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Abstract. The major focus of this work is to examine the dynamics of velocity amplification through pair-wise collisions between

multiple masses in a chain, in order to develop useful machines. For instance low-cost machines based on this principle could

be used for detailed, very-high acceleration shock-testing of MEMS devices. A theoretical basis for determining the number

and mass of intermediate stages in such a velocity amplifier, based on simple rigid body mechanics, is proposed. The influence

of mass ratios and the coefficient of restitution on the optimisation of the system is identified and investigated. In particular,

two cases are examined: in the first, the velocity of the final mass in the chain (that would have the object under test mounted

on it) is maximised by defining the ratio of adjacent masses according to a power law relationship; in the second, the energy

transfer efficiency of the system is maximised by choosing the mass ratios such that all masses except the final mass come to

rest following impact. Comparisons are drawn between both cases and the results are used in proposing design guidelines for

optimal shock amplifiers. It is shown that for most practical systems, a shock amplifier with mass ratios based on a power law

relationship is optimal and can easily yield velocity amplifications of a factor 5–8 times. A prototype shock testing machine that

was made using above principles is briefly introduced.

Nomenclature

Symbol Description Units

Ai Velocity amplification for mass i –

ej,i Coefficient of restitution between masses j and i –

gj,i Initial velocity ratio of masses j and i –

Gn Velocity amplification for system –

Kn Kinetic energy transfer efficiency for system –

mi Mass of mass i kg

M Total system mass kg

rj,i Mass ratio of masses j and i –

Vi Velocity of mass i (after impact) m/s

vi Velocity of mass i (before impact) m/s
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Subscripts

ff Free-fall

1, 2, . . . , i, . . . , n Mass number

MET Maximum energy transfer

MV G Maximum velocity gain

Superscripts

max Optimum or maximum

1. Introduction

This paper examines the dynamics of velocity amplification through collisions between multiple masses with a

view to developing useful machines. There are two kinds of applications of impacts between multiple objects: (1)

Building machines that amplify shock or velocity like shock testers, ballistic launchers etc., and (2) Developing

mechanisms and materials for absorbing shock or energy like protective armour, and shock protection of portable

objects [4]. The dynamics principles underlying both of the above are the same. The current work will focus more

on velocity amplification and develop a set of rules and guidelines for developing versatile and low-cost machines

for very-high shock testing of emerging electronic components like MEMS, nano-optics devices, and sensors. In

most cases, however, the design rules could be equally applicable to developing shock absorbers.

Due to their small masses, packaged MEMS devices can be designed to be very rugged. They are commonly found

in telecommunication equipment with very high reliability requirements; and in critical missile control systems,

smart ammunition and in space rockets, where they must be capable of performing reliably under severe acceleration

conditions, perhaps following a long period of storage. Current test methods used for testing shock-hardened

MEMS devices include the Hopkinson bar [1], rail and air guns, very-high drop testing, pneumatic shock and

centrifuging [11].

The shock testing machines being proposed in this paper, based on velocity/shock amplification through multiple

impacts, offer several advantages over the above methods, including:

– They offer detailed and precise testing capabilities using a single machine that allows a vast range of shock

pulses so that shock testing can be incorporated early in the design stage of the device.

– Such machines can be scaled with the size of the object being tested.

– They can be used in stand-alone mode or as attachments to existing shock testing machines, thereby vastly

increasing their capability.

– They enable high-speed video recording of the device during test to be implemented relatively easily.

– They provide safer and much lower-cost shock testing capability.

In the late 1960s and early 1970s, a number of papers were published that analysed the dynamics of multiple

impacts and associated velocity amplification [6–8]. In their paper on energy transfer in one-dimensional collisions

of multiple objects, Hart and Hermann [6] showed that for maximum energy transfer between a moving mass and the

final mass in a chain of several stationary masses, each intermediate mass should be a geometric mean of its adjacent

masses. Kerwin [8] looked at a similar system and deduced the equations for velocity, momentum and kinetic energy

transfer for cases where the coefficient of restitution is either one or zero. He also used a velocity transformation

to apply the results to a system of successively smaller vertically-stacked masses dropped on the ground. Harter et

al. [7] studied the behaviour of three successively smaller rubber balls stacked one above the other and dropped on

a rigid surface. They analysed this system using elastic and inelastic independent-collision models, and quasi-linear

and non-linear elastic continuous force models. They predicted the ratio between successive masses in the case of

an elastic system (where the coefficient of restitution is unity) such that all masses, except the final one, come to rest

after the collisions. They also showed that the velocity of the final mass in this case varies linearly with the number

of masses in the system.

Recently other authors [9,10] have analysed similar systems using a variety of more sophisticated approaches.

Patrı́cio [9] used Hertzian contact theory to develop equations of motion for two masses impacting a rigid plane and

showed that significantly non-rigid impacts lead to more complicated interactions between the colliding masses, like
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Fig. 1. System of two impacting masses.

all three bodies impacting at once, resulting in velocity amplifications that are much lower than those predicted by

the independent-collisions model. Pöschel and Brilliantov [10], in perhaps the most thorough treatment of this topic

using the independent collision approach, showed that for an elastic system similar to that described by Hart and

Hermann [6], the kinetic energy of the first mass is transferred completely to the last mass if there are an infinite

number of intermediate masses. They also proposed a method for calculating the optimum number of masses in

a chain where each collision is dissipative and the coefficient of restitution is a constant less than one. Finally,

they developed theories for the case of visco-elastic bodies where the coefficient of restitution is not constant, but a

function of the impact velocity.

The manner in which the current work differs from previous work is primarily in its focus on developing guidelines

for building useful machines. Besides gathering all the relevant analytical results from previous work into one place,

the novelty centres around the deeper analysis of the various configurations of shock amplifiers mentioned in the

paper, comparisons of their relative merits, and the development of design guidelines.

All the analyses presented in the paper are based on simple rigid body models - primarily those governing the

momentum transfer and energy dissipation during impacts between two point masses or rigid spheres. These are

sufficient because, a) the shock machines being discussed in this paper are designed to ensure independent pair-wise

collisions, b) the guidelines being developed are based on velocity amplifications and not acceleration levels so the

details of every impact are not important, only the velocities of the masses before and after impact, and c) the general

results are valid despite deviations from rigid-body models.

The layout of the rest of the paper is as follows: the dynamics of impact between two masses is examined in

detail followed by the dynamics of impacts between a chain of masses configured and stacked (both horizontally

and vertically) for velocity amplification. Optimal design principles for vertically-stacked shock amplifiers are then

determined followed by discussion and conclusions.

2. Dynamics of impact between two masses

Lots of useful machines can be conceptualized and designed by extrapolating the results of an impact between

two masses, hence a thorough understanding of their dynamics is crucial. This section summarizes the dynamics of

impact between masses m1 and m2(m1 > m2), illustrated in Fig. 1, using rigid body mechanics. Energy loss is

modelled through the coefficient of restitution [2,3], and the influence of external forces during impact, including

gravity, is neglected [5].

Conservation of momentum for the system implies that:

m1V1 + m2V2 = m1v1 + m2v2 (1)

The coefficient of restitution e2,1 for impact between m2 and m1 is defined as:

e2,1 = −
V2 − V1

v2 − v1
(2)

Combining Eqs (1) and (2) leads to the following equations for the velocity gains of the masses after impact:
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Fig. 2. 3D plot of velocity gain of masses m1 and  m2 versus mass ratio and initial velocity ratio, for  r2, 1 = 0. 8. (-) means non-dimensional.

A1 =
V1

v1
= 1 +

r2,1

1 + r2,1
(1 + e2,1)(g2,1 − 1) (3)

A2 =
V2

v2
= 1 −

1

1 + r2,1
(1 + e2,1)(1 −

1

g2,1
) (4)

where mass ratio r2,1 and initial velocity ratio g2,1 are defined as:

r2,1 =
m2

m1
(5)

g2,1 =
v2

v1
(6)

If the velocity gains of both masses are plotted from Eqs (3) and (4), the resulting surfaces are as shown in Fig. 2

(for a representative high coefficient of restitution for real materials, e 2,1 = 0.8). Note that the range of initial

velocity ratio is limited such that an impact will always occur (i.e., −∞ < g2,1 < 1).

Figure 2 may be used to determine what happens to m1 or m2 following impact, both qualitatively and quan-

titatively, i.e. whether their velocity increases or decreases and the magnitude of the velocity change. (Note that

given its definition, the velocity gain of the second mass tends to infinity for cases where m 2 starts out at rest.) For

instance, regions of design space where A2 > 1 represent conditions that lead to velocity amplification of m2. One

can use Fig. 2 further to reason about pair-wise impacts involving multiple masses. For instance, in a system of three

masses with defined initial velocities and masses, the final velocity V2 of m2 after its impact with m1 becomes its

initial velocity v2 in the subsequent collision with m3.

Impacts involve momentum and energy transfer between the colliding objects. One special case of a two-mass

impact occurs when one of the masses comes to rest after impact, thereby transferring all its momentum to the other

mass. In other words, given the coefficient of restitution, such impacts maximise the transfer of kinetic energy from

one mass to the other. Machines exploiting momentum-transferring impacts are germane to the current study, and

the dynamics of these impacts is now examined further.

For m1 to come to rest after impact (V1 = 0), it may be shown from Eq. (3) that the initial velocity ratio must be

related to the coefficient of restitution and the mass ratio as follows:
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Fig. 3. 3D plot of initial velocity ratio, g2, 1 versus coefficient of restitution,  e2, 1 and mass ratio,  r2, 1 for the case where  V1 = 0 for the upper

surface and  V2 = 0 for the lower surface. The table arrows indicate the direction of motion after impact. (-) means non-dimensional.

g2,1 =
e2,1 − 1/r2,1

1 + e2,1
(7)

Similarly, if m2 comes to rest after impact (V2 = 0), it can be shown from Eq. (4) that:

g2,1 =
1 + e2,1

e2,1 − r2,3
(8)

Figure 3 plots Eqs (7) and (8), and it is useful in determining the direction of either of the two masses after impact.
For all points on the surfaces in Fig. 3, at least one of the masses is at rest after impact. For any point below the
lower surface in Fig. 3, both masses move in the negative direction after impact. At all points that lie between the
surfaces, the masses move in opposite directions after collision. Finally, for any point that lies above the plotted
surfaces, each mass moves in the positive direction after impact. The upper surface and the region above it is the
design space most suitable for velocity or shock amplifiers.

A specialized case of maximal energy transference involves an impact between a moving object and a stationary
object. Setting V1 = v2 = 0 in Eqs (1) and (2), it may be shown that the velocity gain of the system (here defined
as G2) is given by:

G2 =
V2

v1
=

1

r2,1
= e2,1 (9)

Since the velocity gain of the system is equal to e2,1 (which has an upper limit of one for a perfectly elastic
collision), this arrangement is therefore not useful in amplifying velocity. However, it could be effective as a velocity
attenuator or energy absorber for low coefficients of restitution.

2.1. Kinetic energy transfer efficiency

To formalize the investigation of the efficiency of kinetic energy transfer through collisions in a system of masses,
a new parameter K is introduced that is defined as the ratio of kinetic energy of a mass after collision to that of the
kinetic energy of the total system before impact. Therefore, for mass one:

K1 =
1
2m1V

2
1

1
2m1v2

1 + 1
2m2v2

2

=

(

1 +
r2,1

1+r2,1

(1 + e2,1)(g2,1 − 1)
)2

1 + r2,1g2
2,1

(10)
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Fig. 4. 3D Plot of kinetic energy transfer efficiency of both masses after impact over initial system energy versus initial velocity ratio and mass
ratio for e2, 1 < 0. 8. (-) means non-dimensional.

Similarly, for the second mass:

K2 =
r2,1

(

g2,1 −
1

1+r2,1

(1 + e2,1)(g2,1 − 1)
)2

1 + r2,1g2
2,1

(11)

The sum of these kinetic energy transfer efficiencies will be one when the coefficient of restitution is one (i.e.

when there is no energy lost in the collision). For the special case where the second mass is initially at rest (i.e.

g2,1 = 0), the energy efficiency reduces to:

K2 =
r2,1(1 + e2,1)

2

(1 + r2,1)2
(12)

a result also found by Hart and Herrmann [6].

Figure 4 displays the equations for kinetic energy transfer efficiency ratio as a function of initial velocity ratio and

mass ratio (again for the high coefficient of restitution of 0.8). Note that since e 2,1 < 1, K1 + K2 < 1.

3. Shock amplification through a series of horizontal masses

One of the main inferences from Section 2 is that a heavy mass impacting a reasonably light mass, with a

sufficiently high coefficient of restitution, can cause a velocity amplification of the lighter mass. For instance in a

perfectly elastic collision between two masses that approach each other with equal and opposite velocities, with one

of the masses being at least three times as heavy as the other one, the lighter mass rebounds with a velocity that is

more than twice its velocity before impact.

Therefore a natural configuration to consider for a velocity amplifier or launcher is that of a series of progressively

and appropriately smaller masses in the horizontal plane as shown in Fig. 5. All the masses are initially at rest except

for the largest mass m1, which impacts the second mass m2, which impacts m3 and so on until the last mass mn is

impacted. Depending on the mass ratios between the successive masses of the chain in Fig. 5, and the coefficient of

restitution, mass mn could be launched with significantly higher velocity than that of m 1.

It can be shown that the general equation for the velocity gain Gn of the final mass after impact is:
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Fig. 5. System of sequentially smaller, stationary masses impacted by a moving mass.

Gn =

n
∏

k=2

(

1 + ek,k−1

1 + rk,k−1

)

(13)

This result is similar to that found by Kerwin [8].

3.1. Maximum velocity gain system

For a fixed kinetic energy input into the system in Fig. 5 (i.e., given mass m 1 and velocity v1) and a given final
mass mn, the question arises if there is a configuration of the system that maximizes the velocity V n of mn.

Given m1 and mn implies that the product of the pair-wise mass ratios of the masses in Fig. 5 is fixed, no matter
how many masses there are in the chain, because:

R =
mn

m1
= r2,1 · r3,2 · r4,3 . . . rn,n−1 (14)

Hart and Hermann [6], Kerwin [8], Pöschel and Brilliantov [10], and others showed that for a constant coefficient
of restitution e for all the impacts and a given n, the velocity gain of mn is maximised by choosing the following
power law relationship to define the pair-wise mass ratios:

ri,i−1 = R
1

n−1 (i = 2, 3, . . . , n) (15)

And the corresponding maximum velocity gain of mn is given by:

Gn =
Vn

v1
=

[

1 + e

1 + R
1

n−1

]n−1

(16)

In addition, the kinetic energy transfer efficiency for the last mass is given as [6],

Kn =
R(1 + e)2(n−1)

(

1 + R
1

n−1

)2(n−1)
(17)

A chain of n masses with mass ratios specified by Eq. (15) is referred to as the Maximum Velocity Gain (MVG)
system in the rest of this paper. It is clear from Eqs (15) and (16) that the mass distribution of an MVG system is
independent of the coefficient of restitution but its velocity gain is not. It can be shown from equation (16) that for
perfectly elastic collisions (i.e., e = 1) the velocity gain continues to increase with increasing number of masses in
the chain, approaching an asymptotic limit for n → ∞, and defined as:

Gn
n→∞

=
1

√
R

(18)

Equation (18) implies that with an infinite chain of elastic collisions, all the energy of the first mass is transferred to
the last mass.

For inelastic collisions (i.e., e < 1), however, there is a trade-off between the velocity gain and the energy loss
by an additional impact. Therefore the velocity gain does not increase monotonically with n, but rather it has a
maximum value Gmax

n for a given e. In addition, as supported by intuition, Gmax
n decreases with decreasing e.

Pöschel and Brilliantov [10] proposed a numerical solution to Eq. (16) for determining G max
n and the corresponding

nmax for a given e, although it is possible to get Gmax
n and nmax more directly by simply tabulating or plotting

Eq. (16).
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Fig. 6. Model of velocity amplifier prior to second impact.

4. Shock amplification through a series of vertically-stacked masses

In general, shock-testing machines (or drop-testing machines) tend to be vertical in order to use gravity to create

impact velocity. Similarly, gravity can be used to advantage in designing a shock amplification system composed of

a series of vertically-stacked masses, separated by an arbitrarily small distance from each other, as shown in Fig. 6.

Like with the horizontal configuration discussed in the previous section, the heaviest mass is at the bottom of the

chain with progressively smaller masses above it, so that m1 > m2 > . . . > mn. Assume that the entire chain is

dropped from some height towards the ground such that initially all the masses are approaching the ground with the

same free-fall velocity, vff . The sequence of events that occurs at impact, in terms of rigid-body mechanics, is as

follows.

Mass m1 impacts the ground first, instantaneously reversing its velocity to e 1,0vff and then impacts the approach-

ing mass m2. With an appropriate e2,1 and mass ratio r2,1 as found from the equations in Section 2, m2 will reverse

its velocity with a magnitude significantly higher than its approach velocity of v ff . This phenomenon of velocity

amplification through pair-wise impacts continues sequentially as m2 impacts m3, which then impacts m4, and so

on until mass mn−1 impacts the final mass in the chain mn.

Note that with a change in reference frame, the system described above is the same as the horizontal system

described in Section 3, with the heaviest mass approaching the rest of the stationary masses (in the new reference

frame) with velocity (1 + e1,0)vff . Equation (19) then implies that for the vertically-stacked series of masses of

Fig. 6, the general expression for the velocity gain of mn, following the sequence of impacts described above, is:

Gn = (1 + e1,0)

n
∏

k=2

(

1 + ek,k−1

1 + rk,k−1

)

− 1 (19)

Equation (19) describes the velocity gain for systems somewhat more general than that explained in Fig. 6, because

by assuming values of e1,0 > 1 we have systems where the first mass could hit an ‘active ground’ with the potential

for adding energy to m1.

4.1. Maximum velocity gain system

All the assumptions and computations leading to the horizontal configuration maximum velocity gain system,

with mass ratios given by Eq. (15), are equally valid for the vertically-stacked system of masses. In other words,

for a vertically-stacked chain of n masses with constant coefficient of restitution e, the velocity gain of the topmost
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mass can be maximized if the mass ratios obey the power law of Eq. (15), and it is given as:

Gn =
(1 + e)n

(

1 + R
1

n−1

)n−1 − 1 (20)

Further, for perfectly elastic collisions (e = 1), the asymptotic limit for velocity gain when n → ∞, is given by:

Gn
n→∞

=
2 −

√
R

√
R

(21)

For inelastic collisions, for every given e, an nmax that leads to a Gmax
n can be found directly by tabulating or

plotting Eq. (20). Gmax
n decreases with decreasing e. Figure 7 illustrates how the velocity gain changes with the

number of masses in the chain, the presence of an nmax and a corresponding Gmax
n and their dependence on e. Note

that the maximum velocity amplification achievable through this scheme of multiple impacts decreases rapidly with

the increase of energy dissipation associated with every impact, such that for values of e < 0.35 there is no velocity

amplification at all. Hence for purposes of building a shock-amplifier, it is imperative that the impacts be mediated

through materials/methods that have very high restitution.

It may also be shown that nmax can be found by using similar equations proposed by P öschel and Brilliantov [10]

for the horizontal MVG case, using the following method. First determine

n∗ =
ln (R)

ln (x0)
+ 1 (22)

where x0 is the solution to the equation:

(1 + x0) = (1 + e)x
x0/1+x0

0 (23)

and then calculate:

G∗ =
(1 + e)

n∗

(1 + R)
n∗

−1 − 1 (24)
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The nearest rounded integer (both floor and ceiling) to n ∗ that yields a higher value of Gn through Eq. (24) is then

nmax and the corresponding Gn is Gmax
n . Figure 8 shows the value for nmax computed for the range of e = [0, 1]

and for a large range of R.

While designing a shock amplification machine for testing purposes, design constraints arise from the size of the

machine, the size and shape of the objects to be tested, the materials that are available, the required shock levels

and their durations, etc. The above, in turn, impose constraints R on e. While Fig. 7 gives a sense of the velocity

amplifications that are possible for R = 0.012, Fig. 9 gives a broader picture of the dependence of G ∗ (which is very

close to Gmax
n ) on R and e.
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The plot indicates that G∗ increases monotonically with increasing e and decreasing R. For high coefficient of

restitution, the rapid increase in G∗ with decreasing mass ratio illustrates how effectively the velocity amplification

principle can be utilized for building powerful velocity amplifiers.

4.2. Maximum energy transfer system

Since transferring energy from a heavier mass to a lighter mass through impact is the primary basis for the shock

amplification being explored here, intuition suggests that a system of masses where all the energy is transferred to

the lightest mass would be the most efficient one as a shock amplifier. Such a system composed of a chain of masses

where all of them, except the final mass mn, come to rest after impact is henceforth called as the Maximum Energy

Transfer (MET) system. Extrapolating Eq. (9) shows that in the horizontal configuration, the MET system does not

lead to velocity amplification. In the vertically-stacked configuration, however, the fact that all the masses start in

a state of motion and pair-wise impacts occur between masses travelling in opposite directions leads to significant

velocity amplification in the MET system.

Assuming a constant coefficient of restitution e for all impacts, it can be shown that the mass ratios required for

the vertically-stacked MET system have to satisfy the condition:

ri+1,i =

i
∑

k=1

ek

1 +

i+1
∑

k=1

ek

(i = 1, 2, . . . , n − 1) (25)

For elastic collisions, Eq. (25) reduces to [7]:

ri+1,i =
i

i + 2
(i = 1, 2, . . . , n − 1) (26)

For inelastic collisions (e < 1), it can be shown by induction that Eq. (25) reduces to:

ri+1,i =
ei+1 − e

ei+2 − 1
(e < 1; i = 1, 2, . . . , n − 1) (27)

Further manipulation of Eq. (27) reveals that for larger values of i, it quickly reaches a limit given by:

lim
i→∞

ri+1,i = e (28)

Unlike with the power law in the MVG configuration, the mass ratios in the MET configuration are not the same

along the chain and do not depend on R, i.e. the ratio of the first and the final mass. Instead, as shown by Eqs (25),

(27) and (28), the mass ratios depend on e. Figure 10 plots the mass ratios to illustrate their dependence on e.

The velocity gain for the uppermost mass of the vertically-stacked MET can be derived to be:

Gn =
Vn

vff
=

n
∑

k=1

ek (29)

It is clear from Eq. (29) that unlike the MVG system, for the MET system the velocity gain of the uppermost mass

increases monotonically with n and e. For elastic collisions, Eq. (29) reduces to Gn = n. Although this implies that

velocity gain increases without limit for elastic collisions, it is also clear from Eq. (29) that with inelastic collisions

the achievable velocity gain from a chain of vertically-stacked masses is limited, with G n quickly approaching a

limit given by:

lim
n→∞

Gn = Gmax
n =

e

1 − e
(30)

Equation (30) implies that in a vertically-stacked MET system, velocity gain (i.e., G n > 1) is only achievable if

e > 0.5. (Note that this is higher than the requirement for an MVG system where velocity gain can be attained as

long as e > 0.35). Equation (29) is plotted in Fig. 11, for masses ranging from two to ten in the chain, to further
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illustrate that for values of e significantly less than 1, Gmax
n is modest and achieved with fairly short chains. For

more dramatic velocity gains that realize the benefit of somewhat longer chains, it is necessary to have high values

of e.

Figure 12 plots the mass ratios mi/m1 for every mass in a MET chain, and also illustrates how the plots of Fig. 12

can be used to facilitate the design of a vertically-stacked MET shock amplifier. For instance if m n, m1 and e are

known, the mass ratio mn/m1 can be calculated, and identified as a point on the appropriate e curve in Fig. 12. All
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the mass ratios higher than mn/m1, and corresponding to integer points for mass number, are the mass ratios to be
used for intervening masses in the vertically-stacked MET chain. If only e and m 1 are known, but a certain Gn is

desired, the number of masses needed in the chain can be figured out from the appropriate curve in Fig. 11 and their
mass ratios from Fig. 12. For instance in the example illustrated in Fig. 12 – determining the number of masses for

a machine with R = 0.1 – the nearest whole number is 4.

5. The optimal drop testing configuration

Given that both MET and MVG systems are capable of providing very significant velocity amplification in a

vertically-stacked configuration, the next issue is whether there are regions in ‘design space’ where one of them
is more optimal over the other for a practical shock amplifier. Generally the design goals for a vertically-stacked

shock amplifier are to maximize the velocity gain and the kinetic energy transfer efficiency for the top-most mass
while minimizing the total mass in the system for a given R and e. The proposed amplifier consists of a series of

successively smaller masses stacked vertically and dropped on a rigid surface such that a sequence of impacts occurs
between the masses and the uppermost mass achieves a large gain in velocity. In practice the masses will be guided
using linear bearings running on rods so that motion is confined to the vertical axis.

Accordingly Figs 13, 14 and 15 compare the velocity gain, kinetic energy transfer efficiency and the total system
mass respectively for a very large range of R and e (i.e., a large part of the practically encountered design space)

for the MVG and the MET configurations. The comparisons are done by normalizing the values of the above three
metrics for the MVG system by the corresponding values for the MET system. Note that for any given R and e in

these figures, the values of Gn, Kn and M for the MVG system are those of an optimal configuration, i.e., the MVG
configuration that yields nmax and Gmax

n from Eqs (22) to (24), and for the MET configurations they are obtained

from Eqs (25) and (29). In addition, the plotted values of R are dictated by the MET system so they fall on the curve
dictated by Eq. (25).

Examination of Figs 13, 14 and 15 leads to the main conclusion of this paper: the MVG configuration is more
optimal than the MET configuration. Not only does the MVG configuration provide higher velocity gain, higher

kinetic energy transfer efficiency, and lower system mass, it is effective over much larger ranges for R – even for
very small values of R. The improved performance of the MVG system is even more pronounced for lower values

of e, which could be beneficial as the restitution of an actual shock amplifier might degrade over time.
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To build up intuition supporting the above design guidelines, the performance of MVG and MET designs for a

ten mass vertically-stacked shock amplifier with R = 0.012(m10 = 0.1, m1 = 8.4) and e = 0.8 are plotted in more

detail. Figure 16 plots the velocity gain for each of the masses in the MET system and for each of the masses in a

three-mass, four-mass, and up to ten-mass MVG systems, to illustrate that the final velocity gain is higher for the

MVG system in each case.

Figure 17 compares the mass distribution in the ten-mass MET system with the ten-mass MVG system and its

optimal six-mass MVG counterpart to show how similar they turn out to be in the optimal MET and MVG systems.

Although the total mass in both the MET and the six-mass MVG systems is about the same, the additional four

masses of the former produce enough dissipation that its final velocity gain is significantly lower (about 23%).

The ten-mass MVG system has a slightly higher velocity gain than the MET system at the expense of having 50%

additional total mass.
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Finally, Fig. 18 gives a broader view of the design and performance metrics for MET-based and optimal MVG-

based vertical shock amplification systems for e = 0.8.

The guidelines presented in this section are general; the design of an actual shock amplifier should be determined

after evaluating both MVG and MET models.

Actual shock amplifiers were built using both MET and MVG systems (see Fig. 19). The performance of the

machine is being studied and its design optimized in subsequent versions. Construction and performance details of
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these shock amplification machines, and comparisons with theory, will be published in upcoming papers.

6. Discussion & summary

This paper examined the dynamics of velocity amplification through pair-wise collisions between multiple masses

in a chain, with a view to developing useful machines. Although multiple collisions can be used both for velocity

amplification and attenuation, the focus of the current work was on the design of shock amplification machines. All
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Fig. 19. Photograph of a four-mass vertically-stacked shock amplifier.

the analyses presented in the paper were based on simple but sufficient rigid body models - primarily those governing

the momentum transfer and energy dissipation during impacts between two point masses or rigid spheres.

The dynamics of impact between two masses was examined in detail to show that a heavy mass impacting a

light-enough-mass, with a sufficient coefficient of restitution, can cause a significant velocity amplification of the

lighter mass. A special case of such impacts between two moving masses was identified, to be exploited in the

design of shock amplifiers, where one of the masses becomes stationary after impact transferring all its momentum

to the other mass. It was also proven why such maximum momentum and energy transferring impacts do not result

in velocity amplification if one of the masses is stationary before impact.

Results from the two-body impact case were applied to investigate the performance of a shock amplifier that

consists of a horizontal chain of monotonically decreasing masses, separated from each other, where all masses are

stationary except the heaviest one. The pair-wise sequence of impacts that follow, starting with the heaviest mass

impacting its neighbour, result in the lightest mass experiencing significant velocity amplification that is a function

of the mass ratios in the chain and the coefficient of restitution. For a given mass ratio between the heaviest and the

lightest mass and a specified number of intermediate masses in the chain, a constant mass ratio between the masses,

such that each mass is the geometric mean between its two neighbours, maximizes the velocity gain of the lightest

mass. Therefore the optimal mass ratio is given by a power law that is independent of the coefficient of restitution.

The design of the shock amplifier can be optimized further by determining the unique number of masses, that does

depend on the coefficient of restitution, to yield the highest velocity gain for the lightest mass.

The design and performance of the more natural – and common – shock testing configuration, consisting of a

chain of monotonically decreasing masses (heaviest mass at the bottom) that is dropped from some height onto a

high-restitution surface, was analysed in great detail. It was shown that all the general conclusions surrounding a

design that uses the power-law based mass ratios described above are still valid. In particular it was shown that

vertically-stacked shock amplifiers with an optimum number of masses with mass ratios governed by the power

law, are ideal in the sense that they yield the highest velocity gain in systems with reasonably high coefficients of

restitution. In addition, these shock amplifier designs are optimal for very large ranges of the mass ratio between

the lightest mass (carrying the object under test) and the heaviest mass and can deliver velocity amplifications for

coefficients of restitution that barely exceed 0.35.
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A slightly different version of the vertically-stacked shock amplifier described above, based on the maximum

energy transfer principle where all the masses come to rest after impact except the lightest one, was also analyzed.

The mass ratios for such a shock amplifier depend on the coefficient of restitution. Although they require a coefficient

of restitution of greater than 0.5 to produce any velocity amplification, for perfectly elastic collisions they produce a

velocity gain that grows linearly with the number of masses in the chain.

The shock amplification configurations investigated in this paper are fairly simple, designs that would lead to

straight-forward machines. If higher velocity amplification is desired than that attainable with the above machines,

other features can be added. For instance in the vertically-stacked configuration, the restitutive surface that the

masses drop onto could be ‘active’, i.e., it adds net energy to the system; the initial velocity of the uppermost mass

could be made higher than that of the other masses, etc. The analysis of the above scenarios is very much in the

scope of the methods presented in this paper.

The dynamics principles expounded in this paper, and the design guidelines, can be used for multiple purposes:

building launchers and shock amplifiers, significantly decreasing the size or the form factor of current shock-testing

machines, for building protective armour and energy absorbers, for increasing the efficiency of energy harvesters, etc.

Particularly in the area of shock testing of emerging opto-electronic components like MEMS & nano-scale devices,

that are inherently very rugged or being used in space and military applications, the shock amplifiers described in

this paper provide a low-cost, versatile, safe, detailed, precise and observable alternative to the currently practised

ballistic and other methods.

In upcoming papers, the design, construction and performance details of shock amplification machines built using

the above principles will be presented. Challenges around the shaping of very-high acceleration shock pulses will

also be addressed.
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