX→±∞ f∗A(X) = 0. Therefore, the renormalized

solutions converge toward a non-Gaussian limit.

Proposition 2.3 ([6]) For A ∈ R, define f∗A(X) := d
dX ln(1 + A erf(X)). For each ε ∈ (0, 1/2), there are

positive constants C1, C2 such that the following is true. If ‖q̃(·, 0)‖H2(2) ≤ C1, then there exists an A ∈ R
such that ∥∥∥√1 + T q̃

(√
TX, T

)
− f∗A(X)

∥∥∥
H2(2)

≤ C2

(1 + T )1/2−ε
.

Consequently,

sup
X∈R

|q̃(X,T )| ≤ C2√
1 + T

.

2.2 Fronts in Burgers equation

Next, we recall existence and stability properties of fronts of

∂T q =
1
2
λ′′lin(0)∂XXq −

1
2
ω′′nl(k)∂X(q2) (2.6)

where we assume that λ′′lin(0) > 0 and ω′′nl(k) 6= 0. Note that an appropriate scaling of x and q makes both
coefficients equal to one. We prefer, however, to leave (2.6) as it is to make the results a little easier to apply.

Thus, we seek solutions of (2.6) of the form q(X,T ) = q∗(X − c∗T ) where

q∗(ξ) → q±, ξ → ±∞ (2.7)

with q− and q+ being given real numbers. Upon substituting this ansatz into (2.6), we obtain

1
2
λ′′lin(0)q′′∗ + c∗q

′
∗ −

1
2
ω′′nl(k)(q

2
∗)
′ = 0
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where we differentiate with respect to ξ = X − c∗T . Integrating in ξ, and using that q∗(ξ) → q− as ξ → −∞
by (2.7), we get

1
2
λ′′lin(0)q′∗ + c∗q∗ −

1
2
ω′′nl(k)q

2
∗ = c∗q− −

1
2
ω′′nl(k)q

2
−.

If we also require that q∗(ξ) → q+ as ξ →∞, we find that the wave speed c∗ is necessarily given by

c∗ =
1
2
ω′′nl(k)(q+ + q−), (2.8)

so that the travelling-wave ODE becomes

q′∗ =
ω′′nl(k)
λ′′lin(0)

(q∗ − q+)(q∗ − q−). (2.9)

Thus, a necessary condition for obtaining a front that satisfies (2.7) is

ω′′nl(k)(q+ − q−) < 0. (2.10)

If (2.10) is met, then the front q∗(ξ) is given by

q∗(ξ) =
q+e−ω′′nl(k)(q+−q−)ξ − q−

e−ω′′nl(k)(q+−q−)ξ − 1
, ξ = X − c∗T (2.11)

with c∗ as in (2.8).

Perturbations q̃ of the front q∗ satisfy the nonlinear equation

∂T q̃ =
1
2
λ′′lin(0)∂ξξ q̃ + c∗∂ξ q̃ −

1
2
ω′′nl(k)∂ξ[2q∗q̃ + q̃2] (2.12)

which is obtained from (2.6) by setting q = q∗ + q̃ and transforming into the comoving frame ξ = X − c∗T .
Initially, one may expect that the solutions q̃ decay only algebraically in t. However, by considering (2.12)
on the space

Xη =
{
q̃; eη|ξ|q̃(ξ) ∈ L2(R) and eη|ξ|∂ξ q̃(ξ) ∈ L2(R)

}
where η > 0 is sufficiently small, we obtain exponential decay rates: Indeed, Sturm–Liouville theory shows
that the stationary solutions obtained in this fashion are linearly stable, with a simple eigenvalue at the
origin due to translation invariance, when considered on Xη with η > 0 small. Using the spatially weighted
norm on Xη, spectral stability also implies nonlinear stability. We summarize these well-known facts in the
following proposition (see also Figure 1.3).

Proposition 2.4 Assume that λ′′lin(0) > 0 and ω′′nl(k) 6= 0, then equation (2.6) has a unique front given by
(2.11) which approaches the equilibria q± as X → ±∞ provided q+ and q− satisfy (2.10). The spectrum of
the linearization of (2.12) about zero, considered on Xη for sufficiently small η > 0, lies in the left half-plane
except for a simple eigenvalue at λ = 0. In particular, the fronts are nonlinearly stable with asymptotic phase
in the spatially weighted space Xη.

In fact, there is a constant a > 0 such that small perturbations of the nonlinear fronts converge to zero alge-
braically with t−n or exponentially like exp(−aηt) in the norms supξ∈R |ξ|n|q̃(ξ)| and supξ∈R exp(η|ξ|)|q̃(ξ)|,
respectively, for 0 < η � 1 sufficiently small.
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3 The complex cubic Ginzburg–Landau equation

The complex cubic Ginzburg–Landau equation (CGL) in normal form is given by

∂tA = (1 + iα)∂xxA+A− (1 + iβ)A|A|2 (3.1)

where the coefficients α, β ∈ R are real and where x ∈ R, t ≥ 0, and A(x, t) ∈ C. The Ginzburg–Landau
equation is a universal amplitude equation that can be derived by multiple-scales analyses: it describes
slowly varying modulations, in space and time, of the amplitude of bifurcating spatially-periodic solutions
in pattern-forming systems close to the threshold of their first instability.

Among the pattern-forming systems for which Ginzburg–Landau equations have been derived are reaction-
diffusion equations and hydrodynamic stability problems such as the Bénard and the Taylor–Couette prob-
lem. Mathematical justifications and other aspects of the reduction to the Ginzburg–Landau equation have
been investigated, for instance, in [8, 19, 37, 38, 52]. We refer to [1] and [42] for recent reviews of the physical
and mathematical aspects, respectively, of the Ginzburg–Landau equation.

In this section, our goal is to prove that the dynamics of slow modulations of spectrally stable wave trains
of (3.1) is approximated by the dynamics of an associated Burgers equation.

Before we embark on the analysis, we shall review related results that were obtained for the Ginzburg–
Landau equation. Firstly, the nonlinear stability of spectrally stable wave trains in the sense of §2.1 has
been proved in [5, 26]. The existence and stability of fronts, which connect different wave trains and are of
Lax-shock type in the sense of §2.2, has been established in [5, 25] for the real CGL and in [27] for the nearly
real CGL.

We are not aware of any general results on the existence and stability of weak shocks in the CGL. Such
results can be obtained with the same methods that we employ in this paper: in fact, the proofs for CGL
are simpler than in the general reaction-diffusion case since the existence problem reduces to an ordinary
differential equation. We note, however, that the papers [13] and [27] establish the existence and stability,
respectively, of Lax-type fronts for the nearly real CGL that are not necessarily weak in that the asymptotic
wave numbers k+ and k− are not required to be close to each other.

3.1 Set-up

The complex Ginzburg–Landau equation has a family of time-periodic solutions

A(x, t) = A0(ωnl(k)t− kx; k) = r(k)ei(kx−ωnl(k)t) (3.2)

where k, r(k), ωnl(k) ∈ R. The amplitude r, the spatial wave number k, and the temporal frequency ω are
related via

r(k) =
√

1− k2, ωnl(k) = β + (α− β)k2. (3.3)

In particular, these waves exist only for |k| < 1.

Spectral stability of these waves is checked as follows. Upon substituting the expression

A(x, t) = A0(ωnl(k)t− kx; k) + ei(kx−ωnl(k)t)
[
a1eλt+νx + a2eλt−νx

]
(3.4)

into (3.1), we see after some tedious computations that the ansatz (3.4) satisfies (3.1) to linear order in
|a1|+ |a2| provided

λ = λlin(ν) = −cgν +
λ′′lin(0)

2
ν2 + O(|ν|3) (3.5)
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with

cg = 2k(α− β),
λ′′lin(0)

2
= 1 + αβ − 2k2(1 + β2)

1− k2
(3.6)

(see [1, §II.D]). Therefore, if the Benjamin–Feir–Newell criterion 1+αβ > 0 is met, then the wave trains (3.2)
are spectrally stable with respect to perturbations with small wave numbers `, where ν = i`, for appropriate
values of k. We remark that the wave trains are spectrally, and in fact also nonlinearly [26], stable in certain
regions in (α, β, k)-space, while they are spectrally unstable with respect to finite wave numbers in other
regions [20, 36].

We restrict our analysis to the following parameter regime. In particular, we do not consider the real
Ginzburg–Landau equation or spectrally unstable wave trains as we shall choose k = 0 below.

Hypothesis 3.1 We assume α2 + β2 > 0 and 1 + αβ > 0.

3.2 Slowly-varying modulations of the k = 0 wave train: Results

To describe slowly varying, spatio-temporal wave number modulations of the family of wave trains, we derive
and validate Burgers equation. We concentrate on modulations of the wave trains with wave number close
to zero and seek solutions to (3.1) of the form

A(x, t) = A0(ωnl(0)t− Φ(δx, δ2t); δ∂XΦ(δx, δ2t)) = r(δ∂XΦ(δx, δ2t))ei(Φ(δx,δ2t)−ωnl(0)t) (3.7)

where 0 < δ � 1 is a small scaling parameter. We will comment below on the differences when the basic
wave number is non zero. For the above expression (3.7) to be an approximate solution of (3.1), it is then
formally necessary, as we shall see in §3.3 below, that the phase Φ satisfies the phase equation

∂T Φ = (1 + αβ)∂XXΦ + (β − α)(∂XΦ)2 (3.8)

where we introduced X = δx and T = δ2t. Note that (3.8) can also be written as

2∂T Φ = λ′′lin(0)∂XXΦ− ω′′nl(0)(∂XΦ)2

where ω′′nl is evaluated at k = 0.

Of course, once this phase equation has been derived on a formal level, the question that needs to be addressed
is its validity. In other words, given that Φ(X,T ) is a solution to (3.8), we should investigate in what sense,
and over which time intervals, does (3.7) approximate a solution to the full Ginzburg–Landau equation (3.1).
We will answer these questions by providing estimates of the difference of the formal approximation (3.7) and
an exact solution A(x, t) of the complex Ginzburg–Landau equation over time scales of the order O(1/δ2).

Theorem 3.2 Assume that Hypothesis 3.1 is met, and fix an integer n ≥ 3. For each choice of C0 > 0 and
T0 > 0 there exist constants δ1 > 0 and C1 > 0 such that the following is true: For each δ ∈ (0, δ1) and each
solution Φ(X,T ) of (3.8) for which

sup
T∈[0,T0]

‖Φ(·, T )‖Hn
ul
≤ C0, (3.9)

there exists a solution A = A(x, t) of the complex Ginzburg–Landau equation (3.1) such that

sup
t∈[0,T0/δ2]

sup
x∈R

|A(x, t)− ei[Φ(δx,δ2t)−ωnl(0)t]| ≤ C1δ
2.
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In the preceding result, we only allow solutions Φ that satisfy (3.9). In particular, the phase function Φ is
bounded in X, and we therefore do not change the wave number of the underlying wave train.

Thus, to extend the preceding result, we will now consider modulations q = ∂XΦ of the local wave number
which satisfy Burgers equation

∂T q = (1 + αβ)∂XXq + (β − α)∂X(q2) (3.10)

or, equivalently,
2∂T q = λ′′lin(0)∂XXq − ω′′nl(0)∂X(q2).

Of particular interest are solutions q(X,T ) that converge to different limits q± as X → ±∞: such solutions
describe the evolution of interfaces between wave trains with wave number q− at x = −∞ and q+ at x = ∞.
Note that the associated phase functions Φ are unbounded in X, so that Theorem 3.2 is not applicable.

Theorem 3.3 Assume that Hypothesis 3.1 is met, and fix integers M ≥ 3 and n ≥M + 3. For each choice
of C0 > 0 and T0 > 0, there exist constants δ1 > 0 and C1 > 0 with the following property: Pick δ ∈ (0, δ1)
and a solution q(X,T ) of Burgers equation (3.10) for which there are numbers q± ∈ R so that

sup
T∈[0,T0]

[
‖q(·, T )‖Hn

ul
+ ‖(q(·, T )− q+)ρ2

w‖Hn
ul(R+) + ‖(q(·, T )− q−)ρ2

w‖Hn
ul(R−)

]
≤ C0,

where ρw(X) =
√

1 +X2, then there exists a higher-order approximation (qh, rh) with

sup
T∈[0,T0]

sup
X∈R

(∣∣∣∣rh(X,T ) +
1
2
[q(X,T )2 + α∂Xq(X,T )]

∣∣∣∣+ |qh(X,T )− q(X,T )|
)
≤ C1δ

and a solution A(x, t) of the complex Ginzburg–Landau equation (3.1) such that

sup
t∈[0,T0/δ2]

sup
x∈R

|A(x, t)−Aapprox(x, t)| ≤ C1δ
M−3/2

where

Aapprox(x, t) =
[
1− δ2

2
rh(δx, δ2t)

]
ei[δq−x+δ

R x
−∞(qh(δy,δ2t)−q−) dy−ωnl(0)t].

We remark that the higher-order approximation (qh, rh) can, in principle, be computed from the solution q
through the solutions of a recursive set of linear PDEs. We refer to §3.4 for details.

Somewhat surprisingly, there appear to be serious limitations regarding the quality of the approximation
when the requirement that q has limits as X → ±∞ is dropped. In particular, as we shall see in Remark 3.13,
we cannot expect validity uniformly for all x ∈ R but only for x in intervals of finite length, where this length
depends on the accuracy of the approximation.

Theorem 3.4 Assume that Hypothesis 3.1 is met. For any choice of integers M ≥ 1 and n ≥ M + 3, and
real numbers C0, L0, T0 > and 0 < l < M , there exist constants δ1 > 0 and C1 > 0 such that the following is
true: Pick δ ∈ (0, δ1) and a solution q(X,T ) of Burgers equation (3.10) for which

sup
T∈[0,T0]

‖q(·, T )‖Hn
ul
≤ C0,

then there exist a global phase function φ0(t) with

sup
t∈[0,T0/δ2]

|φ0(t)| ≤ C1,
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higher-order approximations (qh, rh) with

sup
T∈[0,T0]

sup
X∈R

(∣∣∣∣rh(X,T ) +
1
2
[q(X,T )2 + α∂Xq(X,T )]

∣∣∣∣+ |qh(X,T )− q(X,T )|
)
≤ C1δ,

and a solution A(x, t) of the complex Ginzburg–Landau equation (3.1) such that

sup
t∈[0,T0/δ2]

sup
|x|≤L/δl

|e−iφ0(t)A(x, t)−Aapprox(x, t)| ≤ C1δ
1+M−l

where

Aapprox(x, t) =
[
1− δ2

2
rh(δx, δ2t)

]
ei[

R x
0 δqh(δy,δ2t) dy−ωnl(0)t].

The difficulty in justifying Burgers equation for the Ginzburg–Landau equation is the time scale O(1/δ2).
Since the admissible modulations are of order O(δ), an application of Gronwall’s inequality would only give
validity over a time scale O(1/δ). Thus, a more refined method has to be used. We also remark that it is
not obvious why an approximation result should hold for Burgers equation (3.10): as shown in [53], there
are examples of amplitude equations that are derived formally in a correct way, but that do not describe the
dynamics in the original system in the desired way.

We remark that, as shown in [40], it is possible to allow modulations of order O(1). In this case, the wave
number modulation q satisfies the inviscid Burgers equation

∂T q + ∂X [ωnl(q)] = 0.

However, validity is only expected over time scales T1/δ where, in contrast to the situation discussed in
Theorem 3.4, T1 cannot be chosen arbitrarily but comes out of the analysis: Since the inviscid Burgers
equation is a conservation law, we expect the formation of shocks at which stage validity breaks down.
Secondly, the approach in [40] requires analytic initial data which makes it possible to trade exponential
decay in Fourier space (as k → ±∞) for temporal decay. Lastly, the global phase difference φ0(t) will be of
order is O(1/δ) on the natural time scale of the conservation law. We shall revisit this situation in §6.

The remainder of this section is devoted to the proofs of the results stated above. We first derive Burgers
equation from the complex Ginzburg–Landau equation using polar coordinates. Afterwards, we construct
higher-order approximations that are then used to formulate an approximation result for the wave numbers.
The idea is now to separate the critical modes belonging to marginally stable spectral curve λlin(i`) from the
noncritical modes that decay in time: since the relevant eigenmodes are associated with curves of spectrum,
we need to employ mode filters to accomplish this separation of modes rigorously. The key feature that
we shall then exploit is that the equation derived in this fashion for the critical modes has extra structure:
roughly speaking, the nonlinearity is in conservation-law form. It turns out that the same structure is present
in the equations for the residuals. The next step consists in applying Gronwall’s inequality to the system
for the residuals: the extra conservation-law structure supplies the better estimates for the linear problem
that allow us to work on the natural time scale 1/δ2. Lastly, the results obtained for the wave numbers need
then be transferred back to the original formulation. It is at this stage that the restrictions and limitations
of Theorem 3.4 arise.

3.3 Derivation of Burgers equation

We formally derive Burgers equation for the complex Ginzburg–Landau equation

∂tA = (1 + iα)∂xxA+A− (1 + iβ)A|A|2 (3.11)
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where α, β ∈ R, x ∈ R, t ≥ 0, and A(x, t) ∈ C. Recall that this equation admits the wave trains

A(x, t) = A0(ωnl(k)t− kx; k) = r(k)ei(kx−ωnl(k)t)

where
r(k) =

√
1− k2, ωnl(k) = β + (α− β)k2.

We concentrate on long-wavelength modulations of the wave train with k = 0 given by

A(x, t) = A0(ωnl(0)t; 0) = e−iβt,

and therefore introduce the amplitude and phase deviations (r, φ) of this wave train via

A(x, t) = (1 + r(x, t))ei(−βt+φ(x,t)).

The function A(x, t) satisfies (3.11) if, and only if, (r, φ) satisfies

∂tr = ∂xxr − 2r − (∂xφ)2 − (∂xφ)2r − 2α(∂xr)(∂xφ) (3.12)

−α∂xxφ− α(∂xxφ)r − 3r2 − r3

∂tφ = ∂xxφ+ α
∂xxr

1 + r
− α(∂xφ)2 +

2(∂xr)(∂xφ)
1 + r

− 2βr − βr2.

Next, we replace the equation for the phase φ by an equation for the local wave number ψ = ∂xφ and obtain

∂tr = ∂xxr − 2r − ψ2 − ψ2r − 2α(∂xr)ψ − α∂xψ − α(∂xψ)r − 3r2 − r3 (3.13)

∂tψ = ∂xxψ + ∂x

(
α∂xxr

1 + r
− αψ2 +

2(∂xr)ψ
1 + r

− 2βr − βr2
)
.

We emphasize that we lose information in the process of going from phases φ to wave numbers q = ∂xφ as
we need to recover the value of φ(0, t). On the other hand, equation (3.13) is independent of φ(0, t).

To derive Burgers equation, we assume that the wave number varies slowly and seek solutions of the form

r(x, t) = δ2W (δx, δ2t; δ), ψ(x, t) = δΨ(δx, δ2t; δ).

Substituting this ansatz into (3.13), we get

δ4∂TW = δ2
[
δ2∂XXW − 2W −Ψ2 − δ2Ψ2W − 2δ2α(∂XW )Ψ− α∂XΨ− δ2α(∂XΨ)W

−3δ2W 2 − δ4W 3
]

(3.14)

δ3∂T Ψ = δ3
[
∂XXΨ− ∂X(2βW + αΨ2) + δ2∂X

(
α∂XXW

1 + δ2W
+

2(∂XW )Ψ
1 + δ2W

− βW 2

)]
where X = δx and T = δ2t. Dividing the two equations by δ2 and δ3, respectively, we get

δ2∂TW = δ2∂XXW − 2W −Ψ2 − δ2Ψ2W − 2δ2α(∂XW )Ψ− α∂XΨ− δ2α(∂XΨ)W − 3δ2W 2 − δ4W 3

∂T Ψ = ∂XXΨ− ∂X(2βW + αΨ2) + δ2∂X

(
α∂XXW

1 + δ2W
+

2(∂XW )Ψ
1 + δ2W

− βW 2

)
. (3.15)

Neglecting terms of order O(δ2) and higher gives the equations

0 = −2W0 −Ψ2
0 − α∂XΨ0 (3.16)

∂T Ψ0 = ∂XXΨ0 + ∂X(−αΨ2
0 − 2βW0)

for (W0,Ψ0)(X,T ) = (W,Ψ)(X,T ; 0), which we rewrite as

W0 = −1
2
(Ψ2

0 + α∂XΨ0)

∂T Ψ0 = (1 + αβ)∂XXΨ0 + (β − α)∂X(Ψ2
0).
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Thus, every solution q(X,T ) of the viscous Burgers equation

∂T q = (1 + αβ)∂XXq + (β − α)∂X(q2) (3.17)

gives a solution (W0,Ψ0) of (3.16) via

(W0,Ψ0) =
(
−1

2
(q2 + α∂Xq), q

)
. (3.18)

3.4 The construction of higher-order approximations

The higher-order approximations mentioned in Theorem 3.4 are obtained as follows. Upon writing (W,Ψ)
as a formal expansion of the form

W h
M = δ2

[
W0(δx, δ2t) + δW1(δx, δ2t) + . . .+ δMWM (δx, δ2t)

]
(3.19)

Ψh
M = δ

[
Ψ0(δx, δ2t) + δΨ1(δx, δ2t) + . . .+ δMΨM (δx, δ2t)

]
,

we find equations for (Wj ,Ψj) which are determined from (3.15) and (3.19) as long as Ψ0 = q is given.

First, we find Ψ1 = W1 = 0. On the next level, we obtain

∂TW0 = ∂XXW0 − 2W2 − 2Ψ0Ψ2 −Ψ2
0W0 − α∂XΨ2 − α(∂XW0)Ψ0 − α(∂XΨ0)W0 − 3W 2

0

∂T Ψ2 = ∂XXΨ2 − ∂X(2βW2 + 2αΨ0Ψ2) + ∂X(α∂XXW0 + 2(∂XW0)Ψ0 − βW 2
0 ).

The first equation is linear in W2 and can be solved for W2 as a function of (W0,Ψ0,Ψ2). Substituting this
solution for W2 into the second equation gives a linear inhomogeneous PDE for Ψ2, which we can solve. As
a consequence, the solutions (W2,Ψ2) can be computed as long as Ψ0 = q is given.

Proceeding in this fashion, we find that Ψ2k+1 = W2k+1 = 0 for all k ∈ N. Moreover, the functions W2k

satisfy linear equations, while Ψ2k can be found as solutions of linear inhomogeneous PDEs. These functions
can be calculated as long as q is given.

We remark that had we started with a wave number k 6= 0 in (3.2), we would have got nonzero contributions
from Ψ2k+1 and and W2k+1.

3.5 The approximation theorem for the wave numbers

The major step in proving Theorem 3.4 is the following approximation theorem for the variables (W,Ψ).

Theorem 3.5 Fix integers M ≥ 1 and 1 ≤ m ≤ n− 3−M and choose a constant C0 > 0. There are then
constants C1 > 0 and δ1 > 0 such that the following is true. If q is a solution of Burgers equation (3.17)
with

sup
T∈[0,T0]

‖q(·, T )‖Hn
ul
≤ C0,

then, for each δ ∈ (0, δ1), there exists a higher-order approximation (W h
M ,Ψh

M ) ∈ Hn
ul, see (3.19), which

satisfies
sup

T∈[0,T0]

‖(W h
M ,Ψh

M )(·, T )− (W0,Ψ0)(·, T )‖Hm+1
ul

≤ C1δ

with (W0,Ψ0) as in (3.18), and a solution (W,Ψ) of (3.15) on [0, T0] such that

sup
T∈[0,T0]

‖(W,Ψ)(·, T )− (W h
M ,Ψh

M )(·, T )‖Hm+1
ul ×Hm

ul
≤ C1δ

M . (3.20)
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Reλ1(l)

Reλ2(l)

Figure 3.4: The real part of the eigenvalues λj(`) as a function of the Fourier wave numbers ` for 1+αβ > 0

Hence, we have an approximation result for the variables (W,Ψ) which is uniform in space. In particular,
the limitations in the statement of Theorem 3.4 are entirely due to the reconstruction of the phase φ from
the wave number ψ.

Sections 3.6–3.9 are devoted to the proof of Theorem 3.5. We then use Theorem 3.5 in §3.10 to prove the
results stated in §3.2.

3.6 Mode filters, and separation into critical and noncritical modes

To prove Theorem 3.5, we need to separate the dynamics of the critical modes corresponding to marginally
stable spectrum of the wave trains from the remaining damped modes. Upon linearizing equation (3.13)
about (r, ψ) = 0, we obtain

∂tr = ∂xxr − 2r − α∂xψ

∂tψ = ∂xxψ + α∂xxxr − 2β∂xr

which we consider on Hm+1
ul ×Hm

ul . Using the Fourier ansatz(
r

ψ

)
(x, t) = eλt+i`xf(`), f(`) ∈ C2

with ` ∈ R, we see that f needs to satisfy the equation

Λ(i`)f = λf, Λ(i`) :=

(
−2− `2 −αi`

−i`(α`2 + 2β) −`2

)
. (3.21)

We obtain two spectral curves ` 7−→ λj(`) where j = 1, 2 with λ1(0) = 0 and λ2(0) = −2 < 0. In particular,
the curve λ1(`) coincides with the linear dispersion relation λlin(i`) calculated in (3.5). Furthermore, we
find that Reλj(`) < 0 for j = 1, 2 uniformly in ` except, of course, for λ1(`) which takes values in a small
neighbourhood of λ = 0 for ` ≈ 0.

We shall denote the eigenvectors (r, ψ)(`) that belong to the rightmost curve λ1(`) = λlin(i`) of spectrum by
f̂1(`) and refer to them as the critical modes when ` ≈ 0. We also use the notation Λ̂(`) for the 2× 2 matrix
Λ(i`). To separate the nonlinear dynamics of the critical modes from the remaining, temporally damped
noncritical modes, we introduce mode filters.

First, there is an `1 > 0 such that λ1(`) is the rightmost eigenvalue of Λ̂(`) for all ` with |`| ≤ `1. Thus, for
all such `, the integral

Q̂c(`) =
1

2πi

∫
Γ

[λ− Λ̂(`)]−1 dλ
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defines an Λ̂(`)-invariant projection onto the subspace spanned by f̂1(`), provided we choose Γ ⊂ C to be a
small circle that surrounds λ1(`) counter-clockwise in the complex plane but does not intersect the rest of
the spectrum of Λ̂(`). In particular, we have Q̂c(`)f̂1(`) = f̂1(`).

Since we wish to select only the critical modes, i.e. those belonging to |`| � 1, we pick a C∞0 -cutoff function
χ : R → [0, 1] with values in [0, 1] so that

χ(`) =

{
1 for |`| ≤ 1,
0 for |`| ≥ 2,

(3.22)

and define

P̂ c(`) := Q̂c(`)χ
(

2`
`1

)
, P̂ s(`) := 1− Q̂c(`)χ

(
8`
`1

)
as well as

P̂ c
mf(`) := Q̂c(`)χ

(
4`
`1

)
, P̂ s

mf(`) := 1− Q̂c(`)χ
(

4`
`1

)
.

Note that any two of these matrices commute for each fixed ` and that

(1− P̂ c)P̂ c
mf = 0, (1− P̂ s)P̂ s

mf = 0, P̂ c
mf + P̂ s

mf = 1 (3.23)

which shows that the operators P̂ c
mf and P̂ c together behave somewhat like projections. Lastly, we set

λ̂c(`) := λ1(`)

and define scalar-valued projections p̂c(`) and p̂c
mf(`) implicitly by

[p̂c(`)v]f̂1(`) = P̂ c(`)v, [p̂c
mf(`)v]f̂1(`) = P̂ c

mf(`)v, ∀ v ∈ C2.

We now employ multiplier theory to transfer these operators from Fourier space back to physical space.
Throughout this paper, the Fourier transform of a variable u is denoted by û. To each multiplication
operator M̂ in Fourier space, we associate the operator

M : u 7−→ F−1(M̂Fu) (3.24)

where F denotes the Fourier transform. Thus, in x-space, we denote operators by the same symbol but with
the superscript ˆ being dropped. The following multiplier theorem gives estimates for the operator M in the
physical spaces Hm

ul .

Lemma 3.6 ([52, Lemma 5]) Let W1, W2 be Hilbert spaces and fix m ∈ Z. If

M̂ : R −→ L(W1,W2), ` 7−→ M̂(`)

is a map such that ` 7→ (1 + `2)m/2M̂(`) lies in C2
b(R, L(W1,W2)), then, for each q ∈ N0 with q +m ≥ 0,

M, defined through (3.24), can be viewed as a bounded operator

M : Hq
ul(R,W1) → Hq+m

ul (R,W2),

and its norm satisfies

‖M‖L(Hq
ul(R,W1),H

q+m
ul (R,W2))

≤ C(q,m)‖(1 + | · |2)m/2M̂(·)‖C2
b(R,L(W1,W2)),

where C(q,m) does not depend on M̂.
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Remark 3.7 The above lemma also holds for multilinear mappings.

Note that the mappings P̂ c
mf , P̂

c, p̂c
mf , p̂

c and f̂1 have compact support in `. Thus, an application of
Lemma 3.6 with W1 = W2 = C2 shows that P c

mf , P
c, pc

mf , p
c and f̂1 are bounded linear operators from

H1
ul×L2

ul intoHm+1
ul ×Hm

ul for eachm ≥ 0. Similarly, P s
mf and P s are bounded linear operators onHm+1

ul ×Hm
ul

for each m ≥ 0.

We are now well prepared to establish the desired splitting into critical and noncritical modes in Fourier as
well as in physical space. Using the notation v = (r, ψ), we write (3.13) as

∂tv = Λv +N (v). (3.25)

We seek solutions of this equation by considering the system

∂tŵ
c(`) = Λ̂(`)ŵc(`) + P̂ c

mf(`)N̂ (ŵc + ŵs)(`) (3.26)

∂tŵ
s(`) = Λ̂(`)ŵs(`) + P̂ s

mf(`)N̂ (ŵc + ŵs)(`)

for (ŵc, ŵs), where we require that

(1− P̂ c(`))ŵc(`) = 0, (1− P̂ s(`))ŵs(`) = 0, ∀ ` ∈ R (3.27)

for all t ≥ 0. Upon applying 1− P̂ c(`) and 1− P̂ s(`) to the first and second equation in (3.26), respectively,
and using (3.23), we see that (3.23) leaves Fix P̂ c(`) and Fix P̂ s(`) invariant: in other words, if (3.27) holds
true initially at t = 0, then it is met for all t > 0. Most importantly, given a solution (ŵc, ŵs) of (3.26) which
satisfies (3.27), we see from (3.23) that the function v = wc +ws satisfies (3.25). Lastly, we record that any
initial condition can indeed be decomposed into ŵc and ŵs.

Since ŵc(`) lies in a one-dimensional subspace of C2 for each fixed Fourier wave number `, we may introduce
the scalar function v̂c(`) by ŵc(`) = v̂c(`)f̂1(`). To keep the notation consistent, we also set v̂s := ŵs. Thus,
(v̂c, v̂s) satisfies

∂tv̂
c(`) = λ̂c(`)v̂c(`) + p̂c

mf(`)N̂ (v̂cf̂1 + v̂s)(`) (3.28)

∂tv̂
s(`) = Λ̂s(`)v̂s(`) + P̂ s

mf(`)N̂ (v̂cf̂1 + v̂s)(`),

where Λ̂s(`) = Λ̂(`)P̂ s. By construction, we then have pcvcf̂1 = vc and P svs = vs.

Inspecting the equation for ψ in (3.13), we see that its right-hand side is of the form ∂x[. . .] which, in Fourier
space, corresponds to a term of the form `[. . .]. Since ψ is related to the critical modes, we may expect that
this feature survives the splitting into critical and noncritical modes. The following lemma shows that this
is indeed the case. As already alluded to in §3.2, we will exploit this important property in the later stages
of the proofs of the approximation theorems.

Lemma 3.8 There exists a smooth nonlinear mapping N c which maps Hm+1
ul ×Hm

ul into Hs
ul for each s ≥ 0

and a smooth function ρ̂ with |ρ̂(`)| ≤ C|`| for some constant C > 0 such that

p̂c
mf(`)N̂ (v̂cf̂1 + v̂s)(`) = ρ̂(`)N̂ c(v̂cf̂1 + v̂s)(`).

Proof. The eigenfunctions of

Λ(i`) =

(
−2 0

0 0

)
+ O(`),
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see (3.21), have the expansion

f̂1 =
(

0
1

)
+ O(`), f̂2 =

(
1
0

)
+ O(`)

near ` = 0, while the adjoint eigenfunctions satisfy

f̂∗1 =
(

0
1

)
+ O(`), f̂∗2 =

(
1
0

)
+ O(`).

Furthermore, upon inspecting (3.15), we see that the nonlinearity N from (3.25) satisfies

N̂ =
(

O(1)
O(`)

)
.

Hence,
p̂c
mfN̂ = 〈f̂∗1 , N̂ 〉 = O(`)

as claimed.

Using the notation of the preceding lemma, equation (3.28) becomes

∂tv
c = λcvc + ρN c(vc, vs) (3.29)

∂tv
s = Λsvs +N s(vc, vs),

which we shall solve for (vc, vs) where

vc ∈ X c
m := Hm+1

ul ∩ Rg(pc|Fix P c), vs = (r, ψ) ∈ X s
m :=

(
Hm+1

ul ×Hm
ul

)
∩ FixP s.

From now on, as there is little danger of confusion, we shall denote both spaces X c
m and X s

m simply by Xm.

Note that, since the variable vc has compact support in Fourier space, it lies, in fact, in Hs
ul for every s ≥ 0;

more precisely, we have vcf1 ∈ Hs+1
ul × Hs

ul for each s. We also record that ρ is a possibly nonlocal linear
operator that acts similar to ∂x.

3.7 Estimates of the linear semigroups

The semigroup associated with the linear part of (3.29) has the following properties.

Lemma 3.9 The operators λc and Λs are sectorial in Xm. Furthermore, there are constants C0, σ > 0 such
that the semigroups eλct and eΛst generated by these operators satisfy

‖eλct‖Xm→Xm ≤ C0

‖eλctρ‖Xm→Xm
≤ C0√

t

‖eΛst‖Xm→Xm
≤ C0e−σt

for all t > 0 and each m ≥ 0, where ρ is the function found in Lemma 3.8 with |ρ̂(`)| ≤ C|`|.

Proof. The operator Λ differs by a relatively bounded perturbation from the sectorial operator(
∂xx −α∂x

α∂xxx ∂xx

)
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and is therefore also sectorial. On account of [22], Λ generates an analytic semigroup, and the growth rates
of eΛt are determined by the position of the spectrum. In particular, eΛst damps with some exponential
rate. The factor t−1/2 for the critical part is obtained by noticing the parabolic form of Reλc at k = 0 and
applying Lemma 3.6 to

M̂(`) = eδ−2λ̂c(δ`)T ρ̂(δ`)

with T = δ2t.

Taking the assertions of the Lemmas 3.8 and 3.9 together, we see that we gain a factor t−1/2 in the equation
for the critical modes vc: this factor becomes smaller for larger t, and exploiting this additional decaying
factor will be crucial in the forthcoming analysis.

3.8 Estimates of the residual

We are now in a position to begin the proof of the approximation theorems. Thus, pick a solution q(X,T )
of Burgers equation (3.17) which satisfies the assumptions laid out in Theorem 3.5. The issue at hands is to
see whether the function (δq(δx, δ2t), 0) constructed from q is a good approximation of solutions (vc, vs) of
(3.29) over sufficiently large time scales.

More generally, we may use q to construct a better approximation (δV c, δ2V s)(δx, δ2t) of solutions to (3.29)
using, for instance, the higher-order approximations (Ψh

M ,W h
M )(X,T ) considered in §3.4. A measure for the

quality of these approximations are the residuals Resc(δV c, δ2V s) and Ress(δV c, δ2V s) defined by

Resc(vc, vs) := −∂tv
c + λcvc + ρN c(vc, vs) (3.30)

Ress(vc, vs) := −∂tv
s + Λsvs +N s(vc, vs)

for arbitrary functions (vc, vs). In other words, the residuals contain all terms that do not cancel out after
substituting the ansatz (vc, vs) into the PDE.

Equation (3.14) shows that the residuals of (δq, 0) satisfy

Resc(δq, 0) = δ3
[
−∂T q +

λ′′1(0)
2

∂XXq +
β − α

2
∂X(q2)

]
+ O(δ4) = O(δ4)

Ress(δq, 0) = N s(δq, 0) = O(δ2).

The following lemma asserts that we can always find approximations whose residuals go to zero with an
arbitrarily large, but fixed, algebraic rate as δ goes to zero.

Lemma 3.10 Pick positive integers n,m,M with n ≥M+m+3, then there exist functions (V c, V s)(δ·, T ) ∈
Xn and positive constants δ1 > 0 and Cres > 0 such that

sup
T∈[0,T0]

‖V c(δ·, T )− q(δ·, T )‖Xm ≤ Cresδ

sup
T∈[0,T0]

(‖V c(δ·, T )‖Xm
+ ‖V s(δ·, T )‖Xm

) ≤ Cres (3.31)

sup
t∈[0,T0/δ2]

‖Resc(δV c(δ·, δ2t), δ2V s(δ·, δ2t))‖Xm
≤ Cresδ

M+3

sup
t∈[0,T0/δ2]

‖Ress(δV c(δ·, δ2t), δ2V s(δ·, δ2t))‖Xm ≤ Cresδ
M+2

is true for all δ ∈ (0, δ1).
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Proof. Similar to the calculations in §3.4, we expand (vc, vs) into a formal series of the form

δV c = δ(V c
0 + δV c

1 + . . .+ δMV c
M )

δ2V s = δ2(V s
0 + δV s

1 + . . .+ δMV s
M )

and find equations for (V c
j , V

s
j )(δx, δ2t), which we subsequently solve recursively for given V c

0 = q and V s
0 = 0.

In detail, we use the relations

∂tV
c
j = δ2∂TV

c
j

∂tV
s
j = δ2∂TV

s
j

λcV c
j =

δ2∂νν λ̂
c(0)

2
∂XXV

c
j + O(δ3)

ΛV s
j = Λ̂(0)V s

j + O(δ)

ρN c = δρ̂′(0)∂XN c + O(δ3)

and obtain the system

∂TV
c
0 =

∂νν λ̂
c(0)

2
∂XXV

c
0 −

1
2
(α− β)∂X(V c

0 )2

0 = Λ̂s(0)V s
0 + O(‖V c

0 ‖2)

for V c
0 and V s

0 . Since Λs(0) = −2, we can solve the second equation for V s
0 , while the first equation is Burgers

equation as claimed.

Next, the equations for V c
1 and V s

1 are of the form

∂TV
c
1 =

∂νν λ̂
c(0)

2
∂XXV

c
1 + O(|V c

0 |(1 + |V c
1 |+ |V s

0 |+ |V c
0 |))

0 = Λ̂s(0)V s
1 + O(|V c

0 |(1 + |V c
1 |+ |V s

0 |+ |V c
0 |)).

Again, the second equation can be solved for V s
1 . The first equation is a linear parabolic PDE in V c

1 since
the higher-order terms contain at most first-order derivatives of V c

1 . Thus, V s
1 and V c

1 exist as long as V c
0 is

given.

A similar analysis can be carried out recursively for all V s
j and V c

j . As a consequence, the residual can be
made as small as we wish with respect to powers of δ. The assertions about regularity follow by counting
derivatives in the preceding expansions of λc, Λs and the nonlinearities.

We remark that, from now on, we do not distinguish in our notation whether the approximations V c and
V s are regarded as functions in (X,T ) or (x, t) through (X,T ) = (δx, δ2t).

3.9 Estimates of the errors

Having constructed initial approximations with very small residuals, it remains to prove that the error,
defined as the difference between genuine solutions of (3.29) and the initial approximations, is also small.
Anticipating the expected scaling of the errors, we define the critical and noncritical parts Rc and Rs of the
error via

vc(x, t) = δV c(δx, δ2t) + δM+1Rc(x, t)

vs(x, t) = δ2V s(δx, δ2t) + δM+2Rs(x, t),
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where we assume that the left-hand sides satisfy (3.29). Substituting this ansatz into (3.28), we obtain the
system

∂tR
c = λcRc + ρgc(Rc, Rs, t) (3.32)

∂tR
s = ΛsRs + gs(Rc, Rs, t)

for (Rc, Rs). We remark that we shall always work with the initial data

(Rc, Rs)|t=0 = 0. (3.33)

We claim that the nonlinear terms satisfy the estimates

‖gc(Rc, Rs, t)‖Xm
≤ δC1‖Rc‖Xm

+ δ2CRes + δ2C1‖Rs‖Xm
+ δM+1C2(Dc, Ds)

‖gs(Rc, Rs, t)‖Xm−2 ≤ CRes + C1‖Rc‖Xm
+ δC1‖Rs‖Xm

+ δMC2(Dc, Ds) (3.34)

for
‖Rc‖Xm

≤ Dc, ‖Rs‖Xm
≤ Ds (3.35)

with constants Dc and Ds that are independent of 0 < δ � 1 and will be chosen later. The specific form
of (3.34) arises as follows: First, quadratic interactions of δV c with δM+1Rc lead to O(δ) terms9 in the
equation for Rc and to O(1) terms in the equation for Rs. Next, quadratic interactions with δ2V s lead again
to higher-order terms, while quadratic interactions of δM+1Rc with itself leads to O(δM+1) terms in the
equation for Rc and to O(δM ) terms in the equation for Rs.

Our goal is to prove that the solution (Rc, Rs) of (3.32)–(3.33) stays bounded, uniformly in 0 < δ � 1, over
the time interval [0, T0/δ

2].

Since the nonlinearity gs is bounded on bounded sets, and given the exponential decay of the semigroup
generated by the linear operator Λs, we do not expect any problems from the second equation in (3.32).
However, Lemma 3.9 shows that the semigroup associated with the critical part λc is merely bounded: thus,
the term C1δ‖Rc‖Xm

in the estimate (3.34) of the nonlinearity gc may cause trouble when integrated over
[0, T0/δ

2]. It is here where the special structure of (3.32) becomes crucial. If we subsume the factor ρ in
(3.32) into the semigroup generated by λc, we can exploit the improved estimate

‖eλctρ‖Xm→Xm
≤ C0t

−1/2

which we established in Lemma 3.9. Integrating t−1/2 over [0, T0/δ
2] gives only a contribution of order

1/δ, instead of the factor 1/δ2 when integrating a constant, which can now be taken care of by the term
C1δ‖Rc‖Xm .

In the remaining part of this section, we carry out the details. We begin by recording that (3.13) and (3.29),
and therefore also (3.32), are quasilinear. This is further reflected in the estimate (3.34) which shows that
the nonlinear terms map Xm into Xm−2 (and not into Xm−1). Thus, we shall treat (3.32) as a fully nonlinear
equation making extensive use of the results in [32] regarding long-time existence, uniqueness and optimal
regularity of solutions. First, we have the following estimate.

Lemma 3.11 ([32, Theorems 4.3.1(iii) & 4.4.1(ii)]) Fix 0 < γ < 1, then there exists a constant C3 > 0
with the following property: For each t1 with 0 < t1 ≤ ∞ and each function N s ∈ C0,γ([0, t1],Xm−2) with
N s(t) = P sN s(t) and N s(0) ∈ Xm, there is a unique solution Rs of

∂tR
s = ΛsRs +N s(t), Rs|t=0 = 0

9The term −α∂X(ψ2) in the second equation in (3.15) shows that this quadratic term will indeed be present.
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on [0, t1], and
‖Rs‖C0,γ([0,t1],Xm) ≤ C3‖N s‖C0,γ([0,t1],Xm−2).

Since Rc has compact support in Fourier space and the operator λc in the first equation in (3.32) is bounded,
there is a constant C5 > 0 such that

‖Rc‖C0,γ([0,t1],Xm) ≤ C5‖Rc‖C0([0,t1],Xm) + ‖N c‖C0([0,t1],Xm) (3.36)

for the solution Rc of
∂tR

c = λcRc +N c(t), Rc|t=0 = 0

on [0, t1] where N c(t) = P cN c(t). Note that C5 does not depend on t1.

The results in [32, §8.1], and specifically [32, Theorems 8.1.1 & 8.1.3, Proposition 8.2.1], show that the
nonlinear system (3.32)–(3.33) can be solved as long as the C0,γ([0, t],Xm)-norm of the solution (Rc, Rs)
stays bounded: To apply the cited results, we need to check the compatibility condition gs(0, 0, 0) ∈ Xm (see
also Lemma 3.11) which is met since the residuals are sufficiently smooth due to Lemma 3.10. In the rest of
the proof, we shall also exploit that the Hölder norm of the residuals is bounded uniformly in δ.

We define
Sc(t) = ‖Rc‖C0,γ([0,t],Xm), Ss(t) = ‖Rs‖C0,γ([0,t],Xm),

and record that these functions increase monotonically in t. We claim that Sc(t) and Ss(t) stay bounded
uniformly in t for t ≤ T0/δ

2 and δ ∈ (0, δ1) for some fixed δ1 > 0. To prove the claim, we argue by
contradiction. Thus, we shall pick appropriate positive constants Sc

∗ and Ss
∗, which will be chosen in (3.40)

below independently of δ, and assume that there are sequences δj ↘ 0 and tj < T0/δ
2
j so that Sc(t) < Sc

∗
and Ss(t) < Ss

∗ for all 0 < t < tj and Sc(tj) ≥ Sc
∗ and Ss(tj) ≥ Ss

∗.

We proceed as follows to reach the desired contradiction. Throughout the forthcoming estimates, we restrict
ourselves to 0 ≤ t ≤ tj ≤ T0/δ

2
j . Applying the variation-of-constant formula to the equation for Rc in

(3.32)–(3.33), we get

Rc(t) =
∫ t

0

eλc(t−τ)ρgc(Rc, Rs, ·)(τ) dτ.

The estimates provided in (3.34) and Lemma 3.9 show that

‖Rc(t)‖Xm
≤

∫ t

0

‖eλc(t−τ)ρ‖L(Xm,Xm)‖gc(Rc, Rs, ·)(τ)‖Xm
dτ

≤
∫ t

0

C0(t− τ)−1/2
[
δC1‖Rc(τ)‖Xm

+ δ2CRes + δ2C1‖Rs(τ)‖Xm
+ δM+1C2(Sc

∗, S
s
∗)
]
dτ

≤
√
T0C0

[
δCRes + δC1S

s
∗ + δMC2(Sc

∗, S
s
∗)
]
+
∫ t

0

δC0C1√
t− τ

‖Rc(τ)‖Xm dτ.

Using the rescaled time variable T := δ2t, we see that

‖Rc(T/δ2)‖Xm ≤
√
T0C0

[
δCRes + δC1S

s
∗ + δMC2(Sc

∗, S
s
∗)
]
+
∫ T

0

C0C1√
T − τ

‖Rc(τ/δ2)‖Xm dτ (3.37)

for T ≤ Tj := tjδ
2
j ≤ T0. We are now ready to apply the following version of Gronwall’s inequality.

Lemma 3.12 ([22, Lemma 7.1.1]) Assume that b and T0 are positive constants and 0 < d < 1, then there
is a constant C4 = C(b, d, T0) such that the following is true. Suppose that a ≥ 0 and u : [0, T0] → R+ is
continuous with

u(T ) ≤ a+
∫ T

0

bu(τ)
(T − τ)d

dτ
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for all T ∈ [0, T0], then
sup

T∈[0,T0]

u(T ) ≤ aC4.

Applying Lemma 3.12 to (3.37) with u(t) := ‖Rc(t/δ2)‖Xm
, we get

‖Rc(t)‖Xm
≤
√
T0C0C4

[
δCRes + δC1S

s
∗ + δMC2(Sc

∗, S
s
∗)
]
.

Using (3.36), we finally get

Sc(t) ≤
√
T0C0C4C5

[
δCRes + δC1S

s
∗ + δMC2(Sc

∗, S
s
∗)
]

(3.38)

for all t with 0 ≤ t ≤ tj .

Next, we focus on the equation for Rs in (3.32)–(3.33). Applying Lemma 3.11 together with the estimates
from (3.34) and Lemma 3.9, we obtain

Ss(t) ≤ C3‖gs(Rc, Rs, ·)‖C0,γ([0,t],Xm−2)

≤ C3

(
CRes + Sc(t) + δSs(t) + δMC2(Sc

∗, S
s
∗)
)

≤ C3

(
CRes + Sc

∗ + δSs
∗ + δMC2(Sc

∗, S
s
∗)
)

(3.39)

for all t with 0 ≤ t ≤ tj .

In summary, if we choose
Sc
∗ = 2, Ss

∗ = 2 + C3(2 + CRes), (3.40)

then we get from (3.38) and (3.39) together with the assumption δj → 0 that

Sc(tj) ≤ 1, Ss(tj) ≤ 1 + C3(2 + CRes)

for all sufficiently large j. This is the desired contradiction which establishes that the solutions (Rc, Rs) of
(3.32)–(3.33) exist on [0, T0/δ

2] and are bounded uniformly in δ.

3.10 Proofs of the theorems from §3.2

3.10.1 Proof of Theorem 3.4

We use Theorem 3.5 to prove Theorem 3.4. The starting point of our analysis is the relation

A(x, t) = (1 + δ2W (δx, δ2t)) exp
(

iδ
∫ x

0

Ψ(δy, δ2t) dy + iφ0(t)− iβt
)

which defines a solution A of the complex Ginzburg–Landau equation (3.11) in terms of an arbitrary solution
(W,Ψ) of (3.15). We wish to compare this solution with the function

Aapprox(x, t) = (1 + δ2W h
M (δx, δ2t)) exp

(
iδ
∫ x

0

Ψh
M (δy, δ2t) dy − iβt

)
where (W h

M ,Ψh
M ) are the improved approximations obtained from a solution q of Burgers equation (3.17)

via the expressions (W0,Ψ0) from (3.18). We estimate the difference of A and Aapprox as follows:

|e−iφ0(t)A(x, t)−Aapprox(x, t)|

≤
∣∣∣∣(1 + δ2W (δx, δ2t)) exp

(
iδ
∫ x

0

Ψ(δy, δ2t) dy − iβt
)
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−(1 + δ2W h
M (δx, δ2t)) exp

(
iδ
∫ x

0

Ψh
M (δy, δ2t) dy − iβt

)∣∣∣∣
≤

∣∣∣∣(1 + δ2W (δx, δ2t)) exp
(

iδ
∫ x

0

Ψ(δy, δ2t) dy
)

−(1 + δ2W (δx, δ2t)) exp
(

iδ
∫ x

0

Ψh
M (δy, δ2t) dy

)∣∣∣∣
+
∣∣∣∣(1 + δ2W (δx, δ2t)) exp

(
iδ
∫ x

0

Ψh
M (δy, δ2t) dy

)
−(1 + δ2W h

M (δx, δ2t)) exp
(

iδ
∫ x

0

Ψh
M (δy, δ2t) dy

)∣∣∣∣
≤

∣∣1 + δ2W (δx, δ2t)
∣∣ ∣∣∣∣exp

(
iδ
∫ x

0

Ψ(δy, δ2t) dy
)
− exp

(
iδ
∫ x

0

Ψh
M (δy, δ2t) dy

)∣∣∣∣
+δ2

∣∣W (δx, δ2t)−W h
M (δx, δ2t)

∣∣
Thm. 3.5
≤ Cδ

∣∣∣∣∫ x

0

|Ψ(δy, δ2t)−Ψh
M (δy, δ2t)|dy

∣∣∣∣+ CδM+2

Thm. 3.5
≤

∣∣∣∣∫ x

0

CδM+1 dy
∣∣∣∣+ CδM+2

≤ Cδ(δM+1 + δM |x|).

Restricting x to the region |x| ≤ Lδ−l, we obtain the desired estimate of the left-hand side by CδM−l. Note
that the limitation comes from the phase which is obtained as the integral of the wave number which is not
necessarily integrable over R.

Lastly, inspecting the right-hand side of the φ-equation in (3.12), given by

∂tφ = ∂xxφ+ α
∂xxr

1 + r
− α(∂xφ)2 +

2(∂xr)(∂xφ)
1 + r

− 2βr − βr2,

we see that ∂tφ(0, t) = O(δ2) and therefore

sup
t∈[0,T0/δ2]

|φ(0, t)| = O(1).

Remark 3.13 We emphasize that, in general, we cannot expect better approximation properties. To see
this, take Ψ = δ2 and q = 0. In the above estimates, we would then need to prove that the difference of eiδ2x

and 1 is smaller than o(δ). A uniform estimate over R can only be expected for special solutions.

3.10.2 Proof of Theorem 3.3

The idea of the proof is as follows. By assumption, the solution q(X,T ) of Burgers equation that we start with
converges to constants algebraically as x → ±∞, and our ansatz therefore satisfies the complex Ginzburg–
Landau equation at x = ±∞. We shall see that this implies that the residuals are also algebraically localized,
which enables us to solve the equation for the errors in appropriate spaces of algebraically localized functions.
When we then transfer the approximation result from wave numbers to phases, we can exploit the algebraic
1/x2-decay of the wave number to see that the phase, computed as the integral of the wave number in x

over R, stays bounded.

Thus, we introduce the space Hm(n; δ) which is equal to Hm(n) but equipped with the norm

‖u‖Hm(n;δ) := ‖u(·)ρn
w(δ·)‖Hm
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where ρw(x) =
√

1 + x2. To prove Theorem 3.3, we first repeat the steps in the proof of Theorem 3.5. It
is not hard to see that the residuals lie in X̃m := Hm+1(2; δ) × Hm(2; δ). Furthermore, the estimates in
Lemma 3.10 stay the same except that the terms δM+3 and δM+2 on the right-hand side of the last two
equations in (3.31) are replaced by δM+5/2 and δM+3/2, respectively, due to the scaling properties of L2-
spaces. Next, Lemma 3.11 and the estimates (3.34) of the nonlinear terms remain true in X̃m. Likewise, the
estimates of the semigroups in Lemma 3.9 are true in X̃m since the δ-dependent norm in Hm(n; δ) ensures
that the constants arising in the estimates of the critical semigroup remain are O(1) in δ over the long time
scale O(1/δ2). Thus, we see that Theorem 3.5 remains true with Xm replaced by X̃m except that the term
δM on the right-hand side of (3.20) needs to be replaced by δM−1/2.

It remains to transfer the result from wave numbers to phases. Without loss of generality, we may assume
that q− = 0. We now have to compare the solution

A(x, t) = (1 + δ2W (δx, δ2t)) exp
(

iδ
∫ x

−∞
Ψ(δy, δ2t) dy − iβt

)
of the complex Ginzburg–Landau equation (3.11) with the approximation

Aapprox(x, t) = (1 + δ2W h
M (δx, δ2t)) exp

(
iδ
∫ x

−∞
Ψh

M (δy, δ2t) dy − iβt
)
.

The key is that the integrals in the expressions above exist, and are O(1) in δ, since∣∣∣∣δ ∫ x

−∞

(
1 + δ2y2

)−1
dy
∣∣∣∣ ≤ ∫ ∞

−∞

(
1 + y2

)−1
dy <∞.

Thus, as in §3.10.1, we obtain

|A(x, t)−Aapprox(x, t)| ≤ Cδ

∣∣∣∣∫ x

−∞
[Ψ(δy, δ2t)−Ψh

M (δy, δ2t)] dy
∣∣∣∣+ CδM+2

≤ Cδ

∫ x

−∞
|δM−1/2(1 + (δy)2)−2|dy + CδM+2 ≤ CδM−3/2

uniformly for x ∈ R.

3.10.3 Proof of Theorem 3.2

To prove Theorem 3.2, we follow the same strategy as in the proof of Theorem 3.5. However, instead of using
equation (3.13) for the wave number ψ as in §3.5, we use only the equation (3.12) for the phase φ. This
is feasible, of course, since we begin with a solution Φ(X,T ) of the phase equation (3.8) rather than with
a solution q(X,T ) of Burgers equation (3.10). Thus, we shall focus on (3.12) and go through the analysis
presented in §3.5 to work out the adjustments that we need to make.

The major difference is that Lemma 3.8 is no longer true for (3.12), since the leading order term in the
critical part of the nonlinearity is now given by (∂xv

c)2, see (3.8). In particular, we can no longer use the
improved estimate in terms of t−1/2 for the critical part of the semigroup in Lemma 3.9 but only the bound
by a constant. Thus, for the estimates of the errors in §3.9 to go through, we shall need that the nonlinearity
itself is of order O(δ2): the key is that the term (∂xv

c)2, is indeed of the desired order O(δ2) if vc is a function
of δx. Therefore, to exploit this property, we introduce the space X1,δ which, as a vector space, is equal to
X1 but whose norm is defined via

‖u(·)‖X1,δ
:= ‖u(δ−1·)‖X1 .

In this space, we obtain the estimate

‖eλct‖X0,δ→X1,δ
≤ C

(
1 +

1
δ
√
t

)
(3.41)
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for the critical part of the linear semigroup. As in §3.9, we make the ansatz

vc = V c + δMRc (3.42)

vs = δ2V s + δM+2Rs

and seek functions Rc and Rs in X1,δ and Xm, respectively. Note that since Rc has compact support in
Fourier space, we have that Rc ∈ Xm. Furthermore, the approximations V c and V s lie in both X1,δ and Xm.
Upon substitution our ansatz into the analogue of (3.28), we obtain the equation

∂tR
c = λcRc + gc(Rc, Rs, t)

∂tR
s = ΛsRs + gs(Rc, Rs, t)

for the errors, where the nonlinearity obeys the estimate

‖gc(Rc, Rs, t)‖X0,δ
≤ δ2CRes + δ2C‖Rc‖X1,δ

+ δ3C‖Rs‖Xm + δMC(Dc, Ds)[‖Rc‖X1,δ
+ ‖Rs‖Xm ]2

‖gs(Rc, Rs, t)‖Xm−2 ≤ CRes + C‖Rc‖X1,δ
+ δC‖Rs‖Xm + δMC(Dc, Ds)[‖Rc‖X1,δ

+ ‖Rs‖Xm ]2

when restricted to
‖Rc‖X1,δ

≤ Dc and ‖Rs‖Xm
≤ Ds

with constants Dc and Ds as in §3.9. We record that we used here that the right-hand side depends only on
∂xV

c = O(δ) but not on V c = O(1), see (3.12).

From this point on, the rest of the proof follows exactly as in §3.9 upon utilizing the estimate (3.41) instead
of the estimates provided in Lemma 3.9.

4 Reaction-diffusion equations: Set-up and results

4.1 The abstract set-up

Consider the reaction-diffusion system
∂tu = D∂xxu+ f(u) (4.1)

where u ∈ Rd, x ∈ R, D is a diagonal matrix with strictly positive entries, and f : Rd → Rd is smooth.

We assume that, for some nonzero temporal frequency ω = ω0 and a certain nonzero spatial wave number
k = k0, there exists a nonconstant travelling wave train u(x, t) = u0(ω0t − k0x) of (4.1) where u0(θ) is
2π-periodic in its argument. Substituting this ansatz into (4.1), we see that u0(θ) must be a 2π-periodic
solution to the boundary-value problem

k2D∂θθu− ω∂θu+ f(u) = 0. (4.2)

Linearizing this equation about u0, we obtain the linear operator L0, given by

L0 = k2D∂θθ − ω∂θ + f ′(u0(θ)), (4.3)

which defines a closed and densely defined operator on L2
per(0, 2π) with domain D(L0) = H2

per(0, 2π). We
assume that λ = 0 is a simple eigenvalue of L0 on L2

per(0, 2π), so that its null space is one-dimensional, and
therefore spanned by the derivative ∂θu0 of the wave train.

We may now vary the parameter k in (4.2) near k = k0 and again seek 2π-periodic solutions of (4.2). Note
that the derivative of the boundary-value problem (4.2) with respect to ω, evaluated in the solution u0, is
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given by ∂θu0. Since λ = 0 is a simple eigenvalue of L0 on L2
per(0, 2π), we see that ∂θu0 does not lie in the

range of L0, and the linearization of the boundary-value problem (4.2) with respect to (u, ω) is therefore
onto. Thus, exploiting the translation symmetry of (4.2), we can solve uniquely for (u, ω), up to translations
in θ, and obtain the wave trains

u(x, t) = u0(ωnl(k)t− kx; k), ω = ωnl(k) (4.4)

of (4.1) where ωnl(k0) = ω0. In particular, u0(θ; k) satisfies the ODE

k2D∂θθu− ωnl(k)∂θu+ f(u) = 0 (4.5)

for all k close to k0. We call ωnl the nonlinear dispersion relation and define the group velocity of the wave
train with wave number k to be

cg =
dωnl

dk
(k). (4.6)

Note that the phase speed of each wave train is given simply by cp := ωnl(k)/k. We shall assume that the
nonlinear dispersion relation is genuinely nonlinear so that ω′′nl(k0) 6= 0.

We will need additional assumptions on the stability of the wave train u0 as a solution to the reaction-
diffusion system (4.1). We therefore linearize (4.1) in the frame θ = ω0t − k0x that moves with the phase
speed cp = ω0/k0 of the wave trains and get

∂tu = k2
0D∂θθu− ω0∂θu+ f ′(u0(θ))u. (4.7)

The spectrum of the linear operator defined by the right-hand side of (4.7) on the space L2(R) can be
computed using the Floquet or Bloch-wave ansatz

u(θ) = e−νθ/k0v(θ; ν) (4.8)

where ν ∈ iR and v(θ; ν) is 2π-periodic in θ. Substituting this ansatz, we obtain a family of operators Lν

given by

Lνv = k2
0D

(
∂θ −

ν

k0

)2

v − ω0

(
∂θ −

ν

k0

)
v + f ′(u0(θ))v, (4.9)

each of which is a closed operator on L2
per(0, 2π) with dense domain H2

per(0, 2π). In particular, Lν has
compact resolvent, and its spectrum is discrete. Thus, its eigenvalues λj(ν) with j ∈ N can be ordered with
descending real part so that Reλj+1(ν) ≤ Reλj(ν). The curves ν 7→ λj(ν) are analytic except possibly at
a discrete set where the values of two or more curves λj(ν) for different indices j coincide. We denote the
associated eigenfunctions by vj(θ; ν).

Since we assumed that L0 has an algebraically simple eigenvalue at λ = 0, we find an analytic curve of
eigenvalues given by λ = λlin(ν) for ν ∈ iR close to zero for which

N(Lν − λlin(ν)) 6= {0}. (4.10)

We call λ = λlin(ν) the linear dispersion relation. As we shall see below, we can compute the derivative
dλ/dν and recover the group velocity as defined via the nonlinear dispersion relation:

dλlin

dν

∣∣∣
ν=0

= cp −
dωnl

dk
(k0) = cp − cg.

We remark that the phase velocity cp appears in the above equation simply because we computed the linear
dispersion relation in the frame moving with speed cp, while the nonlinear dispersion relation was computed
in the steady frame. Note also that the signs of the second derivatives of the linear and nonlinear dispersion
relation are, in general, not related. We assume that Reλ′′lin(0) > 0.

We summarize the assumptions that we stated so far in the following two hypotheses.
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Hypothesis 4.1 Assume that there exists a wave-train solution to (4.1) whose linearization L0 has a simple
eigenvalue at λ = 0 when considered on L2

per(0, 2π). We also assume that the nonlinear dispersion relation
is genuinely nonlinear so that ω′′nl(k0) 6= 0

Hypothesis 4.2 Assume that the linear dispersion relation is dissipative so that λ′′lin(0) > 0.

Our last assumption is concerned with temporally oscillatory solutions of the linearization (4.7). We assume
that, for each fixed ν ∈ iR, and for every λ in the spectrum of Lν , we have

λ 6= (cp − cg)ν (4.11)

except, of course, when ν = 0 and λ = 0. Recall that cp and cg denote the phase and group velocity,
respectively, of the wave trains. In the original steady frame, this assumption is equivalent to requiring
the absence of solutions to the linearized equation of the form exp(i(ωt − kx)) for which the phase speed
of the modulation, ω/k, is equal to the group velocity cg of the wave trains. Note that this hypothesis is
automatically met if we assume that the wave trains are spectrally stable, see Hypothesis 4.4 below.

Hypothesis 4.3 We require the absence of resonant spectrum in the dispersion relation as stated in (4.11).

When we derive and validate Burgers equation, we shall need the following, more restrictive hypothesis which
assumes spectral stability of the wave trains u0(ω0t− k0x).

Hypothesis 4.4 We assume that, for any ν ∈ iR and any eigenvalue λ of Lν , we have either Reλ < 0 or
else λ = 0 and ν ∈ ik0Z.

In other words, we assume that λlin(ν) = λ1(ν). Note that Hypothesis 4.4 implies Hypothesis 4.3. As
indicated above, the stronger Hypothesis 4.4 is only needed for the validity of Burgers equations and for the
stability of small-amplitude shocks but not for their existence.

4.2 Expansions of the linear and nonlinear dispersion relations

In this section, we derive some useful expansions for the linear and nonlinear dispersion relations. In
particular, we show that their first derivatives coincide (up to their sign).

We start with the nonlinear dispersion relation. Consider the nonlinear boundary-value problem (4.2)

k2D∂θθu− ω∂θu+ f(u) = 0 (4.12)

with periodic boundary conditions. Recall that, by assumption, we know that λ = 0 is a simple eigenvalue of
the linearization L0, posed on L2

per(0, 2π), of (4.12) about the solution u0(θ). The null space of L0 is therefore
spanned by ∂θu0. We denote by uad the nontrivial function in the null space of the adjoint operator

Ladu = k2
0D∂θθu+ ω0∂θu+ f ′(u0(θ))Tu

with the normalization
〈uad, ∂θu0〉L2(0,2π) = 1. (4.13)

We now proceed as follows. Recall that the above hypothesis on L0 implies that there is a solution u0(θ; k)
and ω = ωnl(k) of (4.12) for each k close to k0, and that the solution u ∈ H2

per(0, 2π) as well as ωnl(k) depend
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smoothly on k. Thus, we substitute both u = u0(θ; k) and ω = ωnl(k) into (4.12) and take the first two
derivatives of (4.12) with respect to k evaluated at k = k0. We obtain

L0∂ku0 = −2k0D∂θθu0 + ω′nl(k0)∂θu0 (4.14)

L0∂kku0 = −4k0D∂θθ∂ku0 + 2ω′nl(k0)∂θ∂ku0 − 2D∂θθu0 + ω′′nl(k0)∂θu0 (4.15)

−f ′′(u0)[∂ku0, ∂ku0].

In particular, we conclude from these equations that the right-hand sides of both (4.14) and (4.15) lie in the
range of the operator L0. Therefore, the L2-product of these right-hand sides with the adjoint solution uad

vanishes. Writing down these scalar products, and using the normalization (4.13), we obtain

ω′nl(k0) = cg = 〈uad, 2k0D∂θθu0〉L2 (4.16)

ω′′nl(k0) = 〈uad, 4k0D∂kθθu0 − 2cg∂kθu0 + 2D∂θθu0 + f ′′(u0)[∂ku0, ∂ku0]〉L2 . (4.17)

Combining (4.14) and (4.16) shows that ∂ku0 satisfies

L0∂ku0 = −2k0D∂θθu0 + cg∂θu0 = −2k0 [D∂θθu0 − 〈uad, D∂θθu0〉L2∂θu0] . (4.18)

We remark that we can arrange for
〈uad, ∂ku0〉L2 = 0 (4.19)

since we can always shift wave trains arbitrarily in θ. Shifting appropriately in a k-dependent fashion allows
us to replace ∂ku0 by ∂ku0 + a∂θu0. Choosing a appropriately gives (4.19).

Next, we turn to the linear dispersion relation. We consider the linear boundary-value problem (4.9)

k2
0D

(
∂θ −

ν

k0

)2

v − ω0

(
∂θ −

ν

k0

)
v + f ′(u0(θ))v = λlin(ν)v (4.20)

near ν = 0. We proceed as above and take the first two derivatives of this equation with respect to ν

evaluated at ν = 0. Upon using that v = ∂θu0 at ν = 0, we obtain

L0∂νv = (λ′lin(0)− cp)∂θu0 + 2k0D∂θθu0 (4.21)

L0∂ννv = λ′′lin(0)∂θu0 + 2λ′lin(0)∂νv + 4k0D∂θ∂νv − 2cp∂νv − 2D∂θu0. (4.22)

Proceeding as above, and comparing the above equations with (4.16) and (4.18), we can arrange that
∂νv = −∂ku0, see also (4.19), and

λ′lin(0) = cp − cg = 〈uad, cp∂θu0 − 2k0D∂θθu0〉L2 (4.23)

λ′′lin(0) = 〈uad, 4k0D∂kθu0 + 2D∂θu0〉L2 .

Remark 4.5 It is sometimes more convenient to use speed vs period instead of spatial vs temporal frequency
formulations of the nonlinear dispersion relation ωnl(k). Using

L =
2π
k
, cp =

ωnl(k)
k

, (4.24)

we obtain the phase velocity cp = c(L) as a function of L. A trivial application of the chain rule gives

cg =
dωnl

dk
= c(L)− L

dc
dL

, λ′lin(0) = L
dc
dL

,
d2ωnl

dk2
=
L3

2π
d2c

dL2
. (4.25)

Thus, the signs of −c′(L) and the relative group velocity cg − cp coincide. Furthermore, the signs of c′′(L)
and ω′′nl(k) are the same.
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4.3 Formal derivation of Burgers equation

We are interested in slowly varying modulations of the wave trains u0(ωnl(k)t−kx; k) to the reaction-diffusion
system (4.1)

∂tu = D∂xxu+ f(u). (4.26)

Thus, we fix a wave number k and seek solutions to (4.26) of the form

u(x, t) = u0(ωnl(k)t− kx− Φ(X,T ; δ); k + δ∂XΦ(X,T ; δ)) + δ2u1(ωnl(k)t− kx,X, T ; δ) (4.27)

where the variables (X,T ) depend on (x, t) and are given by

X = δ(x− cg(k)t), T = δ2t. (4.28)

We shall assume that both Φ(X,T ; δ) and u1(θ,X, T ; δ) are smooth in δ. Note that the functions Φ(X,T ; δ)
and q(X,T ) := ∂XΦ(X,T ; δ) describe the slowly varying phase and wave number modulations, respectively.

The strategy is now to derive, on a formal level, the equation that Φ(X,T ; 0), or equivalently q, ought
to satisfy in order to turn (4.27) into a solution of (4.26). In the process of the derivation, we will also
choose a normalization that makes the correction u1(θ,X, T ; δ) unique. The validity proof of the equation
for Φ(X,T ; 0) derived in this fashion then amounts to providing estimates for Φ(X,T ; δ) and u1(θ,X, T ; δ)
for 0 < δ � 1 over time scales of order O(1) in T .

Throughout the derivation, we use the abbreviations

θ = ωnl(k)t− kx, (4.29)

ω = ωnl(k), and u0 = u0(θ; k). For any function h(θ − Φ(X,T ; δ); k + δ∂XΦ(X,T ; δ)), we then have

d
dt
h = [ω + δcg∂XΦ− δ2∂T Φ]∂θh− δ2cg(∂XXΦ)∂kh+ O(δ3)

d
dx
h = −[k + δ∂XΦ]∂θh+ δ2(∂XXΦ)∂kh

d2

dx2
h = −δ2(∂XXΦ)(∂θh) + [k + δ∂XΦ]2∂θθh− 2kδ2(∂XXΦ)∂kθh+ O(δ3)

where h is evaluated at (θ − Φ(X,T ; δ); k + δ∂XΦ(X,T ; δ)). Therefore, we obtain formally

−∂tu+D∂xxu+ f(u)

= −(ω + δcg∂XΦ− δ2∂T Φ)∂θu0 + δ2cg(∂XXΦ)∂ku0 − δ2ω∂θu1

+D
[
−δ2(∂XXΦ)(∂θu0) + (k + δ∂XΦ)2∂θθu0 − 2kδ2(∂XXΦ)∂kθu0 + δ2k2∂θθu1

]
+f(u0 + δ2u1) + O(δ3)

= −ω∂θu0 + k2D∂θθu0 + f(u0) + δ [2k(∂XΦ)D∂θθu0 − cg(∂XΦ)∂θu0]

+δ2
[
cg(∂XXΦ)∂ku0 + (∂T Φ)∂θu0 +D

(
−(∂XXΦ)∂θu0 + (∂XΦ)2∂θθu0 − 2k(∂XXΦ)∂kθu0

)
−ω∂θu1 + k2D∂θθu1 + f ′(u0)u1

]
+ O(δ3)

where u0 = u0(θ − Φ(X,T ; 0); k + δ∂XΦ(X,T ; 0)) and u1 = u1(θ,X, T ; 0). In the next step, we expand u0

further

u0(θ − Φ; k + δ∂XΦ) = u0(θ − Φ; k) + δ(∂XΦ)∂ku0(θ − Φ; k) +
δ2

2
(∂XΦ)2∂2

ku0(θ − Φ; k) + O(δ3)

and note that analogous expansions hold for ∂θu0 and ∂θθu0. We will next substituting these expansions
into the above equation for −∂tu + D∂xxu + f(u). Note that, from this point on, we regard (θ,X, T ) as
independent variables and neglect that they depend on x and t through (4.28) and (4.29). We shall also set

Φ(X,T ) := Φ(X,T ; 0).
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Upon substitution, we obtain, with u0 = u0(θ − Φ(X,T ); k) and u1 = u1(θ,X, T ; 0), that

−∂tu+D∂xxu+ f(u)

= −ω∂θu0 + k2D∂θθu0 + f(u0)

+δ(∂XΦ)
[
−ω∂kθu0 + k2D∂kθθu0 + f ′(u0)∂ku0 + 2kD∂θθu0 − cg∂θu0

]
+
δ2

2
[
2cg(∂XXΦ)∂ku0 − ω(∂XΦ)2∂kkθu0 + k2D(∂XΦ)2∂kkθθu0 + (∂XΦ)2f ′(u0)∂kku0

+(∂XΦ)2f ′′(u0)[∂ku0, ∂ku0] + 4k(∂XΦ)2D∂kθθu0 − 2cg(∂XΦ)2∂kθu0 + 2(∂T Φ)∂θu0

+2D
(
−(∂XXΦ)∂θu0 + (∂XΦ)2∂θθu0 + 2k(∂XXΦ)∂kθu0

)
+ L0u1

]
+ O(δ3)

= −ω∂θu0 + k2D∂θθu0 + f(u0)

+δ(∂XΦ) [L0∂ku0 + 2kD∂θθu0 − cg∂θu0]

+
δ2

2
[
2L0u1 + (∂XΦ)2 (L0∂kku0 + f ′′(u0)[∂ku0, ∂ku0] + 4kD∂kθθu0 − 2cg∂kθu0 + 2D∂θθu0)

+2(∂T Φ)∂θu0 − 2D(∂XXΦ)(∂θu0 + 2k∂kθu0) + 2cg(∂XXΦ)∂ku0] + O(δ3)

where L0 has been defined in (4.3). Equations (4.12) and (4.14) imply that the terms of order O(δ0) and
O(δ) in the above expression vanish identically. We can then use (4.15) to simplify the term of order O(δ2)
to get

−∂tu+D∂xxu+ f(u)

= δ2
[
L0u1 +

1
2
ω′′nl(k)(∂XΦ)2∂θu0 + (∂T Φ)∂θu0 −D(∂XXΦ)(∂θu0 + 2k∂kθu0) + cg(∂XXΦ)∂ku0

]
+O(δ3).

Thus, we require that the term of order O(δ2) vanishes identically which results in

L0u1 = −(∂T Φ)∂θu0 −
1
2
ω′′nl(k)(∂XΦ)2∂θu0 +D(∂XXΦ)(∂θu0 + 2k∂kθu0) + cg(∂XXΦ)∂ku0. (4.30)

We can solve this equation uniquely for u1 = u1(θ,X, T ; 0) provided we require that 〈uad, u1〉L2 = 0 and
provided we choose Φ(X,T ) so that the right-hand side is in the range of L0, that is, provided〈

uad,−(∂T Φ)∂θu0 −
1
2
ω′′nl(k)(∂XΦ)2∂θu0 +D(∂XXΦ)(∂θu0 + 2k∂kθu0) + cg(∂XXΦ)∂ku0

〉
L2

= 0

The latter solvability condition means

〈uad, ∂θu0〉L2 ∂T Φ = 〈uad, D(∂θu0 + 2k∂kθu0)〉L2 ∂XXΦ− ω′′nl(k)
2

〈uad, ∂θu0〉L2 (∂XΦ)2

where we exploited (4.19). Using (4.13) and (4.23), we eventually obtain the eikonal equation

∂T Φ =
λ′′lin(0)

2
∂XXΦ− ω′′nl(k)

2
(∂XΦ)2 (4.31)

for the phase Φ(X,T ) or, alternatively, Burgers equation

∂T q =
λ′′lin(0)

2
∂XXq −

ω′′nl(k)
2

∂X(q2) (4.32)

=
λ′′lin(0)

2
∂XXq − ω′′nl(k) q∂Xq

for the wave number modulation q(X,T ) = ∂XΦ(X,T ).
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4.4 Validity of Burgers equation

We start with the wave trains
u(x, t) = u0(ωnl(k)t− kx; k)

of the reaction-diffusion system (4.1) for a fixed wave number k. It turns out to be convenient to replace the
spatial variable x by θ = ωnl(k)t− kx. In these coordinates, (4.1) becomes

∂tu = k2D∂θθu− ωnl(k)∂θu+ f(u), (4.33)

and the wave trains are simply given by
u(θ, t) = u0(θ; k). (4.34)

To get into the spirit of the results we shall prove, we will begin with statements that are relatively easy to
formulate but may not be the most general or relevant ones (the latter ones can be found toward the end of
this section).

Therefore, we shall first consider slowly-varying modulations of the wave trains (4.34) that admit the following
representation. Pick a phase function φ(ϑ, t) with |∂ϑφ(ϑ, t)| ≤ 1/2 uniformly in (ϑ, t) and consider the change
of coordinates defined implicitly via

θ = ϑ+ φ(ϑ, t). (4.35)

Due to our assumption on φ, we can solve (4.35) for ϑ as a function ϑ(θ) of θ, which will allow us to write
solutions of (4.33) in the form u(θ, t) = U(ϑ, t), where ϑ and θ are related via (4.35).

Initially, for the sake of clarity, we shall formulate results in terms of the variables ϑ; results for the original
variable θ are stated toward the end of this section.

First, we consider modulation of the phase. Thus, pick a solution Φ(X,T ) of the phase equation

∂T Φ =
1
2
λ′′lin(0)∂XXΦ− 1

2
ω′′nl(k)(∂XΦ)2 (4.36)

with X ∈ R and T ∈ [0, T0], and set

φ(ϑ, t) := Φ
(
δ((cp − cg)t− ϑ/k), δ2t

)
. (4.37)

We then have the following approximation result.

Theorem 4.6 Assume that Hypotheses 4.1, 4.2 and 4.4 are met, and fix an integer n ≥ 3. For each choice
of constants C0 > 0 and T0 > 0, there exist constants δ1 > 0 and C1 > 0 such that the following is true:
Pick a solution Φ(X,T ) of (4.36) with

sup
T∈[0,T0]

‖Φ(·, T )‖Hn ≤ C0

and define

Uapprox(ϑ, t) = u0 (ϑ; k(1 + δ∂XΦ(X,T ))) , (X,T ) :=
(
δ((cp − cg)t− ϑ/k), δ2t

)
then there exists a solution u(θ, t) = U(ϑ, t) of the reaction-diffusion system (4.33) such that

sup
t∈[0,T0/δ2]

sup
ϑ∈R

|U(ϑ, t)− Uapprox(ϑ, t)| ≤ C1δ
2

uniformly in δ ∈ (0, δ1), where the variables ϑ and θ are related through (4.35) and (4.37).
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Note that the preceding theorem is weaker than Theorem 3.2 which we stated for the complex Ginzburg–
Landau equation in §3.2, since Φ has to lie in Hn instead of Hn

ul. The reason is of a technical nature: we
do not know of estimates for quadratic interactions of Hn

ul-functions which retain the scaling with respect to
the Bloch variable `, while such estimates exist for Hn-functions [54].

Solutions with a richer dynamics can be obtained by modulating the wave number instead of the phase, and
we are therefore interested in solutions q(X,T ) = ∂XΦ0(X,T ) of Burgers equation

∂T q =
1
2
λ′′lin(0)∂XXq −

1
2
ω′′nl(k)∂X(q2). (4.38)

In this situation, we have the following result.

Theorem 4.7 We assume that Hypotheses 4.1, 4.2 and 4.4 are met. For each choice of integers M ≥ 1 and
n ≥ M + 3 and constants C0 > 0 and T0 > 0, there exist constants δ1 > 0 and C1 > 0 with the following
properties: For each solution q(X,T ) of Burgers equation (4.38) for which

sup
T∈[0,T0]

‖q(·, T )‖Hn
ul
≤ C0

and each δ ∈ (0, δ1), there are functions (qh, rh)(ϑ, t) with

sup
t∈[0,T0/δ2]

∥∥qh(·, t)− q
(
δ((cp − cg)t− ϑ/k), δ2t

)∥∥
Hn

ul
≤ C1δ, sup

t∈[0,T0/δ2]

‖rh(·, t)‖Hn
ul
≤ C1

and a solution u(θ, t) = U(ϑ, t) of the reaction-diffusion system (4.33) such that

sup
t∈[0,T0/δ2]

sup
ϑ∈R

|U(ϑ, t)− Uapprox(ϑ, t)| ≤ C1δ
1+M ,

where
Uapprox(ϑ, t) = u0 (ϑ; k(1 + δqh(ϑ, t))) + δ2rh(ϑ, t).

Again, ϑ and θ are related through (4.35) with

φ(ϑ, t) := δ

∫ ϑ

0

qh(ϑ̃, t) dϑ̃.

The functions (qh, rh)(x, t; δ) are obtained as higher-order approximations to the solution q(X,T ) of Burgers
equation. As outlined in §4.3, they can, in principle, be computed by solving a recursive set of linear
inhomogeneous PDEs.

For practical purposes, the approximation results stated so far are quite useless as they are formulated in
terms of the coordinate ϑ which is defined implicitly by θ = ϑ+φ(ϑ, t), an expression that obviously involves
the knowledge of the phase function φ. Hence, we now transfer our assertions from the ϑ to the θ variable.

First, we state an approximation result for solutions q(X,T ) to (4.38) that approach different constants q± as
X → ±∞. Such solutions are of particular interest, since they describe the temporal evolution of interfaces
between wave trains with wave numbers k + δq± at X = ±∞.

Theorem 4.8 Assume that Hypotheses 4.1, 4.2 and 4.4 are met, and fix integers M ≥ 3 and n ≥ M + 3.
For each choice of C0 > 0 and T0 > 0, there exist constants δ1 > 0 and C1 > 0 such that the following is
true: Pick a solution q(X,T ) of Burgers equation (4.38) for which there are numbers q± ∈ R with

sup
T∈[0,T0]

[
‖q(·, T )‖Hn

ul
+ ‖(q(·, T )− q+)ρ2

w‖Hn
ul(R+) + ‖(q(·, T )− q−)ρ2

w‖Hn
ul(R−)

]
≤ C0,
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where ρw(X) =
√

1 +X2, and a δ ∈ (0, δ1), then there are functions (qh, rh)(ϑ, t) with

sup
t∈[0,T0/δ2]

∥∥qh(·, t)− q
(
δ((cp − cg)t− ϑ/k), δ2t

)∥∥
Hn

ul
≤ C1δ, sup

t∈[0,T0/δ2]

‖rh(·, t)‖Hn
ul
≤ C1

and a solution u(θ, t) of the reaction-diffusion system (4.33) such that

sup
t∈[0,T0/δ2]

sup
θ∈R

|u(θ, t)− uapprox(θ, t)| ≤ C1δ
M−3/2,

where uapprox is given by

uapprox(θ, t) = u0 (ϑ(θ); k(1 + δqh(ϑ(θ), t))) + δ2rh(ϑ(θ), t),

and ϑ(θ) is the solution of

θ = ϑ+ φ(ϑ, t), φ(ϑ, t) := δq−ϑ+ δ

∫ ϑ

−∞

(
qh(ϑ̃, t)− q−

)
dϑ̃.

Lastly, we state the most general approximation result that we were able to prove. We will encounter
the same limitations that we found earlier for the complex Ginzburg–Landau equation: We cannot expect
validity to hold uniformly in θ ∈ R but only for θ in bounded intervals where the length of the interval
depends on the accuracy of the initial approximation. Furthermore, we need to add a global x-independent
phase shift φ0(t) which will be of order O(1) in δ: therefore, only the profile of modulations but not their
exact location is approximated over the relevant natural time scales.

Theorem 4.9 Assume that Hypotheses 4.1, 4.2 and 4.4 are met, and fix integers n,M and a real number l
with M ≥ 1, n ≥M + 3 and 0 < l < M . For each choice of C0 > 0 and T0 > 0, there exist constants δ1 > 0
and C1 > 0 such that the following is true: Pick a solution q(X,T ) of Burgers equation (4.38) for which

sup
T∈[0,T0]

‖q(·, T )‖Hn
ul
≤ C0

and δ ∈ (0, δ1), then there are functions (qh, rh) ∈ Hn
ul with

sup
t∈[0,T0/δ2]

∥∥qh(·, t)− q
(
δ((cp − cg)t− ϑ/k), δ2t

)∥∥
Hn

ul
≤ C1δ, sup

t∈[0,T0/δ2]

‖rh(·, t)‖Hn
ul
≤ C1,

a phase function φ0(t) with
sup

t∈[0,T0/δ2]

|φ0(t)| ≤ C1,

and a solution u(θ, t) of the reaction-diffusion system (4.33) such that

sup
t∈[0,T0/δ2]

sup
|θ|≤L/δl

|u(θ, t)− uapprox(θ, t)| ≤ C1δ
1+M−l,

where uapprox is given by

uapprox(θ, t) = u0 (ϑ(θ); k(1 + δqh(ϑ(θ), t))) + δ2rh(ϑ(θ), t),

and ϑ(θ) is the solution of

θ = ϑ+ φ(ϑ, t), φ(ϑ, t) := φ0(t) + δ

∫ ϑ

0

qh(ϑ̃, t) dϑ̃.

The proofs of the theorems stated in this section can be found in §5.
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4.5 Existence and stability of weak shocks

We are interested in solutions to (4.1) that are spatially bi-asymptotic to wave trains and time-periodic with
temporal frequency ω∗ in a frame moving with an appropriate speed c∗. In other words, we seek solutions
u(x, t) = u∗(x− c∗t, ω∗t) such that

u∗(x− c∗t, ω∗t) = u∗(x− c∗t, ω∗t+ 2π) (4.39)

u∗(x− c∗t, ω∗t) −→ u0(ω±t− k±x; k±) as x→ ±∞. (4.40)

Here, the convergence is understood to be uniformly in t for u and its derivatives ∂xu and ∂tu. More precisely,
upon using the new independent variables ξ = x− c∗t and τ = ω∗t, we require that∥∥∥∥u∗(ξ, ·)− u0

(
ω± − k±c∗

ω∗
· −k±ξ; k±

)∥∥∥∥
H1

per(0,2π)

(4.41)

+
∥∥∥∥∂ξu∗(ξ, ·)− ∂ξu0

(
ω± − k±c∗

ω∗
· −k±ξ; k±

)∥∥∥∥
H

1/2
per (0,2π)

−→ 0

as ξ → ±∞. The speed c∗ and the asymptotic wave numbers k± are, in principle, free parameters. Note,
however, that the asymptotic frequencies ω± are necessarily fixed through the nonlinear dispersion relation
ω± = ωnl(k±). In particular, since (4.39) requires that the solution has frequency one in τ , we see that the
asymptotics required in (4.41) imply that

ωnl(k+)− k+c∗
ω∗

= 1 =
ωnl(k−)− k−c∗

ω∗

so that
ωnl(k+)− k+c∗ = ω∗ = ωnl(k−)− k−c∗. (4.42)

Hence, for k− 6= k+, we find that the average speed c∗ of our solution is determined by the Rankine–Hugoniot
condition

c∗ =
ωnl(k+)− ωnl(k−)

k+ − k−
(4.43)

with the genuinely nonlinear flux function ωnl. Using (4.42), we see that the corresponding frequency ω∗ is
then given by

ω∗ =
k+ωnl(k−)− k−ωnl(k+)

k+ − k−
. (4.44)

Note that c∗ → cg and ω∗ → k0(cp − cg) as k+, k− → k0. We say that the solution is a viscous shock if

c−g > c∗ > c+g (4.45)

where c±g = ω′nl(k±) or, equivalently, if

ω′nl(k−) >
ωnl(k+)− ωnl(k−)

k+ − k−
> ω′nl(k+). (4.46)

In particular, viscous shocks correspond to the viscous Lax shocks of Burgers equation found in §2.2. The
interpretation of (4.45) is that the asymptotic wave trains transport toward the interface between them. For
k± close to k0, (4.46) implies that k− < k0 < k+ for concave dispersion relations with ω′′nl(k0) < 0, while we
have k+ < k0 < k− for convex dispersion relations with ω′′nl(k0) > 0 (see also Figure 1.3).

Theorem 4.10 (Existence) Assume that Hypotheses 4.1, 4.2 and 4.3 are met, then the following is true
for all wave numbers k− and k+ that are sufficiently close to k0 and for which c−g > c+g . There exists a viscous
shock solution u(x, t) = u∗(x− c∗t, ω∗t) of (4.1) whose temporal frequency ω∗ and speed c∗ are determined by
the Rankine–Hugoniot conditions (4.43)-(4.44). Furthermore, the viscous shock is unique, up to translations
in x and t, in the class of solutions that are close to u0 and satisfy (4.39)-(4.40).
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Remark 4.11 We emphasize that the existence statement of Theorem 4.10 remains true if λ′′lin(0) < 0 in
Hypothesis 4.2. The resulting modulated waves, however, are sources, and not shocks, and satisfy c−g < c∗ <

c+g . The rest of Theorem 4.10 remains true as stated.

Under slightly more restrictive assumptions on the linear dispersion relation, the small-amplitude viscous
shocks u∗(ξ, τ) that we found in the preceding theorem are spectrally stable.

We formulate the stability result in exponentially weighted spaces. For each η− and η+ ∈ R, we define

L2
η−,η+

(R) :=
{
u ∈ L2

loc(R); ‖u‖L2
η−,η+

<∞
}

(4.47)

‖u‖2L2
η−,η+

:=
∫ 0

−∞
|u(x)eη−x|2 dx+

∫ ∞

0

|u(x)eη+x|2 dx.

We also define H1
η−,η+

as the subset of functions u in H1
loc for which both u and ux belong to L2

η−,η+
.

Theorem 4.12 (Stability) Assume that Hypotheses 4.1, 4.2 and 4.4 are met. Let u∗(x − c∗t, ω∗t) be the
viscous shock solution found in Theorem 4.10 with asymptotic wave numbers k±. There exist then extremal
weights ηmin(k±) and ηmax(k±) such that, for each fixed choice of η± with ηmin < η− < 0 < η+ < ηmax, the
viscous shock is nonlinearly asymptotically stable with respect to perturbations in H1

η−,η+
. More precisely, fix

η± with ηmin < η− < 0 < η+ < ηmax, then there are positive numbers δ, ρ and C such that each solution
u(x, t) of (4.1) for which ‖u(·, 0)− u∗(·, 0)‖H1

η−,η+
< δ satisfies

‖u(·, t)− u∗(· − c∗t, ω∗t)‖H1
η−,η+

≤ Ce−ρt‖u(·, 0)− u∗(·, 0)‖H1
η−,η+

. (4.48)

The optimal exponential rate of convergence is given by

ρ = min{|(c−g − c∗)η−|, |(c+g − c∗)η+|}.

The theorem asserts that localized perturbations do not cause a shift in the position or the phase of the
front. In particular, the linearization of the reaction-diffusion system about the viscous shock solution does
not have a neutral eigenvalue at the origin when considered in the exponentially weighted spaces used in the
theorem. Note also that stronger exponential weights enhance the exponential rate with which perturbations
decay in time.

At a first glance, this statement may appear to contradict the assertion in Proposition 2.4 that the viscous
Lax shocks in the Burgers equation do have a neutral eigenvalue at the origin in the same exponentially
weighted spaces. The explanation is as follows. The exponential weights require that perturbations of the
viscous shocks in the reaction-diffusion system are localized. In particular, the phases of the asymptotic
wave trains cannot be changed by perturbations in these spaces. The phase modulation is modelled by the
eikonal equation

∂T Φ =
1
2
λ′′lin(0)∂XXΦ− 1

2
ω′′nl(k)(∂XΦ)2 (4.49)

for the phase Φ =
∫
q, i.e. by the integrated Burgers equation, instead of Burgers equation for the wave

number q. The linearization of (4.49) about the Lax shock does not possess a zero eigenvalue in our exponen-
tially weighted spaces since Φx = q is not localized. Equivalently, we can view perturbations of (4.49) that
are localized in Φ as perturbations of Burgers equations that have zero mass

∫
q = 0: these perturbations,

however, preserve the position of the viscous shock. The absence of the zero eigenvalue can also be inferred
directly from the properties of the viscous shock in the reaction-diffusion system. Any eigenfunction of λ = 0
for the linearization of the reaction-diffusion system about the shock solution is a linear combination of the
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derivatives of the shock solution with respect to time and space; we would obtain an eigenvalue at λ = 0 in
the exponentially weighted spaces considered above if an appropriate linear combination is localized in space.
We shall prove, however, that localized linear combinations do not exist: Moving the interface in space and
time will always change the phases of at least one of the asymptotic wave trains since phase speeds of the
two wave trains differ (see also [50, Proposition 5.5] where it is shown that the absence of zero eigenvalues
is a generic feature of sinks regardless of their amplitude).

The proofs of the theorems stated in this section can be found in §8.

5 Validity of Burgers equation in reaction-diffusion equations

In this section, we prove the theorems that we stated in §4.4. In §5.1–5.4, we carry out the proof of
Theorem 4.7, while we discuss in §5.5 the modifications needed for the other theorems.

5.1 From phases to wave numbers

The first step is to extract an equation for the phase, and henceforth for the wave number, from a general
reaction-diffusion system. Note that the formal derivation in §4.3 uses a multi-scale expansion which we
cannot assume apriori. We remark that the S1-symmetry respected by the Ginzburg–Landau equation
provided an avenue for deriving directly an equation for the phase. This symmetry, however, is, in general,
not respected in reaction-diffusion systems.

Instead, we proceed as follows for the reaction-diffusion system

∂tu = D∂xxu+ f(u). (5.1)

First, we change coordinates via
θ = ωt− kx

and obtain
∂tu = k2D∂θθu− ω∂θu+ f(u). (5.2)

Our starting point is a given stationary wave train u0(θ; k) of (5.2) with period 2π, which therefore satisfies

k2D∂θθu0 − ω∂θu0 + f(u0) = 0. (5.3)

Given a smooth phase function φ(ϑ, t), we shall now seek solutions of the form

u(θ, t) = u0(ϑ; k(1 + ∂ϑφ(ϑ, t))) + w(ϑ, t), (5.4)

where the phase φ(ϑ, t) and the coordinates θ and ϑ are related by

θ = ϑ+ φ(ϑ, t). (5.5)

We shall assume that ∂ϑφ is small, uniformly in ϑ, but remark that φ itself might be unbounded.

Remark 5.1 It might seem more natural to make the ansatz

u(θ, t) = u0(θ − φ(θ, t); k(1 + ∂θφ(θ, t))) + w(θ, t) (5.6)
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instead of (5.4). Eventually, we need to be able to relate the dynamics of u(θ, t) back to properties of the
wave train u0(θ; k). It is desirable to allow the phase function φ(θ, t) to be unbounded. Thus, to transform
back to the wave train, we would need to express u(θ, t) in terms of the variable ϑ = θ − φ(θ, t) which yields

u0(θ − φ(θ, t); k(1 + ∂θφ(θ, t))) 7−→ u0(ϑ; k(1 + ∂θφ(θ(ϑ, t), t)))

which involves the inverse θ(ϑ, t) of the function ϑ = θ− φ(θ, t). The occurrence of this inverse would make
the forthcoming analysis much more complicated which is why we proceed with (5.4).

Remark 5.2 Suppose that we found a phase function φ(ϑ, t) with small derivative ∂ϑφ(ϑ, t) so that (5.4)
satisfies (5.2). Using the implicit function theorem, we can then, a posteriori, solve (5.5) for ϑ as a function
of θ which is of the form ϑ = θ − φ̃(θ, t), where

φ̃(θ, t) = φ(ϑ, t) = φ(θ − φ̃(θ, t), t).

In particular, we see that u0(ϑ; k(1 + ∂θφ(ϑ, t))) becomes

u0(θ − φ(θ − φ̃(θ, t), t); k(1 + ∂θφ(θ − φ̃(θ, t), t))) (5.7)

and

d
dθ
φ(θ − φ̃(θ, t), t) = (1− ∂θφ̃(θ, t))∂θφ(θ − φ̃(θ, t), t) = ∂θφ(θ − φ̃(θ, t), t) + O(|∂θφ(θ − φ̃(θ, t), t)|2).

Thus, to leading order, the solution (5.7) is, in fact, of the desired form (5.6) with φ(θ, t) replaced by
φ(θ − φ̃(θ, t), t).

We shall now substitute the ansatz (5.4) into (5.2) and derive the resulting PDE in ϑ. We shall use the
notation

uφ
0 := u0(ϑ; k(1 + ∂ϑφ)), ∂ju

φ
0 := (∂ju0)φ := (∂ju0)(ϑ; k(1 + ∂ϑφ)), j = ϑ, k. (5.8)

Note that we added an additional degree of freedom by introducing φ: we shall later add additional conditions
on φ and w, via mode filters, to remove them again.

Assuming that ∂ϑφ is small, we obtain the relations

dϑ
dθ

=
1

1 + ∂ϑφ

dϑ
dt

=
−∂tφ

1 + ∂ϑφ

d
dθ

=
1

1 + ∂ϑφ

d
dϑ

d2

dθ2
=

(
1

1 + ∂ϑφ

d
dϑ

)2

and therefore

du
dθ

=
1

1 + ∂ϑφ
∂ϑ u

φ
0 +

k∂ϑϑφ

1 + ∂ϑφ
∂ku

φ
0

d2u

dθ2
=

(
1

1 + ∂ϑφ

d
dϑ

+
k∂ϑϑφ

1 + ∂ϑφ

d
dk

)2

uφ
0

du
dt

=
−∂tφ

1 + ∂ϑφ
∂ϑu

φ
0 + k

(
−∂ϑϑφ∂tφ

1 + ∂ϑφ
+ ∂ϑ∂tφ

)
∂ku

φ
0
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and

dw
dt

=
∂w

∂t
− ∂w

∂ϑ

∂tφ

1 + ∂ϑφ

dw
dθ

=
1

1 + ∂ϑφ

∂w

∂ϑ

d2w

dθ2
=

(
1

1 + ∂ϑφ

d
dϑ

)2

w.

Thus, we get

− ∂tφ

1 + ∂ϑφ
∂ϑu

φ
0 − k

(
∂ϑϑφ

∂tφ

1 + ∂ϑφ
− ∂ϑ∂tφ

)
∂ku

φ
0 + ∂tw −

∂tφ

1 + ∂ϑφ
∂ϑw (5.9)

= k2D

((
1

1 + ∂ϑφ

∂

∂ϑ
+

k∂ϑϑφ

1 + ∂ϑφ

∂

∂k

)2

uφ
0 +

(
1

1 + ∂ϑφ

∂

∂ϑ

)2

w

)

−ω 1
1 + ∂ϑφ

(
∂ϑu

φ
0 + k(∂ϑϑφ)∂ku

φ
0 + ∂ϑw

)
−(k2D∂ϑϑu0 − ω∂ϑu0 + f(u0)) + f(uφ

0 + w)

where we used (5.3) in the last equation.

Our next goal is to separate the critical modes, which involve the dynamics of φ, from the damped noncritical
modes using the eigenfunctions of the linearization L given by

Lv = k2D∂ϑϑv − ω∂ϑv + f ′(u0(ϑ; k))v.

This will be accomplished using Bloch waves which we introduce next.

5.2 Bloch-wave analysis

We briefly recall from §4.1 some of the properties of the operator L as they serve as a motivation to
introduce the Bloch-wave transform. In the notation of (4.8), the eigenfunctions v(ϑ) of the linearization L
about u0(ϑ; k) on L2(R) are given by

v(ϑ) = e−i`ϑ/kv(ϑ; i`). (5.10)

For our purposes, it is more convenient to parametrize solutions by the imaginary wave number `, and we
shall therefore use the notation

v̌(ϑ, `) := v(ϑ; i`)

throughout the rest of §5. As shown in §4.1, for each ` ∈ R, the functions v̌(·, `) are the 2π-periodic
eigenfunctions of the operator Ľ` given by

Ľ`v̌ = k2D

(
∂ϑ −

i`
k

)2

v̌ − ω0

(
∂ϑ −

i`
k

)
v̌ + f ′(u0(ϑ))v̌.

Note that Ľ` coincides with the operator Lν for ν = i` discussed in §4.1. It is convenient in this section,
however, to indicate explicitly when operators act on 2π-periodic functions which we shall do by using the
superscript .̌

We also record that
v̌(ϑ, `+ k) = eiϑv̌(ϑ, `), (5.11)

and we can therefore restrict ` to the interval [−k/2, k/2). Furthermore, as in §4.1, we denote by v̌j(ϑ, `)
the eigenfunctions associated with the ordered branches λj(i`) of eigenvalues of L` for j ∈ N. In particular,
by Hypothesis 4.4, we have λ1 = λlin.
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We now turn to the Bloch-wave transform J which can be considered as a generalization of the Fourier
transform F . For every sufficiently smooth and rapidly enough decaying function w in ϑ-space, there are
functions w̌(ϑ, `) that are 2π-periodic in ϑ and satisfy

w̌(ϑ, `+ k) = eiϑw̌(ϑ, `) (5.12)

with the property that w is represented via

w(ϑ) =
∫ k/2

−k/2

e−i`ϑ/kw̌(ϑ, `) d`. (5.13)

We shall write
w̌ = Jw.

The rationale for the Bloch transform is as follows: If we denote the, slightly rescaled, Fourier transform of
w by ŵ, then we have

w(ϑ) =
∫ ∞

−∞
e−i`ϑ/kŵ(`) d` =

∑
j∈Z

∫ k/2

−k/2

e−iϑ(`+jk)/kŵ(`+ jk) d`

=
∫ k/2

−k/2

e−i`ϑ/k

∑
j∈Z

e−ijϑŵ(`+ jk)

 d` =:
∫ k/2

−k/2

e−i`ϑ/kw̌(ϑ, `) d`,

which is the desired Bloch-wave representation. Similar to the Fourier transform, the Bloch-wave transform
can be defined for tempered distributions. We remark that the Bloch transform of the product of two
functions w1 and w2 in ϑ-space is given by the convolution

J [w1 · w2](ϑ, `) = [w̌1 ∗J w̌2](ϑ, `) =
∫ k/2

−k/2

w̌1(ϑ, `− ˜̀)w̌2(ϑ, ˜̀) d˜̀ (5.14)

of their Bloch transforms w̌1 and w̌2 in Bloch space. Furthermore, if w1(ϑ) is 2π-periodic in ϑ and the
support of the Fourier transform ŵ2 of a complex-valued function w2(ϑ) lies in (−1/2, 1/2), then we have

J [w1w2](ϑ, `) =
∑
j∈Z

F [w1w2](j + `)eijϑ =
∑
j∈Z

eijϑ

∫ 1
2

− 1
2

ŵ1(j + `+ ˜̀)ŵ2(˜̀) d˜̀

=
∑
j∈Z

eijϑ

∫ 1
2

− 1
2

ŵ1(j)ŵ2(˜̀)δ`−˜̀d˜̀ =
∑
j∈Z

ŵ1(j)eijϑŵ2(`) = w1(ϑ)ŵ2(`)

so that
J [w1w2](ϑ, `) = w1(ϑ)ŵ2(`). (5.15)

We refer to [46, 51] for further properties and proofs regarding the Bloch-wave transform.

The analytic properties of the Bloch-wave transform are based on a generalization of Parseval’s identity∫ ∞

−∞
|u(ϑ)|2 dϑ = 2πk

∫ 2π

0

∫ k/2

−k/2

|ǔ(ϑ, `)|2 d`dϑ.

As a consequence, the Bloch-wave transform is an isomorphism from the space Hm(n), equipped with the
norm

‖u‖Hm(n) = ‖uρn
w‖Hm ρw(ϑ) =

√
1 + ϑ2,

into the space Hm,n
Bloch of functions ǔ(ϑ, `) that are 2π-periodic in ϑ, satisfy (5.12), and whose norm

‖ǔ‖Hm,n
Bloch

=
m∑

i=0

n∑
j=0

∫ 2π

0

∫ k/2

−k/2

|∂i
ϑ∂

j
` ǔ(ϑ, `)|

2 d`dϑ
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is finite. We refer to [54] for details.

Bloch-wave transform allows us to analyse differential operators with spatially-periodic coefficients. In Bloch
space, such operators are multiplication operators. Since we are interested in functions without prescribed
behaviour at infinity, i.e. in functions which do not necessarily decay to zero, we employ a method already
used in [52] to extend multiplication operators from the space L2 of square-integrable functions to the space
L2

ul of uniformly locally square-integrable functions equipped with the norm

‖u‖L2
ul

= sup
x∈R

∫ x+1

x

|u(y)|2 dy.

We recall
Hm

ul = {u : R → R; ‖u‖Hm
ul

= ‖u‖Hm(x,x+1) <∞ with lim
y→0

‖u− Tyu‖Hm
ul
→ 0}

where [Tyu](x) = u(x+ y).

Lemma 5.3 Let m, s ∈ Z with m+ s ≥ 0 and m ≥ 0. Consider a function

M̌ : R −→ L(Hm+s
per (0, 2π),Hm

per(0, 2π)), ` 7−→ M̌(`)

which is at least C2 with respect to the Bloch wave number `, then M̌ can be viewed as a bounded operator
M : Hm+s

ul → Hm
ul with norm

‖M‖L(Hm+s
ul ,Hm

ul )
≤ C(m, s)‖M̌‖C2

b((−k/2,k/2),L(Hm+s
per ,Hm

per))

where C(m, s) does not depend on M.

Proof. Choose χ ∈ C∞0 so that its support is contained in [−1, 1] and
∑

j∈Z χ(x + j) ≡ 1. Next, pick
u ∈ Hm+s

ul and set uj(x) = u(x)χ(x− j). Since uj ∈ Hm+s(2), we know that Muj ∈ Hm(2) on account of
the results in [54, Lemma 5.4] (this is the crucial step which allows us now to extend the operator). We define
(Mu)(x) :=

∑
j∈Z(Muj)(x): While this sum does not converge in Hm

ul , it is easy to see that it converges
locally to a function in Hm

ul with a norm bounded from above by

C(m, s)‖M̌‖C2
b((−k/2,k/2),L(Hm+s

per ,Hm
per))

‖u‖Hm+s
ul

since Muj is concentrated around x = j and decays like 1/(1 + |x− j|2).

Remark 5.4 It is not difficult to see that this lemma can be extended to multilinear operators.

5.3 Mode filters, and separation into critical and noncritical modes

Recall that our goal is to separate the dynamics of the eigenmodes v̌1(ϑ, `) associated with the critical
eigenvalues λ1(i`) = λlin(i`) from the remaining damped noncritical modes. We shall use mode filters to
obtain this splitting.

First, there exists a number `1 with 0 < `1 � 1 so that the eigenvalue λ1(i`) of Ľ` is to the right of the rest
of the spectrum for each ` with |`| < `1. Therefore, there exists an Ľ`-invariant projection

Q̌c(`) =
1

2πi

∫
Γ

[λ− Ľ`]−1 dλ
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onto the space spanned by v̌1(ϑ, `), where Γ ⊂ C is a small circle that surrounds λ1(i`) counter-clockwise in
the complex plane and does not intersect the rest of the spectrum of L` for this fixed `.

Next, we choose a decreasing C∞0 -cutoff function χ : R → [0, 1] with

χ(`) =

{
1 for |`| ≤ 1
0 for |`| ≥ 2.

(5.16)

We can now define

P̌ c
fs(`) = Q̌c(`)χ

(
4`
`1

)
, P̌ s

fs(`) := 1− Q̌c(`)χ
(

4`
`1

)
,

P̌ c
mf(`) = Q̌c(`)χ

(
8`
`1

)
, P̌ s

mf(`) := 1− Q̌c(`)χ
(

8`
`1

)
and

P̌ c(`) = Q̌c(`)χ
(

2`
`1

)
, P̌ s(`) := 1− Q̌c(`)χ

(
16`
`1

)
.

It is easy to check that these operators commute for each fixed ` and satisfy

(1− P̌ c)P̌ c
fs = 0 = (1− P̌ c

fs)P̌
c
mf , (1− P̌ s)P̌ s

fs = 0 = (1− P̌ s)P̌ s
mf , P̌ c

fs + P̌ s
fs = 1, P̌ c

mf + P̌ s
mf = 1. (5.17)

Lastly, we set
λ̌c(`) = λ1(i`)

and define scalar-valued operators p̌c
fs(`) and p̌c

mf(`) implicitly by

[p̌c
fs(`)ǔ]v̌1(·, `) = P̌ c

fs(`)ǔ, [p̌c
mf(`)ǔ]v̌1(·, `) = P̌ c

mf(`)ǔ (5.18)

for 2π-periodic functions ǔ(ϑ). An application of Lemma 5.3 shows that each of the operators above extends
to a bounded operator on Hm+s

ul . The resulting operators will be denoted by the same letter but with the
superscript ˇ being dropped.

The mode filters pc
mf and P s

mf obtained in this fashion will now be used to separate the critical and noncritical
modes in (5.9) posed on R. We will use the operators pc

fs and P s
fs to limit the Fourier support of the critical

modes. First, we write (5.9), given by

− ∂tφ

1 + ∂ϑφ
∂ϑu

φ
0 − k

(
∂ϑϑφ

∂tφ

1 + ∂ϑφ
− ∂ϑ∂tφ

)
∂ku

φ
0 + ∂tw −

∂tφ

1 + ∂ϑφ
∂ϑw

= k2D

((
1

1 + ∂ϑφ

∂

∂ϑ
+

k∂ϑϑφ

1 + ∂ϑφ

∂

∂k

)2

uφ
0 +

(
1

1 + ∂ϑφ

∂

∂ϑ

)2

w

)
(5.19)

−ω 1
1 + ∂ϑφ

(
∂ϑu

φ
0 + k(∂ϑϑφ)∂ku

φ
0 + ∂ϑw

)
−(k2D∂ϑϑu0 − ω∂ϑu0 + f(u0)) + f(uφ

0 + w),

as
[−B0 +B1(∂ϑφ,w)]∂tφ+ ∂tw = −L̃0∂ϑφ+ Lw +G(∂ϑφ,w), (5.20)

where

B0∂tφ = (∂ϑu0 − k∂ku0∂ϑ)∂tφ

L̃0∂ϑφ = −L(k∂ϑφ∂ku0) + k2D(2∂ϑφ∂ϑϑu0 + ∂ϑϑφ∂ϑu0)− ω∂ϑφ∂ϑu0

= k [L(∂ϑφ∂νv1) + kD(2∂ϑφ∂ϑϑu0 + ∂ϑϑφ∂ϑu0)− cp∂ϑφ∂ϑu0] (5.21)

B1(∂ϑφ,w)∂tφ =

(
∂ϑu0 −

∂ϑu
φ
0

1 + ∂ϑφ

)
∂tφ− k

(
∂ϑϑφ∂ku

φ
0

1 + ∂ϑφ
∂tφ+ (∂ku0 − ∂ku

φ
0 )∂ϑ∂tφ

)
− ∂ϑw

1 + ∂ϑφ
∂tφ
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and G is comprised of the remaining terms. In the calculation above, we used that ∂νv1 = −∂ku0, a fact we
established in §4.2. Before continuing, we also remark that

B1(∂ϑφ,w) = O(|∂ϑφ|+ |w|)

G(∂ϑφ,w) = O(|∂ϑφ|2 + |w|2).

Our goal is to replace (5.20) with the system

∂tP
c
fsB0φ = P c

fsL̃0∂ϑφ+ P c
mfB1(∂ϑφ,w)∂tφ− P c

mfG(∂ϑφ,w) (5.22)

∂tw = Lw + P s
fsB0∂tφ− P s

fsL̃0∂ϑφ− P s
mfB1(∂ϑφ,w)∂tφ+ P s

mfG(∂ϑφ,w)

for (φ,w). Subtracting the first from the second equation and using (5.17), we see that solutions of (5.22)
give solutions of (5.20). Alternatively, we may consider the system

∂tp
c
fsB0φ = pc

fsL̃0∂ϑφ+ pc
mfB1(∂ϑφ,w)∂tφ− pc

mfG(∂ϑφ,w) (5.23)

∂tw = Lw + P s
fsB0∂tφ− P s

fsL̃0∂ϑφ− P s
mfB1(∂ϑφ,w)∂tφ+ P s

mfG(∂ϑφ,w)

for (φ,w), where the first equation is now scalar-valued. Inspecting (5.18) and exploiting that the eigen-
functions v̌1(ϑ, `) satisfy a linear equation, we see that (5.22) and (5.23) are equivalent. To make (5.23)
well-posed, we shall require that (φ,w) satisfy

suppF [φ] ⊂ I :=
{
`; χ

(
4`
`1

)
= 1
}

(5.24)

and
(1− P s)w = 0 (5.25)

for all t ≥ 0. Since P s commutes with L, it follows from (5.17) and (5.23) that (5.25) is true for all t > 0
whenever it is met at t = 0.

It remains to check whether (5.24) is respected by (5.23) and to calculate the operator pc
fsB0 to see whether

(5.23) is well posed. Due to the properties of the multiplier pc
mf , we know that

suppF [pc
mf(B1(∂ϑφ,w)∂tφ−G(∂ϑφ,w))] b I

for any sufficiently smooth function φ. Next, we see from (5.21) that the operators B0 and L̃0 have 2π-
periodic coefficients in ϑ and are multipliers in Bloch space which allows us to use Lemma 5.3. For any
function φ that satisfies (5.24), we then obtain

P̌ c
fsJ [B0φ] = P̌ c

fs(`)J [B0φ](ϑ, `)
(5.15)
= φ̂(`)χ

(
4`
`1

)
Q̌c(`) (∂ϑu0(ϑ) + O(`))

= φ̂(`)χ
(

4`
`1

)
(1 + O(`)) v̌1(ϑ, `)

(5.24)
=

[
(1 + O(`1)) φ̂(`)

]
v̌1(ϑ, `),

where the O(`1) term is a multiplier. In particular, the term [. . .](`) has support in I. Therefore, using the
definition (5.18) of pc

fs and denoting the operator associated with the O(`1) term by B3, we get

pc
fsB0φ = (1 +B3)φ (5.26)

for all φ that satisfy (5.24), where B3 has norm ‖B3‖ = O(`1) and respects (5.24), i.e. suppF [B3φ] ⊂ I.
Since similar arguments apply to the multiplier L̃0, we see that (5.24) is indeed preserved by (5.23) as
claimed.
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Next, for all (φ,w) for which (∂ϑφ,w) is small and φ satisfies (5.24), the first equation of (5.23) can be
written as

∂tφ = [1 +B3 + pc
mfB1(∂ϑφ,w)]−1

[
pc
fsL̃0∂ϑφ− pc

mfG(∂ϑφ,w)
]
.

Substituting this expression for ∂tφ into the second equation of (5.23) for w, we arrive at the system

∂tφ = [1 +B3 + pc
mfB1(∂ϑφ,w)]−1

[
pc
fsL̃0∂ϑφ− pc

mfG(∂ϑφ,w)
]

∂tw = Lw − P s
fsL̃0∂ϑφ+ P s

mfG(∂ϑφ,w) (5.27)

+ [P s
fsB0 − P s

mfB1(∂ϑφ,w)] [1 +B3 + pc
mfB1(∂ϑφ,w)]−1

[
pc
fsL̃0∂ϑφ− pc

mfG(∂ϑφ,w)
]
.

Thus, we accomplished an effective splitting of the critical modes φ and the noncritical modes w.

We now replace φ by ψ = ∂ϑφ and obtain

∂tψ = ∂ϑ [1 +B3 + pc
mfB1(ψ,w)]−1

[
pc
fsL̃0ψ − pc

mfG(ψ,w)
]

∂tw = Lw − P s
fsL̃0ψ + P s

mfG(ψ,w) (5.28)

+ [P s
fsB0 − P s

mfB1(ψ,w)] [1 +B3 + pc
mfB1(ψ,w)]−1

[
pc
fsL̃0ψ − pc

mfG(ψ,w)
]
.

which we also write in short as
∂tV = ΛV +N (V), (5.29)

where V = (ψ,w), Λ is a linear operator, and N (V) = O(|V|2). We record that it is easy to check, using
(4.21), (4.22) and (5.15), that the spectrum of the operator

∂ϑ(1 +B3)−1pc
mf L̃0

near λ = 0 is indeed given by the linear dispersion curve λ̌c(`) with the associated eigenmodes given approx-
imately by the Fourier modes exp(−i`ϑ/k). Since the linear part of the system (5.28) is lower-triangular, we
can find a bounded, lower-triangular operator S that diagonalizes (5.29) so that

S−1ΛS = diag(λc,Λs). (5.30)

In particular, if we set (vc, vs) := S−1V, then we have vc = ψ and P svs = vs. In these coordinates, (5.29)
becomes

∂tv
c = λcvc + ∂ϑp

c
mfN (vc, vs) (5.31)

∂tv
s = Λsvs + P s

mfN (vc, vs),

where N is a smooth nonlinear mapping from Hm+2
ul ×Hm+2

ul into Hm
ul for every m ≥ 1, and

N c(vc, vs) := ∂ϑp
c
mfN (vc, vs)

maps Hm+2
ul ×Hm+2

ul into Hs
ul for each s ≥ 0.

We emphasize that (5.31) therefore has the same properties as (3.28), whence we can follow the proofs in §3
almost line by line to finish the proof of the approximation result for reaction-diffusion equations.

5.4 Estimates for residuals and errors

We shall solve (5.31) for (vc, vs) in the space Xm × Xm, where Xm := Hm
ul . We remark that vc will, in fact,

lie in Hs
ul for each s ≥ 0.
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Lemma 5.5 The operators λc and Λs are sectorial in Xm for every m ≥ 0. Furthermore, there exist
constants C0 > 0 and σ > 0 such that the semigroups eλct and eΛst generated by these operators satisfy

‖eλct‖Xm→Xm
≤ C0

‖eλct∂ϑ‖Xm→Xm
≤ C0t

−1/2

‖eΛst‖Xm→Xm
≤ C0e−σt

for all t ≥ 0 and m ≥ 0.

Note that the second estimate provides decay of the semigroup for large t� 1 which we shall exploit below
when we estimate the growth rate of solutions to (5.31).

Proof. The operator Λ differs from the sectorial operator D∂ϑϑ by a relatively bounded perturbation and
is therefore also sectorial. Thus, by [22], Λ generates an analytic semigroup, and the growth rates of eΛt are
determined by the spectrum of Λ. In particular, eΛst decays with some exponential rate. The singularity
t−1/2 for the center part is due to the parabolic profile of Reλc at ` = 0 which allows us to apply Lemma 5.3
to M(`) = δ`eδ−2λ̌c(δ`)T with T = δ2t.

We are now in a position to compute the evolution of residuals and errors. Upon substituting the ansatz

(vc, vs) =
(
δq
(
δ((cp − cg)t− ϑ/k), δ2t

)
, 0
)

into (5.31) and computing the residual, we obtain

Resc(δq, 0) = δ3
[
−∂T q +

λ′′lin(0)
2

∂XXq +
ω′′nl(k)

2
∂X(q2)

]
+ O(δ4)

Ress(δq, 0) = O(δ2).

Indeed, the second equation follows by using that the nonlinearity is quadratic, while the first equation
follows from the calculation in §4.3. Thus, we see again that q(X,T ) should satisfy Burgers equation

∂T q =
λ′′lin(0)

2
∂XXq +

ω′′nl(k)
2

∂X(q2). (5.32)

Thus, we fix integers M ≥ 1 and n ≥M+3, and pick a solution q ∈ C([0, T0],Hn
ul) of Burgers equation (5.32).

To derive error estimates, it is advantageous to add higher-order corrections to the above approximation.

Lemma 5.6 Fix positive integers n,m,M with n ≥M+m+3, then there exists an improved approximation
(V c, V s) ∈ C([0, T0/δ

2],Hn
ul) such that the following is true. There exist δ0 > 0 and Cres > 0 such that

sup
t∈[0,T0/δ2]

‖V c(·, t; δ)− q(δ·, δ2t)‖Xm ≤ Cresδ

sup
t∈[0,T0/δ2]

(‖V c(·, t; δ)‖Xm
+ ‖V s(·, t; δ)‖Xm

) ≤ Cres

sup
t∈[0,T0/δ2]

‖Resc(δV c(·, t; δ), δ2V s(·, t; δ))‖Xm
≤ Cresδ

M+3

sup
t∈[0,T0/δ2]

‖Ress(δV c(·, t; δ), δ2V s(·, t; δ))‖Xm ≤ Cresδ
M+2

for all δ ∈ (0, δ0).
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Proof. Higher-order corrections Φ(X,T ; δ) and u1(ϑ,X, T ; δ) in physical coordinates can be obtained as
outlined in §4.3. Afterwards, we use the mode filters to transform these solutions into (vc, vs) form. Note
that V c has compact support in Fourier space, whereas Φ and q do not. However the difference by the cut-off
in Fourier space is O(δn) due to the concentration at the Bloch wave number ` = 0 (see [54]). We identified
Bloch space with Fourier space since vc for fixed ` is one-dimensional.

Using the higher-order approximations, we introduce the scaled errors Rc and Rs by setting

vc = δV c + δM+1Rc

vs = δ2V s + δM+2Rs.

Substituting this ansatz into (3.28), and using the approximation properties of (V c, V s), we obtain exactly
the same system as the one investigated in §3.9. Thus, following the analysis presented in §3.9, we obtain
the following result which finishes the proof of Theorem 4.7.

Proposition 5.7 For each fixed positive integers n,m,M with n ≥M +m+3, there exists constants δ1 > 0
and C1 > 0 such that we have

sup
t∈[0,T0/δ2]

‖Rc(t)‖Xm + sup
t∈[0,T0/δ2]

‖Rs(t)‖Xm ≤ C1

for all δ ∈ (0, δ1).

5.5 Proofs of the theorems from §4.4

The proof of Theorem 4.6 follows closely that of Theorem 3.2 except that we adapt the proof of Theorem 4.7
instead of Theorem 3.5, and we therefore omit the details.

To prove Theorem 4.8, we observe that admissible solutions q(X,T ) lead to finite phase differences. In detail,
we obtain

lim
θ→∞

|ϑ(θ)− ϑapprox(θ)| ≤ C1δ
m,

where ϑ(θ) and ϑapprox(θ) are computed from the true solution φ(ϑ, t) and the approximation δV c(δϑ, ϑ2t).
We can then reconstruct the phase from the wave number by integrating starting at −∞.

Lastly, we comment on the proof of Theorem 4.9. From Proposition 5.7, one finds the estimate

|ϑ(θ)− ϑapprox(θ + φ0(t))| ≤ CδM+1|θ|

and therefore

|u(θ, t)− uapprox(θ, t)| ≤ C1|ϑ(θ)− ϑapprox(θ + φ0(t))|+ C1|∂ϑφ− V c| ≤ CδM+1(|θ|+ 1).

Furthermore, we know that
∂tφ0(t) = ∂tφ(0, t) = O(δ2)

which yields the required estimate on the phase.
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6 Validity of the inviscid Burgers equation in reaction-diffusion

systems

We discuss the evolution of modulated wave trains for wave-number modulations of small, but finite, size.
The relevant ansatz in this situation is of the form

u0(ωnl(k0)x− k0x− δ−1Φ(X,T ); k0 + ∂XΦ(X,T )), (X,T ) = (δx, δt). (6.1)

This is the scaling considered by Howard and Kopell [23] who showed formally that Φ(X,T ) ought to satisfy
the inviscid phase equation

∂T Φ + ωnl(k0 + ∂XΦ)− ωnl(k0) = 0, (6.2)

while the wave number q(X,T ) = ∂XΦ(X,T ) satisfies the hyperbolic conservation law

∂T q + ∂Xωnl(k0 + q) = 0. (6.3)

Since (6.3) is a conservation law, shocks will typically form in finite time. Due to the break-down of regularity
during the formation of shocks, we can only expect to prove validity results over time intervals [0, T1/δ], where
T1 > 0 is so small that the solution q(X,T ) has no shocks on [0, T1].

6.1 An illustration: The Ginzburg–Landau equation

To illustrate the concepts, we briefly review the set-up considered in [40] for the Ginzburg–Landau equation.

Our starting point is once more equation (3.13)

∂tr = ∂xxr − 2r − ψ2 − ψ2r − 2α(∂xr)ψ − α∂xψ − α(∂xψ)r − 3r2 − r3 (6.4)

∂tψ = ∂xxψ + ∂x

(
α∂xxr + 2(∂xr)ψ

1 + r
− αψ2 − 2βr − βr2

)
for amplitude and wave number corrections of the wave trains of the Ginzburg–Landau equation with k = 0.

In line with (6.1), we substitute the long-wave ansatz

(r, ψ)(x, t) = (W, q)(X,T ), (X,T ) = (δx, δt)

into (6.4), and get

δ∂TW = δ2∂XXW − 2W − q2 − q2W − 2δα(∂XW )q − δα∂Xq − δα(∂Xq)W − 3W 2 −W 3

∂T q = δ∂XXq − ∂X(2βW + αq2 + βW 2) + ∂X

(
δ2α∂XXW + 2δ∂XW

1 +W

)
.

Choosing 0 < δ � 1 and neglecting terms that are formally of order O(δ), we obtain the system

0 = −2W − q2 − q2W − 3W 2 −W 3

∂T q = −∂X(2βW + αq2 + βW 2).

For |q| < 1, the first equation is satisfied by W =
√

1− q2 − 1. Substituting this expression into the second
equation, we see that the modulation q(X,T ) ought to satisfy the inviscid Burgers equation

∂T q + ∂X

(
(α− β)q2

)
= 0,

which we may also write as
∂T q + ∂Xωnl(q) = 0, (6.5)
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where ωnl(k) denotes the nonlinear dispersion relation (3.3) of the Ginzburg–Landau equation. Note that
local existence and uniqueness of solutions to the scalar first-order conservation law (6.5) are guaranteed by
the method of characteristics or, for analytic initial data, by the Cauchy–Kowalevskaya theorem.

For various technical reasons, the validity results established in [40] are formulated for solutions q(δx, δt)
whose Fourier transform lives in the space

LF (%,m) :=
{
û ∈ L1(R,C); ‖û‖ =

∫
R
|û(`)|e%|`|(1 + |`|m) d` <∞

}
for % > 0 and sufficiently large integers m > 0. For each û in L(%,m), the inverse Fourier transform u is
analytic in a complex strip {z ∈ C; | Im z| < %} [28]. We shall use this and similar spaces in our analysis of
reaction-diffusion systems.

6.2 Formal derivation of the conservation law

We repeat the formal derivation of the inviscid Burgers equation presented in [23, §2C] for reaction-diffusion
systems which proceeds as in §4.3. Upon substituting the ansatz

u(x, t) = u0(ωnl(k0)t− k0x− δ−1Φ(X,T ); k0 + ∂XΦ(X,T )) (6.6)

with (X,T ) = (δx, δt) into the reaction-diffusion system

∂tu = D∂xxu+ f(u),

we obtain formally that

(ωnl(k0)− ∂T Φ)∂θu0 = D(k0 + ∂XΦ)2∂θθu0 + f(u0) + O(δ).

Setting formally δ = 0 and rearranging terms, we get

D(k0 + ∂XΦ)2∂θθu0 − (ωnl(k0)− ∂T Φ)∂θu0 + f(u0) = 0, (6.7)

where u0 and its derivatives are evaluated as in (6.6). Formally treating (x, t) and (X,T ) as independent
variables, we find that the effective wave number k of the function u0(·; k0 + ∂XΦ) in (6.7) is equal to
k0 + ∂XΦ. Thus, comparing (6.7) with (4.5), we see that

ωnl(k0)− ∂T Φ = ωnl(k0 + ∂XΦ),

so that Φ(X,T ) should indeed satisfy the inviscid phase equation

∂T Φ + ωnl(k0 + ∂XΦ)− ωnl(k0) = 0.

Taking the derivative with respect to X, we see that the wave number q = ∂XΦ should therefore be a solution
of the inviscid Burgers equation

∂T q + ∂Xωnl(k0 + q) = 0. (6.8)

6.3 Validity of the inviscid Burgers equation

Throughout this section, we assume that we are in the set-up introduced in §4.1 and §4.4.

57



Theorem 6.1 Assume that Hypothesis 4.1 is met. For any choice of %0 > 0 and integers M ≥ 1 and n ≥ 3,
there are positive constants δ1, ε1, C1, T1 such that the following is true. For each solution q(·, T ) ∈ Hn

ul of
the conservation law (6.8) on the interval [0, T1] with

sup
T∈[0,T1]

‖q(·, T )‖F−1LF (%0,0) ≤ ε1

and each δ ∈ (0, δ1), there are functions (qh, rh)(ϑ, t) in Hn
ul with

sup
t∈[0,T1/δ]

‖qh(·, t)− q(δ·, δt)‖Hn
ul
≤ C1δ, sup

t∈[0,T1/δ]

‖rh(·, t)‖Hn
ul
≤ C1 sup

T∈[0,T1]

‖q(·, T )‖2Hn
ul

and a solution u(θ, t) = U(ϑ, t) of the reaction-diffusion system (4.33) such that

sup
t∈[0,T1/δ]

sup
ϑ∈R

|U(ϑ, t)− Uapprox(ϑ, t)| ≤ C2δ
M ,

where
Uapprox(ϑ, t) = u0(ϑ; k(1 + qh(ϑ, t))) + rh(ϑ, t),

and ϑ and θ are related through (4.35) with

φ(ϑ, t) :=
∫ ϑ

0

qh(ϑ̃, t) dϑ̃.

The preceding theorem implies the following approximation result in the original variables (θ, t).

Theorem 6.2 Assume that Hypothesis 4.1 is met. For any choice of %0 > 0 and integers M ≥ 1 and n ≥ 3,
there are positive constants ε1, C1, T1 and δ1 such that the following is true. For each solution q(·, T ) ∈ Hn

ul

of the conservation law (6.8) on the interval [0, T1] with

sup
T∈[0,T1]

‖q(·, T )‖F−1LF (%0,0) ≤ ε1

and each δ ∈ (0, δ1), there are functions (qh, rh)(ϑ, t) in Hn
ul with

sup
t∈[0,T1/δ]

‖qh(·, t)− q(δ·, δt)‖Hn
ul
≤ C1δ, sup

t∈[0,T1/δ]

‖rh(·, t)‖Hn
ul
≤ C1 sup

T∈[0,T1]

‖q(·, T )‖2Hn
ul
,

a phase function φ0(t) with

sup
t∈[0,T1/δ]

|φ0(t)| ≤
1
δ

sup
T∈[0,T1]

‖q(·, T )‖2Hn
ul
,

and a solution u(θ, t) of the reaction-diffusion system (4.33) such that

sup
t∈[0,T1/δ]

sup
ϑ∈R

|u(θ, t)− uapprox(θ, t)| ≤ C1δ
M ,

where
uapprox(θ, t) = u0(ϑ(θ); k(1 + qh(ϑ(θ), t))) + rh(ϑ(θ), t),

and ϑ and θ are related through (4.35) with

φ(ϑ, t) := φ0(t) +
∫ ϑ

0

qh(ϑ̃, t) dϑ̃.
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Thus, our results indicate that the solution profile is approximated accurately and, for the reasons outlined
in Remark 3.13, we expect that the estimates for the profile are optimal for solutions with no additional
properties. The position of the solution is given only up to an error of order C1‖q‖2/δ. We again believe
that this is optimal.

Note that the inviscid Burgers equation (6.8) can be written as

∂T q + ω′nl(k0 + q)qX = 0,

and we can think of its solutions q(X,T ) initially as waves that travel formally with speed ω′nl(k0 + q). In
particular, the profile will, to leading order, move with the speed given by the group velocity cg, and the
estimate O(‖q‖2/δ) confirms this behaviour over time scales O(1/δ). In this sense, Theorem 6.2 justifies that
we named cg the group velocity and interpreted it as the speed with which perturbations are transported
along the wave train.

6.4 Proof of the theorems from §6.3

First, we note that Theorem 6.2 follows from Theorem 6.1 as in the proof of Theorem 4.9 in §5.5 except that
∂tφ(0, t) is no longer of O(δ2): To get the correct estimate for φ(0, t), we first infer from (5.27) that

∂tφ(0, t) = [1 + O(|`1|)]pc
mf

(
L̃0q(δϑ, δt) + O(δ + ‖q‖2)

)
.

on account of the estimates obtained in Theorem 6.1. On the other hand, proceeding as in the derivation of
(5.26), we obtain

pc
mf(L̃0q(δϑ, δt)) = O(δ).

Thus, ∂tφ(0, t) = O(δ + ‖q‖2) as claimed and, consequently, supt∈[0,T1/δ] |φ0(t)| = O(1 + ‖q‖2/δ).

It therefore suffices to prove Theorem 6.1. As in the case of the Ginzburg–Landau equation [40], we restrict
the class of admissible solutions of (6.8). For % > 0, we set

LJ (%,m) :=

{
ǔ ∈ L1([−k0/2, k0/2],Hm); ‖ǔ‖LJ (%,m) :=

∫ k0/2

−k0/2

‖ǔ(·, `)‖Hme%|`| d` <∞

}
.

Note that we do not touch the 2π-periodic spatial variable x in this space. Denoting the Bloch transform of
a function u by ǔ, we define the Banach space

X %
m =

{
u : R → Cd; ǔ ∈ LJ (%,m)

}
, ‖u‖X%

m
:= ‖ǔ‖LJ (%,m).

Due to Sobolev embedding theorems, there is a constant C(m) > 0 for each m ≥ 1 so that

‖ǔ ? v̌‖LJ (%,m) ≤ C(m)‖ǔ‖LJ (%,m)‖v̌‖LJ (%,m)

for any two functions ǔ, v̌ ∈ LJ (%,m). Since uv = J−1(ǔ ? v̌), we therefore obtain

‖uv‖X%
m
≤ C(m)‖u‖X%

m
‖v‖X%

m
. (6.9)

In particular, X %
m is an algebra under multiplication for m ≥ 1. Note that the constant C(m) does not

depend on % > 0.

Fix %0 > 0 and integers M ≥ 1 and n ≥ 3. We also pick a solution q(X,T ) of the inviscid Burgers
equation (6.8) in the space F−1LF (%0, 0) on the time interval [0, T0]. Scaling the independent variables via
(X,T ) = (δ(ϑ− cpt), δt), we obtain that q(δ·, T ) ∈ X %0/δ

n for all T ∈ [0, T0]. As before, it is advantageous to
add corrections to the approximation.
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Lemma 6.3 For any %1 ∈ (0, %0), there exist numbers δ1 > 0 and Cres > 0 such that the following is true.
For each δ ∈ (0, δ0), there are functions (V c, V s) such that

sup
t∈[0,T0/δ]

‖V c(·, t)− q(δ·, t)‖X%1/δ
m

≤ Cresδ

sup
t∈[0,T0/δ]

‖V c(·, t)‖X%1/δ
m

≤ Cres

sup
t∈[0,T0/δ]

‖V s(·, t)‖X%1/δ
m

≤ Cres sup
T∈[0,T0]

‖q(·, T )‖2Hn
ul

sup
t∈[0,T0/δ]

‖Resc(V c(·, t), V s(·, t))‖X%1/δ
m

≤ Cresδ
M

sup
t∈[0,T0/δ]

‖Ress(V c(·, t), V s(·, t))‖X%1/δ
m

≤ Cresδ
M .

Proof. This follows as in Lemma 3.10 upon exploiting the diagonalization leading to (5.31).

We introduce the critical noncritical parts δMRc and δMRs of the error by

vc = V c + δMRc

vs = V s + δMRs.

Substitution into (3.28) leads to

∂tR
c = λcRc + ρgc(Rc, Rs)

∂tR
s = ΛsRs + gs(Rc, Rs).

For fixed constants Dc and Ds, there are constants so that the nonlinear terms satisfy

‖gc(Rc, Rs)‖X%
m

≤ CRes + C‖Rc‖X%
m

+ C‖Rs‖X%
m

+ δMC(Dc, Ds)

‖gs(Rc, Rs)‖X%
m−2

≤ CRes + C‖Rc‖X%
m

+ C‖Rs‖X%
m

+ δMC(Dc, Ds),

uniformly in % ∈ [0, %1/δ], provided

‖Rc‖X%
m
≤ Dc, ‖Rs‖X%

m
≤ Ds,

It becomes clear now that we cannot pursue the strategy used previously in §3.9 to prove that the errors are
bounded, since this approach would require a factor δ1/2 in front of the estimates of gc to work. Instead, we
proceed as in [40], where the scale X %

m of Banach spaces has been used.

Pick a constant K0 > 0. For each constant K1 > 0, we may define a linear operator B via its symbol
B̌(`) = −K1|`|. We choose K1 � 1 so large that the spectrum λK1(`) of λc +B satisfies

ReλK1(`) ≤ −K0|`|

for the constant K0 > 0 chosen above (thus, if the wave train is not sideband-unstable, any positive constant
K1 > 0 works). Next, we make the exponent % in the family X %

m of Banach spaces smaller at a linear rate
as time evolves by setting

%(t) :=
%1

δ
−K1t. (6.10)

The requirement that % > 0 therefore limits us to 0 ≤ t ≤ T1/δ for some T1 > 0.

Next, we define the operator S(t) via its symbol Š(t) = e(%1/δ−K1t)|`| and introduce

Rc(t) := S(t)Rc(t), Rs(t) := S(t)Rs(t).
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Note that Rc(0) ∈ X %1/δ
m is equivalent to Rc(0) ∈ X 0

m. The new error variables Rc and Rs satisfy

∂tRc = λcRc +BRc + ρGc(Rc,Rs) (6.11)

∂tRs = ΛsRs +BRs + Gs(Rc, Rs).

We shall work from now on in the space Xm := X 0
m and denote its norm by ‖ · ‖m. In this space, it has been

shown in [40, §3.2] that the nonlinear terms obey the estimates

‖Gc(Rc,Rs)‖Xm
≤ Cres + Cq‖Rc‖Xm

+ Cq‖Rs‖Xm
+ δMC(Dc, Ds)

‖Gs(Rc,Rs)‖Xm−2 ≤ Cres + Cq‖Rc‖Xm
+ Cq‖Rs‖Xm

+ δMC(Dc, Ds)

for
‖Rc‖Xm ≤ Dc, ‖Rs‖Xm ≤ Ds

and any fixed choice of positive constants Dc and Ds. Furthermore, we have that Cq → 0 for ‖q‖ → 0. The
key is now the following optimal-regularity result proved in [40, §3.3].

Lemma 6.4 ([40, §3.3]) Fix 0 < γ < 1, then there exists a constant C2 > 0 with the following property:
Pick any functions f c and f s with f c = pcf c and f s = P sf s for which f c(0) and f s(0) lie in the domains of
λc +B and Λs +B, respectively. The system

∂tRc = (λc +B)Rc + ρf c, Rc(0) = 0

∂tRs = (Λs +B)Rs + f s, Rc(0) = 0

then has a unique solution on [0, T1/δ], and

‖Rc‖C0,γ([0,T1/δ],Xm) ≤ C2‖f c‖C0,γ([0,T1/δ],Xm)

‖Rs‖C0,γ([0,T1/δ],Xm) ≤ C2‖f s‖C0,γ([0,T1/δ],Xm−2).

The crucial assertion of the preceding lemma is, of course, the boundedness of solutions over the O(1/δ)
times scale.

Using Lemma 6.4 together with property Cq → 0 as ‖q‖ → 0, we can now proceed as in §3.9 to prove that
there are constants C3 > 0 and δ1 > 0 so that

sup
t∈[0,T1/δ]

‖Rc(t)‖Xm + sup
t∈[0,T1/δ]

‖Rs(t)‖Xm ≤ C3,

uniformly in δ ∈ (0, δ1), for the solutions Rc and Rs of the full nonlinear problem (6.11). We omit the
details.

7 Modulations of wave trains near sideband instabilities

7.1 Introduction

In this section, we consider the dynamics of modulations of wave trains at the onset of sideband instabilities.
A sideband instability is characterized by the condition that the second derivative λ′′lin(0) of the linear
dispersion relation changes sign as an appropriate systems parameter is varied. This sign change will lead to
an instability of the wave train with respect to long-wavelength perturbations (i.e. perturbations with small
wave number).
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To be more precise, we denote the systems parameter by µ and assume that the wave train with wavenumber
k exists for all µ close to zero, say. We expand the linear dispersion relation to get

λlin(ν;µ) = λ′lin(0;µ)ν +
1
2
λ′′lin(0;µ)ν2 +

1
6
λ′′′lin(0;µ)ν3 +

1
24
λ′′′′lin(0;µ)ν4 + O(ν5) (7.1)

where derivatives are taken with respect to ν. We are interested in the case where λ′′lin(0;µ) changes sign at
µ = 0. Thus, if λ′′′′lin(0; 0) < 0, which is a natural scenario in this context as it implies that the wave train
is spectrally stable for µ < 0, say, then the resulting instability for µ > 0 is indeed induced by small wave
numbers `. In particular, sideband instabilities are modulational in nature, and we may therefore expect
that they can be captured by adding appropriate corrections to Burgers equation

2∂T q = λ′′lin(0;µ)∂XXq − ω′′nl(0;µ)∂X(q2), (7.2)

which itself becomes ill-posed once λ′′lin(0;µ) < 0.

Our goal is to provide various validity results in this direction. The resulting equations depend on parameter
scalings, and we therefore denote by 1/δ the typical spatial length scale of modulations that we wish to
capture.

Firstly, if we focus on the regime |µ| ≤ Cδ2, then the Korteweg–de Vries equation (KdV) is the correct
modulation equation that replaces Burgers equation (7.2). Next, if we choose the scaling µ = µ̃δ with µ̃ < 0,
then the resulting modulation equation is given by a dissipative Burgers-KdV equation.

A particularly interesting scenario arises if the third derivative λ′′′lin(0;µ) also vanishes at µ = 0. This typically
requires the adjustment of two parameters, or the presence of additional symmetries, and is therefore of
codimension two. In this case, the Kuramoto–Sivashinsky equation takes the role of Burgers equation in
describing modulations of wave trains.

Lastly, we mention that there are other mechanisms that lead to the destabilization of wave trains. One such
scenario are Hopf bifurcations where a second branch of the linear dispersion relation crosses the imaginary
axis away from zero. In this case, we encounter a coupled system of two PDEs, namely Burgers equation
(describing wave-number modulations) and the complex Ginzburg–Landau equation (describing amplitude
modulations of the Hopf modes) [17].

7.2 An illustration: The Ginzburg–Landau equation

Several different equations have been derived as phase equations for wave trains in the complex Ginzburg–
Landau equation [2, 3, 20, 30, 39].

We concentrated in §3 on the wave train with k = 0. As can be read off (3.6), this wave train becomes
sideband unstable at 1+αβ = 0. The linear dispersion relation λlin(ν) of the k = 0 wave train is quite degen-
erate: since the linearization is invariant under the reflection x 7→ −x, all odd derivatives d2n+1λlin/dν2n+1(0)
vanish at ν = 0. We also record from [1, (21)] that

λ′′′′lin(0) = −1
2
α2(1 + β2) < 0 (7.3)

for the wave train with k = 0. In particular, the governing equation near the sideband instability at 1+αβ = 0
is the Kuramoto–Sivashinsky equation. Its validity for phase modulations (but not for modulations of the
wave number) has recently been proved in [2] near the sideband instability of the k = 0 wave train of
the CGL. In §7, we shall give an approximation result for wave-number modulations in reaction-diffusion
equations that should carry over to the CGL.
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Sideband instabilities for wave trains with k 6= 0 yield the Korteweg–de Vries equation [20], at least when
α 6= β (i.e. away from the real Ginzburg–Landau limit), since the third-order derivative of the linear dispersion
relation at ν = 0 does not vanish [1, (21)].

To illustrate how this higher-order PDEs arise as modulation equations, we shall derive the Kuramoto–
Sivashinsky equation for the k = 0 wave train near its sideband instability which occurs when 1 + αβ = 0.
Starting point is, once again, equation (3.13)

∂tr = ∂xxr − 2r − ψ2 − ψ2r − 2α(∂xr)ψ − α∂xψ − α(∂xψ)r − 3r2 − r3 (7.4)

∂tψ = ∂xxψ + ∂x

(
α∂xxr + 2(∂xr)ψ

1 + r
− αψ2 − 2βr − βr2

)
for amplitude and wave number corrections r and ψ of the k = 0 wave trains of the Ginzburg–Landau
equation. We denote by δ the spatial length scale of the modulations we wish to capture. After picking an
arbitrary constant κ2 ∈ R, we unfold the sideband instability in parameter space by setting

1 + αβ = κ2δ
2. (7.5)

Substituting the ansatz
r = δ6W (δx, δ4t), ψ = δ3Ψ(δx, δ4t)

into (7.4), and dividing the factors δ6 and δ7 in the equations for W and Ψ, respectively, we obtain

δ4∂TW = δ2∂XXW − 2W −Ψ2 − δ6WΨ2 − 2δ4α(∂XW )Ψ− αδ−2∂XΨ− δ4α(∂XΨ)W

−3δ6W 2 − δ12W 3

∂T Ψ = δ−2∂XXΨ− ∂X(2βW + αΨ2) + δ2∂X

(
α∂XXW

1 + δ6W
+ δ2

2(∂XW )Ψ
1 + δ6W

− δ4βW 2

)
where X = δx and T = δ4t. Upon refining the leading-order solution W = −δ−2α∂XΨ/2 + O(1) to the first
equation, we obtain that

W = − α

2δ2
∂XΨ− Ψ2

2
− α

4
∂XXXΨ + O(δ2)

satisfies the first equation up to terms of order O(δ2). Substituting the expression for W into the equation
for Ψ and using (7.5) gives

∂T Ψ = δ−2(1 + αβ)∂XXΨ + (β − α)∂X(Ψ2)− α(α− β)
2

∂XXXXΨ + O(δ2)

= κ2∂XXΨ + (β − α)∂X(Ψ2)− α(α− β)
2

∂XXXXΨ + O(δ2).

Thus, setting q := Ψ|δ=0, we find that q ought to satisfy the Kuramoto–Sivashinsky equation

∂T q = −α(α− β)
2

∂XXXXq + κ2∂XXq + (β − α)∂X(q2). (7.6)

Note that the factor in front of the fourth-order derivative coincides with (7.3) upon using that 1 + αβ = 0.

As pointed out above, van Baalen considered sideband instabilities of the k = 0 wave train in [2]. He derived
the Kuramoto–Sivashinsky equation

∂T Φ = −α(α− β)
2

∂XXXXΦ + κ2∂XXΦ + (β − α)(∂XΦ)2 (7.7)

for the phase Φ (and not the wave number q) and proved its validity in certain Sobolev spaces of spatially
periodic functions under the technical assumption that α2 < 1/2.
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7.3 Validity of the Korteweg–de Vries and the Kuramoto–Sivashinsky equation

We consider the reaction-diffusion system

∂tu = D∂xxu+ f(u;µ) (7.8)

with parameter µ ∈ Rp, and assume that the Hypotheses 4.1 and 4.4 from §4.1 are met at µ = 0. In
particular, the wave trains persist for all µ close to zero, and their linear dispersion relations are therefore
given by

λlin(ν;µ) = λ′lin(0;µ)ν +
1
2
λ′′lin(0;µ)ν2 +

1
6
λ′′′lin(0;µ)ν3 +

1
24
λ′′′′lin(0;µ)ν4 + O(ν5) (7.9)

where the coefficients depend smoothly on µ, and derivatives are taken with respect to ν. Transforming into
the θ-variables, we get

∂tu = k2D∂θθu− ωnl(k;µ)∂θu+ f(u;µ). (7.10)

We shall make frequent use of the notation introduced in §4.4. For the sake of clarity, we formulate the
results in this section using only the ϑ-variables. We emphasize that all results transfer to the θ-variables in
the same way as in §4.4.

We begin with the Kuramoto–Sivashinsky equation.

Hypothesis 7.1 We assume that λ′′lin(0; 0) = λ′′′lin(0; 0) = 0 and λ′′′′lin(0; 0) < 0.

Note that we typically need to adjust a two-dimensional parameter µ ∈ R2 to encounter the situation
documented in Hypothesis 7.1.

Theorem 7.2 Assume that Hypotheses 4.1, 4.4 and 7.1 are met. Suppose that there is a smooth curve
µ∗(δ), defined for 0 ≤ δ � 1 with µ∗(0) = 0, such that

λ′′lin(0;µ∗(δ)) = κ2δ
2 + O(δ3), λ′′′lin(0;µ∗(δ)) = κ3δ + O(δ2) (7.11)

for appropriate constants κj ∈ R. For each choice of integers M ≥ 1 and n ≥M + 5, and constants C0 > 0
and T0 > 0, there are constants δ1 > 0 and C1 > 0 such that the following is true. For each δ ∈ (0, δ1) and
each solution q(X,T ) of the Kuramoto–Sivashinsky equation

∂T q =
1
24
λ′′′′lin(0; 0)∂XXXXq +

1
6
κ3∂XXXq +

1
2
κ2∂XXq −

1
2
ω′′nl(k)∂X(q2) (7.12)

on [0, T0] with
sup

T∈[0,T0]

‖q(·, T )‖Hn
ul
≤ C0,

there are functions (qh, rh) with

sup
t∈[0,T0/δ4]

∥∥qh(·, t)− q
(
δ((cp − cg)t− ϑ/k), δ4t

)∥∥
Hn

ul
≤ C1δ, sup

t∈[0,T0/δ4]

‖rh(·, t)‖Hn
ul
≤ C1

and a solution u(θ, t) = U(ϑ, t) of the reaction-diffusion system (7.10) for µ = µ∗(δ) such that

sup
t∈[0,T0/δ4]

sup
ϑ∈R

|U(ϑ, t)− Uapprox(ϑ, t)| ≤ C1δ
M+3,

where
Uapprox(ϑ, t) = u0(ϑ; k(1 + δ3qh(ϑ, t))) + δ6rh(ϑ, t).

The phase function φ0(t) needed for the formulation in the θ-variables satisfies supt∈[0,T0/δ4] |φ0(t)| = O(1).
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Next, we consider validity of the dissipative Korteweg–de Vries equation.

Hypothesis 7.3 Assume that λ′′lin(0; 0) = 0 and λ′′′lin(0; 0) 6= 0.

Theorem 7.4 Assume that Hypotheses 4.1, 4.4 and 7.3 are met. Suppose that there is a smooth curve
µ∗(δ), defined for 0 ≤ δ � 1 with µ∗(0) = 0, such that

λ′′lin(0;µ∗(δ)) = κ2δ + O(δ2)

for some positive constant κ2 > 0. For each choice of integers M ≥ 1 and n ≥M + 4, and constants C0 > 0
and T0 > 0, there are constants δ1 > 0 and C1 > 0 such that the following is true. For each δ ∈ (0, δ1) and
each solution q(X,T ) of

∂T q =
1
6
λ′′′lin(0; 0)∂XXXq +

1
2
κ2∂XXq −

1
2
ω′′nl(k)∂X(q2) (7.13)

on [0, T0] with
sup

T∈[0,T0]

‖q(·, T )‖Hn
ul
≤ C0,

there are functions (qh, rh) with

sup
t∈[0,T0/δ3]

∥∥qh(·, t)− q
(
δ((cp − cg)t− ϑ/k), δ3t

)∥∥
Hn

ul
≤ C1δ, sup

t∈[0,T0/δ3]

‖rh(·, t)‖Hn
ul
≤ C1

and a solution u(θ, t) = U(ϑ, t) of the reaction-diffusion system (7.10) for µ = µ∗(δ) such that

sup
t∈[0,T0/δ3]

sup
ϑ∈R

|U(ϑ, t)− Uapprox(ϑ, t)| ≤ C1δ
M+2,

where
Uapprox(ϑ, t) = u0(ϑ; k(1 + δ2qh(ϑ, t))) + δ4rh(ϑ, t).

The phase function φ0(t) satisfies supt∈[0,T0/δ3] |φ0(t)| = O(1).

The result that we shall prove for the conservative Korteweg–de Vries equation is less satisfactory. We cannot
exploit that the linear dispersion relation is dissipative at ` = 0 since dissipativeness becomes noticeable only
over time scales of length δ−4. On the other hand, solutions to the Korteweg–de Vries equation exist for all
times so that we should not run into the restrictions that we encountered and discussed in §6. However, we
shall not exploit these properties, and our result below is therefore weaker and can probably be improved
considerably.

Theorem 7.5 Assume that Hypotheses 4.1, 4.4 and 7.3 are met. Suppose also that µ∗(δ) is a smooth curve,
defined for 0 ≤ δ � 1 with µ∗(0) = 0, such that

λ′′lin(0;µ∗(δ)) = O(δ2). (7.14)

For any choice of %0 > 0 and integers M ≥ 1 and n ≥ 3, there are positive constants δ1, ε1, C1, T1 such that
the following is true. For each δ ∈ (0, δ1) and each solution q(X,T ) of the Korteweg–de Vries equation

∂T q =
1
6
λ′′′lin(0; 0)∂XXXq −

1
2
ω′′nl(k)∂X(q2) (7.15)

on [0, T1] with
sup

T∈[0,T1]

‖q(·, T )‖X%0
n
≤ ε1,
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there are functions (qh, rh) with

sup
t∈[0,T1/δ3]

∥∥qh(·, t)− q
(
δ((cp − cg)t− ϑ/k), δ3t

)∥∥
Hn

ul
≤ C1δ, sup

t∈[0,T1/δ3]

‖rh(·, t)‖Hn
ul
≤ C1

and a solution u(θ, t) = U(ϑ, t) of the reaction-diffusion system (7.10) for µ = µ∗(δ) such that

sup
t∈[0,T1/δ3]

sup
ϑ∈R

|U(ϑ, t)− Uapprox(ϑ, t)| ≤ C1δ
M+2,

where
Uapprox(ϑ, t) = u0(ϑ; k(1 + δ2qh(ϑ, t))) + δ4rh(ϑ, t).

The phase function φ0(t) satisfies supt∈[0,T1/δ3] |φ0(t)| = O(1).

We shall prove Theorems 7.2 and 7.5 in §7.4 and 7.5, respectively. We omitted the proof of Theorem 7.4
since it is similar to the one given for Theorem 7.2 except for the different scalings.

7.4 Proof of Theorem 7.2

We proceed in exactly the same way as in §3 and §5.4. Our starting point is again the system (5.31)

∂tv
c = λcvc − pc

mf∂ϑN (vc, vs) (7.16)

∂tv
s = Λsvs − P s

mfN (vc, vs).

The operators λc and Λs generate semigroups with properties analogous to those established in §5.4.

Lemma 7.6 Both λc and Λs are sectorial in Xm, respectively. Moreover, for each integer m ≥ 0, there are
constants C0 > 0 and σ > 0 such that the semigroups eλct and eΛst satisfy

‖eλct‖Xm→Xm
≤ C0

‖eλct∂ϑ‖Xm→Xm
≤ C0

t1/4

‖eΛst‖Xm→Xm ≤ C0e−σt

for all t ≥ 0.

Proof. The first and third inequality follow as in Lemma 3.9. The reason that the second inequality is valid
is due to the fact that λc is, by construction, the multiplication operator in Bloch space associated with the
linear dispersion relation. More precisely, Hypothesis 7.1 implies that Reλc(`) ≈ −`4. The factor t−1/4 is
now a consequence of Lemma 3.6 applied to the function

M̌(`) = δ`eδ−4λ̌c(δ`)T

with T = δ4t.

Starting with a solution q(X,T ) of the Kuramoto–Sivashinsky equation (7.12), we substitute the ansatz

(vc, vs) =
(
δ3q
(
δ((cp − cg)t− ϑ/k), δ4t

)
, 0
)
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into (7.16) and obtain the residuals

Resc(δ3q, 0) = δ7
(
−∂T q +

1
2
κ2∂XXq +

1
6
κ3∂XXXq +

1
24
λ̌c′′′′(0)∂XXXXq −

1
2
ω′′nl(k)∂X(q2)

)
+ O(δ8)

= O(δ8)

Ress(δ3q, 0) = −P̌ s(`)Ň (δ3q)(`) = O(δ6)

where we used (7.11). Next, we record that the formal procedures outlined in §3.8 and §4.3 can again be
used to provide approximations with smaller residuals.

Lemma 7.7 With m,n,M chosen as in Theorem 7.2, there are positive constants δ1 > 0 and Cres > 0 such
that the following is true. For each δ ∈ (0, δ1), there exist functions (V c, V s) such that

sup
t∈[0,T0/δ4]

‖V c(·, t)− q(δ·, t)‖Xm ≤ Cresδ

sup
t∈[0,T0/δ4]

‖V s(·, t)‖Xm
≤ Cres

sup
t∈[0,T0/δ4]

‖Resc(δ3V c(·, t), δ6V s(·, t))‖Xm
≤ Cresδ

M+7

sup
t∈[0,T0/δ4]

‖Ress(δ3V c(·, t), δ6V s(·, t))‖Xm ≤ Cresδ
M+6

uniformly in δ.

We define the scaled errors Rc and Rs relative to the approximations obtained in the preceding lemma via

vc = δ3V c + δM+3Rc

vs = δ6V s + δM+6Rs.

Substitution into (7.16) gives the system

∂tR
c = λcRc + ∂ϑg

c(Rc, Rs)

∂tR
s = ΛsRs + gs(Rc, Rs).

There is a constant C0 such that

‖gc(Rc, Rs)‖Xm
≤ δ3C0‖Rc‖Xm

+ δ4CRes + δ6C0‖Rs‖Xm
+ δM+3C(Dc, Ds) (7.17)

‖gs(Rc, Rs)‖Xm−2 ≤ CRes + C0‖Rc‖Xm
+ δ3C0‖Rs‖Xm

+ δMC(Dc, Ds)

where
‖Rc‖Xm

≤ Dc, ‖Rs‖Xm
≤ Ds

for arbitrary, but fixed, constants Dc and Ds.

The rest of the proof proceeds as in §3.9. Using Lemma 7.6 and Gronwall’s lemma 3.12 over the time scale
T = δ4t gains the crucial factor δ which, taken together with the factor δ3 on the right-hand side of (7.17),
shows that the scaled errors stay bounded.

With regard to the θ-variables, we record that ∂tφ(0, t) = O(δ4) so that the phase shift supt∈[0,T0/δ4] |φ(0, t)| =
O(1) is bounded uniformly in δ as claimed.
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7.5 Proof of Theorem 7.5

We proceed as in §6 to which we refer for the notation we use below. First, we pick %0 > 0, integers M ≥ 1
and n ≥M + 4, and a solution q(X,T ) of the KdV equation (7.15) in X %

n . Next, we substitute the resulting
ansatz

(vc, vs) =
(
δ2q
(
δ((cp − cg)t− ϑ/k), δ3t

)
, 0
)

into (7.16) to obtain the residuals

Resc(δ2q, 0) = δ5
(
−∂T q +

1
6
λ̌c′′′(0)∂XXXq −

1
2
ω′′nl(k)∂X(q2)

)
+ O(δ6) = O(δ6)

Ress(δ2q, 0) = −P̌ s(`)Ň (δ3q)(`) = O(δ4),

where we used (7.14). As before, we can construct approximations with smaller residuals.

Lemma 7.8 With %0 and M,n chosen as above, there are positive constants δ1 > 0 and Cres > 0 such that
the following is true. For each δ ∈ (0, δ1), there exist functions (V c, V s) such that

sup
t∈[0,T0/δ4]

‖V c(·, t)− q(δ·, t)‖X%
m

≤ Cresδ

sup
t∈[0,T0/δ4]

‖V s(·, t)‖X%
m

≤ Cres

sup
t∈[0,T0/δ4]

‖Resc(δ3V c(·, t), δ6V s(·, t))‖X%
m

≤ Cresδ
M+2

sup
t∈[0,T0/δ4]

‖Ress(δ3V c(·, t), δ6V s(·, t))‖X%
m

≤ Cresδ
M+4,

where % = %0/δ.

The errors Rc and Rs, defined via

vc = δ2V c + δM+2Rc

vs = δ4V s + δM+4Rs,

satisfy the system

∂tR
c = λcRc + ∂ϑg

c(Rc, Rs)

∂tR
s = ΛsRs + gs(Rc, Rs)

where, for an appropriate positive constant C0 > 0,

‖gc(Rc, Rs)‖X%
m

≤ δ2CRes + δ2C0‖Rc‖X%
m

+ δ4C0‖Rs‖X%
m

+ δM+2C(Dc, Ds)

‖gs(Rc, Rs)‖X%
m−2

≤ CRes + C0‖Rc‖X%
m

+ δ2C0‖Rs‖X%
m

+ δMC(Dc, Ds)

uniformly in % ∈ [0, %0/δ] for
‖Rc‖X%

m
≤ Dc, ‖Rs‖X%

m
≤ Ds

where Dc and Ds are arbitrary but fixed.

As in §6, we need to exploit the scale of Banach spaces given by X %
m. We begin by picking a constant K0 > 0.

For any given constant K1 > 0, we may define the linear operator B via its symbol B̌(`) = −K1δ
2|`|. As in

§6, we choose K1 � 1 so large that the spectrum λK1(`) of λc +B satisfies

ReλK1(`) ≤ −K0δ
2|`|
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for the constant K0 > 0 chosen above: note that such a choice of K1 is possible due to (7.14 and Hypothe-
ses 4.4 and 7.3. Next, we define the operator S(t) via its symbol Š(t) = e(%0/δ−K1δ2t)|`| and introduce

Rc(t) := S(t)Rc(t), Rs(t) := S(t)Rs(t)

which both live in Xm := X 0
m with ‖ · ‖m. The rescaled errors Rc and Rs satisfy

∂tRc = (λc +B)Rc + ∂ϑGc(Rc,Rs)

∂tRs = (Λs +B)Rs + Gs(Rc, Rs)

where

‖Gc(Rc,Rs)‖Xm
≤ δ2CRes + δ2Cq‖Rc‖Xm

+ δ4Cq‖Rs‖Xm
+ δM+2C(Dc, Ds)

‖Gs(Rc,Rs)‖Xm−2 ≤ CRes + Cq‖Rc‖Xm
+ δ2Cq‖Rs‖Xm

+ δMC(Dc, Ds)

for
‖Rc‖Xm

≤ Dc, ‖Rs‖Xm
≤ Ds

for positive constants Cq with Cq → 0 as ‖q‖ → 0. The rest of the proof follows exactly as in §6, and we
therefore omit it.

8 Existence and stability of weak shocks

We prove Theorem 4.10 and 4.12 by introducing an appropriate spatial-dynamics formulation to which we
apply the Kirchgässner reduction. The ideas behind this approach go back to Kirchgässner [29] and were
later extended by Mielke and coworkers [18, 41].

8.1 Proof of Theorem 4.10

Suppose that u(x, t) = u∗(x−c∗t, ω∗t) satisfies (4.1) and (4.39), then (u, v)(ξ, τ) = (u∗, ∂ξu∗)(ξ, τ) has period
2π in τ and satisfies the modulated-wave equation

∂ξu = v (8.1)

∂ξv = −D−1[−ω∗∂τu+ c∗v + f(u)]

where ξ = x − c∗t and τ = ω∗t. We consider (8.1) on the function space X = H1
per(0, 2π) × H

1/2
per (0, 2π)

and write u = (u, v) ∈ X . Note that (8.1) is equivariant with respect to the time shift S(ρ) defined by
[S(ρ)u](τ) = u(τ + ρ) for ρ ∈ [0, 2π]. In other words, if u(ξ) ∈ X is a solution of (8.1), so is S(ρ)u(ξ) for
each ρ.

Instead of investigating (8.1) for arbitrary c∗ and ω∗, we will fix a primary wave number k0 and concentrate
on finding viscous shocks that have speed cg(k0) =: c0g. Since cg(k) = ω′nl(k) and due to our assumption that
ω′′nl(k0) 6= 0, we know that, for each given number c close to cg(k0), there exists a wave number k close to k0

such that c = cg(k). Repeating the proof given below for different wave numbers k close to k0 gives shocks
with an arbitrary speed c close to c0g. Thus, it suffices to prove Theorem 4.10 for the fixed speed c0g.

Therefore, from now on, we will set c∗ = c0g in (8.1). From (4.44), we conclude that the frequency of shocks
with speed c0g and asymptotic wave numbers k± = k0 is ω0

∗ = k0(c0p − c0g). If we choose different wave
numbers for k±, the temporal frequency of shocks will vary as well. We therefore write ω∗ = ω0

∗ + ω̄ so that
ω̄ varies near zero.
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We shall assume that ω0
∗ 6= 0: If ω0

∗ = 0, then we fix ω∗ = 0 and allow c∗ to vary near c0g. The associated weak
shocks are travelling waves which satisfy (8.1) with ω∗ = 0, i.e. an ODE. The primary wave train appears as
a saddle-node periodic orbit in this ODE. Unfolding the vector field on the two-dimensional center manifold
using the speed c∗ gives the desired weak shocks as heteroclinic orbits. We shall omit the details since the
analysis is similar to (but far easier than) the forthcoming analysis of the case ω0

∗ 6= 0.

Using the definitions introduced above, (8.1) becomes

∂ξu = v (8.2)

∂ξv = −D−1[−(ω0
∗ + ω̄)∂τu+ c0gv + f(u)]

where (u, v) ∈ X . The wave train with wave number k0,

u = u0(ω0t− k0(ξ + c0gt)) = u0(k0(c0p − c0g)t− k0ξ) = u0(τ − k0ξ), ω0 = ωnl(k0)

provides a solution to (8.2) with ω̄ = 0. If we transform (8.2) according to

u 7−→ u0 + u

where

u0(ξ) =

(
u0(· − k0ξ)

−k0∂θu0(· − k0ξ)

)
(8.3)

we obtain

∂ξu = v (8.4)

∂ξv = −D−1[−(ω0
∗ + ω̄)∂τu+ c0gv + f ′(u0(· − k0ξ))u+ g(u;u0(τ − k0ξ))− ω̄∂τu0]

where
g(u;u0) := f(u0 + u)− f(u0)− f ′(u0)u =

1
2
f ′′(u0)[u, u] + O(‖u‖3).

We write this equation (8.4) abstractly as

∂ξu = B∗(ξ)u + ω̄N (u + u0) + G(u, ξ) (8.5)

where

B∗(ξ) =

(
0 1

−D−1[−ω0
∗∂τ + f ′(u0(· − k0ξ))] −D−1c0g

)

N =

(
0 0

D−1∂τ 0

)
, G(u, ξ) =

(
0

−D−1g(u;u0(· − k0ξ))

)
.

Alternatively, we can consider (8.4) in the temporally comoving frame σ = τ − k0ξ which gives

∂ξu = k0∂σu+ v (8.6)

∂ξv = k0∂σv −D−1[−ω0
∗∂σu+ c0gv + f ′(u0(·))u+ g(u;u0(·))− ω̄∂σ(u+ u0(·))]

or, in abstract form,
∂ξu =

[
k0T + B0

∗
]
u + ω̄N (u + u0) + G0(u) (8.7)

where T = diag(∂σ, ∂σ) generates the temporal shift and

B0
∗ =

(
0 1

−D−1[−ω0
∗∂σ + f ′(u0(·))] −D−1c0g

)
, G0(u) =

(
0

−D−1g(u;u0(·))

)
.
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Solutions to (8.5) and (8.7) are conjugated by the shift generated by k0T . We also consider the linearized
equations

∂ξu = B∗(ξ)u (8.8)

and
∂ξu =

[
k0T + B0

∗
]
u. (8.9)

Note that the coefficient matrix of (8.8) is periodic in ξ, while the coefficient matrices of (8.9) do not depend
on ξ. From [41] we conclude that the Floquet exponents of (8.8) form a discrete set in the complex plane and
that there exists a strongly continuous family of center projections Pc(ξ) that are 2π/k0-periodic in ξ and
have finite-dimensional range. Thus, on account of [41, Theorem 3.4], the nonlinear equation (8.5) admits
a nonautonomous center manifold E(ξ) = E(ξ + 2π/k0) that is tangent to Rg(Pc(ξ)) at (u, ω̄) = 0 and that
contains all small bounded solutions to (8.5). Conjugation with the shift evolution S(k0ξ) associated with
∂ξu = k0T u gives an invariant center-manifold to (8.7) whose center subspace consists of the generalized
eigenspace to the center eigenvalues ν ∈ iR of k0T + B0

∗. We remark that there does not seem to exist a
center-manifold theorem for the equations of the type (8.7) where a hyperbolic structure T is mixed with
a pseudo-elliptic structure B0

∗. Still, smooth center-manifolds of (8.7) exist since they can be obtained from
smooth center-manifolds of (8.5). We prefer to work with (8.7), since we avoid complications that are caused
by the ambiguity in the definition of Floquet exponents.

We need one additional property of the center manifold. Recall that (8.2) is invariant under the action of the
time-shift S(ρ). In a neighbourhood of the relative equilibrium u0(τ − k0ξ), this action correspondence to
the following equivariance of the nonautonomous equation (8.5): if u(ξ; ξ0) is a solution, so is u(ξ+ρ; ξ0 +ρ).
In the construction of a center manifold, G(u, ξ) is replaced by

Gmod(u, ξ) := χ(‖u‖2X )G(u, ξ)

for some smooth cut-off function χ(r) that satisfies χ(r) = 1 for r < δ � 1 and χ(r) = 0 for r > 2δ. Since
the norm of the Hilbert space X is invariant under the time shift S, equivariance is preserved under the
cut-off procedure. In particular, the flow on the center manifold commutes with the (affine) action of the
circle group. We will use this fact extensively.

In the remaining part of the proof, we compute the generalized center-eigenspace of k0T + B0
∗ and use the

result to calculate the expansion of the reduced vector field on the center manifold. We begin with the
computation of the center eigenspace.

We consider the eigenvalue problem
νu =

[
k0T + B0

∗
]
u

or, more explicitly,

νu = k0∂σu+ v

νv = k0∂σv −D−1[−ω0
∗∂σu+ f ′(u0(σ))u+ c0gv].

This boundary-value problem has a solution in X if, and only if,

k2
0D

(
∂σ −

ν

k0

)2

u− ω0

(
∂σ −

ν

k0

)
u+ f ′(u0(σ))u = (c0p − c0g)νu (8.10)

has a nontrivial 2π-periodic solution. A comparison with the operator Lν , defined in (4.9), shows that
nontrivial solutions to (8.10) exist precisely when λ = (c0p − c0g)ν is an eigenvalue of Lν for some ν ∈ iR.
This, however, was excluded for λ 6= 0 and ν 6= 0 in the nonresonance assumption of Hypothesis 4.3.
Therefore, the only possible center eigenvalue occurs at ν = 0. The same argument shows that the null

71



space of k0T +B0
∗ is one-dimensional and spanned by (∂σu0,−k0∂σσu0). It remains to calculate generalized

eigenvectors which are the solutions of the derivative of (8.10) with respect to ν evaluated in u = ∂σu0. The
point is that the eigenvalue problem

k2
0D

(
∂θ −

ν

k0

)2

v − ω0

(
∂θ −

ν

k0

)
v + f ′(u0(θ))v = λlin(ν)v (8.11)

for the operator Lν , see (4.9), coincides to quadratic order in ν with (8.10) since

λlin(ν) = (c0p − c0g)ν + O(ν2)

as calculated in (4.23). Thus, recalling the results from §4.2, we therefore see that the generalized eigenvector
u1 exists. Its u-component is given as the unique (up to elements of the null space) solution to

L0u1 = 2k0D∂σσu0 − c0g∂σu0,

while the v-component of the generalized eigenvector is given by

v1 = ∂σu0 − k0∂σu1.

Thus, comparing the equation for u1 with (4.18), we conclude that u1 = −∂ku0 and therefore

u1 =

(
−∂ku0

k0∂kσu0 + ∂σu0

)
.

Since λ′′lin(0) 6= 0 by assumption, we also see that the eigenvalue ν = 0 has algebraic multiplicity equal to
two.

We emphasize that the higher-dimensional eigenspace is generated precisely by our choice of the coordinate
frame—for other choices of the speed c, the generalized center eigenspace would be one-dimensional and
spanned by the translated wave trains. Thus, the group velocity can be interpreted as the unique speed
for which the linearization about the wave train, computed in the frame moving with that speed, develops
algebraic multiplicity two.

For the computation of the projection onto the generalized eigenspace, we will also need the generalized
eigenspace of the adjoint [k0T + B0

∗]ad, where we compute the adjoint with respect to the simpler L2-scalar
product instead of the scalar product in X . Also, as we shall see below, we only need a basis vector, denoted
by uad, of the null space of the adjoint operator. The function uad satisfies the equation

−k0∂σu−D−1ω0
∗∂σv − f ′(u0)TD−1v = 0

−k0∂σv + u−D−1c0gv = 0.

If we set ṽ = D−1v, we obtain
k2
0D∂σσ ṽ + ω0∂σ ṽ + f ′(u0)T ṽ = 0

whose solution ṽ = uad we computed in §4.2. The null space of the L2-adjoint of k0T + B0
∗ is therefore

spanned by

uad =

(
k0D∂σuad + c0guad

Duad

)
.

The next step is to calculate the vector field on the center manifold of (8.7). We parametrize the two-
dimensional center manifold by (θ, κ) ∈ S1 × (−δ, δ) via

u = −κu1(· − θ) + uh(θ, κ),
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where uh maps R2 into the orthogonal complement of the generalized eigenspace, belonging to the eigenvalue
zero, of the adjoint [k0T + B0

∗]ad, and by simultaneously replacing σ by σ − θ in (8.7). In particular, the
time-shift symmetry acts according to θ 7→ θ + ρ. Since, as discussed above, the vector field on the center
manifold respects this symmetry, it cannot depend on θ. To leading order, we therefore find

∂ξθ = κ+ O(|ω̄|+ |κ|2) (8.12)

∂ξκ = βωω̄ + β2κ
2 + O(|ω̄|2 + |ω̄κ|+ |κ|3). (8.13)

Locally, the parameterization is given by

u = −θ∂σu0 − κu1 + O(θ2 + κ2). (8.14)

Thus, the relevant coefficients βω and β2 can be computed by projecting N and G onto the center manifold
using the spectral projection, and comparing the resulting terms with (8.14), differentiated with respect to
ξ. We obtain

βω = −〈uad,Nu0〉
〈uad,u1〉

= −〈uad, D
−1∂σu0〉

〈uad,u1〉
=

−1
〈uad,u1〉

β2 =
−〈Duad,− 1

2D
−1f ′′(u0)[∂ku0, ∂ku0]〉+ 〈uad, ∂σu1〉

〈uad,u1〉

=
〈uad, 2k0D∂kσσu0 − c0g∂kσu0 +D∂σσu0 + 1

2f
′′(u0)[∂ku0, ∂ku0]〉

〈uad,u1〉
=

1
2ω

′′
nl(k0)

〈uad,u1〉
.

The denominator in both expressions is determined by the linear dispersion relation:

〈uad,u1〉 = 〈k0D∂σuad + c0guad,−∂ku0〉+ 〈Duad, k0∂kσu0 + ∂σu0〉

= 〈uad, 2k0D∂kσu0 +D∂σu0〉 =
1
2
λ′′lin(0).

Alternatively, we can infer a relation between βω and β2 using the following reverse argument. Upon
inspection, we see that (8.13) has equilibria precisely when

ω̄ = − β2

βω
κ2.

On the other hand, we know that the family of wave trains exists for frequencies ω = ωnl(k). Since κ

corresponds to the detuning of the wave number, we see that

ω̄ =
1
2
ω′′nl(k0)κ2,

and comparing the equations for ω̄, we obtain the relation β2 = 1
2ω

′′
nl(k0)βω.

In summary, we have shown that the reduced vector field on the center manifold is of the form

∂ξθ = κ+ O(|ω̄|+ |κ|2)

∂ξκ =
1

1
2λ

′′
lin(0)

(
1
2
ω′′nl(k0)κ2 − ω̄

)
+ O(|ω̄|2 + |ω̄κ|+ |κ|3) (8.15)

where neither of the remainder terms depends on θ. On the center manifold, we find heteroclinic solutions
in the κ-equation which correspond precisely to the desired viscous shock waves. This finishes the proof of
Theorem 4.10.

The statement of Remark 4.11 follows from the fact that a sign change of λ′′lin(0) corresponds to replacing ξ
by −ξ in (8.15). Consequently, the stationary front given in (2.11) connects the asymptotic equilibria in the
opposite order, and the relative group velocities, computed in the comoving frame, change their sign as well.
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8.2 Proof of Theorem 4.12

To prove Theorem 4.12, we need to locate the spectrum of the linearization about a modulated wave.

We denote by u∗(x−c0gt, ω∗t; ε) the solution that we constructed in Theorem 4.10, where we set ε2 = ω∗−ω0
∗.

Here, we assumed that ω′′nl(k0) > 0 (the case where the second derivative is negative can be handled in the
same fashion). Furthermore, we denote by Ψ the time-2π/ω∗-map of the reaction-diffusion system (4.1) and
by Ψ′

∗(ε) the derivative of the period map with respect to the initial condition, evaluated at u∗(x−c0gt, ω∗t; ε).

Our goal is to show that the spectrum of the linearized period map lies strictly inside the unit circle provided
we consider the operator on appropriate exponentially weighted function spaces as defined in (4.47). Recall
that

L2
η−,η+

(R) =
{
u ∈ L2

loc(R); ‖u‖L2
η−,η+

<∞
}

‖u‖2L2
η−,η+

=
∫ 0

−∞
|u(x)eη−x|2 dx+

∫ ∞

0

|u(x)eη+x|2 dx.

For each fixed choice of η± ∈ R, we consider Ψ′
∗(ε) as a bounded operator from L2

η−,η+
into itself. For each

Λ 6= 0 in the spectrum of Ψ′
∗(ε), we define its Floquet exponent λ by

λ =
ω∗
2π

log Λ.

We distinguish between values of λ in the Floquet point spectrum, where Ψ′
∗(ε)−Λ is Fredholm with index

zero but not invertible, and values of λ in the essential Floquet spectrum, where Ψ′
∗(ε)− ρ is not Fredholm

or Fredholm with nonzero index.

Before we state the first lemma, we recall from [49] that the function

λ∗(ν; k) = (c0g − cp(k))ν + λlin(ν; k) = (c0g − cg(k))ν +
1
2
λ′′lin(0; k)ν2 + O(ν3), (8.16)

which is defined and analytic in ν ∈ C, is the linear dispersion relation of the wave train with wave number
k computed in the frame moving with speed c0g.

Lemma 8.1 For each choice of weights η± ∈ R, the essential Floquet spectrum of Ψ′
∗(ε) in L2

η−,η+
is strictly

to the left of the essential Floquet spectrum of the asymptotic wave trains computed in L2
η−,η+

, while the
Floquet spectrum of the wave trains computed in L2

η−,η+
is given by

λ = λ∗(i`− η±; k±), ` ∈ R.

In particular, any element λ in the essential Floquet spectrum of the viscous shocks satisfies

Reλ ≤ ∓|ε|
√

2ω′′nl(k0)η± + (λ′′lin(0) + O(ε))η2
± (8.17)

provided ηmin < η− < 0 < η+ < ηmax and

min{|ηmin|, |ηmax|} = |ε|
√

2ω′′nl(k0)
λ′′lin(0)

+ O(ε2), (8.18)

where λlin denotes the linear dispersion relation of the wave train with wave number k0.

For further reference, we remark that we obtain the optimal estimate

Reλ ≤ −ε2 ω
′′
nl(k0)

2λ′′lin(0)
+ O(ε3) (8.19)

for the essential spectrum when we substitute the optimal η± from (8.18) into (8.17).
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Proof. [49, Remark 2.9 and Proposition 2.10] assert that the linearization about the viscous shocks, com-
puted in the frame moving with the speed c0g of the shock, is Fredholm in the complement of the spectrum
of the asymptotic wave trains. Also, the spectra of wave trains with wave numbers k = k±, computed in the
frame moving with speed c0g, are given by the dispersion relation (8.16)

λ∗(ν; k±) = (c0g − c±g )ν +
1
2
λ′′lin(0; k±)ν2 + O(ν3)

where c±g = ω′nl(k±). Since

ε2 = ω∗ − ω0
∗ = ω′′nl(k0)(k± − k0) + O(|k± − k0|3),

we see that

k± − k0 = ∓
√

2|ε|√
ω′′nl(k0)

+ O(ε2)

where we recall that we assumed that ω′′nl(k0) > 0. Therefore,

c0g − c±g = −ω′′nl(k0)(k± − k0) + O(|k± − k0|3) = ±
√

2ω′′nl(k0)|ε|+ O(ε2).

We also have
λ′′lin(0; k±) = λ′′lin(0) + O(ε)

with λ′′lin(0; k±) > 0 by Hypothesis 4.2. Thus, we see that

λ(ν; k±) =
[
±
√

2ω′′nl(k0)|ε|+ O(ε2)
]
ν + [λ′′lin(0) + O(ε)]ν2 + O(ν3).

Substituting ν = −η± + i`, we obtain

Reλ(ν; k±) ≤ Reλ(−η±; k±) =
[
∓
√

2ω′′(k0)|ε|+ O(ε2)
]
η± + [λ′′lin(0) + O(ε)]η2

± + O(η3
±)

which is strictly negative provided ηmin < η− < 0 < η+ < ηmax and

min{|ηmin|, |ηmax|} ≤ |ε|
√

2ω′′nl(k0)
λ′′lin(0)

+ O(ε2) (8.20)

for ε sufficiently close to zero.

Lemma 8.2 For each ε > 0 sufficiently small, the Floquet point spectrum of the viscous shocks is contained
strictly in the open left half-plane.

Before we give the proof of the lemma, we show that the two lemmata imply Theorem 4.12.

Proof of Theorem 4.12. Define Y = H1
η−,η+

where we choose the exponential weights as described in
Theorem 4.12. Lemma 8.1 and 8.2 assert that the Floquet spectrum of the linearized period map Ψ′

∗(ε)
associated with the viscous shocks on Y is contained in the open left half-plane. Therefore, [Ψ′

∗(ε)]
N is a

contraction for some sufficiently large integer N � 1. Next, note that the nonlinearity is actually smooth
when considered as map from Y into itself, since the exponential weights enforce functions to be localized.
Thus, the variation-of-constants formula shows that the nonlinear period map is close to the linearized period
map in the C1-topology if we restrict them to a sufficiently small neighbourhood of the viscous shock. As a
consequence, the iterated nonlinear period map is a contraction in a sufficiently small neighbourhood of the
viscous shock which proves its nonlinear stability in Y. This proves Theorem 4.12.
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Proof of Lemma 8.2. We have to prove that the operator Ψ′
∗ − λ cannot have exponentially localized

functions in its null space for any λ near zero. To show this, we write the Floquet eigenvalue problem as a
differential equation

∂ξu = v (8.21)

∂ξv = −D−1[−ω∗∂τu− λu+ c0gv + f ′(u∗(ξ, τ ; ε))u]

in the spatial variable ξ. Theorem 4.10 shows that

u∗(ξ, τ ; ε) = u0(τ − ξ − θ∗(ξ)), ∂ξθ∗(ξ) = κ∗(ξ), κ∗(ξ) = εκ0 tanh(εξ)

where the constant κ0 can be computed easily in terms of linear and nonlinear dispersion relation.

Our strategy is similar to the one we used to prove existence of viscous shocks. First, for λ ≈ 0, we can
reduce (8.21) to a two-dimensional nonautonomous center manifold that contains all bounded solutions to
(8.21). To compute the vector field on the center manifold, we choose appropriate coordinates on it. We
therefore pass to the comoving frame σ = τ − k0ξ and parametrize solutions by

u = θ̃∂σu0 + κ̃u1 − θ̃κ∗u1. (8.22)

Note that, for λ = 0, the coordinates (8.22) correspond to the linearization of the coordinates used to
construct the viscous shock. In particular, using these coordinates, we recover the linearization of (8.15)
at the viscous shock. Thus, we need to calculate only the reduced term that corresponds to λuσ. This
expression, however, enters the reduced equation in the same form as the term N enters the nonlinear
problem, at least to leading order. Therefore, we end up with a reduced eigenvalue problem

∂ξ θ̃ = κ̃+ O(ε2 + |ελ|) (8.23)

∂ξκ̃ =
1

1
2λ

′′
lin(0)

[
λθ̃ + ω′′nl(k0)κ∗(ξ)κ̃

]
+ O(|ελ|+ |ε2κ̃|).

It is not hard to see that bounded solutions occur only in the scaling λ = ε2λ̃ andX = εξ, since we recover the
heat equation outside this scaling which does not have bounded unstable eigenfunctions outside a bounded
disk. In the scaled coordinates, the eigenvalue problem becomes

1
2
λ′′lin(0)∂XX θ̃ − ω′′nl(k0) tanh(X)∂X θ̃ = λ̃θ̃ + O(ε). (8.24)

This eigenvalue problem arises also through the linearization about shocks in the eikonal equation

∂T θ̃ = ∂XX θ̃ + (∂X θ̃)2

which can be viewed as the integrated form q = ∂X θ̃ of Burgers equation

∂T q = ∂XXq + ∂X(q2).

Since the Evans function for the linearization about viscous shocks in Burgers equation does not have zeros
in a bounded neighbourhood of the origin except at λ̃ = 0, the only exponentially localized eigenfunction is
given by the derivative of the shock profile at λ̃ = 0. This solution, however, is not exponentially localized
as a solution to (8.24), since ∂X θ̃(X) converges to nonzero constants as X → ±∞. Therefore, the Evans
function for the eigenvalue problem (8.24) with ε = 0 does not vanish in Re λ̃ ≥ −a for some a > 0. A
continuity argument with respect to ε shows the absence of point spectrum and concludes the proof of
Lemma 8.2.
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9 Existence of shocks in the long-wavelength limit

9.1 A lattice model for weakly interacting pulses

In this section, we investigate the long-wavelength limit of wave trains. We assume that the wave-train profile
converges to a localized pulse as the wave number k tends to zero. Thus, the wave train itself resembles an
infinite chain of localized pulses that interact weakly with each other. We are then interested in finding the
analogues of viscous shocks for the resulting lattice equation that describes weakly interacting pulses. To be
specific, we consider again the reaction-diffusion system (4.1):

∂tu = D∂xxu+ f(u). (9.1)

We begin by motivating the lattice equation that we are going to investigate. Thus, assume that

u(x, t) = h(x− cpt)

is a localized travelling-wave solution to (9.1) with phase speed cp so that h(ζ) → 0 as ζ → ±∞. In
particular, h(ζ) is a homoclinic orbit of the travelling-wave ODE

d
dζ

(
u

v

)
=
(

v

D−1[cpv − f(u)]

)
. (9.2)

We shall then be interested in solutions to (9.1) of the approximate form

u(x, t) ≈
∞∑

j=−∞
h(x− cpt+ ζj(t)) (9.3)

where the time-dependent positions ζj(t) account for the interaction of individual pulses. We assume that
the pulses are widely spaced to that, at least initially, ζj+1 − ζj � 1 for all j ∈ Z.

Next, we want to write down an ODE that gives the evolution of the positions ζj(t) of the pulses in the
train (9.3). We may expect that the pulses interact, at least to leading order, only with their nearest
neighbours, so that the equation for ζj depends only on the distances ζj+1 − ζj and ζj − ζj−1 of the jth
pulse to its nearest neighbours. If the localized pulse h(ζ) decays to zero exponentially, then the function
given in (9.3) is a solution to the reaction-diffusion equation up to an exponentially small error that arises
due to the overlapping tails. Thus, we expect that the equation of motion for the pulse positions should be
exponentially small in the distances between consecutive pulses. For a finite number of pulses, equations
of this kind have indeed been formally derived, for instance, in [15]. Rigorous results that validate these
equations for a finite number of pulse can be found in [14, 47]. We will take the effective ODE for finite
pulses and simply assume that it correctly reflects the interaction of infinitely many pulses. Alternatively,
we may study the resulting lattice equation on its own right.

To write down the ODE, we assume that the linearization of (9.2) about the equilibrium (u, v) = 0 is
hyperbolic and that there is a unique simple eigenvalue closest to the imaginary axis. We may then assume
that this eigenvalue is stable (the other case can be treated in exactly the same fashion), and we denote it
by ν = −b < 0 with b > 0. The resulting lattice equation is

dζj
dt

= ae−b(ζj−ζj−1), j ∈ Z (9.4)

where we assume that a 6= 0. Note that the equation for the jth pulse depends only on the distance to
the pulse behind, but not the pulse ahead. This reflects the fact that, while the jth pulse sees the tails of
both neighbouring pulses, the tail of the pulse behind decays much slower due to our assumption that the
stable eigenvalue is closest to the imaginary axis. Note also that we omit all remainder terms in (9.4). We
summarize our assumptions on the coefficients that appear in (9.4) in the following hypothesis.
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Hypothesis 9.1 We assume that a 6= 0 and b > 0 in (9.4).

We remark that wave trains with large spatial period L, or small wave number k = 1/L, correspond to the
solutions ζj(t) − ζj−1(t) = L of (9.4) for j ∈ Z where L � 1 is fixed. These wave trains have phase speed
cp(L) = a exp(−bL).

Since we are interested in finding fronts that connect different wave trains as j → ±∞, it is more convenient
to use the distances

Lj(t) = ζj(t)− ζj−1(t) (9.5)

instead of the positions ζj as variables. We then obtain the equivalent lattice equation

dLj

dt
= a

(
e−bLj − e−bLj−1

)
, j ∈ Z (9.6)

for the distances Lj(t) between the jth and the (j − 1)th pulse. Viscous shocks with nonzero speed c∗ that
connect different asymptotic wave trains with periods L± correspond then to travelling-wave solutions to
(9.6) of the form

Lj(t) = L∗(j − c∗t), j ∈ Z (9.7)

with L∗(ξ) → L± as ξ → ±∞, where L∗(ξ) is a given function, defined for ξ ∈ R, that describes the profile
of the shock. Substituting the above ansatz into (9.6), we obtain the delay equation

dL
dξ

(ξ) = − a

c∗

(
e−bL(ξ) − e−bL(ξ−1)

)
, ξ ∈ R (9.8)

for the profile L∗(ξ) where ξ = j − c∗t. We can now state the main result of this section.

Theorem 9.2 Assume that Hypothesis 9.1 is met. For any values L+ > L− > 0, there exist a constant
c∗ and a strictly monotonically increasing solution L∗(ξ) of (9.8) such that L∗(ξ) → L± as ξ → ±∞ and
sign(ac∗) > 0. If L− > L+ > 0, then a solution L∗(ξ) with the above properties does not exist for any value
of c∗.

Note that Theorem 9.2 is somewhat stronger than the corresponding Theorem 4.10 for reaction-diffusion
systems, since it is not required in Theorem 9.2 that |L+ − L−| is small.

9.2 Proof of Theorem 9.2

It will be convenient to use the new variable r defined by

r = e−bL, L = − ln r
b

(9.9)

instead of L so that L > 0 corresponds to 0 < r < 1 (recall b > 0). Equation (9.8) then becomes

dr
dξ

(ξ) =
ab

c∗
r(ξ)(r(ξ)− r(ξ − 1)), ξ ∈ R,

which we write as
dr
dξ

(ξ) = Ar(ξ)(r(ξ)− r(ξ − 1)), ξ ∈ R, (9.10)

for r > 0 where
A =

ab

c∗
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is arbitrary. Note that any constant function r(ξ) = r0 satisfies (9.10). The characteristic equation of the
linearization

ds
dξ

(ξ) = Ar0(s(ξ)− s(ξ − 1)) (9.11)

about r(ξ) = r0 is obtained by seeking solutions to (9.11) of the form s(ξ) = exp(λξ) and is therefore given
by

∆(λ) = λ−Ar0
(
1− e−λ

)
= 0. (9.12)

We then have the following result.

Lemma 9.3 ([12]) Assume that Hypothesis 9.1 is met and fix r0 > 0. The characteristic equation (9.12)
has the root λ = 0. In addition, there is precisely one other real root: this root is positive for Ar0 > 1,
negative for Ar0 < 1, and zero for Ar0 = 1. All remaining solutions of (9.12) have nonzero imaginary part
and strictly negative real part regardless of the value of A.

Proof. The assertions are a consequence of

∆(0) = 0,
d∆
dλ

(0) = 1−Ar0, lim
λ→∞

sign∆(λ) = 1

taken together with [12, Theorems 3.1, 3.2 and 3.12].

The root λ = 0 corresponds, of course, to the line of equilibria of (9.10) given by r(ξ) = r0 where r0 > 0 is
arbitrary. Interpreting (9.10) as a dynamical system on the function space C0([−1, 0]), see [12], and using
the invariant-manifold results stated and proved in [12, Chapters VIII and IX], we can therefore conclude
the following from Lemma 9.3: The unstable manifold of the equilibrium r(ξ) = r0 is one-dimensional if
Ar0 > 1 and has dimension zero for Ar0 < 1. Analogously, the stable manifold of r(ξ) = r0 has codimension
two if Ar0 > 1 and codimension one if Ar0 < 1. The line r = r0 ∈ R+ of equilibria forms the center manifold
which has dimension one at points where Ar0 6= 1.

In particular, since 0 < r0 < 1 for any equilibrium consistent with (9.9), we see that A > 0 is a necessary
condition to obtain a heteroclinic orbit that connects an equilibrium r− to r+. Thus, we will only consider
A > 0 from now on and define

` =
r

A
> 0 (9.13)

so that (9.10) becomes
d`
dξ

(ξ) = `(ξ)(`(ξ)− `(ξ − 1)). (9.14)

Lemma 9.4 If `(ξ) satisfies (9.14) for ξ ≥ 0, and `(ξ) > 0 is strictly monotone on [−1, 0], then `(ξ) is
strictly monotone for ξ ≥ −1 as long as `(ξ) > 0.

Proof. If not, take the smallest value of ξ ≥ 0 for which `′(ξ) = 0, while `(ξ) > 0. It is then straightforward
to obtain a contradiction to (9.14).

The next lemma states that every `− > 1 connects to some `+ > 0 via a heteroclinic solution to (9.14).

Lemma 9.5 For each `− > 1, there exists a solution `∗(ξ) to (9.14) in the one-dimensional unstable manifold
of `− such that `∗(ξ) decreases monotonically for ξ ∈ R and `∗(ξ) → `+ for some `+ > 0.
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Proof. Note that the tangent vector to the unstable manifold of `− is equal to exp(λξ) for some λ > 0.
In particular, the solution `∗(ξ) in the unstable manifold that corresponds to `− − ε exp(λξ) + O(ε2) for
sufficiently small ε > 0 is strictly monotonically decreasing in ξ for all ξ � −1. On account of Lemma 9.4,
it therefore suffices to show that `∗(ξ) is bounded away from zero in order to prove the lemma. To this end,
define p(ξ) = 1/`(ξ) so that p(ξ) = 1/`∗(ξ) satisfies the equation

p′(ξ) =
p(ξ)− p(ξ − 1)

p(ξ − 1)
.

We shall show that the monotonically increasing p(ξ) is bounded as a function of ξ. If not, then we certainly
have that p(ξ) > 4 for all ξ ≥ −1, say. Integrating the above delay equation, we therefore obtain

∆(ξ) := p(ξ)− p(ξ − 1) =
∫ ξ

ξ−1

p(ζ)− p(ζ − 1)
p(ζ − 1)

dζ ≤ 1
4

sup
ζ∈[ξ−1,ξ]

[p(ζ)− p(ζ − 1)] =
1
4

sup
ζ∈[ξ−1,ξ]

∆(ζ)

for ξ ≥ 0. Taking the supremum on both sides gives

sup
ξ∈[τ,τ+1]

∆(ξ) ≤ 1
4

sup
ξ∈[τ,τ+1]

(
sup

ζ∈[ξ−1,ξ]

∆(ζ)

)
≤ 1

4
sup

ξ∈[τ−1,τ+1]

∆(ξ)

≤ 1
4

(
sup

ξ∈[τ−1,τ ]

∆(ξ) + sup
ξ∈[τ,τ+1]

∆(ξ)

)

so that
Mj := sup

ξ∈[j,j+1]

∆(ξ) <
1
2

sup
ξ∈[j−1,j]

∆(ξ) =
1
2
Mj−1

for all j ≥ 0. As a result, we get

p(j) = p(1) +
j∑

i=0

∆(i) ≤ p(1) +
j∑

i=0

Mi ≤ p(1) +
j∑

i=0

M1

2i
≤ p(1) + 2M1

which proves that p(ξ) is indeed bounded independently of ξ.

For each `− > 1, we denote by `+ = H(`−) the constant solution for which limξ→∞ `∗(ξ) = `±, where `∗(ξ)
is the heteroclinic orbit obtained in Lemma 9.5.

Lemma 9.6 The function H(`−) is continuous in `− > 1, has values in (0, 1], and satisfies

H(`−)
`−

−→

{
0 `− →∞
1 `− → 1

(9.15)

Before we prove this lemma, we show how it implies Theorem 9.2. Choose L+ > L− > 0, then we need to
find numbers `− > 1 and A such that

H(`−) =
1
A

e−bL+ , `− =
1
A

e−bL− .

Thus, A = e−bL−/`−, and it remains to find `− > 1 such that

H(`−)
`−

= e−b(L+−L−).

Lemma 9.6 together with L+−L− > 0 implies that such an `− exists. Thus, it suffices to prove Lemma 9.6.
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Proof of Lemma 9.6. We first prove that H(`−) ≤ 1 for all `− > 1 (note that H is well defined and
positive by Lemma 9.5). Observe that the derivative `′∗(ξ) satisfies the variational equation

d`
dξ

(ξ) = [2`∗(ξ)− `∗(ξ − 1)]`(ξ)− `∗(ξ)`(ξ − 1). (9.16)

about the connecting orbit `∗(ξ). The results in [9] imply that (9.16) does not admit any nontrivial small
solutions, that is, there are no nonzero solutions to (9.16) that decay faster than any given exponential. If
H(`−) > 1, then this fact implies that

`′∗(ξ) = a−λξ + O
(−2λξ

)
for some a 6= 0 and some root λ of ∆(λ), defined in (9.12), with Reλ < 0. By Lemma 9.3, any such λ has
nonzero imaginary part though, contradicting monotonicity of `∗(ξ) as stated in Lemma 9.4. Therefore, we
have H(`−) ≤ 1 for all `− > 1.

Using this restriction on the range of H, continuity of H follows from the unstable-manifold theorem for
delay equations [12]. As a consequence of the above facts, we see that H(`−)/`− → 0 as `− →∞.

It therefore remains to prove that H(`−)/`− → 1 as `− → 1. Hence, we consider the two-dimensional center
manifold of (9.14),

d`
dξ

(ξ) = `(ξ)(`(ξ)− `(ξ − 1)),

near ` = 1. Using the results in [12, Chapter IX.10], we see that the vector field on the center manifold is
given by

x′ = y

(
1 +

2x
3

+ O(x2 + y2)
)

(9.17)

y′ = y
(
2x+ O(x2 + y2)

)
where the coordinates x and y correspond to the eigenfunction `(ξ) = 1 and the generalized eigenfunction
`(ξ) = ξ. We also used the fact that the line y = 0 consists of equilibria. Introducing the new variable

z = x′ = y

(
1 +

2x
3

+ O(x2 + y2)
)
,

(9.17) becomes

x′ = z (9.18)

z′ = 2z
(
x+

z

3
+ O(x2 + z2)

)
.

The equilibria with x > 0 have a one-dimensional unstable manifold. The solutions inside these manifolds
for which z < 0 will cross the z-axis at a finite distance. We shall construct a trapping region that shows
that each such solution converges to an equilibrium with x < 0. Indeed, consider the line

z = T (x) = −ε2
(
1 +

x

2ε

)
=: −ε2w

where −2ε ≤ x ≤ 0 and therefore w ∈ [0, 1]. We compute(
−dT

dx

1

)
·
(
x′

z′

)
=
ε3y

2
[5− 4y + O(ε)] > 0

which shows that solutions in the unstable manifold of equilibria with x > 0 close to zero converge to
equilibria with x < 0 that are also close to zero. Interpreting these results for the original equation proves
that H(`−)/`− → 1 as `− → 1.
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10 Applications

10.1 The FitzHugh–Nagumo equation

The FitzHugh–Nagumo equation is given by

∂tu = ∂xxu+ u(1− u)(u− a)− w (10.1)

∂tw = ε(u− γw),

for x ∈ R, where γ ≥ 0 and a ∈ (0, 1
2 ) are fixed. This equation is a simplification of the Hodgkin–Huxley

equation that models the propagation of impulses in nerve axons. We are interested in travelling waves
(u,w)(x, t) = (u,w)(x− ct).

It has been shown in [21] that (10.1) exhibits a localized pulse with positive speed for all sufficiently small
0 < ε � 1. As shown in [24, 57], this pulse, which we refer to as the fast pulse, is nonlinearly stable. Each
fast pulse is accompanied by a family of wave trains with arbitrarily large period.

Theorem 10.1 ([48, Theorem 21]) For each fixed a in the interval (0, 1
2 ), there exists a number ε∗ =

ε∗(a) with the following property. For every ε with 0 < ε < ε∗, there is an L∗ = L∗(ε) so that the fast pulse
to the FitzHugh–Nagumo system is accompanied by periodic wave trains with period L for any L > L∗, and
all these wave trains are spectrally stable.

In fact, using the quantities νs, V s, W s and M from [48, §6.2], we may define the constants b and Γ via

b = −νs, Γ =
〈V s,W s〉

M

so that
λ(ν) = bΓ

(
eνL − 1

)
e−bL, c(L) = c∞ − Γe−bL (10.2)

for all L� 1, where c∞ > 0 and c(L) denote the phase velocities of the fast pulse and the wave trains with
period L, respectively. From Remark 4.5, we obtain that

cg = c(L)− Lc′(L) = c(L)− bLΓe−bL < c(L) < c∞, signω′′nl(k) = sign c′′(L) < 0.

Using geometric singular perturbation theory, the results mentioned above carry over to the modified
FitzHugh–Nagumo equation

∂tu = ∂xxu+ u(1− u)(u− a)− w (10.3)

∂tw = δ2∂xxv + ε(u− γw),

with small diffusion added to the second equation, provided the diffusion coefficient δ > 0 is chosen sufficiently
small so that 0 < δ � ε � 1. Hence, the theory developed in the preceding sections can be applied to the
FitzHugh-Nagumo system (10.3). In particular, weak viscous-shock interfaces of (10.3) travel to the right at
a smaller speed than the wave trains, and they connect wave trains with larger period at x = −∞ to wave
trains with smaller period at x = ∞.

Lastly, we remark that Eszter [16] investigated spectral and nonlinear stability of periodic wave trains to
the FitzHugh–Nagumo system (10.1) in a different regime: he first fixed the period L of a singular spatially-
periodic wave train and then varied ε > 0 near zero with ε < ε∗(L); the maximal allowed value ε∗(L) will
tend to zero as the period L tends to infinity.
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10.2 The weakly unstable Taylor–Couette problem

In §3, we asserted that solutions to Burgers equation can indeed, as expected, be used to approximate the
dynamics of modulated wave trains in the complex cubic Ginzburg–Landau equation. On the other hand,
it is well known that the Ginzburg–Landau equation itself approximates the dynamics near onset of far
more complex pattern-forming systems. It is the purpose of this section to illustrate this connection by
investigating the Taylor–Couette problem close to the first instability of the stationary Couette flow.

We strongly expect that the results we established for reaction–diffusion systems are also true for hydrody-
namical stability problems such as the Taylor–Couette problem but have not yet embarked on the proofs.

The Taylor–Couette problem [7] consists of finding the velocity field of a viscous incompressible fluid between
two rotating concentric cylinders. This system has a stationary solution, the so-called Couette flow, that has
purely azimuthal form, so that the streamlines are concentric circles. It is known that the Couette flow is
asymptotically stable for sufficiently small Reynolds number R and destabilizes for larger Reynolds numbers.
Mathematically, the fluid flow can be described by the incompressible Navier–Stokes equation with no-slip
boundary conditions.

To set up the problem, we denote by Ri and Ro the inner and outer radii of the two concentric cylinders,
with the obvious assumption Ri < Ro, and by Ωi and Ωo their angular velocities. We write ν for the viscosity
coefficient of the fluid. It is then convenient to introduce the nondimensional parameters

Ω := Ωo/Ωi, η := Ri/Ro, R := RiΩi(Ro −Ri)/ν

that fully describe the system, where R is called the Reynolds number. The annular planar cross-section
between the cylinders is denoted by Σ, so that the fluid fills the three-dimensional volume Q = R × Σ.
Thus, in cylindrical coordinates (x, r, ϕ), the domain Q is defined by x ∈ R, η/(1− η) < r < 1/(1− η), and
ϕ ∈ R/2πZ. The Cartesian coordinates in the annular cross-section Σ are denoted by z = (z1, z2) ∈ Σ ⊂ R2.

The stationary Couette fluid flow is given by

UCou(x, r, ϕ) =

 U(x)

U(r)

U(ϕ)

 =
(
Ar +

B

r

) 0
0
1

 , A =
Ω− η2

η(1 + η)
, B =

(1− Ω)η
(1− η)(1− η2)

,

where (U(x), U(r), U(ϕ)) denote the cylindrical coordinates of the vector U . The above fluid flow satisfies the
Navier–Stokes equation on Q with no-slip boundary conditions on ∂Q and is, in fact, exponentially stable
for sufficiently small Reynolds numbers R. The deviation (U,P ) from the Couette flow UCou satisfies the
Navier–Stokes equation

∂tU = ∆U −R[(UCou · ∇)U + (U · ∇)UCou + (U · ∇)U ]−∇P (10.4)

∇ · U = 0

with no-slip boundary conditions U = 0 at r = η/(1 − η) and at r = 1/(1 − η). To solve this equation
uniquely for the velocity U and pressure gradient ∇P , we need to add the flux condition

[U(x)]Σ =
1
|Σ|

∫
z∈Σ

U(x)(x, z) dz = 0.

We refer to [7] for more details.

In the (U,P ) variables, the Couette flow corresponds to (U,P ) ≡ 0 which is a solution for all R. This trivial
branch of solutions becomes unstable when the Reynolds number R exceeds a certain threshold value which
we denote by Rc. The translation invariance of (10.4) in the x-direction implies that the linearization of
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(10.4) about (U,P ) = 0 has continuous spectrum given by dispersion curves λ = λn(`) for n ∈ N with
associated eigenmodes of the form

eλn(`)tei`xUn(`, z), z ∈ Σ

where ` ∈ R and Un(`, z) ∈ C3. We may order the dispersion curves so that Reλn ≥ Reλn+1 for all n ∈ N.
The instability scenario is then as follows.

For η close to one, there exists a number Ωb with the following property. If we fix Ω > Ωb, then the real-
valued curve ` 7→ λ1(`) crosses the imaginary axis from left to right as R increases though Rc. On the other
hand, if we fix Ω < Ωb, then the two complex-conjugated curves ` 7→ λ1(`) and ` 7→ λ2(`) = λ1(`) cross
the imaginary axis at some nonzero wave number ` = `c 6= 0 as R passes though Rc. In both cases, each
remaining dispersion curve is strictly bounded away from the imaginary axis. We refer to the first case as
PRI and to the second case as PRII. In the following, we focus on PRII.

To analyse the resulting bifurcation for PRII, we introduce the small parameter ε2 = R−Rc and make the
ansatz

Uapprox = εA(ε(x− cgt), ε2t)ei`cx+iωctU1(`c, z) + c.c. (10.5)

where
cg =

d Imλ1

d`
(`c), ωc = Imλ1(`c).

Using this ansatz, the Ginzburg–Landau equation

∂TA = c1∂XXA+ c2A− c3|A|2A (10.6)

can be derived for the complex-valued amplitude A = A(X,T ) for certain complex coefficients cj ∈ C. It has
been proved in [55] that the approximation of the Taylor–Couette system by the above Ginzburg–Landau
equation is valid over the natural time scale:

Theorem 10.2 ([55]) For each choice of positive numbers C1 and T0, there exist constants C2 and ε0 > 0
such that the following is true for all 0 < ε < ε0. If A ∈ C0([0, T0],H3

ul) is a solution to the Ginzburg–Landau
equation (10.6) such that

sup
T∈[0,T0]

‖A(T )‖H3
ul
< C1,

then there exists a solution U of the Taylor–Couette problem (10.4) with

sup
t∈[0,T0/ε2]

‖U(t)− Uapprox(t)‖H2
ul
≤ C2ε

2

where Uapprox has been defined in (10.5).

Remark 10.3 In the parameter region PRII of interest to us, a system of coupled Ginzburg–Landau equa-
tions can be derived for the amplitudes A1 and A2 corresponding to the curves λ1 and λ2 of eigenvalues.
Since these equations decouple when one of the amplitudes is set to be zero, we again obtain a family of
solutions that can be described by a single Ginzburg–Landau equation (see [55]).

The Ginzburg–Landau equation (10.6) can be put into the normal form (3.11). Doing this in the region PRI,
we obtain the coefficients α = β = 0. In the case PRII, however, we obtain nonzero coefficients α, β 6= 0 and
therefore a nontrivial Burgers equation

∂τq = (1 + αβ)∂Y Y q + (β − α)∂Y (q2) (10.7)

for the evolution of the wave number q of the locally preferred planform.

Combining Theorem 3.4 with Theorem 10.2 gives the following result.
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Theorem 10.4 For each fixed choice of integers M ≥ 1, 0 < m < M and n ≥M +3, and constants C0 > 0
and T0 > 0, there are constants C1 > 0 and δ1 > 0 such that the following is true for each δ ∈ (0, δ1) and
each solution q of the Burgers equation (10.7) for which

sup
τ∈[0,τ0]

‖q(τ)‖Hn
ul
≤ C0.

There exist higher-order approximations (qh, rh) with

sup
T∈[0,T0]

sup
X∈R

(∣∣∣∣rh(X,T ) +
1
2
(q(X,T )2 + α∂Xq(X,T ))

∣∣∣∣+ |qh(X,T )− q(X,T )|
)
≤ C1δ

and numbers ε2 > 0 and C2 > 0 such that, for each choice of ε ∈ (0, ε2), there is a solution U = U(x, z, t)
of the Taylor–Couette problem in PRII and a global phase φ0(t) with |φ0(t)| ≤ C2 so that

sup
t∈[0,τ0/(εδ)2]

sup
x∈[−1/(εδ)m,1/(εδ)m]

∣∣∣∣∣U(x− φ0(t), t)− ε
(
1 + δ2rh(εδ(x− cgt), ε2δ2t)

)
× exp

(
i`cx+ iωc + iε2βt+ i

∫ εδ(x−cgt)

0

δqh(δY, ε2δ2t) dY

)
U1(`c, z)− c.c.

∣∣∣∣∣ ≤ C1εδ
1+M−m + C2ε

2.

Proposition 2.3 shows, at least on the level of approximation of solutions of the Taylor–Couette problem by
Burgers equation as explained by the theorems stated in this section, that the phases of waves with the same
wave number are mixed universally in the Taylor–Couette problem in the case PRII near onset.
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