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The Dynamics of Protest Recruitment
through an Online Network
Sandra González-Bailón1, Javier Borge-Holthoefer2, Alejandro Rivero2 & Yamir Moreno2,3

1Oxford Internet Institute, University of Oxford, 1 St. Giles OX1 3JS, Oxford, UK, 2Institute for Biocomputation and Physics of
Complex Systems, University of Zaragoza, Campus Rio Ebro 50018, Zaragoza, Spain, 3Department of Theoretical Physics, Faculty
of Sciences, University of Zaragoza, Zaragoza 50009, Spain.

The recent wave of mobilizations in the Arab world and across Western countries has generated much
discussion on how digital media is connected to the diffusion of protests.We examine that connection using
data from the surge of mobilizations that took place in Spain inMay 2011.We study recruitment patterns in
the Twitter network and find evidence of social influence and complex contagion. We identify the network
position of early participants (i.e. the leaders of the recruitment process) and of the users who acted as seeds
of message cascades (i.e. the spreaders of information). We find that early participants cannot be
characterized by a typical topological position but spreaders tend to be more central in the network. These
findings shed light on the connection between online networks, social contagion, and collective dynamics,
and offer an empirical test to the recruitment mechanisms theorized in formal models of collective action.

T
he last few years have seen an eruption of political protests aided by internet technologies. The phrase
‘‘Twitter revolution’’ was coined in 2009 to refer to the mass mobilizations that took place in Moldova1 and,
a few months later, in Iran2, in both cases to protest against fraudulent elections. Since then, the number of

events connecting social media with social unrest has multiplied, not only in the context of authoritarian regimes
– exemplified by the recent wave of upsurges across the Arab world – but also in western liberal democracies,
particularly in the aftermath of the financial crisis and changes to welfare policies. These protests respond to very
different socio-economic circumstances and are driven by very different political agendas, but they all seem to
share the same morphological feature: the use of social networking sites (SNSs) to help protesters self-organize
and attain a critical mass of participants. There is, however, not much evidence on how exactly SNSs encourage
recruitment. Empirical research on online activity around riots and protests is scarce, and the few studies that
exist3–5 show no clear patterns of protest growth. Related research has shown that information cascades in online
networks occur only rarely6–8, with the implication that even online it is difficult to reach and mobilize a high
number of people. Revolutions, riots and mass mobilizations are also rare and, as such, difficult to predict; but
when they happen, they unleash potentially dramatic consequences. The relevant question, which we set to
answer here, is not when these protests take place but whether and how SNSs contribute to trigger their explosion.

Sociologists have long analyzed networks as the main recruitment channels through which social movements
grow9–10. Empirical research has shown that networks were crucial to the organization of collective action long
before the internet could act as an organizing tool, with historical examples that include the insurgency in the
Paris commune of 187111, the 60’s civil right struggles in the U.S.12, and the demonstrations that took place in East
Germany prior to the fall of the Berlinwall13–14. These studies provide evidence that recruits to amovement tend to
be connected to others already involved and that networks open channels through which influence on behavior
spreads, but they are limited by the quality of the network data analyzed, particularly around time dynamics.
Analytical models have tried to overcome these data limitations by recreating the formal features of interpersonal
influence, and analyzing how they are related to diffusion15–18 and to examples of social contagion like collective
action or the growth of social movements19–23. Four main findings arise from these models. First, the shape of the
threshold distribution, i.e. the variance in the propensity to join intrinsic to people, determines the global reach of
cascades. Second, individual thresholds interact with the size of local networks: two actors with the same
propensity might be recruited at different times if one is connected to a larger number of people. Third, attaining
a critical mass depends on being able to activate a sufficiently large number of low threshold actors that are also
well connected in the overall network structure. And fourth, the exposure to multiple sources can be more
important than multiple exposures: unlike epidemics, the social contagion of behavior often requires reinforce-
ment from multiple people. Recent experiments have confirmed the relevance of complex contagions to explain
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behavior in online contexts24, and large-scale analyses have validated
its effects on information diffusion on Twitter25.
Models of collective action have identified important network

mechanisms behind the decision to join a protest, but they suffer
from lack of empirical calibration and external validity. Online
networks, and the role that SNSs play in articulating the growth
of protests, offer a great opportunity to explore recruitment me-
chanisms in an empirical setting. We analyze one such setting by
studying the protests that took place in Spain in May 2011. The
mobilization emerged as a reaction to the political response to the
financial crisis and it organized around broad demands for new
forms of democratic representation. The main target of the cam-
paign was to organize a protest on May 15, which brought tens of
thousands of people to the streets of 59 cities all over the country.
After the march, hundreds of participants decided to camp in the
city squares until May 22, the date for local and regional elections;
crowded demonstrations took place daily during that week. After
the elections, the movement remained active but the protests
gradually lost strength and its media visibility waned (more back-
ground information in SI).
We analyze Twitter activity around those protests for the period

April 25 (20 days before the first mass mobilizations) to May 25 (10
days after the first mass mobilizations, and 3 days after the elections).
The data set follows the posting behavior of 87,569 users and tracks a
total of 581,750 protest messages (see Methods). We know, for each
user, who they follow and who is following them. In addition to this
asymmetric network, we also consider a version of the network that
only retains reciprocated – and therefore stronger – connections.
Previous research has suggested that Twitter is closer to a newsmedia
platform than to a social network7; this research suggests that the
properties of the online network cannot be directly compared to
other social networks because of the prominence of broadcasters.
The symmetric (reciprocated) networkmitigates the relatively higher
influence of these hubs of activity and retains only connections that
reflect mutual acknowledgement between users, which is arguably a
stronger proxy to offline relationships. Contrasting recruitment pat-
terns in both the asymmetric and symmetric networks allows us to
test whether the dynamics of mobilization depend on weak, broad-
casting links or on stronger connections, based on mutual recog-
nition. Our analysis of recruitment is based on the assumption that
users joined the movement the moment they started sending Tweets

about it. We also assume that once they are activated, they remain so
for the rest of the period we consider.

Results
By the end of our 30-day window, most users in the network had
sent at least one message related to the protest, with only about 2%
remaining silent (but still being exposed to movement information,
Fig. 1).The most significant increase in activity takes place right after
the initial protest (May 15), during the week leading to the elections
of May 22. Up to that point, only about 10% of the users had sent at
least a message related to the protests.
Activation times tell us the exact moment when users start emit-

ting messages, and allow us to distinguish between activists leading
the protests and those who reacted in later stages. We calculated, for
each user, the proportion of neighbors being followed that had been
active at the time of recruitment (ka/kin). This gives us a measure
that approximates the threshold parameter used in formal models of
social contagion, particularly those that incorporate networks17–18,22.
Activists with an intrinsic willingness to participate have a threshold
ka/kin< 0, whereas those who need a lot of pressure from their local
networks before they decide to join are in the opposite extreme
ka/kin< 1. Looking at the empirical distribution, most users in
our case exhibit intermediate values (Fig.2A). Although the distri-
bution is roughly uniform for almost the full threshold interval, there
are two local maxima at 0 (users who act as the recruitment seeds)
and 0.5 (users who join when half their neighbors already did). The
symmetric network has a significantly higher number of users with
ka/kin50 because it mitigates the influence of hubs or broadcasters
(i.e. users who do not reciprocate connections – about 7,000 in the
overall network – but who contribute to activate low threshold par-
ticipants, the ‘seeds’ in the symmetric network). The shape of the
distribution changes before and after 15 May, the first big demon-
stration day (Fig. 2B). Most early participants – i.e. users who sent a
message prior to the first mass mobilizations and to the news media
coverage of the events – needed, on average, less local pressure to
join, which is consistent with their role as leaders of the movement.
Because most activity takes place after 15-M, the threshold distri-
bution for the ten days that followed is not very different from the
threshold distribution for the full period.
The actual chronological time of activation changes across same-

threshold actors (see SI, Fig. S2); this variation is predictable given

Figure 1 | Fraction of recruited users over time. The vertical axis is normalized by the total number of users (87,569), the horizontal axis tracks the

number of activated users accumulated by hours. At the end of our time window the proportion of activated users is 98.03%, which means that the vast

majority of users sent at least one protest message during this month. Vertical labels flag some of the events that took place during the period.

www.nature.com/scientificreports
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that actors react to different local networks, both in size and com-
position. The time it takes neighbors to join, however, also influences
the activation of users. We measure the pace at which the number of
active neighbors grows using the logarithmic derivative of activation
times Dka/ka 5 (ka

t11
2ka

t)/ka
t11 26. The rationale behind Dka/ka is

that some users might be susceptible to ‘‘recruitment bursts’’, that is,
more likely to join if many of their neighbors do in a short time-span.
This emphasis on time dynamics qualifies the idea of complex con-
tagion: receiving stimuli frommultiple sources is important because,
unlike epidemics, social contagion often requires exposure to a
diversity of sources22; evidence of ‘‘recruitment bursts’’ would suggest
that the effects of multiple and diverse exposures are magnified if
they take place in a short time window. We find that early partici-
pants, i.e. users with low thresholds, are insensitive to recruitment

bursts; for the vast majority of users, however, being exposed to
sudden rates of activation precedes their decision to join (Fig. 3A).
Users with moderate thresholds who are susceptible to bursts act as
the critical mass that makes the movement grow from a minority of
early participants to the vast majority of users: without them, late
participants (themajority of users that made themovement explode)
would not have joined in (Fig. 3B).
Information diffusion follows different dynamics. Very few mes-

sages generate cascades of a global scale: we assume that if a user
emits a message at time t and one of their followers also emits a
message within the interval (t, t1 Dt), both messages belong to the
same chain. A chain is aborted when none of the followers exposed to
amessage acts as a spreader, andmessages can only belong to a single
chain, i.e. only the messages that do not belong to a previous chain

Figure 2 | Distribution of thresholds ka /kin. (A) The vertical axis measures the proportion of users activated for each threshold of activated neighbors,

tracked in the horizontal axis. The figure showsmeasures for both the asymmetrical and symmetrical networks. When broadcasters (i.e. users with a high

number of followers who do not reciprocate connections) are eliminated, the number of early participants with ka /kin 5 0 increases by an order of

magnitude, which suggests that broadcasters are influential at recruiting low-threshold individuals. Panel (B) splits the data in two subsets: the first subset

considers recruitment activity before 15-M, the day of the first mass demonstrations; the second subset tracks activity after 15-M.Media coverage, which

increased after 15-M, does not seem to cause a significant rise in the number of early activated, low-threshold users.

www.nature.com/scientificreports
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are considered seeds for a new cascade (see Methods). The vast
majority of these chains die soon, with only a very small fraction
reaching global dimensions, a result that is robust using different
time intervals (Fig. 4A). This supports previous findings6–8 and re-
veals that cascades are rare even in the context of exceptional events.
We run a k-shell decomposition27 to identify the network position of
users acting as seeds of the most successful chains.We found a positive
association between network centrality, as measured by the classifica-
tion of nodes in high k-cores, and cascade size (Fig. 4B). This positive
association suggests that agents at the core of the network – not
necessarily those with a higher number of connections, but connected
to equally well connected users (Fig. 4C–D) – are the most effective
when it comes to spreading information, again in accordance with

what has been found in research on epidemics and contagion28.
Spreaders, though, need to be recruited first, and the same decom-
position analysis does not find any significant association between
thresholds and topology, i.e. early participants do not have a char-
acteristic network position; they are instead scattered all over the
network (see SI, Fig. S5).

Discussion
The role that SNSs play in helping protests grow is uncontested by
most media reports of recent events. However, there is not much
evidence of how exactly these online platforms can help disseminate
calls for action and organize a collective movement. Our findings
suggest that there are two parallel processes taking place: the

Figure 3 | Thresholds, recruitment bursts, and time of activation. (A) The figure measures the association between bursts of activity and thresholds; while

early participants (ka/kin, 0.2) are not affected by bursts, moderate-threshold users (0.2# ka/kin# 0.5) and high threshold users (ka/kin. 0.5) aremore likely

to join the exchange of messages if they see a sudden increase of participants in their local networks; the slope of the curve indicates that higher threshold users

are more susceptible to bursts of activity. (B) This figure shows the percentage of activated users grouped as early, mid and late participants for each day of the

period considered; most late participants joined the protests after 15-M, once a critical mass of mid participants had already been activated.

www.nature.com/scientificreports
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dynamics of recruitment, and the dynamics of information diffusion.
While being central in the network is crucial to be influential in the
diffusion process, there is no topological position that characterizes
the early participants that trigger recruitment. This suggests that
whatever exogenous factors motivate early participants to start send-
ing messages, the consequence is that they create random seeding
in the online network: they spur focuses of early activity that are
topologically heterogeneous and that spread through low threshold
individuals. This finding is consistent with previous work using
simulations that test (and challenge) the influential hypothesis17–18.
However, a small core of central users is still critical to trigger chains
of messages of high orders of magnitude. The advantage that this
minority has as cascade generators derives from their location in the
network; contrary to what has been argued in previous research4,
centrality in the network of followers is still a meaningful measure
of influence in online networks – at least in the context of mass
mobilizations.
The decision to join a protest depends onmultiple reasons that we

do not capture with online data – for instance, the amount of offline
newsmedia to which users are exposed. It is not surprising, then, that
network position does not account for time of activation as it does for
cascading influence (the diffusion of messages is, for the most part,
endogenous, depending on the network structure). However, there is

one element in the recruitment process that is endogenous as well,
and that is the timing of exposures. The existence of recruitment
bursts indicates that the effects of complex contagion22 are boosted
by accelerated exposure, that is, by multiple stimuli received from
different sources that take place within a small time window. These
bursts – facilitated by the speed at which information flows online –
provide empirical evidence of what scholars of social movements
have called, metaphorically, ‘‘collective effervescence’’29. We provide
an empirical measure for that metaphor and find that most users are
susceptible to it. These findings qualify thresholdmodels of collective
action that do not take into account the urgency to join that bursts of
activity instill in people.
In addition, this study provides evidence of why horizontal orga-

nizations (like the platform coordinating this protest, see SI) are so
successful at mobilizing people through SNSs: their decentralized
structure, based on coalitions of smaller organizations, plant activa-
tion seeds randomly at the start of the recruitment process, which
maximizes the chances of reaching a percolating core; users at this
network core, in turn, contribute to the growth of the movement by
generating cascades of messages that trigger new activations, and so
forth. These joint dynamics illustrate the trade-off between global
bridges (controlled by well connected users) and local networks:
the former are efficient at transmitting information, the later at

Figure 4 | Distribution of cascade sizes and core position of spreaders. (A) The distribution of cascade sizes (Nc) suggests that only a few cascades

percolate to affect most users, and that the vast majority die in the early stages of diffusion. (B) There is a positive correlation between network centrality,

as measured by the classification of nodes in high k-cores, and cascade sizes, suggesting that users at the core of the network are more likely to be the seeds

of global chains of information diffusion. (C) The nodes in the network arranged according to their k-core; node size accounts for degree centrality, and

node color indicates themaximum size of the cascades generated by the user (users generating the largest cascades are depicted in orange). (D) Example of

a global cascade affecting about 35,000 nodes. Nodes in blue are users who participated in the diffusion of protest messages; nodes in orange were exposed

to themessages but did not sendmessages of their own. The darker the shade of blue, the earlier users joined the cascade as spreaders; the lighter the shade

of yellow, the later users joined the cascade as listeners.

www.nature.com/scientificreports
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transmitting behavior22. This is one reason why Twitter has played a
prominent role in so many recent protests and mobilizations: it
combines the global reach of broadcasters with local, personalized
relations (which we approximate in the form of reciprocal con-
nections); in the light of our data, both features are important to
articulate the growth of a movement. These features, however, are
necessary, not sufficient, conditions. Again, being able to generate
recruitment patterns on a scale of this order is still an exceptional
event, and this study sheds no light that helps predict future occur-
rences; but it shows that when exceptional events like mass mobiliza-
tions take place, recruitment and information diffusion dynamics are
reinforcing each other along the way.
Our data has two main limitations. First, we might be overestima-

ting social influence because we do not control for demographic
information and the effects of homophily in network formation30.
Studies that control for demographic attributes, however, still find
that networks are significant predictors of recruitment10,14; in the light
of those findings, we can only assume that online networks will still be
significant channels for the spread of behavior once demographics are
taken into account. Second, we also do not control for exposure to
offline media, which is likely to have interacted with social influence,
or to other sources of information that might have also contributed to
recruitment (like, for instance, offline discussion networks). The lack
of media coverage before the demonstrations of May 15 allows us to
conduct a natural experiment and compare how the network chan-
nels recruitment with and without the common knowledge of media
exposure. We show that there is no significant shift to the left of the
threshold distribution once the media starts reporting on the protests
– this would have indicated that exposure to mass media led to a
higher proportion of users joining the protests in the absence of local
pressure. On the contrary, we find that local pressure is still an import-
ant precursor for a large number of users, and that the vast majority
are still susceptible to bursts of activity in their local networks.
Our findings, however, are still limited by the fact that we are not

capturing the full range of information exposure: users had access to
other sources we do not consider that might have also influenced
their decision to join the movement; this unobserved exposure is
surely overestimating the influence effects of Twitter activity. The
different times of adoption that we analyse suggest that for some
users (the early adopters) online activity in Twitter had probably
more weight in their decision to join than for others (the late adop-
ters, who needed reinforcement from other sources, probably mass
media or offline networks, before displaying their commitment on-
line). Further investigations should consider the relative weight that
different sources of information have in shaping individual behaviour.
In addition, future research should consider if our results are

robust using time dependent networks. One of themain assumptions
of our data is that the network of followers does not change during
the period considered; in fact, a significant number of connec-
tions are likely to have been created as a result of the mobilization
itself. Future work should also address if our findings are platform-
dependent or universal to different types of online networks. Recent
events, like the riots in London in August 2011, suggest that different
online platforms are being used to mobilize different populations31.
The question that future research should consider is if the same
recruitment patterns apply regardless of the technology being used,
or if the affordances of the technology (i.e. public/private by default)
shape the collective dynamics that they help coordinate. The replica-
tion of these analyses with data covering similar events (like the
OccupyWallStreet protests initiated in New York, and soon spread-
ing to other U.S. cities) could help determine if the dynamics we
identify here can be generalized to different social contexts.

Methods
The data contains time-stamped tweets for the period April 25 to May 25. Messages
related to the protests were identified using a list of 70 #hashtags (full list in SI). The
collection of messages is restricted to Spanish language and to users connected from

Spain, and it was archived by a local start-up company,Cierzo Development Ltd using
the SMMART Platform. We estimate that our sample captures above a third of the
total number ofmessages exchanged in Twitter related to the protests. The network of
followers was reconstructed applying a one-step snowball sampling procedure, using
the authors that sent protest messages as the seed nodes. An arc (i,j) in this network
means that user i is following the Tweets of user j, and we assume that this network is
static for the period we consider. The symmetric network filters out all asymmetric
arcs, that is, for every arc (i,j) there also needs to be an arc (j,i).

We reconstruct message chains assuming that protest activity is contagious if it
takes place in short time windows. We do not have access to re-tweet (RT)
information, but since all our messages are related to the 15-M movement, chains
refer to the same subject matter (although the precise content of the messages in the
same chain might differ). This measurement maps the extent to which the stream of
content related to the protests diffuses in given time windows.

The k-shell decomposition assigns a shell index ks to each user by pruning the
network down to users with more than k neighbours. The process starts removing all
nodes with degree k5 1, which are classified (together with their links) in a shell with
index ks 5 1. Nodes in the next shell, with degree k 5 2, are then removed and
assigned to ks 5 2, and so forth until all nodes are removed (and all users are
classified). Shells are layers of centrality in the network: users classified in shells with
higher indexes are located at the core, whereas users with lower indexes define the
periphery of the network (see SI for details of node classification in shells).
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