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Introduction

In this paper, M denotes a connected compact manifold without boundary, of
dimension d, and TM and T ∗M are its tangent and cotangent bundles. We shall
consider the periodic time-dependent Hamiltonian system generated by a function
H : R × T ∗M −→ R, and denote by φt

s the flow from time s to time t.

Received by the editors October 4, 2004.
2000 Mathematics Subject Classification. Primary 37J40, 37J50.
Key words and phrases. Arnold’s diffusion, Mather sets, weak KAM, Hamilton-Jacobi equa-

tion.

c©2008 American Mathematical Society
Reverts to public domain 28 years from publication

615

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



616 PATRICK BERNARD

(0.1) In order to motivate our discussion, we begin with a precise question: Given
two Lagrangian manifolds G and G′ in the cotangent bundle, which are graphs over
the base M , does there exist a trajectory which connects G and G′, or in other words
do there exist times s < t such that the Lagrangian manifold φt

s(G) intersects G′?

(0.2) This question formulates some well known problems. As an example, let us
suppose that M = Td, and identify the cotangent bundle T ∗Td with Td×Rd. Let us
consider the Hamiltonian H0 = h(p), where h : Rd −→ R is a real function. Such
Hamiltonians will be called fully integrable in the sequel. It is known that they
leave invariant the tori Tp := Td × {p}, for p ∈ Rd. As a consequence, the answer
to the previous question is obviously negative for G = Tp and G′ = Tp′ , when
p �= p′. What happens for Hamiltonians H which are close to H0? For example, it
is known that the solar system can be described by a fully integrable Hamiltonian
H0 if the interactions between planets are neglected. In this example, the variables
p ∈ Rd encode the parameters of the elliptic trajectories of the planets. It is well
known that these parameters would not change in time if the interaction between
planets did not exist. Understanding for which values of p and p′ the question
(0.1) has a positive answer with G = Tp and G′ = Tp′ , amounts to understanding
to what extent the elliptic trajectories will deform under the influence of mutual
interactions. In other words, it amounts to understanding the secular dynamics
and the stability of the solar system. We will not treat these specific examples in
the present papers, although they are parts of our motivation. See [1] and [22] for
beautiful and deep examples of perturbations of fully integrable systems.

(0.3) Question (0.1) is especially interesting when the Lagrangian manifolds G
and G′ have different Liouville classes (which correspond to the case p �= p′ in
the discussion above). In this case, we have a problem of non-exact Lagrangian
intersection, and it seems that the powerful tools developed to deal with exact
intersections provide no interesting insight. In order to study this problem, we
make strong assumptions on the Hamiltonian H, namely that it is convex, super-
linear, periodically time-dependent, and complete; see details in (1.1). We will
define an equivalence relation, called a forcing relation and denoted by �� on the
set H1(M, R) of cohomology classes of Lagrangian graphs, in such a way that, if
c��c′ (we will say that c and c′ force each over), then the answer to question (0.1) is
positive for each Lagrangian graph G of cohomology c and G′ of cohomology c′. The
definition of this equivalence relation is one of the major ideas of the present paper.
The key point in considering an equivalence relation is that local information on the
equivalence classes can be put together to obtain global information. On the other
hand, most of the mechanisms known so far to study questions related to (0.1), the
theorem of Birkhoff for twist maps, the geometric construction of Arnold, as well
as the variational construction of Mather, can be expressed in this unified setting
as local information on the forcing classes (the classes of equivalence of the relation
��). Our main goal in the present paper will be to detail this fact and to study
the local properties of the forcing classes.

(0.4) In order to demonstrate the usefulness of our theory, let us provide an ex-
ample. Proofs and more general statements are given in Section 11. We take
M = T × Td−1, and denote by (q, p) = (q1, q2, p1, p2) the points of T ∗M , where
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DYNAMICS OF PSEUDOGRAPHS IN CONVEX HAMILTONIAN SYSTEMS 617

q1 ∈ T, q2 ∈ Td−1, p1 ∈ R, p2 ∈ Rd−1. We consider the time-periodic Hamiltonian

H(t, q, p) = H1(t, q1, p1) + |p2|2 − V (q2)F (t, q),

and we assume that the conditions of convexity, super-linearity and completeness
are satisfied. In addition, we assume that F : T × Td −→ R takes positive values
and that V : T

d−1 −→ R takes positive values except at a single point, say 0,
where its takes the value 0. The manifold T × R := {q2 = 0, p2 = 0} is then
invariant under the Hamiltonian Flow. The restricted flow is generated by the
restricted Hamiltonian H1. Under these hypotheses, it is not hard to prove (we will
do it) that each rotational invariant circle of the restricted dynamics H1 admits a
homoclinic orbit. We make two additional non-degeneracy assumptions:

(H1) The Hamiltonian H1 is generic in the sense that its irrotational invariant
circles of rational rotation number are completely periodic. (We allow periodic
circles in order to include the case where H1 is integrable.)

(H2) We assume a non-degeneracy hypothesis on the set of action minimizing
homoclinic orbits to the invariant circles of H1. This hypothesis is detailed in Sec-
tion 11; it should be seen as analogous to the classical hypothesis of transversality
of the stable and unstable manifolds in the construction of Arnold. Although in
the future we expect to prove that this condition is generic in some sense, we do
not discuss any genericity issue here.

Under these hypotheses, our abstract results imply the following.

Theorem. If P and P ′ are given real numbers, there exists a Hamiltonian trajec-
tory (q(t), p(t)) and an integer t ∈ N such that p1(0) = P and p1(t) = P ′.

(0.5) The systems described in example (0.4) are a priori unstable according to
the terminology in use in the world of Arnold’s diffusion. This is due to the presence
of the distinguished invariant manifold {q2 = p2 = 0}, which in many situations is
normally hyperbolic. It appears clearly in the fundamental paper of Arnold [1] that
the presence of such a hyperbolic invariant manifold intersecting G and G′ greatly
favors a positive answer to question (0.1). A priori unstable systems have been
widely studied because they appear naturally in the perturbation of completely
integrable systems, and are easier to deal with.

In the work of Arnold, it is also assumed that the restriction of the dynamics to
the hyperbolic manifold is integrable, say H1 = |p1|2 in our example. This means
that this invariant manifold is foliated by invariant tori, which he called whiskered
tori because of the presence of hyperbolicity. These whiskered tori are the building
blocks of Arnold’s construction, so that this second hypothesis was very important.
The main point in our application is that we do not make this assumption. We
only assume that the restricted dynamics are generic, in a clearly specified sense.

In the context of perturbations of fully integrable systems, the restriction of the
flow to the hyperbolic manifold is close to integrable, and KAM theory implies the
existence of many whiskered tori. However, when precisely computing the various
quantities that appear in Arnold’s construction, one observes that there does not
exist enough tori in general. More precisely, the gap between tori is too big; this is
the large gap problem. See for example [21] for a more precise explanation.

Overcoming this problem has long been considered a major challenge. While the
classical approaches based on refinements on the scheme of Arnold were worked out
in that direction, new variational methods were introduced by John Mather in [24].
It is also worth mentioning the work of Bessi, [7], where the results sketched by

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



618 PATRICK BERNARD

Arnold are proved using variational methods. This paper contains one on the first
relevant achievements of variational methods in these kinds of questions, and it has
been very influential. However, these variational methods were facing the same kind
of difficulties as classical methods. In several special instances, the Large Gap prob-
lem can be bypassed because for specific reasons there exist more whiskered tori.
This remark has been exploited to obtain many non-trivial results from Arnold’s
construction or variational methods. For example, orbits of unbounded speed were
built in [8] using the scheme of Arnold. A similar result had previously been ob-
tained by John Mather, [25], using variational methods; see also [19]. Other works
exploit the same remark in different directions; see for example [6], which elaborates
on [7], and many other texts.

Solutions to the Large Gap problem have recently been given by Delshams, de la
Llave and Seara (see [13]) and by Treschev (see [29]) using elaborations on Arnold’s
method. The details in these works are far from simple. Cheng and Yan have
also proposed a solution using elaborations on the variational methods initiated by
Mather (see [9] and [10]), as well as Z. Xia (see [30] and [31]). Compared to these
papers, the spirit of our work is different. We present mechanisms of instability
which are more general, but more abstract. We present some examples for illus-
tration and in order to give the reader a hint of how the abstract mechanisms can
be used, but we do not try at that point to describe the more general applications.
Neither do we discusss the genericity of our hypotheses.

The influence of John Mather’s published and unpublished works on the devel-
opment of variational approaches could not be overestimated. He has announced in
[26] very deep results on the perturbation of fully integrable systems in dimension
2, and given indications on proofs in various talks and lectures. I hope that the
tools developed in the present paper will contribute to clarify and extend these
results.

(0.6) Let us now enter more precisely into matter. Given a Lipschitz function
u : M −→ R and a closed smooth form η on M , we consider the subset Gη,u of
T ∗M defined by

Gη,u =
{
(x, ηx + dux), x ∈ M such that dux exists

}
.

We call the subset G ⊂ T ∗M an overlapping pseudograph if there exists a closed
smooth form η and a semi-concave function u such that G = Gη,u. See Appendix A
for the definition of semi-concave functions. Each pseudograph G has a well defined
cohomology c(G) ∈ H1(M, R) (see (2.2)), which is just the De Rham cohomology
[η] of the closed form appearing in the definition of G. We denote by P the set of
overlapping pseudographs. If M = T is a circle, then overlapping pseudographs are
graphs of functions which have only discontinuities with downward jumps, or in
other words functions which can be locally written as the sum of a continuous and
a decreasing function. Such sets were introduced in [20], where they are used in
very elegant proofs of many known properties of twist maps. In higher dimension,
overlapping pseudographs naturally arise from Fathi’s approach of Mather theory.

(0.7) We define the forcing relation �� on H1(M, R) as follows: We say that c and
c′ force each other (for short c��c′) if there exists an integer N ∈ N such that, for
each pseudograph G of cohomology c (resp. c′), there exists a pseudograph G′ of
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cohomology c′ (resp. c) such that

G′ ⊂
⋃

1�i�N

φi
0(G),

where G′ is the closure of G′ in T ∗M . This definition is certainly one of the most
important novelties in the present paper. Note that if c��c′, if G is a Lagrangian
graph of cohomology c, and if G′ is a Lagrangian graph of cohomology c′, then
there exists a Hamiltonian orbit which connects G and G′. As a consequence,
understanding the equivalence classes of this relation is a useful tool in the study
of our motivating question. Our main goal in the present paper will be to find
sufficient conditions for two classes to be equivalent. It turns out that, although
the definition seems very strong, the existence of non-trivial forcing classes can be
proved in many interesting situations as example (0.4). In fact, many of the known
constructions of orbits connecting prescribed regions of phase space (Birkhoff’s
theory of twist maps, Mather’s variational construction of connecting orbits, and
Arnold’s geometric construction of diffusion) can be adapted to this framework,
and rephrased as the existence of large forcing classes.

(0.8) We shall define, following Fathi, an operator Φ : P −→ P in (2.5) with the
following fundamental properties:

Φ(G) ⊂ φ(G),

where φ := φ1
0 is the time-one map of the Hamiltonian flow, and c(Φ(G)) = c(G).

Fathi’s weak KAM theorem, [16], states that, for each c ∈ H1(M, R), the operator
Φ has fixed points of cohomology c. We call Vc the set of these fixed points; see
Section 3 for details. The fixed points G satisfy

G ⊂ φ(G)

and give rise to compact invariant sets

Ĩ(G) :=
⋂
i∈N

φ−i(Ḡ).

This provides a new way, due to Albert Fathi, to define various invariant sets
previously introduced by Mather in [23] and [24].

(0.9) More precisely, to each cohomology c ∈ H1(M, R) we associate the non-
empty compact invariant sets

M̃(c) ⊂ Ã(c) ⊂ Ñ (c),

where

Ã(c) :=
⋂

G∈Vc

Ĩ(G) and Ñ (c) :=
⋃

G∈Vc

Ĩ(G),

are, respectively, called the Aubry set and the Mañé set, and M̃(c), called the
Mather set, is the union of the supports of the invariant measures of the action of φ
on Ã(c) (or equivalently on Ñ (c)); see (3.5) for more details. A standing notation
will be to denote by X̃ subsets of T ∗M , and by X their projection on M .
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620 PATRICK BERNARD

Beyond answering question (0.1), understanding the forcing relation �� has many
dynamical consequences:

(0.10) Proposition.
(i) Let G and G′ be two Lagrangian graphs of cohomologies c and c′. If c��c′,

then there exists a time t ∈ N such that φt
0(G) intersects G′.

(ii) If c��c′, there exists a heteroclinic trajectory of the Hamiltonian flow between
Ã(c) and Ã(c′).

(iii) Let ci, i ∈ Z, be a sequence of cohomology classes all of which force the others.
Fix for each i a neighborhood Ui of M̃(ci) in T ∗M . There exists a trajectory
of the Hamiltonian flow which in turn visits all the sets Ui. In addition,
if the sequence stabilizes to c− on the left, or (and) to c+ on the right, the
trajectory can be assumed negatively asymptotic to A(c−) or (and) positively
asymptotic to A(c+).

The proof is given in Section 5. Let us now state our main results which, as
announced above, describe the local structure of the forcing classes.

(0.11) For each G ∈ V, we define the subspace R(G) of H1(M, R) as the set
of cohomology classes of smooth closed one-forms whose support is disjoint from
I(G). For each cohomology class c ∈ H1(M, R), we define the subspace R(c) as

R(c) =
⋂

G∈Vc

R(G) ⊂ H1(M, R).

The following Theorem reformulates and extends results of John Mather; see [24]
and also [3] and [9]. It is proved in Section 8.

Theorem. For each c0 ∈ H1(M, R), there exists a positive ε such that the following
holds: Each class c ∈ H1(M, R) such that c − c0 ∈ R(c0) and ‖c − c0‖ � ε satisfies
c0��c.

In order to illustrate this result, it is useful to consider the case of twist maps
M = T. In this case, the reader should check that R(c) = R or 0, and that R(c) = 0
if and only if there exists a rotational invariant circle of cohomology c; see (a few)
more details in Section 10. The above result then roughly says that rotational
invariant circles are the only obstructions to the evolution of action variables, and
recovers the theory of Birkhoff. We will explain in Section 11 how this result allows
us to overcome the possible absence of invariant circles in example (0.4).

(0.12) There is a natural partition of the Aubry set Ã(c) into compact invariant
subsets S̃ called the static classes, see Section 4. A generalized version of the
following theorem is proved in Section 9.

Theorem. Assume that there exist only finitely many static classes in Ã(c), and
that the set Ñ (c) − Ã(c) is not empty and contains finitely many orbits. Then the
cohomology c is in the interior of its forcing class.

This result may be seen as a reinterpretation in our langage of the geometric
construction of Arnold. We explain in Section 11 how it allows us to take into ac-
count the possible presence of invariant circles of H1 in example (0.4). We mention
that, for a generic Lagrangian, all the Aubry sets A(c), c ∈ H1(M, R), have finitely
many static classes; see [5].
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(0.13) Let us now present the content of the paper. The whole paper relies heavily
on the notion of a semi-concave function and of equi-semi-concave sets of functions.
These notions are presented in Appendix A. In Appendix B, we prove some back-
ground results, essentially due to Mather and Fathi, about the properties of the
action.

Mather-Fathi theory
This first part is a survey of the theory of Mather, Mañé and Fathi of globally
minimizing orbits, from a point of view very close to the one of Fathi. This survey
is presented not only for the convenience of the reader, but also because we need
various variations on existing results, and we also need to recast the theory in our
framework. In Section 1, we present the context, detail the standing hypotheses,
and recall some known results of the calculus of variations which will be of constant
use (proofs are given in Appendix B). Pseudographs are defined, and their basic
properties studied in Section 2. In Section 3, we use these pseudographs to present
Fathi’s point of view on Aubry-Mather theory. The theory is continued in Section
4, where we explain Mañé’s decomposition in static classes of the Aubry set, and in
the construction of homoclinic orbits, due to Fathi [18], Contreras and Paternain
[11] (see also [2]), which will play a central role in Section 9.

Abstract mechanism
This part contains the main novelties of our paper. In Section 5 we define the
forcing relation �� and explain how various orbits can be built once this relation is
understood. We prove Proposition (0.10). We then introduce and study evolution
operators on P, which are elaborations around the Lax-Oleinik operator, in Section
6. Section 7 is a parenthesis where we study the action of taking finite Galois
covering, which will be essential for applications. The idea of taking finite Galois
coverings comes from Fathi [18]. In Section 8, we prove and comment Theorem
(0.11). In Section 9 we study the case where there exist only finitely many static
classes. We generalize and prove Theorem (0.12).

Applications
In this short part, we detail some straightforward applications of the results ob-
tained before. We hope that it is possible to obtain many more applications by
applying our results with Hamiltonian methods such as normal form theory, but
this aspect is not discussed here. Section 10 briefly mentions the application to
twist maps. Section 11 details (0.4) above.

Mather-Fathi theory

This part is an overview of the theory of Mather, Mañé and Fathi of globally
minimizing orbits, which is oriented towards our future needs. We introduce our
main objects. Our point of view is close to the one of Fathi. Most of the material
exposed here is a small deformation of results in [23], [15], [27], [12], or [11].

1 Calculus of variations

(1.1) We shall consider C2 Hamiltonian functions H : R × T ∗M −→ R. We will
denote by P = (x, p) the points of T ∗M . The cotangent bundle is endowed with its
standard symplectic structure. We denote by X(t, P ) or X(t, x, p) the Hamiltonian
vector field of H, which is a time-dependent vector field on T ∗M . We fix once and
for all a Riemannian metric g on M , and use it to define norms of tangent vectors
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622 PATRICK BERNARD

and tangent covectors of M . We will denote this norm indifferently by |P | or by
|p| when P = (x, p) ∈ T ∗

x M . We assume the following standard set of hypotheses:
1. Periodicity. H(t + 1, P ) = H(t, P ) for each (t, P ) ∈ R × T ∗M.
2. Completeness. The Hamiltonian vector field X generates a complete

flow of diffeomorphisms on T ∗M . We denote by φt
s : T ∗M −→ T ∗M the

flow from time s to time t, and by φ the flow φ1
0.

3. Convexity. For each (t, x) ∈ R × M , the function p −→ H(t, x, p) is
convex on T ∗

x M , with positive definite Hessian. Shortly, ∂2
pH > 0.

4. Superlinearity. For each (t, x) ∈ R×M , the function p �−→ H(t, x, p) is
super-linear, which means that lim|p|−→∞ H(t, x, p)/|p| = ∞.

(1.2) We associate to the Hamiltonian H a Lagrangian function L : R×TM −→ R

defined by
L(t, x, v) = sup

p∈T∗
x M

p(v) − H(t, x, p).

The fiberwise differential ∂pH of H can be seen as a mapping

∂pH : R × T ∗M −→ R × TM ;

this mapping is a diffeomorphism, whose inverse is given by

∂vL : R × TM −→ R × T ∗M.

We have the relations L(t, x, v) = ∂vL(t, x, v)(v)−H(t, x, ∂vL(t, x, v)) and H(t, x, p)
= ∂pH(t, x, p)(p) − L(t, x, ∂pH(t, x, p)). The Lagrangian L satisfies the following
properties, which follow from the analogous properties of H:

1. Periodicity. L(t + 1, V ) = L(t, V ) for each (t, V ) ∈ R × TM.
2. Convexity. For each (t, x) ∈ R × M , the function v �−→ L(t, x, v) is a

convex function on TxM , with positive definite Hessian. Shortly, ∂2
vL > 0.

3. Superlinearity. For each (t, x) ∈ R ×M , the function v �−→ L(t, x, v) is
super-linear on TxM .

See Appendix B for comments related to these hypotheses. The hypotheses listed
above are very suitable for using the calculus of variations.

(1.3) Let us fix two times s > t in R and two points x and y in M . Let
Σ(t, x; s, y) be the set of absolutely continuous curves γ : [t, s] −→ M such that
γ(t) = x and γ(s) = y. As usual, we define the action of the curve γ as A(γ) =∫ s

t
L(σ, γ(σ), γ̇(σ)) dσ. It is known that, for each C, the set of curves γ in Σ(t, x; s, y)

which satisfy A(γ) � C is compact for the topology of uniform convergence. As a
consequence, there exist curves minimizing the action. Let us define the value

A(t, x; s, y) = min
γ∈Σ(t,x;s,y)

∫ s

t

L(σ, γ(σ), γ̇(σ)) dσ,

and let Σm(t, x; s, y) be the set of curves in Σ reaching the above minimum. The
set Σm(t, x; s, y) is not empty, and it is compact for the topology of uniform con-
vergence. Each curve γ(σ) ∈ Σm is C2 and satisfies the Euler-Lagrange equations.
Setting

p(σ) = ∂vL(σ, γ(σ), γ̇(σ)),

which is equivalent to
γ̇(σ) = ∂pH(σ, γ(σ), p(σ)),
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these equations are

ṗ(σ) = ∂xL(σ, γ(σ), γ̇(σ)) = −∂xH(σ, γ(σ), p(σ)).

Hence the curve (γ(σ), p(σ)) is a trajectory of the Hamiltonian flow.

(1.4) For each minimizing curve γ ∈ Σm(t, x; s, y), we have

−p(t) = −∂vL(t, x, γ̇(t)) ∈ ∂+
x A(t, x; s, y),

where ∂+
x A(t, x; s, y) denotes the set of proximal super-differentials of

q �−→ A(t, q; s, y) at point q = x;

see Appendix A. We also have

p(s) = ∂vL(s, y, γ̇(s)) ∈ ∂+
y A(t, x; s, y).

For each t′ > t, the set of functions (x, y) �−→ A(t, x; s, y), s � t′ is equi-semi-
concave on M × M , hence equi-Lipschitz, see Appendix A. In addition, the three
following properties are equivalent:

(i) The set Σm(t, x; s, y) contains only one point.
(ii) The function A(t, .; s, y) is differentiable at x.

(iii) The function A(t, x; s, .) is differentiable at y.
If these equivalent properties hold, and if γ(σ) is the unique curve of Σm(t, x; s, y),
then setting p(σ) = ∂vL(σ, y, γ̇(σ)), we have

p(t) = −∂xA(t, x; s, y) and p(s) = ∂yA(t, x; s, y).

(1.5) Let η be a smooth one-form. We will see the form η sometimes as a section
of the cotangent bundle η : M −→ T ∗M and sometimes as a fiberwise linear
function on the tangent bundle η : TM −→ R. If the form η is closed, then the
diffeomorphism φη : (x, p) �−→ (x, p + ηx) of T ∗M is symplectic. The Hamiltonian

Hη(t, x, p) = H ◦ φη(t, x, p) = H(t, x, p + ηx)

satisfies our hypotheses. The associated Lagrangian is (L−η)(t, x, v) = L(t, x, v)−
ηx(v), where η is considered as a function on TM . The following diagram commutes
for each t:

T ∗M
H

����������

TM

∂vL
�����������

∂v(L−η) ����
��

��
��

� R

T ∗M

φη

��

Hη

����������

(1.6) We will also consider the modified action

Aη(t, x; s, y) = inf
γ∈Σ(t,x;s,y)

∫ s

t

L(σ, γ(σ), γ̇(σ)) − ηγ(σ)(γ̇(σ)) dσ,

which of course satisfies all the properties of (1.4) with the modified expressions

ηx − p(t) ∈ ∂+
x Aη(t, x; s, y) and p(s) − ηy ∈ ∂+

y Aη(t, x; s, y)

when (γ(σ), p(σ)) : [s, t] −→ T ∗M is the Hamiltonian trajectory associated to a
curve γ ∈ Σ(t, x; s, y) minimizing Aη.
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(1.7) Let Ω be the set of closed smooth forms on M . It is useful to fix once and
for all a linear section S of the projection Ω −→ H1(M, R). In other words, S is a
linear mapping from H1(M, R) to Ω such that [S(c)] = c. We shall abuse notation
and denote by c the form S(c) in such a way that the symbol c denotes either a
cohomology class or a standard form representing this cohomology class.

(1.8) The following consequence of Appendix B will be useful. See Appendix A
for the definition of equi-semi-concave.

Proposition. If C is a bounded subset of H1(M, R) and ε is a positive number,
the functions Ac(s, .; t, .), c ∈ C, t � s + ε, are equi-semi-concave on M × M .

2 Overlapping pseudographs

We present the main objects, overlapping pseudographs, and study some basic
properties. The relevance of semi-concave functions to this kind of problem was
noticed by Albert Fathi.

(2.1) Given a Lipschitz function u : M −→ R and a smooth form η on M , we
define the subset Gη,u of T ∗M by

Gη,u =
{
(x, ηx + dux), x ∈ M, such that dux exists

}
.

We call the subset G ⊂ T ∗M an overlapping pseudograph if there exists a smooth
form η and a semi-concave function u such that G = Gη,u. See Appendix A for the
definition of semi-concave functions. We shall denote by P the set of overlapping
pseudographs. Given a pseudograph G and a subset U ⊂ M , we will denote by G|U
the set G|U := G ∩ π−1(U).

(2.2) It is not hard to see that if an overlapping pseudograph G is represented in
two ways as Gη,u and Gµ,v, then the closed forms η and µ have the same cohomology
in H1(M, R). As a consequence, it is possible to associate to each pseudograph G
a cohomology c(G), in such a way that

c(Gη,u) = [η].

We will denote by Pc the set of overlapping pseudographs of cohomology c. If G
is an overlapping pseudograph of cohomology c, then G can be represented in the
form G = Gc,u, where c is the standard form defined in (1.7). The function u is then
uniquely defined up to an additive constant. As a consequence, denoting by S the
set of semi-concave functions on M , and by P the set of overlapping pseudographs,
we have the identification

P = H1(M, R) × S/R.

This identification endows P with the structure of a real vector space. Let us endow
the factor S/R with the norm |u| = (maxu − min u)/2, which is the norm induced
from the uniform norm on S. More precisely, we have |u| = minv ‖v‖∞, where the
minimum is taken on functions v which represent the class u. We put on P the
norm

‖Gc,u‖ = |c| + (maxu − min u)/2 � |c| + ‖u‖∞.

The set P is now a normed vector space. It is also useful to define, for each subset
U ⊂ M , the number

‖Gc,u‖U := |c| + (sup
U

u − inf
U

u)/2.
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We define in the same way the set P̆ of anti-overlapping pseudographs Ğ, which are
the sets Gη,−u, with η a smooth form and u ∈ S. This set is similarly a normed
vector space.

(2.3) Lemma. Let G be an overlapping pseudograph and Ğ be an anti-overlapping
pseudograph. If G and Ğ have the same cohomology, then they have nonempty
intersection.

Proof. Let us write G = Gη,u and Ğ = Gη,−v. Let x ∈ M be a point minimizing
the continuous function u + v. Since they are semi-concave, both u and v are
differentiable at x, and dux = −dvx. It follows that the point (x, ηx + dux) =
(x, ηx − dvx) belongs both to G and to Ğ. �

It is natural to introduce the following definition.

Definition. Let G be an overlapping pseudograph and Ğ be an anti-overlapping
pseudograph. If G and Ğ have the same cohomology c, write them G = Gc,u and
Ğ = Gc,ŭ. We denote by

G ∧ Ğ ⊂ M

the set of points of minimum of the difference u − ŭ, and by G∧̃Ğ ⊂ G ∩ Ğ the set

G∧̃Ğ := G ∩ π−1(G ∧ Ğ) = Ğ ∩ π−1(G ∧ Ğ) = G ∩ Ğ ∩ π−1(G ∧ Ğ) ⊂ T ∗M.

This set is compact, not empty, and is a Lipschitz graph over its projection G ∧ Ğ.

Proof. We have already proved that the set G ∧ Ğ is not empty. It follows from
Appendix (A.8) that both u and ŭ are differentiable on G ∧ Ğ, and that the map
x �−→ dux = −dŭx is Lipschitz on this set. This makes the definition meaningful.
The set G∧̃Ğ is compact because it is the image of the compact set G ∧ Ğ by a
Lipschitz map. �

(2.4) Let us fix a closed form η. We define the associated Lax-Oleinik mapping on
C0(M, R) by the expression

Tηu(x) = min
q∈M

(
u(q) + Aη(0, q; 1, x)

)
.

Let us recall some important properties of the Lax-Oleinik mapping, which are all
direct consequences of the properties of the function A given in (1.4). For each
form η, The functions Tηu, u ∈ C(M, R) are equi-semi-concave; see Appendix A.
The mapping Tη is a contraction:

‖Tηu − Tηv‖∞ � ‖u − v‖∞.

To finish, the mapping Tη is non-decreasing, and it satisfies Tη(a + u) = a + Tη(u)
for all real a.

(2.5) There exists a unique mapping Φ : P −→ P such that

Φ(Gη,u) = Gη,Tηu

for all smooth forms η and all semi-concave functions u. We have

c(Φ(G)) = c(G).

The mapping Φ is continuous (see (6.2) for the proof of a more general result). For
each cohomology c, the image Φ(Pc) is a relatively compact subset of Pc, as follows
directly from the properties of the Lax-Oleinik transformation recalled above. Note
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that this implies the existence of a fixed point of Φ in each Pc; this is how Fathi
proved the existence of fixed points. See (3.2) for another proof. We call Vc the set
of these fixed points, and V =

⋃
c Vc. We also define the sets

O :=
⋂
n∈N

Φn(P) =
⋂
n∈N

Φn(P)

and Oc := O ∩ Pc. Note that Oc is compact and invariant under Φ, and that
V ⊂ O. A pseudograph G ∈ Pc belongs to O if and only if there exists a sequence
Gn ∈ P, n ∈ Z, of pseudographs such that Φm−n(Gn) = Gm for all m � n, and such
that G0 = G. Note that we then have Gn ∈ Oc for each n ∈ Z.

(2.6) The mapping Φ satisfies

Φ(G) ⊂ φ(G).

This inclusion is a consequence of the following Proposition, which will be central
througrought the paper.

(2.7) Proposition. Let us fix a pseudograph Gη,u ∈ P, an open set U ⊂ M and
two times s < t. Let us set

v(x) = min
q∈Ū

u(q) + Aη(s, q; t, x),

where Ū is the closure of U . Let V ⊂ M be an open set and let N ⊂ M be the set
of points where the minimum is reached in the definition of v(x) for some x ∈ V .
If N̄ ⊂ U , then

Gη,v|V ⊂ φt
s

(
Gη,u|N̄

)
and Gη,u|N̄ is a Lipschitz graph above N̄ . In other words, the function u is differ-
entiable at each point of N̄ , and the mapping q �−→ duq is Lipschitz on N̄ .

Addendum. In addition, the Hamiltonian trajectories (x(σ), p(σ)) : [s, t] −→
T ∗M which terminate in Gη,v|V , i.e. such that (x(t), p(t)) ∈ Gη,v|V satisfy

v(x(t)) = u(x(s)) +
∫ t

s

L(σ, x(σ), ẋ(σ)) − ηx(σ)(ẋ(σ))dσ

= u(x(s)) + Aη(s, x(s); t, x(t)) = min
x∈U

u(x) + Aη(s, x; t, x(t)).

Proof. Let us fix a point x ∈ V , and consider a point q ∈ N minimizing in
the expression of v(x). Since q is a point of local minimum of the function u +
Aη(s, ., t, x), the semi-concave functions u and Aη(s, ., t, x) are differentiable at q and
satisfy duq+∂qAη(s, q, t, x) = 0. In view of (1.4), we have ∂qAη(s, q, t, x) = ηq−p(s),
where

(x(σ), p(σ)) = (x(σ), ∂vL(σ, x(σ), ẋ(σ))) : [s, t] −→ T ∗M

is the Hamiltonian trajectory associated to the unique minimizing curve x(σ) ∈
Σm(s, q, t, x). Uniqueness follows from the differentiability of Aη(s, ., t, x) at q; see
(1.4). We have

(x(s), p(s)) = (q, duq + ηq) ⊂ Gη,u

and therefore
(x(t), p(t)) = φt

s(q, duq + ηq) ∈ φt
s

(
Gη,u|N

)
.

Since the functions Aη(s, ., t, x), x ∈ M , are equi-semi-concave, they are all K-semi-
concave for some K. It follows that the function u has a K-sub-differential at each
point of N , and therefore at each point of N̄ . We conclude using (A.7) that the
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function u is differentiable on N̄ , and that the map q �−→ duq is Lipschitz on N̄ .
As a consequence, we have

Gη,u|N̄ = Gη,u|N ,

and this set is a Lipshitz graph over N̄ . Still exploiting (1.4), we get that the
function Aη(s, q, t, .) is differentiable at x, and satisfies ∂xAη(s, q, t, x) = p(t) − ηx.
Noticing that the function v −Aη(s, q, t, .) has a local maximum at x, we conclude
that dvx = p(t) − ηx if v is differentiable at x, and therefore that

(x, ηx + dvx) = (x(t), p(t)) ∈ φt
s

(
Gη,u|N

)
for each point of differentiability x ∈ V of v. In other words, we have the inclusion
Gη,v|V ⊂ φt

s

(
Gη,u|N

)
, hence

Gη,v|V ⊂ φt
s

(
Gη,u|N

)
= φt

s

(
Gη,u|N̄

)
. �

(2.8) Let G = Gc,u be a fixed point of Φ and let n < m be two relative integers.
Following Fathi, we say that a curve x(t) : [n, m] −→ M is calibrated by G if

u(x(n)) +
∫ m

n

L(t, x(t), ẋ(t)) − cx(t)(ẋ(t))dt = Tn−m
c u(x(m)).

Note, since u is a fixed point of Φ, that Tn−m
c u = u + (m− n)α(c), where α(c) is a

constant (which, as we will see below depends on c but not on u). A consequence
of the addendum in (2.7) is that the curve x(t) is calibrated by G if the curve
(x(t), p(t) = ∂vL(t, x(t), ẋ(t))) is a Hamiltonian trajectory satisfying (x(m), p(m)) ∈
Ḡ. Conversely, if x(t) is calibrated by G, then (x(k), p(k)) ∈ G for each integer
k ∈ [n, m[.

(2.9) The following Corollary is the reason why we have called the elements of P

overlapping.

Corollary. All overlapping pseudographs G ∈ P satisfy π ◦ φ(G) = M.

Proof. We have Φ(G) ⊂ φ(G), and π(Φ(G)) is dense in M , so that π
(
Φ(G)

)
=

M. �

(2.10) It is useful, still following Fathi, to define “dual” concepts. We define t¡he
dual Lax-Oleinik operator associated to a closed form η by the expression

T̆ηu(x) = max
q∈M

(
u(q) − Aη(0, x; 1, q)

)
, u ∈ C(M, R),

and we associate to this operator a mapping Φ̆ : P̆ −→ P̆ by the expression
Φ̆(Gc,−u) = Gc,T̆c(−u) ∈ P̆. We have

Φ̆(Ğ) ⊂ φ−1(Ğ)

if Ğ ∈ P̆. We denote by V̆ the set of fixed points of Φ̆. Let Ğ = Gc,−u be a fixed point
of Φ̆ and let n < m be two relative integers. We say that a curve x(t) : [n, m] −→ M

is calibrated by Ğ if

u(x(m)) −
∫ m

n

L(t, x(t), ẋ(t)) − cx(t)(ẋ(t))dt = T̆m−n
c u(x(n)).
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(2.11) It is useful to collect a few remarks. We have

T̆cTcu � u

for all continuous functions u. Writing T̆n+1
c Tn+1

c u = T̆n
c T̆cTcT

n
c u, we observe

that T̆n
c Tn

c u is a non-increasing sequence of functions. Conversely, Tn
c T̆n

c u is non-
decreasing for each continuous function u.

3 Aubry-Mather sets

We use the overlapping pseudographs to recover various invariant sets introduced
by Mather, and to study their major properties. We also establish the equivalence
between the different definitions of the same sets given in the literature. Most of
the section follows Fathi [15], with some minor variations.

(3.1) Proposition. There exists a function α : H1(M, R) −→ R such that,
for each continuous function u and each form η of cohomology c, the sequence
Tn

η u(x) + nα(c), n � 1, of continuous functions is equi-bounded and equi-Lipschitz.
The function c �−→ α(c) is convex and super-linear. More precisely, there exists a
constant K(c), which does not depend on the continuous function u, such that

min u − K(c) � Tn
c u(x) + nα(c) � max u + K(c)

for each n ∈ N and x ∈ M .

Proof. Let us fix a cohomology class c, and define the sequences

Mn(c) := max
x∈M

Tn
c (0)(x) and mn(c) := min

x∈M
Tn

c (0)(x),

where 0 is the zero function on M . Since the functions Tn
c (0), n � 1, are equi-semi-

concave (see Appendix A), there exists a constant K such that

0 � Mn(c) − mn(c) � K

for n � 1. We claim that Mn+m(c) � Mn(c) + Mm(c). This follows from the
inequalities

Tm+n
c (0)(x) = Tm

c (Tn
c (0))(x) � Tm

c (Mn(c))(x) � Mn(c) + Tm
c (0)(x).

Hence by a classical result on subadditive sequences, we have lim Mn(c)/n =
inf Mn(c)/n. We denote by −α(c) this limit. In the same way, the sequence −mn(c)
is subadditive, hence mn(c)/n −→ sup mn(c)/n. This limit is also −α(c) because
0 � Mn(c)−mn(c) � K. Note that m1(c) � −α(c) � M1(c), so that α(c) is indeed
a finite number. We have, for all n � 1,

−K − nα(c) � mn(c) � −nα(c) � Mn(c) � K − nα(c).

Now for all u ∈ C(M, R), n ∈ N and x ∈ M , we have

min
M

u − K � min
M

u + mn(c) + nα(c) � Tn
c u(x) + nα(c)

� max
M

u + Mn(c) + nα(c) � max
M

u + K,

and we obtain the first conclusion of the Proposition. The explicit definition of the
value mn(c) is

mn(c) = min
γ∈C1([0,n],M)

∫ n

0

L(s, γ(s), γ̇(s)) − cγ(s)(γ̇(s))ds.

As a consequence, the function c �−→ mn(c) is concave as a minimum of linear
functions. Hence each of the functions c �−→ mn(c)/n is concave, so that the limit
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−α(c) is concave and the function α(c) is convex. Since α(c) � K − m1(c), it is
enough to prove that −m1 is super-linear as a function of c in order to prove that
α is also. For each homology class h ∈ H1(M, Z), let γh : [0, 1] −→ M be a closed
curve representing this homology class. We have

−m1(c) � c(h) −
∫ 1

0

L(s, γh(s), γ̇h(s))ds.

This implies that −m1, hence α, is super-linear. Indeed, in order for a function
f : Rn −→ R to be super-linear, it is enough that there exists, for each y ∈ Zn, a
value ay such that f(x) � y · x − ay for each x. �

(3.2) Proposition. Let us fix a closed form η and a continuous function u. Let
us set

v := lim inf
n−→∞

(
Tn

η (u) + nα([η])
)
;

then v is a fixed point of Tη + α and hence Gη,v is a fixed point of Φ.

Proof. The one-form η is fixed once and for all in this proof, we omit the subscript
η, and denote by α the number α([η]). Let us first prove that Tv + α � v. In order
to do so, we fix x ∈ M and consider an increasing sequence nk of integers such that
Tnku(x) + nkα −→ v(x). Let qk be a point such that Tnku(x) = Tnk−1u(qk) +
A(0, qk; 1, x) or equivalently, Tnku(x) + nkα = Tnk−1u(qk) + (nk − 1)α + α +
A(0, qk; 1, x). We can suppose that the sequence qk has a limit q. Taking the
lim inf in the equality above gives

v(x) � v(q) + A(0, q, 1, x) + α � Tv(x) + α,

where we have used the equi-continuity of the functions Tnu, n ∈ N.
In order to prove that Tv + α � v, just notice that Tnu(x) � Tn−1u(q) +

A(0, q; 1, x) for each q and x, or equivalently that Tnu(x) + nα � Tn−1u(q) + (n−
1)α + A(0, q; 1, x) + α, and take the liminf. �

(3.3) Lemma. Let us fix a closed form η of cohomology c. Let M ⊂ C(M, R)
be a family of fixed points of the Lax-Oleinik operator Tη + α(c). Assume that the
infimum v(x) = infu∈M u(x) is finite for one (and then each) x ∈ M . Then the
function v is a fixed point of Tη + α(c).

Proof. For all functions u ∈ M and all points x and y in M , we have u(x) �
u(y) + Aη(0, y; 1, x) + α(c). It follows that v(x) � v(y) + Aη(0, y; 1, x) + α(c), so
that

v(x) � inf
y

(
v(y) + Aη(0, y; 1, x)

)
+ α(c).

In order to prove the other inequality, let us fix ε > 0, take a function u ∈ M

such that u(x) � v(x) + ε, and consider a point y ∈ M such that u(x) = u(y) +
Aη(0, y; 1, x) + α(c). We obtain

v(x) � u(x)− ε � u(y) + Aη(0, y; 1, x) + α(c)− ε � v(y) + Aη(0, y; 1, x) + α(c)− ε.

As a consequence, we have v(x) � Tηv(y)α(c)−ε, and, since this holds for all ε > 0,
the desired inequality follows. �
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(3.4) Fixed points of the Lax-Oleinik operator Tc +α(c) will be called weak KAM
solutions, following Fathi. We denote by V ⊂ P the set of fixed points of Φ, and
Vc ⊂ Pc the set of fixed points of Φ of cohomology c. Sometimes, we will also
denote by VC the set of fixed points of Φ whose cohomology belongs to the subset
C ⊂ H1(M, R). The set Vc is non-empty for each c. If G ∈ V, then it follows from
(2.6) that

G ⊂ φ(G).
It is then natural to define the set

Ĩ(G) =
⋂
n∈N

φ−n(Ḡ),

which is a nonempty compact φ-invariant subset of T ∗M . We also define

I(G) = π(Ĩ(G)) ⊂ M.

More generally, for each G ∈ P, we define the set

Ĩ(G) :=
⋂
n∈N

φ−n
(
Φn(G)

)
.

Since φ−n(Φn(G)) is a non-increasing sequence of compact sets, the set Ĩ(G) is
compact and not empty for each G ∈ P.

(3.5) For each G ∈ V, we define the set M̃(G) as the union of the supports of
invariant measures of φ|Ĩ(G). If G ∈ V and G′ ∈ V have the same cohomology c,
then it is known that

M̃(G) ⊂ Ĩ(G′),
hence M̃(G) = M̃(G′). As a consequence, the set M̃, usually called the Mather
set, depends only on the cohomology c. It will be denoted by

M̃(c),

and as usual, we will denote by M(c) the projection π(M̃(c)). We also define the
Aubry set in a usual way by

Ã(c) =
⋂

G∈Vc

Ĩ(G)

and A(c) = π(Ã(c)). The Mañé set is defined by

Ñ (c) =
⋃

G∈Vc

Ĩ(G)

and N (c) = π(Ñ (c)). A bigger set will be useful in some occasions, defined by

Ẽ(c) =
⋃

G∈Oc

Ĩ(G),

where Oc is as defined in (2.5). As an intersection of Lipschitz graphs, the Aubry
set Ã(c) is a Lipschitz graph over A(c). Note however that the Mañé set is not a
graph in general. The sets

M̃(c) ⊂ Ã(c) ⊂ Ñ (c) ⊂ Ẽ(c)

are compact and invariant under φ. The compactness of Ñ (c) and Ẽ(c) is mentioned
here for completeness; it will be proved later in this section, in (3.12) and (3.13)
below. These lemmata also prove that the Mañé set is indeed the set of orbits
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called c-minimizing by Mather and semi-static by Mañé, and that the set Ẽ is the
set of minimizing orbits called G̃ in [3].

(3.6) It is possible to associate to each dual fixed point Ğ ∈ V̆ the invariant set

Ĩ(Ğ) =
⋂
n∈N

φn
(
Ğ
)

and its projection I(Ğ) on M . The following is due to Fathi, [17].

Proposition. Let us fix a cohomology c, and consider pseudographs G ∈ Vc and
Ğ ∈ V̆c. The set G∧̃Ğ is non-empty, compact and invariant by φ. In addition, this
set intersects the Aubry set Ã(c) and satisfies

G∧̃Ğ ⊂ Ĩ(G) ∩ Ĩ(Ğ)

so that
G ∧ Ğ ⊂ I(G) ∩ I(Ğ).

Furthermore, for each pseudograph G ∈ Vc, there exists a pseudograph Ğ ∈ V̆c such
that

G ∧ Ğ = I(G) = I(Ğ).

In a symmetric way, for each pseudograph Ğ ∈ V̆c, there exists a pseudograph
G ∈ Vc such that this relation holds. As a consequence, we have

Ã(c) =
⋂

G∈Vc

Ĩ(G) =
⋂

Ğ∈V̆c

Ĩ(Ğ)

and
Ñ (c) =

⋃
G∈Vc

Ĩ(G) =
⋃

Ğ∈V̆c

Ĩ(Ğ).

Proof. We have already proved that the set G∧̃Ğ is compact and not empty;
see (2.3). Let us prove that it is invariant. In order to do so, we consider a
weak KAM solution u and a dual weak KAM solution ŭ such that G = Gc,u and
Ğ = Gc,ŭ. Let (x(t), p(t)) : R −→ T ∗M be an orbit of the Hamiltonian flow, such
that (x(0), p(0)) ∈ G∧̃Ğ. Clearly, both u and ŭ are differentiable at x(0), and
p(0) = cx(0) + dux(0). For each m � n in N, we have

u(x(n)) = min
x∈M

u(x) − Ac(m, x, n, x(n)) + (n − m)α(c)

� u(x(m)) + Ac(m, x(m), n, x(n)) + (n − m)α(c).

On the other hand, we have (x(0), p(0)) ∈ Ğ; hence, in view of (2.7),

ŭ(x(n)) = ŭ(x(m)) + Ac(m, x(m), n, x(n)) + (n − m)α(c).

As a consequence, the sequence n �−→ (u − ŭ)(x(n)) is non-increasing on N. Since
its initial value (u−ŭ)(x(0)) has been chosen to be a minimum of the function u−ŭ,
the sequence must be constant, so that x(n) is a point of G ∧ Ğ for each n � 0. A
symmetric argument shows that this is also true for n � 0. In addition, we obtain
that the inequality u(x(n)) � u(x(m)) + Ac(m, x(m), n, x(n)) + (n − m)α(c) is in
fact an equality for 0 � m � n. Since this formula is true in view of (2.7) for
m � n � 0 in Z, we obtain that, for all m � n in Z,

u(x(n)) = u(x(m)) + Ac(m, x(m), n, x(n)) + (n − m)α(c).
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In other words, the curve x(t) is calibrated by G and by Ğ; see (2.8). This im-
plies that (x(n), p(n)) ∈ G ∩ Ğ for each n ∈ Z, and, since x(n) ∈ G ∧ Ğ, we get
(x(n), p(n)) ∈ G∧̃Ğ. This proves that G∧̃Ğ is invariant by φ and contained in I(G)
and in I(Ğ).

Every compact invariant set of Ĩ(G) carries an invariant measure. As a conse-
quence, every compact invariant set of Ĩ(G) intersects the Mather set M̃(c); see
(3.5). Since M̃(c) ⊂ Ã(c), the set G∧̃Ğ, which is a compact and invariant subset
of Ĩ(G), intersects Ã(c). Let us now fix the pseudograph Gc,u ∈ Vc and prove the
existence of a pseudograph Ğ ∈ V̆c such that G ∧ Ğ = I(G) = I(Ğ). In order to do
so, we set

ŭ := lim
n−→∞

T̆n
c u − nα(c) = lim

n−→∞
T̆n

c Tn
c u.

It follows from (2.11) and (3.1) that the limit exists and that ŭ � u. Let (x(t), p(t)) :
R −→ T ∗M be a Hamiltonian orbit satisfying (x(0), p(0)) ∈ Ĩ(G). The orbit x(t)
is then calibrated by G (see (2.8)) so that the relation

u(x(n)) − u(x(m)) = Ac(m, x(m); n, x(n)) + (n − m)α(c)

holds for all m � n in Z. It is clear from this relation that, for each n ∈ N,

T̆n
c u(x(0)) � u(x(n)) − Ac(0, x(0); n, x(n)) = u(x(0)) + nα(c),

so that T̆n
c u(x(0))− nα(c) = u(x(0)); hence ŭ = u on I(G). As a consequence, the

set of points minimizing u − ŭ contains I(G). Since we have already proved that
this set is contained in I(G), we can conclude, as desired, that

Gc,u ∧ Gc,ŭ = I(G).

Setting u′ = limTn
c ŭ + nα(c) = limTn

c T̆n
c ŭ, the same proof shows that

Gc,u′ ∧ Gc,ŭ = I(Gc,ŭ).

We claim that u′ = u, so that we have proved

Gc,u ∧ Gc,ŭ = I(Gc,u) = I(Gc,ŭ).

In order to prove that u′ = u, we first recall that ŭ � u, so that Tn
c ŭ + nα(c) �

Tn
c u + nα(c) = u, and u′ � u. On the other hand, for each ε > 0, there exists

N ∈ N such that T̆N
c u − Nα(c) � ŭ + ε; hence

u′ � lim
n−→∞

Tn
c T̆N

c u + (n − N)α(c) − ε � lim
n−→∞

Tn−N
c u + (n − N)α(c) − ε = u − ε.

We have proved that u′ = u. �

The pairs (u, ŭ) of fixed points of Tc + α(c) and T̆c − α(c) which satisfy

ŭ = lim T̆n
c u − nα(c) ; u = limTn

c ŭ + nα(c)

are conjugate in the sense of Fathi.

(3.7) Proposition. The restriction to V of the function c : P −→ H1(M, R) is
continuous and proper.

Proof. Let us consider a compact subset C of H1(M, R). The family of Hamiltoni-
ans H(t, x, cx+p), c ∈ C, is a uniform family of Hamiltonians; see Appendix B. As a
consequence, the associated functions Ac(0, .; 1, .), c ∈ C, form an equi-semi-concave
family of functions on M × M . As a consequence, the functions Ac(0, x; 1, .), c ∈
C, x ∈ M , form an equi-semi-concave family of functions on M ; see Appendix A.
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It follows that the functions u(x) + Ac(0, x; 1, .), c ∈ C, x ∈ M , also form an equi-
semi-concave family; hence the functions minx u(x) + Ac(0, x; 1, .), c ∈ C, form an
equi-semi-concave family. As a consequence, the set Φ(PC) is relatively compact.
Since the set VC is obviously closed and contained in Φ(PC), it is compact. �

We have proved the following Lemma, which is interesting in itself:

Lemma. If C is a compact subset of H1(M, R), the set Φ(PC) is equi-semi-concave.

(3.8) Following Mather, we will use the function

hc(x, y) := lim inf
n−→∞

An
c (x, y) + nα(c).

In view of (3.2), the function hc(x, .) is a fixed point of Tc + α(c). Similarly, the
function −hc(., y) is a fixed point of T̆c − α(c). Let us recall some basic properties
of the function hc:

• For each x, y, z ∈ M and c ∈ H1(M, R), we have the triangle inequality
hc(x, y) + hc(y, z) � hc(x, z).

• For each x, y ∈ M and c ∈ H1(M, R), we have hc(x, y)+hc(y, x) � hc(x, x) �
0.

• For each compact set C ⊂ H1(M, R), the set of functions hc : M × M −→
R, c ∈ C, is equi-semi-concave.

(3.9) Proposition. If the pseudograph Gc,u is a fixed point of Φ, then we have

u(y) − u(x) � hc(x, y)

for each x and y. In addition,

u(x) = min
y∈M

u(y) + hc(y, x) = min
a∈A(c)

u(a) + hc(a, x).

Proof. We have, for each n, u = Tn
c u + nα(c). As a consequence, for each n,

u(x) = min
y∈M

(
u(y) + Ac(0, y; n, x) + nα(c)

)
.

We obtain the inequality u(x) � u(y) + Ac(0, y; n, x) + nα(c) and, by taking the
liminf, u(x) � u(y) + hc(y, x). In order to obtain the first equality, we consider a
point yn ∈ M such that

u(x) = u(yn) + Ac(0, yn; n, x) + nα(c).

We consider an increasing sequence nk of integers such that the subsequence ynk

has a limit y, and refine this subsequence in such a way that the subsequence
Ac(0, y, nk, x) has a limit l. We have

u(x) = u(y) + l � u(y) + hc(y, x).

Cumulated with the previously shown inequality, this proves the first equality in
the statement. In order to prove the second equality, notice that the set of points
y which minimize the function u(.) + hc(., x) is precisely the set G ∧Gc,−hc(.,x), and
that Gc,−hc(.,x) ∈ V̆c. By (3.6), the set G ∧ Gc,−hc(.,x) intersects A(c). �

(3.10) Corollary. For each x and y in M and c ∈ H1(M, R), we have

hc(x, y) = min
z∈M

hc(x, z) + hc(z, y) = min
a∈A(c)

hc(x, a) + hc(a, y).

The following result connects our definition of the Aubry set to the one of Mather.
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(3.11) Proposition. The Aubry set A(c) is the set of points x such that hc(x, x) =
0.

Proof. Let us consider a Hamiltonian trajectory (x(t), p(t)) : R −→ T ∗M such
that (x(0), p(0)) ∈ Ã(c). This trajectory is calibrated by each fixed point of Tc +
α(c), and so in particular by hc(x(0), .). Consequently, we have

hc(x(0), x(n))− hc(x(0), x(0)) = Ac(0, x(0); n, x(n)) + nα(c).

Taking a subsequence such that x(n) has a limit x, and then a subsequence such
that Ac(0, x(0); n, x)+ nα(c) is converging to a limit l � hc(x(0), x), we get, at the
limit,

hc(x(0), x)− hc(x(0), x(0)) � hc(x(0), x);
thus hc(x(0), x(0)) � 0 and then hc(x(0), x(0)) = 0. We have proved that the
function hc(x, x) vanishes on A(c).

Conversely, let us assume that hc(x, x) = 0. Then there exists an increasing
sequence nk of integers and a sequence of trajectories (xk(t), pk(t)) : [0, nk] −→
T ∗M such that x(0) = x(nk) = x and∫ nk

0

L(t, xk(t), ẋk(t)) − cxk(t)(ẋk(t)) + α(c) dt = Ac(0, x; nk, x) + nkα(c) −→ 0.

Let yk : [−nk, nk] −→ M be the curve such that yk(t) = xk(t+nk) for −nk � t � 0
and yk(t) = xk(t) for t � 0. The sequence yk is C2-bounded. Hence, by taking a
subsequence, we can suppose that yk is converging with its derivative, uniformly
on compact sets, to a limit y(t) : R −→ M . We claim that this limit y is calibrated
by each fixed point of Tc + α(c). Let u be a such a fixed point. We have, for each
n ∈ N and k large enough,

0 � u(yk(n)) − u(yk(−n)) − Ac(−n, yk(−n); n, yk(n)) − 2nα(c)

= u(yk(nk)) − u(yk(−nk)) − Ac(−nk, yk(−nk); nk, yk(n)) − 2nkα(c)

−
(
u(yk(nk)) − u(yk(n)) − Ac(n, yk(n); nk, yk(n)) − (nk − n)α(c)

)
−

(
u(yk(−n)) − u(yk(−nk)) − Ac(−nk, yk(−nk);−n, yk(−n)) − (nk − n)α(c)

)
� u(yk(nk)) − u(yk(−nk)) − Ac(−nk, yk(−nk); nk, yk(n)) − 2nkα(c)

= −Ac(−nk, x; nk, x) − 2nkα(c) = −2Ac(0, x; nk, x) − 2nkα(c).

For fixed n, we now take the limit k −→ ∞, and get that

u(y(n)) − u(y(−n)) = Ac(−n, y(−n); n, y(n)) + 2nα(c).

Consequently, the curve y(t) is calibrated by u. Since this holds for each weak
KAM solution u, we have x = y(0) ∈ A(c). �

The following well-known result connects our definition of the Mañé set with the
usual one, and implies its compactness.

(3.12) Lemma. The following properties are equivalent for a continuous curve
P (t) = (x(t), p(t)) : R −→ T ∗M :

(i) The curve P (t) is a Hamiltonian trajectory and P (Z) ⊂ Ñ (c).
(ii) The curve P (t) satisfies p(t) = ∂vL(t, x(t), ẋ(t)), and there exists Gc,u ∈ Vc

such that, for each m � n in Z, we have

u(x(m)) − u(x(n)) =
∫ m

n

L(t, x(t), ẋ(t)) − cx(t)(ẋ(t))dt + (m − n)α(c).
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(iii) The curve P (t) satisfies p(t) = ∂vL(t, x(t), ẋ(t)), and for each m � n in Z,
we have∫ m

n

L(t, x(t), ẋ(t))−cx(t)(ẋ(t))dt+(m−n)α(c) = min
l∈N,l>0

Ac(0, x(n); l, x(m))+lα(c).

Proof. We shall prove that (iii) ⇒ (ii). The other implications are left to the
reader. Let P (t) be a curve satisfying (iii) and let nk be an increasing sequence of
integers such that x(−nk) has a limit α. Then we have, for m � n,∫ m

n

L(t, x(t), ẋ(t)) − cx(t)(ẋ(t))dt + (m − n)α(c)

=
∫ m

−nk

L(t, x(t), ẋ(t)) − cx(t)(ẋ(t)) + α(c)dt

−
∫ n

−nk

L(t, x(t), ẋ(t)) − cx(t)(ẋ(t)) + α(c) dt

= Ac(−nk, x(−nk); m, x(m)) + (m + nk)α(c)

− Ac(−nk, x(−nk); n, x(n)) + (n + nk)α(c).

By (iii), we have

Ac(−nk, x(−nk); m, x(m)) + (m + nk)α(c) = min
l∈N,l>0

Ac(0, x(−nk); l, x(m)) + lα(c)

� hc(x(−nk), x(m))

which implies that

Ac(−nk, x(−nk); m, x(m)) + (m + nk)α(c) −→ hc(α, x(m))

as k −→ ∞. Similarly,

Ac(−nk, x(−nk); n, x(n)) + (n + nk)α(c) −→ hc(α, x(n)),

so that

hc(α, x(m)) − hc(α, x(n)) =
∫ m

n

L(t, x(t), ẋ(t)) − cx(t)(ẋ(t))dt + (m − n)α(c).

We have proved (ii) with u = hc(α, .). �

We now give equivalent definitions for the set Ẽ . The following Lemma shows
that the set Ẽ is the set called G̃ in [3], and implies its compactness.

(3.13) Lemma. The following properties are equivalent for a continuous curve
P (t) = (x(t), p(t)) : R −→ T ∗M :

(i) The curve P (t) is a Hamiltonian trajectory and P (Z) ⊂ Ẽ(c).
(ii) The curve P (t) satisfies p(t) = ∂vL(t, x(t), ẋ(t)), and there exists a sequence

un of functions such that, for each m � n, we have Tm−n
c un = um and

um(x(m)) − un(x(n)) =
∫ m

n

L(t, x(t), ẋ(t)) − cx(t)(ẋ(t))dt.

(iii) The curve P (t) satisfies p(t) = ∂vL(t, x(t), ẋ(t)), and for each m � n, we
have ∫ m

n

L(t, x(t), ẋ(t)) − cx(t)(ẋ(t))dt = Ac(n, x(n); m, x(m)).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



636 PATRICK BERNARD

Proof. (ii) ⇒ (i). Then for each pair m � n of integers, the curve x(t) : [n, m] −→
M is minimizing the action between its endpoints. Hence the curve P (t) is a
Hamiltonian trajectory. It follows from (2.7) that, for each n � 0, we have P (n) ∈
Gc,un

, and since P (n) = φn(P (0)), we have

P (0) ∈ φ−n(Φn(Gc,u0)).

This inclusion holds for all n, so that P (0) ∈ Ĩ(Gc,u0). Now (i) follows from the
fact that Gc,u0 ∈ O and that Ĩ(Gc,u0) is invariant under φ.

(i) ⇒ (ii). There exists a pseudograph Gc,u0 ∈ O such that P (0) ∈ Ĩ(Gc,u0).
There exists a sequence un, n ∈ Z, of functions on M such that Tm−n

c un = um for
m � n. For each m � 0, since P (m) ∈ Gc,um

, we have

um(x(m)) − u0(x(0)) =
∫ m

0

L(t, x(t), ẋ(t)) − cx(t)(ẋ(t))dt.

On the other hand, for each n � 0, we can find by minimization a curve yn(t) :
[n, 0] −→ M such that yn(0) = x(0) and

u0(yn(0)) − un(yn(n)) =
∫ 0

n

L(t, yn(t), ẏn(t)) − cyn(t)(ẏn(t))dt.

There exists a subsequence nk such that the curves ynk
(t) converge, uniformly on

compact sets, to a limit y(t) : (−∞, 0] −→ M . By (1.3), this curve satisfies, for all
n � 0,

u0(y(0)) − un(y(n)) =
∫ 0

n

L(t, y(t), ẏ(t)) − cy(t)(ẏ(t))dt.

Hence, for n � 0 � m, we have

um(x(m)) − un(y(n)) =
∫ 0

n

L(t, y(t), ẏ(t)) − cy(t)(ẏ(t))dt

+
∫ m

0

L(t, x(t), ẋ(t)) − cx(t)(ẋ(t))dt.

As a consequence, the curve obtained by gluing y on R
− and x on R

+ is the
projection of a Hamiltonian trajectory, which, by Cauchy-Lipschitz uniqueness,
has to be P (t). In other words, we have proved that x(t) = y(t) on R−. The
relation of calibration is now established.

(iii) ⇒ (ii). Let P (t) be a curve satisfying (iii). Then we have, for m � n � k,
∫ m

n

L(t, x(t), ẋ(t)) − cx(t)(ẋ(t))dt + (m − n)α(c)

= Ac(k, x(k); m, x(m)) + (m − k)α(c) − Ac(k, x(k); n, x(n)) + (n − k)α(c).

Let us denote by un
k the function

un
k (x) = Ac(k, x(k); n, x) + (n − k)α(c);

we obviously have Tm−n
c un

k + (m − n)α(c) = um
k for m � n � k. By diagonal

extraction, we find an increasing sequence of integers nk such that un
−nk

has a limit
un for each n as k −→ ∞. We then have Tm−n

c un + (m − n)α(c) = um for each
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m � n, so that Gc,un
∈ O. In addition, we have∫ m

n

L(t, x(t), ẋ(t)) − cx(t)(ẋ(t))dt + (m − n)α(c) = um(x(m)) − un(x(n)).

(ii) ⇒ (iii) is clear. �

(3.14) Lemma. For each P ∈ Ẽ(c), the orbit φn(P ) is α-asymptotic and ω-
asymptotic to the Aubry set Ã(c). As a consequence, the Mather set M̃(c) is the
closure of the union of the supports of the invariant measures of the action of φ on
Ẽ(c)

Proof. Let P (t) = (x(t), p(t)) be the Hamiltonian orbit of P . Let un, n ∈ Z, be a
sequence of continuous functions such that, for m � n, we have um = Tm−n

c un +
(m − n)α(c) and

um(x(m)) − un(x(n)) =
∫ m

n

L(t, x(t), ẋ(t)) − cx(t)(ẋ(t))dt + (m − n)α(c).

The sequence um, m ∈ Z, is equi-semi-concave, hence equi-Lipschitz. Together with
(3.1), this implies that this sequence is equi-bounded. If v is a weak KAM solution,
that is, a fixed point of Tc − α(c), we have, for m � n,

v(x(m)) − v(x(n)) �
∫ m

n

L(t, x(t), ẋ(t)) − cx(t)(ẋ(t))dt + (m − n)α(c).

It follows that the sequence n �−→un(x(n))−v(x(n)) is non-decreasing and bounded,
so that it has a limit l as n −→ −∞. Let us now consider an increasing sequence
nk of integers such that the sequence P (t − nk) converges, uniformly on compact
sets, to a limit Z(t) = (y(t), z(t)), which is a Hamiltonian trajectory. Extracting
a subsequence in nk, we can suppose that there exists a sequence wn of continu-
ous functions on M such that un−nk

−→ wn uniformly, for each n, as k −→ ∞.
Then, the sequence wn satisfies Tm−n

c wn = wm for m � n. In addition, we have
wn(y(n)) − v(y(n)) = l and, for m � n,

wm(y(m)) − wn(y(n)) =
∫ m

n

L(t, y(t), ẏ(t)) − cy(t)(ẏ(t))dt + (m − n)α(c).

It follows that, for m � n,

v(x(m)) − v(x(n)) =
∫ m

n

L(t, y(t), ẏ(t)) − cy(t)(ẏ(t))dt + (m − n)α(c),

which implies that Z(Z) ∈ Ĩ(Gc,v). Since this holds for all weak KAM solutions
v, we obtain that Z(Z) ∈ Ã(c). We have proved that the trajectory P (t) is α-
asymptotic to Ã(c). Similarly, one can prove that it is also ω-asymptotic to Ã(c).
This implies that the invariant measures of the action of φ on Ẽ(c) are supported
on Ã(c). �

4 Static classes and heteroclinics

In this section, we see that there is a natural partition of the Aubry set in
compact invariant subsets, which we call static classes, following the terminology
of Mañé. This partition was first considered by Mather in [24]. We also discuss
the existence of heteroclinic orbits between these static classes, extending to the
non-autonomous case results of Fathi, Contreras and Paternain; see [18] and [11].

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



638 PATRICK BERNARD

This survey is also an occasion to introduce several technical lemmas and notation
to be used later.

(4.1) Lemma. Let x and y be two points in M . The following properties are
equivalent:

(i) The points x and y are in A(c), and the function z �−→ hc(x, z)− hc(y, z) is
constant on A(c).

(ii) hc(x, y) + hc(y, x) = 0.
(iii) The points x and y are in A(c), and, for each pair (G, Ğ) ∈ Vc × V̆c, either

the set G ∧ Ğ contains x and y or it contains neither x nor y.
If x and y satisfy these properties, we have, for each z ∈ M , hc(x, z) = hc(x, y) +
hc(y, z).

Proof. (i) ⇒ (ii). Assuming (i), we evaluate the constant function at x and y and
get hc(x, x) − hc(y, x) = hc(x, y) − hc(y, y); hence hc(x, y) + hc(y, x) = 0.

(ii) ⇒ (iii). We have hc(x, x) � hc(x, y) + hc(y, x) = 0; hence x ∈ A(c).
Similarly, y ∈ A(c). Let us consider G = Gc,u ∈ Vc and Ğ = Gc,ŭ ∈ V̆c such that
x ∈ G ∧ Ğ (such a pair exists because x ∈ A(c)). We have to prove that y ∈ G ∧ Ğ.
We have the inequalities u(y) � u(x) + hc(x, y) and ŭ(y) � ŭ(x) − hc(y, x). We
obtain the inequality

(u − ŭ)(y) � (u − ŭ)(x) + hc(x, y) + hc(y, x).

As a consequence, if hc(x, y) + hc(y, x) = 0, then y is also a point of minimum of
u − ŭ, which is the desired result.

(iii) ⇒ (ii). The point x is a point of minimum of the function hc(x, .)+hc(., x).
As a consequence, the point y is also a point of minimum for this function, so that
hc(x, y) + hc(y, x) = hc(x, x) + hc(x, x) = 0.

(ii) ⇒ (i). We have the inequalities

hc(x, z) � hc(x, y) + hc(y, z) and hc(y, z) � hc(y, x) + hc(x, z).

If hc(x, y)+hc(y, x) = 0, then these inequalities sum to an equality, hence they are
both equalities. �

(4.2) The equivalent properties of the Lemma define an equivalence relation on
A(c). We call static classes the classes of equivalence for this relation. In other
words, we say that the points x and y of A(c) belong to the same static class if they
satisfy (i), (ii) or (iii) of the Lemma. We usually denote by S a static class, and by
S(x) the static class containing x. If S is a static class, we denote by S̃ the set of
points of Ã(c) whose projection on M belongs to S. We will also call static classes
the sets of the form S̃. The static classes S are compact and partition A(c), and
the static classes S̃ are compact, invariant, and they partition Ã(c). The invariance
is a direct consequence of the caracterization (iii) of the equivalence relation. To
each point x of the Aubry set A(c), we associate the weak KAM solution hc(x, .),
and we denote by Ec,x the associated element of Vc. The pseudographs of this
form are called elementary solutions of Vc. Two points of the same static class
give rise to the same elementary solution; we will denote by Ec,S the elementary
solution induced by points of S. There is a one to one correspondence between the
set of static classes and the set of elementary solutions. We will denote this set by
Ec ⊂ Vc. We endow it with the induced metric; it is clearly a compact set for this

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



DYNAMICS OF PSEUDOGRAPHS IN CONVEX HAMILTONIAN SYSTEMS 639

metric. We also denote by Ĕc,S the fixed point of Φ̆ associated to the dual weak
KAM solution −h(., x) for x ∈ S.

(4.3) Proposition. Let G ∈ Vc be a fixed point and let P be a point of Ḡ. The
α-limit of the orbit φn(P ) is contained in one static class S̃ ⊂ Ã(c). We also have
P ∈ Ēc,S . In a similar way, if P ∈ Ğ ∈ V̆c, then the ω-limit of the orbit of P is
contained in one static class of Ã(c).

Proof. Let α ⊂ M be the projection of the α-limit of the orbit of P ∈ Gc,u. Note
that this α-limit is contained in Ĩ(G), so that it is a Lipschitz graph above α. We
claim that, for each weak KAM solution or backward weak KAM solution v, the
function u− v is constant on α. Clearly, this implies that α is contained in a static
class. In order to prove the claim, we consider the projection x(t) on M of the orbit
of P . The curve x(t) is calibrated by u on (−∞, 0]; hence the equality

u(x(−m)) − u(x(−n)) = Ac(−n, x(−n),−m, x(−m))

holds for all n, m ∈ N such that m � n. On the other hand, if v is a weak KAM
solution or a backward weak KAM solution, we have the inequality

v(x(−m)) − v(x(−n)) � Ac(−n, x(−n),−m, x(−m))

for all n, m ∈ N such that m � n. We deduce that the sequence (u − v)(x(−n)) :
N −→ R is non-increasing. Now let y = limk→∞ x(−nk) and z = limk→∞ x(−mk)
be two points of α. We can suppose that nk � mk � nk+1 by extracting subse-
quences. We obtain (u− v)(x(−nk)) � (u− v)(x(−mk)) � (u− v)(x(−nk+1)), and
at the limit (u − v)(y) � (u − v)(z) � (u − v)(y). Hence the function u − v is
constant on α. This proves the first statement of the Proposition.

Taking v = hc(α, .), we obtain that the sequence u(x(−n))−hc(α, x(−n)) : N −→
R is non-increasing. On the other hand, we have u(x(0)) − hc(α, x(0)) � u(α). It
follows that the sequence is in fact constant, so that the curve x(t) is calibrated by
Ec,S(α) on (−∞, 0], and, by (2.8), (x(0), p(0)) ∈ Ēc,S(α). �

Corollary. Let P ∈ Ñ (c) be a point whose α-limit is contained in S̃ and whose
ω-limit is contained in S̃ ′. We have

P ∈ Ec,S∧̃Ĕc,S′ .

Proof. Let (x(t), p(t)) be the orbit of P . Let α be an α-limit point of the curve x(t)
and let ω be an ω-limit point. It follows from the Proposition that (x(m), p(m)) ∈
Ēc,S for each m ∈ Z. Applying the discussions in the proof of the proposition with
the point P = (x(m), p(m)) and the functions u = hc(α, .) and v = −hc(., ω), we
get that the sequence hc(α, x(n)) + hc(x(n), ω) is non-decreasing on n � m. Since
we can take any m ∈ Z, this sequence is non-decreasing on Z. Taking a sequence
mk −→ ∞ such that x(mk) −→ ω, we obtain the inequality

hc(α, ω) � hc(α, x(n))+hc(x(n), ω) � lim
k

(hc(α, x(mk))+hc(x(mk), ω)) = hc(α, ω).

It follows that, for each n,

hc(α, x(n)) + hc(x(n), ω) = hc(α, ω) = min
M

hc(α, .) + hc(., ω).

This is precisely saying that

x(n) ∈ Ec,S(α) ∧ Ĕc,S(ω).

Recalling that (x(n), p(n)) ∈ Ēc,S , we obtain (x(n), p(n)) ∈ Ec,S(α)∧̃Ĕc,S(ω). �
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(4.4) Lemma. If the static class S is isolated in A(c), then there exists a neigh-
borhood V of S in M such that the α-limit of every point P ∈ Ec,S satisfying
π(P ) ∈ V is contained in S.

Proof. If the result did not hold true, we could find a sequence (xn, pn) ∈ Ec,S
that has a limit (x, p) ∈ S̃ and a sequence αn of α-limit points of (xn, pn) that has
a limit α in Ã(c) − S̃. Note that the orbit (xn(t), pn(t)) : (−∞, 0] −→ T ∗M of
(xn, pn) is contained in Ec,S . Hence it is calibrated by the function hc(x, .); that is,

hc(x, xn(0)) = hc(x, xn(−k)) + Ac(−k, xn(−k); 0, xn(0)) + kα(c)

for all k ∈ N. At the liminf k −→ ∞, for fixed n, we obtain the inequality
hc(x, xn) � hc(x, αn) + hc(αn, xn); hence the equality hc(x, xn) = hc(x, αn) +
hc(αn, xn). At the limit n −→ ∞ we get 0 = hc(x, x) = hc(x, α) + hc(α, x). This
is in contradiction with the fact that α and x do not belong to the same static
class. �

(4.5) Let S̃ and S̃ ′ be two different static classes in Ã(c). The set Ec,S ∧̃Ĕc,S′

contains S̃ and S̃ ′ as well as other orbits of Ñ (c). The following result is similar to
Theorem A of [11].

Proposition. The set Ec,S ∧ Ĕc,S′ − (S ∪ S ′) is not empty and contains points in
every neighborhood of S, as well as in every neighborhood of S ′. More precisely, if
S and S ′ are two, possibly equal, static classes, and if K̃ ⊂ S̃ and K̃′ ⊂ S̃ ′ are two
disjoint compact invariant sets, then the set Ec,S ∧ Ĕc,S′ − (K∪K′) contains points
in every neighborhood of K, as well as in every neighborhood of K′.

Proof. Let V be an open neighborhood of K in M which does not intersect S ′. Let
us fix a recurrent orbit (y(t), z(t)) : R −→ T ∗M such that (y(0), z(0)) = (y, z) ∈ K̃
and a recurrent orbit (y′(t), z′(t)) : R −→ T ∗M such that (y′(0), z′(0)) = (y′, z′) ∈
K̃′. Consider a sequence nk ∈ N of integers and a sequence (xk(t), pk(t)) : [0, nk] −→
T ∗M of Hamiltonian trajectories such that xk(0) = y and xk(nk) = y′ and∫ nk

0

L(t, xk(t), ẋk(t))−cxk(t)(ẋk(t))+α(c) dt = Ac(0, y; nk, y′)+nkα(c)−→hc(y, y′).

We extend the curve xk : [0, nk] −→ M to a curve xk : R −→ R by setting
xk(t) = y(t) for t � 0 and xk(t) = y′(t − nk) for t � nk. Let ak and bk be two
increasing sequences of integers such that y(−ak) −→ y and y′(bk) −→ y′. The
existence of such sequences follows from the fact that the curves y(t) and y′(t) are
recurrent. Since the curve y(t) is calibrated by hc(y, .), we have, as k −→ ∞,

Ac(−ak, y(−ak); 0, y) + akα(c) = −hc(y, y(−ak)) −→ 0,

and similarly

Ac(0, y′; bk, yk(bk)) + bkα(c) = hc(y′, y(bk)) −→ 0.

As a consequence, we have, as k −→ ∞,

Ac(−ak, xk(−ak); bk + nk, xk(bk + nk)) + (bk + ak + nk)α(c) −→ hc(y, y′).

For each k, let Tk be the maximum of all times i ∈ N such that xk(i) ∈ V . Note that
xk(Tk + 1) does not belong to V . We can assume, taking a subsequence, that the
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curve xk(t+Tk) is converging uniformly on compact sets to a limit x(t) : R −→ M .
Let us now fix m � n in Z. Summing the inequalities

lim inf
k−→∞

(
Ac(−ak, xk(−ak); Tk+m, xk(Tk+m))+(Tk + m + ak)α(c)

)
�hc(y, x(m)),

lim inf
k−→∞

(
Ac(Tk + m, xk(Tk + m); Tk + n, xk(Tk + n))

)
= Ac(m, x(m); n, x(n))

and

lim inf
k−→∞

(
Ac(Tk + n, xk(Tk + n); bk + nk, xk(bk + nk)) + (bk + nk − Tk − n)α(c)

)

� hc(x(n), y′),

we get

h(y, y′) = lim inf
k−→∞

Ac(−ak, xk(−ak); bk + nk, xk(bk + nk)) + (bk + ak + nk)α(c)

� hc(y, x(m)) + Ac(m, x(m); n, x(n)) + (n − m)α(c) + hc(x(n), y′).

Since the converse inequality obviously holds, we obtain the equality

hc(y, y′) = hc(y, x(m)) + Ac(m, x(m); n, x(n)) + (m − n)α(c) + hc(x(n), y′)

for all m � n. It follows that all the inequalities above are in fact equalities, so
that we also have

hc(y, x(m)) + Ac(m, x(m); n, x(n)) + (m − n)α(c) = hc(y, x(n))

so that the orbit x(t) is calibrated by the weak KAM solution hc(y, .) on R. Hence
it is the projection of a Hamiltonian trajectory (x(t), p(t)). Moreover, we have the
equality

hc(y, y′) = hc(y, x(n)) + hc(x(n), y′),
so that the point x(n) is a point of minimum of the function hc(y, .)+hc(., y′). Hence
it belongs to Ec,S ∧ Ĕc,S′ . We have proved that the sequence (x(n), p(n)), n ∈ Z,
is an orbit of φ which is contained in the invariant graph Ec,S ∧̃Ĕc,S′ . Since the
point x(1) is not a point of K, this orbit does not intersect the invariant set K̃.
As a consequence, the point x(0) belongs to V̄ − K. We have proved that the set
Ec,S ∧ Ĕc,S′ − (K ∪K′) contains points in each neighborhood of K. One can prove
in a similar way that this set contains points in every neighborhood of K′. �

(4.6) Corollary. A static class S̃ cannot be decomposed as the union of two dis-
joint invariant compact subsets.

Proof. Assume, by contradiction, that there exists a static class S̃ = K̃1 ∪ K̃2,
with K̃i invariant, compact and disjoint. In view of (4.5), the set

Ec,S ∧ Ĕc,S − (K1 ∪ K2)

is not empty. This is a contradiction since Ec,S ∧ Ĕc,S = S and K1 ∪ K2 = S. �

(4.7) Let (x(t), p(t)) : R −→ T ∗M be an orbit of the Mañé set, that is, an orbit
satisfying (x(0), p(0)) ∈ Ñ (c). This orbit is α-asymptotic to a static class S̃, and
ω-asymptotic to a static class S̃ ′.

Lemma. The inclusion (x(0), p(0)) ∈ Ã(c) holds if and only if S = S ′. In this
case, we have (x(0), p(0)) ∈ S̃.
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Proof. Let us first assume that S = S ′. In this case, we see from Corollary (4.3)
that (x(0), p(0)) ∈ Ec,S∧̃Ĕc,S . But is is clear from the definition of static classes
that Ec,S ∧̃Ĕc,S = S̃. Consequently, we have (x(0), p(0)) ∈ S̃ ⊂ Ã(c). Conversely,
assume that (x(0), p(0)) ∈ Ã(c). Then this point is contained in one static class S̃0.
Since this static class is compact and invariant, it contains the α- and the ω-limits
of the orbit (x(t), p(t)), so that we have S̃ = S̃0 = S̃ ′. �

Corollary. We have the equality Ã(c) = Ñ (c) if and only if there is exactly one
static class in Ã(c).

(4.8) Let H̃c(S̃, S̃ ′) be the set of orbits of Ñ (c) which are heteroclinic orbits be-
tween the static classes S̃ and S̃ ′; we denote by Hc(S,S ′) its projection on M . We
have

Ñ (c) = Ã(c) ∪
⋃
S,S′

H̃c(S,S ′),

where the union is taken on all pairs (S,S ′) of different static classes. Recall from
Corollary (4.3), that

H̃c(S̃, S̃ ′) ⊂ Ec,S ∧̃Ĕc,S′ .

The following result is from [18] and [11].

(4.9) Proposition. If the static class S̃ is properly contained and isolated in Ã(c),
then there exists an orbit of φ in Ñ (c) − Ã(c) which is α-asymptotic to S̃. This
orbit is then ω-asymptotic to another static class S̃ ′.

Proof. Let us choose, according to (4.4), a neighborhood V of S such that every
orbit of Ec,S starting above V has its α-limit contained in S. Now let us choose any
static class S ′′ different from S. In view of (4.5), the set Ec,S∧Ĕc,S′′ intersects V −S.
Let P (t) = (x(t), p(t)) : R −→ T ∗M be an orbit such that P (0) ∈ Ec,S∧̃Ĕc,S′′ and
x(0) ∈ V − S. The α-limit of the orbit P (t) is contained in S̃. On the other
hand, this orbits belongs to Ñ (c); hence its ω-limit is contained in some static class
S̃ ′. �

(4.10) So far we have treated the case where there exist several static classes. We
recall, however, that the existence of a single static class in A(c), is, for c fixed, a
generic property of the Lagrangian; see [11]. We will explain in Section 7 a device
due to Fathi, as well as Contreras and Paternain (see [18] and [11]) which allows us
to treat this case.

Abstract mechanisms

5 The relation and its dynamical consequences

We define the forcing relation �� and describe its dynamical consequences. We
prove Proposition (0.10).

(5.1) Let us introduce some useful notation. Given two subsets G and G′ of T ∗M ,
we define the relation G �N G′ as follows:

G �N G′ ⇐⇒ Ḡ′ ⊂
N⋃

n=1

φn(G),
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where as usual Ḡ is the closure of G. We say that G forces G′, and write G � G′

if there exists an integer N such that G �N G′. If G is a subset of T ∗M and if
c ∈ H1(M, R), the relations

G � c and G �N c

mean that there exists an overlapping pseudograph G′ of cohomology c such that
G � G′ (resp. G �N G′). To finish, for c and c′ two cohomology classes, the relation

c �N c′

means that, for each pseudograph G ∈ Pc, we have G �N c′. As the reader may have
guessed, we will then say that c forces c′ (c � c′) if there exists an integer N such that
c �N c′. The relation � (between subsets as well as between cohomology classes)
is obviously transitive. In this paper we will be concerned with understanding the
relation � between cohomology classes. For this purpose, it is useful to introduce
the symmetric relation

c��c′ ⇐⇒ c � c′ and c′ � c.

We say that c and c′ force each other if c��c′.

Proposition. The forcing relation �� is an equivalence relation on H1(M, R).

Note that we have c �1 c for each c since Φ(G) ⊂ φ(G) for each G ∈ Pc, which
can be written G �1 Φ(G).

(5.2) Let us present a simple (negative) result about this relation. If G is a graph
of a continuous section of T ∗M , and is invariant under φ, then G ∈ V∩ V̆ is in fact
a Lipschitz graph, and the relation c(G) � c holds if and only if c = c(G). Note
that, if C ⊂ H1(M, R) is bounded, it is possible to choose a uniform constant K
such that all the invariant Lipschitz Graphs G whose cohomology satisfies c ∈ C are
K-Lipschitz. In other words, the elements of VC ∩ V̆ are equi-Lipschitz graphs. Of
course, we would like to be able to prove that the forcing relation �� has non-trivial
classes. We first restate and prove Proposition (0.10).

(5.3) Proposition.
(i) If the cohomology class c forces the cohomology class c′, there exists a het-

eroclinic trajectory of the Hamiltonian flow between Ã(c) and Ã(c′). For
any closed forms η of cohomology c and η′ of cohomology c′, there exists
a positive integer N and a trajectory (q(t), p(t)) : [0, N ] −→ T ∗M of the
Hamiltonian flow such that p(0) = ηq(0) and p(N) = η′

q(N). There exists a
trajectory (q(t), p(t)) : [0,∞) −→ T ∗M which satisfies p(0) = ηq(0) and is ω-
asymptotic to Ã(c′). There exists a trajectory (q(t), p(t)) : (−∞, 0] −→ T ∗M

which satisfies p(0) = η′
q(0) and is α-asymptotic to Ã(c).

(ii) Let ci, i ∈ Z, be a sequence of cohomology classes such that ci forces ci+1 for
each i ∈ Z. Fix for each i a neighborhood Ui of M̃(ci) in T ∗M . There exists
a trajectory of the Hamiltonian flow which in turn visits all the sets Ui. In
addition, if the sequence stabilizes to c− on the left, or to c+ on the right,
the trajectory can be assumed negatively asymptotic to A(c−) or positively
asymptotic to A(c+).

Proof. Let us first assume that c � c′. Take a fixed point Gc ∈ Vc. There exists a
graph G ∈ Pc′ such that Gc � G. Now, consider a pseudograph Ğc′ ∈ V̆c′ . It follows
from Lemma (2.3) that G intersects Ğc′ . In view of (4.3), the points of intersection
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are α-asymptotic to Ã(c) and ω-asymptotic to Ã(c′). In the same way, we can take
for Gc the graph of the closed form η, choose G ∈ Pc′ such that Gc � G, and take
for Ğc′ the graph of η′. The points of the intersection G ∩ Ğc′ have trajectories from
Gc to Ğc′ . The other statements of (i) are proved similarly.

(5.4) Lemma. Let us fix a cohomology c.

(i) For each neighborhood U of Ẽ(c), there exists N ∈ N such that, for all l � N
and all G ∈ Pc, we have

φ−l
(
Φ2l(G)

)
⊂ U.

(ii) If V is an open neighborhood of M̃(c) in T ∗M , there exists N ∈ N such
that, for each G ∈ Pc and each P ∈ ΦN (G), one of the points φ−i(P ), 1 �
i � N − 1, belongs to V .

Proof. In order to prove (i), it is sufficient to prove that if Gn ∈ Pc is a sequence
of pseudographs, if mn is an increasing sequence of integers, and if (xn(t), pn(t)) :
[0, mn] −→ T ∗M is a Hamiltonian trajectory which satisfies

(xn(mn), pn(mn)) ∈ Φ2mn(Gn)

and which converges uniformly on compact sets to a limit (x(t), p(t)) : R+ −→
T ∗M , then (x(0), p(0)) ∈ Ẽ(c).

Let us write the pseudographs Φmn(Gn) on the form Gc,un
. For each k, n ∈ N,

we have

T k
c un(xn(k)) = un(xn(0)) +

∫ k

0

L(t, xn(t), ẋn(t)) + cxn(t)(ẋn(t))dt.

Since the functions un lie in the image of the operator Tmn
c , they are equi-Lipschitz,

and there exists a real sequence λn such that the sequence of functions λn + un

has accumulation points in C(M, R). As a consequence, we can assume, taking a
subsequence if necessary, that the functions λn + un converge uniformly to a limit
u. We have Gc,u = lim Φmn(Gn) ∈ Oc. For each fixed k ∈ Z, taking the limit as
n −→ ∞, we get

T k
c u(x(k)) = u(x(0)) +

∫ k

0

L(t, x(t), ẋ(t)) + cx(t)(ẋ(t))dt.

Hence we have P (k − 1) ∈ Φk−1(Gc,u), and therefore P (0) ∈ φ1−k(Φk−1(Gc,u)).
Since this holds for all k ∈ N, we conclude that

P (0) ∈ Ĩ(Gc,u) ⊂ Ẽ(c).

In order to prove (ii), it is useful to recall that Ẽ(c) is a compact set, invariant
under the time-one flow φ, and that the Mather set M̃(c) is the union of the
supports of the invariant measures of the action of φ on Ẽ(c). The claim below
follows from general facts about topological dynamics on compact spaces: For each
neighborhood W of M̃(c) in Ẽ(c), there exists an integer k such that, for each point
P of Ẽ(c), one of the points φi(P ), 1 � i � k, belongs to W . As a consequence, if V

is a neighborhood of M̃(c) in T ∗M , there exists a neighborhood U of Ẽ(c) in T ∗M
such that, for each P ∈ U , one of the points φi(P ), 1 � i � k, belongs to V . Now
let us take l � k such that (i) holds for this neighborhood U , and set N = 2l. For
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each G ∈ Pc and each P ∈ ΦN (G), we have φ−l(P ) ∈ U . Hence one of the points
φi−l(P ), 1 � i � k, is in V , which proves (ii). �

(5.5) Let us now prove (ii) of the Proposition. Let Mi ∈ N, i ∈ Z, be a sequence
of integers such that ci �Mi

ci+1, and let Wi ⊂ Vi be compact neighborhoods of
M̃(ci). In view of Lemma (5.4), there exists a sequence Ni of integers such that,
for each G ∈ Pci

and each
P ∈ φ−Ni(ΦNi(G)),

one of the points φl(P ), 0 � l � Ni, belongs to Wi.
Let us first fix an integer k ∈ N and choose a pseudograph Gk

−k ∈ Pc−k
. Since

c−k �M−k
c1−k, there exists a pseudograph Gk

1−k∈Pc1−k
such that ΦN−k(Gk

−k) �M−k

Gk
1−k. We build, by induction, a sequence Gk

i ∈ Pci
, i � −k, of pseudographs such

that
ΦNi(Gk

i ) �Mi
Gk

i+1

for each i � −k.
Let us now take a point P k

k ∈ Gk
k . There exists a positive integer lkk−1 � Mk−1

such that φ−lkk−1(P k
k ) ∈ ΦNk−1(Gk

k−1). We then set P k
k−1 = φ−(lkk−1+Nk−1)(P k

k ); this
point belongs to Gk

k−1. We can build a sequence P k
i ,−k � i � k, of points of Gk

i

and a sequence lki ,−k � i � k − 1, of integers satisfying 0 � lki � Mi such that

φNi+lki (P k
i ) = P k

i+1

for each i. In addition, one of the points φj(P k
i ), 0 � j � Ni, belongs to Wi.

There exists an increasing sequence kn of integers such that each of the sequences
n �−→ lkn

i , for fixed i, is the constant li after a certain rank, and each of the sequences
n �−→ P kn

i , for fixed i, is converging to Pi. Clearly, we have φli+Ni(Pi) = Pi+1 for
each i ∈ Z, and one of the points φj(Pi), 0 � j � Ni, belongs to Wi. This proves
the main part of the statement.

If the sequence ci stabilizes to c− on the right, then it is possible to build a
sequence Gi ∈ Pci

as above which stabilizes to G− ∈ Vc− on the right, and we
obtain by the above method an orbit which is α-asymptotic to Ã(c−) and then
visits in turn all the sets Wi. If the sequence ci stabilizes to c+ on the right, say for
i � I, then it is possible to impose that PI ∈ Ğ+ ∈ V̆c+ in the construction above,
and we then obtain an orbit which is ω-asymptotic to Ã(c+). �

6 Evolution operators

We define operators on P that generalize the Lax-Oleinik operator Φ. These
operators will play a central role in the proof of our main results.

(6.1) Given two integers N ′ � N � 1, and a cohomology c, we define the function
AN,N ′

c : M × M −→ R by the expression

AN,N ′

c (x, y) = min
k∈N,N�k�N ′

Ac(0, x; k, y) + kα(c).

Since each of the mappings

H1(M, R) −→ C(M × M, R),

c �−→ Ac(0, .; k, .)
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is continuous (see Appendix B), it is easy to see that, for fixed N ′ � N , the mapping

H1(M, R) −→ C(M × M, R),

c �−→ AN,N ′

c

is continuous.

Proposition. Let c be a fixed cohomology class. For each ε > 0, there exist integers
N ′ � N � 1 such that

‖AN,N ′

c − hc‖∞ � ε.

More precisely, there exists an integer N0 and a function Λ : N −→ N such that the
conclusion holds if N � N0 and N ′ � Λ(N).

Proof. The functions AN,N ′

c , N � N ′ ∈ N, and the function hc have a com-
mon modulus of continuity and a common uniform bound. As a consequence, the
pointwise limit

hc(x, y) = lim
N−→∞

lim
N ′−→∞

AN,N ′

c (x, y)

is uniform. �

(6.2) It is useful to generalize the operators ΦN : P −→ P. Given two integers
N ′ � N � 1 and an open set U ⊂ M , we define the operator

ΦN,N ′

U : P −→ P

by the relation ΦN,N ′

U (Gc,u) = G
c,T N,N′

c,U u
where

TN,N ′

c,U u(x) = min
y∈Ū ,N�k�N ′

T k
c u(y) + kα(c) = min

y∈Ū
u(y) + AN,N ′

c (y, x).

For simplicity we will denote by ΦN,N ′
the operator ΦN,N ′

M . For each G ∈ P, we
have

G �N ′ ΦN,N ′
(G).

Lemma. For each integer 1 � N � N ′ and each open set U ⊂ M , the operator
ΦN,N ′

U : P −→ P is continuous when the source is endowed with the seminorm ‖.‖U

and the image with the norm ‖.‖; see (2.2).

Proof. Let G = Gc,u and G1 = Gc1,u1 be two pseudographs. We have

‖ΦN,N ′

U (G1) − ΦN,N ′

U (G)‖ � |c1 − c| + ‖TN,N ′

c1,U u1 − TN,N ′

c,U u‖.

In order to estimate the term ‖TN,N ′

c1,U u1 − TN,N ′

c,U u‖, let us write

TN,N ′

c,U u = u(y) + AN,N ′

c (y, x)

with y ∈ Ū . Then, we have

TN,N ′

c1,U u1 − TN,N ′

c,U u � u1(y) + AN,N ′

c1
(y, x) − u(y) − AN,N ′

c (y, x),

and by symmetry

‖TN,N ′

c1,U u1 − TN,N ′

c,U u‖ � sup
y∈U

|u1(y) − u(y)| + ‖AN,N ′

c1
− AN,N ′

c ‖.

The conclusion follows from the continuity of the mapping c �−→ AN,N ′

c ; see (6.1).
�
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(6.3) Similarly, we define the operator

Φ∞
U : P −→ V

by the relation Φ∞
U (Gc,u) = Gc,T∞

c,U u where

T∞
c,Uu(x) = min

y∈Ū
u(y) + hc(y, x).

In the autonomous case Fathi proved that the sequence Φn(G) is converging to a
fixed point of Φ for each G ∈ P. Such a result would be very useful to us, but does
not hold in our non-autonomous setting. It is replaced by the following one.

Proposition. Let c be a fixed cohomology class. For each ε > 0 there exist integers
N � N ′ such that, for each pseudograph G = Gc,u ∈ Pc and each open set U ⊂ M ,
we have

‖ΦN,N ′

U (G) − Φ∞
U (G)‖ � ε.

More precisely, there exists an integer N0 and a function Λ : N −→ N such that the
conclusion holds if N � N0 and N ′ � Λ(N).

Proof. It is not hard to see that, for each continuous function u,

‖TN,N ′

c,U u − T∞
c,Uu‖ � ‖AN,N ′

c − hc‖.
The Proposition follows from (6.1). �
(6.4) Proposition. Let G0 = Gc0,u0 ∈ P be a pseudograph, and let ε > 0 be fixed.
Assume that there exists an open set U ⊂ M and two compact sets K ⊂ U and
K1 ⊂ M such that, for each x ∈ K1, the minimum in the expression T∞

c0,Uu0(x) =
miny∈Ū u0(y) + hc0(y, x) is never reached outside of K. Then there exist integers
N � N ′, a positive number δ and an open neighborhood U1 of K1 such that, for
each pseudograph G ∈ P satisfying ‖G − G0‖U � δ, we have

G|U �N ′ ΦN,N ′

U (G)|U1 .

More precisely, there exists an integer N0 and a function Λ : N −→ N such that the
conclusion holds if N � N0 and N ′ � Λ(N).

Proof. Let us denote by ∂U the boundary of U . There exists a positive number
ε and a neighborhood U1 of K1 such that, for each x ∈ Ū1,

min
y∈∂U

u0(y) + hc0(y, x) � min
y∈U

u0(y) + hc0(y, x) + 7ε.

In view of (6.1), there exist integers N and N ′ such that

‖AN,N ′

c0
− hc0‖ � ε.

For fixed N and N ′, the function AN,N ′

c depends continuously on c ∈ H1(M, R);
see (6.1). As a consequence, if c is sufficiently close to c0, we have

‖AN,N ′

c0
− AN,N ′

c ‖ � ε.

For these values of N and N ′, if u ∈ C(M, R) is such that supU |u − u0| � ε, we
have, for each x ∈ M and y ∈ Ū ,

|u0(y) + hc0(y, x) − u(y) − AN,N ′

c (y, x)| � 3ε.

Hence we have the inequality

min
y∈∂U

u(y) + AN,N ′

c (y, x) � min
y∈U

u(y) + AN,N ′

c (y, x) + ε.
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As a consequence, if ‖Gc,u −G0‖U is sufficiently small, then there exists a compact
set K′ ⊂ U such that the minimum in the expression

TN,N ′

c,U u(x) = min
y∈Ū

u(y) + AN,N ′

c (y, x)

is reached in K′ for all x ∈ Ū1. Now let us set v = TN,N ′

c,U u and consider a point

(x, p) ∈ Gc,v|U1 .

The point (x, p) is the limit of a sequence (xn, pn) ∈ Gc,v|U1 . In other words, the
points xn ∈ U1 are points of differentiability of v, and we have dvxn

+ cxn
= pn.

Let yn ∈ K′ and kn ∈ N, N � kn � N ′, satisfy

v(xn) = u(yn) + Ac(0, yn; kn, xn) + knα(c).

By extracting a subsequence, we can suppose that the sequence kn is a constant k.
By arguments similar to those of (2.7), recalling that the function u is semi-concave,
we conclude that the function u is differentiable at yn, and, setting zn = cyn

+duyn
,

that φk(yn, zn) = (xn, pn). By extracting another subsequence, we can suppose that
the sequence yn has a limit y ∈ K′. We then have

v(x) = u(y) + Ac(0, y; k, x) + kα(c),

so that the function u is differentiable at y. Since the function u is semi-concave, we
then have duy = lim duyn

; see Appendix (A.9). At the limit in φk(yn, zn) = (xn, pn),
we get φk(y, z) = (x, p), where z := dvy + cy. We have proved that

Gc,v|U1 ⊂
N ′⋃

k=N

φk(Gc,u|U ). �

(6.5) Proposition. Let c and c′ be two cohomology classes. Assume that, for each
weak KAM solution G0 ∈ Vc, there exists a positive number ε > 0 and an integer N
with the following property: For each pseudograph G ∈ Pc such that ‖G − G0‖ � ε,
there exists a pseudograph G′ ∈ Pc′ such that G �N G′. Then c � c′.

Proof. By compactness of Vc, there exists a neighborhood U of Vc in Pc and an
integer N such that, for all G ∈ U, we have G �N c′. In view of Proposition (6.3),
there exist integers k � k′ such that Φk,k′

(G) ∈ U for each G ∈ Pc. We obtain, for
each G ∈ Pc, the existence of a G′ ∈ Pc′ such that

G �k′ Φk,k′
(G) �N G′

so that G �k′+N G′. �

7 Coverings

As was noticed by Fathi, as well as Contreras and Paternain (see [18] and [11]),
it is useful to study the effect of taking finite Galois coverings.

(7.1) Let P : M0 −→ M be a finite connected covering and P ∗ : H1(M, R) −→
H1(M0, R) be the induced mapping. Let us also denote by L◦TP : R×TM0 −→ R

the lifted Lagrangian

L ◦ TP (t, x, v) = L(t, P (x), dPx(v)),

and by T ∗P : T ∗M0 −→ T ∗M the covering

(x, p) �−→ (P (x), p ◦ dP−1
x ).
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The lifted Hamiltonian H ◦ T ∗P is in natural duality with the Lagrangian L ◦ TP .
As a consequence, the Hamiltonian flow associated to the Lagrangian L◦TP is the
Hamiltonian flow of H ◦ T ∗P , which is the lifting of the Hamiltonian flow of H.
Each overlapping pseudograph G = Gc,u on M lifts to a pseudograph

P ∗G := T ∗P−1(G) = GP ∗c,u◦P

on M0. Note that c(P ∗G) = P ∗(c(G)). It is not hard to see that the Aubry set
ÃL◦TP (P ∗(c)) associated to L ◦ TP on M0 is precisely

ÃL◦TP (P ∗(c)) = T ∗P−1(ÃL(c)),

while we only have the inclusion

ÑL◦TP (P ∗(c)) ⊃ T ∗P−1(ÑL(c)).

Finally, if SL◦TP is a static class of AL◦TP (P ∗(c)) , then P (SL◦TP ) is a static class of
AL(c). Note however that the lifting P−1(SL) of a static class of AL(c) can contain
several static classes of AL◦TP (P ∗(c)). This is illustrated by the following result
which, in conjunction with (4.9), allows us to prove the existence of heteroclinic
orbits in the case where there is only one static class; see [18] and [11]. We first need
another definition. If X̃ ⊂ T ∗M is an invariant set of the time-one flow φ, then we
denote by sX̃ ⊂ T ∗M × T the set

⋃
t∈R,x∈X̃ (φt

0(x), t) and by sX its projection on
M × T.

(7.2) Proposition. Assume that the set A(c) contains finitely many static classes,
and that there exists an open neighborhood U ⊂ M × T of the compact set sA(c)
such that the mapping h : H1(U, Z) −→ H1(M, Z) is not surjective, where h is the
composition of the mappings

H1(U, Z) i∗−→ H1(M × T, Z)
p∗−→ H1(M, Z)

induced from the inclusion and the projection. Then there exists a finite connected
Galois covering P : M0 −→ M with k sheets, k � 2, such that, for each static class
S̃ of Ã(c), the lifting T ∗P−1(S̃) is the union of exactly k different static classes of
ÃL◦TP (P ∗(c)).

Proof. Let N be the number of static classes in A(c). First, we claim that for
each static class S, the set sS is connected. This follows easily from (4.6). As a
consequence, we can suppose that the neighborhood U is a union of finitely many
connected open sets Ui, 1 � i � N , each of which contains exactly one of the sets
sS. Since the group H1(M, Z) is abelian and of finite type, and since the mapping
h : H1(U, Z) −→ H1(M, Z) is not surjective, there exists an integer k � 2 and a
surjective morphism g : H1(M, Z) −→ Z/kZ whose kernel contains the subgroup
h(H1(U, Z)). There is a connected Galois covering P : M0 −→ M with k sheets
associated to this morphism. This means that if χ : π1(M) −→ H1(M, Z) is the
Hurewitz map, then the image P∗(π1(M0)) in π1(M) is precisely the kernel of g ◦χ.
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The following diagram commutes:

π1(M0 × T)
p∗−−−−→ π1(M0)

(P×Id)∗

⏐⏐ P∗

⏐⏐
π1(U) i∗−−−−→ π1(M × T)

p∗−−−−→ π1(M)

χ

⏐⏐ χ

⏐⏐ χ

⏐⏐
H1(U, R) i∗−−−−→ H1(M × T, R)

p∗−−−−→ H1(M, R)
g−−−−→ Z/kZ

We claim that
i∗(π1(U)) ⊂ (P × Id)∗(π1(M0 × T)),

which implies that the covering P × Id is trivial above U . In order to prove the
claim, let us first notice that g ◦ χ ◦ p∗ ◦ i∗ = g ◦ p∗ ◦ i∗ ◦ χ : π1(U) −→ Z/kZ is
the zero map. This implies that the image of the map i∗ : π1(U) −→ π1(M × T) is
contained in the kernel of g ◦ χ ◦ p∗. In order to finish the proof of the claim, we
check that the image of (P × Id)∗ is precisely the kernel of g ◦ χ ◦ p∗. This follows
from the fact ker(g ◦ χ) = im(P∗) and from the fact that the upper square of the
diagram can be identified with

π1(M0) × Z −−−−→ π1(M0)

P∗×Id

⏐⏐ P∗

⏐⏐
π1(M) × Z −−−−→ π1(M)

where the horizontal arrows are projections on the first factor. The claim is proved,
so that the covering P × Id is trivial above U . It follows that each connected
component Ui of U has k disjoint connected preimages V j

i ⊂ M0 ×T. Now it is not
hard to see that the static classes of AL◦TP (P ∗(c)) are precisely the intersections

TP−1(A(c)) ∩ V j
i = AL◦TP (P ∗(c)) ∩ V j

i , 1 � i � N, 1 � j � k. �

(7.3) Proposition. Let P : M0 −→ M be a finite Galois covering. Let c and c′

be two cohomology classes in H1(M, R). If P ∗(c) �N P ∗(c′) for the forcing relation
associated to the Lagrangian L ◦ TP on M0, then c �N c′.

Proof. Let us consider a pseudograph G ⊂ Pc. If P ∗(c) �N P ∗(c′), then there
exists a pseudograph G′ on M0 of cohomology P ∗(c′) and such that P ∗G �N G′.
Let D be the group of deck transformations of the covering P . The elements of D

are the diffeomorphisms D of M0 such that P ◦ D = P . To each element D of D

we associate the fibered diffeomorphism T ∗D of T ∗M defined by

T ∗D(x, p) = (D(x), p ◦ dD−1
x ).

This diffeomorphism is a Deck transformation of the covering T ∗P . Let us prove
that there exists a pseudograph G′′ on M0 which is invariant by deck transforma-
tions, which has cohomology P ∗(c′), and is such that P ∗G �N G′′. Let η be a form
on M with cohomology c′, and let P ∗η be its lifting to M0. We write G′ on the
form GP ∗η,u. Since the flow of H ◦ T ∗P commutes with Deck transformations, and
since the pseudograph P ∗G is invariant by deck transformations, we have

P ∗G = T ∗D(P ∗G) �N T ∗D(G′)
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for each deck transformation D. It is easy to check that T ∗D(G′) = GP ∗η,u◦D−1 .
Setting

v := min
D∈D

u ◦ D−1

and G′′ = Gη,v, we have G′′ ⊂
⋃

D∈D
T ∗D(G′), hence P ∗G �N G′′, and we have the

desired properties for G′′. Since P is a Galois covering, functions on M0 which are
invariant by deck transformations are liftings of functions on M . As a consequence,
there exists a continuous function w : M −→ R such that v = w ◦ P . Hence the
pseudograph G′′ is the lifting of the pseudograph Gη,w on M . Since P ∗G �N G′′ =
P ∗Gη,w, we have G �N Gη,w. We have asssociated, to each pseudograph G ∈ Pc, a
pseudograph Gη,w ∈ Pc′ such that G �N Gη,w. This proves that c �N c′. �

8 Mather’s mechanism

We comment and prove Theorem (0.11). Let us first discuss some properties of
the subspace R(c) as defined in (0.11).

(8.1) It is useful to consider the Čech cohomology Ȟ(., R) with real coefficients.
Recall that H(., R) is the De Rham cohomology. We identify the De Rham coho-
mology H1(M, R) with the Čech cohomology Ȟ1(M, R). If K is any subset of M ,
we denote by ı̌∗K the mapping Ȟ1(M, R) −→ Ȟ1(K, R) induced from the inclusion
iK : K −→ M . Recalling that the subspace R(G) was defined in (0.11), we have:

Lemma. For each G ∈ Vc, we have R(G) = ker(ı̌∗I(G)).

Proof. Consider an open neighborhood V0 of I(G) which is such that, for each
open neighborhood V ⊂ V0 of I(G) in M , R(G) is the set of cohomology classes
of smooth closed one-forms which vanish on V . Let us fix an open neighborhood
V ⊂ V0 of I(G) in M . Clearly, the cohomology classes of smooth closed one-forms
which vanish on V0 belong to ker(i∗V ) (where i∗V is the mapping associated to the
inclusion in De Rham cohomology). We have proved the inclusion R(G) ⊂ ker(i∗V ).
Conversely, let ω be a smooth closed one-form on M whose De Rham cohomology
belongs to ker(i∗V ). This means that the restricted form ω|V is exact. Hence there
exists a smooth function f on V such that ω|V = df . There also exists a smooth
function f̃ : M −→ R which is equal to f in a neighborhood Ṽ ⊂ V of I(G). The
form ω − df̃ is a smooth closed form on M , cohomologous to ω, and vanishing on
Ṽ . As a consequence, we have [ω] = [ω − df̃ ] ∈ R(G). We have proved that

ker(i∗V ) = R(G)

for all open neighborhoods V ⊂ V0 of I(G) in M . The Lemma follows because
ker(ı̌∗I(G)) is equal to ker(i∗V ) when V is a sufficiently small open neighborhood of
I(G) in M . �

(8.2) In order to avoid confusion, we shall denote by jK̃ : K̃ −→ T ∗M the inclusion
of a subset K̃ of T ∗M into T ∗M , and by ǰ∗K̃ : Ȟ1(T ∗M, R) −→ Ȟ1(K̃, R) the
associated mapping in Čech cohomology. We identifying the Čech cohomology
Ȟ1(T ∗M, R) with the De Rham cohomology H1(T ∗M, R), and the mapping π̌∗ :
Ȟ1(M, R) −→ Ȟ1(T ∗M, R) with π∗ : H1(M, R) −→ H1(T ∗M, R).

Lemma. We have (π∗)−1
(
ker(ǰ∗Ñ (c)

)
)
⊂ R(c).
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Proof. It is enough to prove that, for each G ∈ Vc, we have ker(ǰ∗Ñ (c)
) ⊂ π∗(R(G)).

For each G ∈ Vc, we have Ĩ(G) ⊂ Ñ (c), hence ker(ǰ∗Ñ (c)
) ⊂ ker(ǰ∗Ĩ(G)

). So it is
enough to prove that the inclusion ker(ǰ∗Ĩ(G)

) ⊂ π∗(R(G)) holds for each G ∈ Vc.
Let us consider such a pseudograph G. Since the projection π : TM −→ M induces
a homeomorphism π|Ĩ(G) : Ĩ(G) −→ I(G), the commutative diagram

TM
jĨ(G)←−−−− Ĩ(G)

π

⏐⏐ π|Ĩ(G)

⏐⏐
M

iI(G)←−−−− I(G)

gives rise in Čech cohomology to the diagram

H1(TM, R) Ȟ1(TM, R)
ǰ∗Ĩ(G)−−−−→ Ȟ1(Ĩ(G), R)

π∗
�⏐⏐ π̌∗

�⏐⏐ π̌∗
|Ĩ(G)

�⏐⏐
H1(M, R) Ȟ1(M, R)

ı̌∗I(G)−−−−→ Ȟ1(I(G), R)
where the vertical arrows are isomorphisms. We conclude that

ker(ǰ∗Ĩ(G)
) = π̌∗(ker(ı̌∗I(G))) = π∗(R(G)). �

(8.3) Lemma. The space R(c) ⊂ H1(M, R) depends semi-continuously on c in
the following sense: For each c0 ∈ H1(M, R), there exists a neighborhood V of c0

in H1(M, R) such that, for each c ∈ V , we have R(c0) ⊂ R(c).

Proof. Let us fix a cohomology class c0. We claim that, for each G0 ∈ Vc0 , there
exists ε0 > 0 such that each fixed pseudograph G of V which satisfies ‖G −G0‖ � ε0
has to satisfy

R(G0) ⊂ R(G).
This claim follows from the existence of a neighborhood U of I(G0) such that R(G0)
is the set of cohomology classes of smooth closed one-forms which vanish on U , and
from the fact that the inclusion I(G) ⊂ U holds when G is sufficiently close to G0.
Let BP(G, ε) denote the open ball of center G and radius ε in P. The compact set
Vc0 is covered by a finite family of balls BP(Gi, εi) such that Gi ∈ Vc0 and such
that R(Gi) ⊂ R(G) for each G ∈ BP(Gi, εi). Since the map c is continuous and
proper on V (see (3.7)), there exists a δ > 0 such that, for |c − c0| � δ, we have
Vc ⊂

⋃
i BP(Gi, εi). As a consequence, if G belongs to some Vc with |c−c0| � δ, then

there exists i such that R(c0) ⊂ R(Gi) ⊂ R(G). We conclude that R(c0) ⊂ R(c) for
|c − c0| � δ. �

The following proposition is the main step in the proof of Theorem (0.11). We
denote by BE(r) the open ball of radius r centered at the origin in the normed
vector space E.

(8.4) Proposition. For each G0 ∈ Vc0 , there exists a positive number ε0 and an
integer N such that the following holds: For each pseudograph G ∈ P satisfying
‖G−G0‖ < ε0 and c(G)−c0 ∈ R(c0), for each cohomology class c satisfying c−c0 ∈
BR(c0)(ε0) ⊂ R(c0), we have

G �N c.
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Note in this statement that the cohomology class of the pseudograph G is denoted
by c(G), and that the symbol c alone denotes another cohomology class.

(8.5) Proof of Theorem (0.11). We assume the Proposition. For Each G0 ∈
Vc0 , we consider the number ε0 given by the Proposition, and the open ball
BP(G0, ε0) of center G0 and radius ε0 in P. Since Vc0 is compact, it can be covered
by a finite number of these balls; we denote Gi and εi the associated centers and
radii. Since the function c restricted to V is proper, (3.7), there exists a positive
number δ such that Vc ⊂

⋃
i BP(Gi, εi) when |c−c0| � δ. Consider two cohomology

classes c and c′ in c0 + BR(c0)(ε), with ε = min{δ, εi}. It follows from (6.5) that c
forces c′. The Theorem clearly follows. theorem

(8.6) Proof of the Proposition. Let us fix a G0 ∈ Vc0 and choose a neigh-
borhood U of I(G0) in such a way that R(G0) is the set of cohomology classes of
smooth closed one-forms vanishing on U .

Lemma. There exist δ > 0 and N ′ � N in N such that, for all overlapping
pseudographs G satisfying ‖G − G0‖ � δ, we have

G|U �N ΦN ′,N
U (G).

Proof. Let us write the pseudograph G0 on the form Gc0,u0 . We have seen in (3.9)
that

u0(x) = min
y∈M

u0(y) + hc0(y, x) = min
y∈A(c0)

u0(y) + hc0(y, x).

As a consequence, we have T∞
U u0 = T∞

M u0 = u0, and the minimum in the definition
of T∞

U u0(x) is not reached outside of I(G), which is a compact set contained in U .
The Lemma now follows from Proposition (6.4). �

(8.7) Lemma. Let us fix a δ > 0. There exists ε0 > 0 such that, if we take: on
one hand a cohomology class c satisfying c − c0 ∈ R(G0) and ‖c − c0‖ � ε0 and on
the other hand a pseudograph G ∈ P satisfying ‖G−G0‖ � ε0 and c(G) ∈ c0 +R(G0),
then there exists a pseudograph G′ ∈ Pc with the following properties: ‖G′−G0‖ � δ
and G|U = G′

|U .

Proof. Let us write G0 = Gη0,u0 . In view of the definition of R(G0), it is possible
to associate to each cohomology class d ∈ R(G0) a closed one-form µd which is null
on U . In addition, we can impose that the correspondence d �−→ µd is linear. Given
a pseudograph G ∈ P and a cohomology c satisfying the hypotheses of the Lemma,
we consider the pseudograph

G′ = G + Gµ(c−c(G)),0 ∈ Pc.

It is clear that G′
|U = G|U , that c(G′) = c, and that ‖G′ − G0‖ � δ if ε0 is small

enough. �

(8.8) We are now in a position to end the proof of the Proposition. Let us consider
δ given by Lemma (8.6), and the associated ε0 as given by Lemma (8.7). If G and c
satisfy the hypotheses of the Proposition with this value of ε0, then, by Lemma (8.7),
there exists a pseudograph G′ such that c(G′) = c, G′

|U = G|U and ‖G′ − G0‖ � δ.

In view of Lemma (8.6), we have G|U �N ΦN ′,N
U (G′), so that G �N ΦN ′,N

U (G′).
proposition
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9 Arnold’s mechanism for systems with finitely many static classes

We prove and generalize Theorem (0.12).

(9.1) Let H̃c(S̃, S̃ ′) be the set of orbits of the Mañé set Ñ (c) which are heteroclinic
orbits between the static classes S̃ and S̃ ′; we denote by Hc(S,S ′) its projection
on M . We have, from Section 4,

Ñ (c) = Ã(c) ∪
⋃
S,S′

H̃c(S,S ′),

where the union is taken on all pairs (S,S ′) of different static classes. In addition,
it is useful to recall that

H̃c(S̃, S̃ ′) ⊂ Ec,S ∧̃Ĕc,S′ .

We say that the set H̃c(S,S ′) is neat if it admits a compact subset K̃ which contains
one and only one point in each orbit of φ|H̃c(S,S′) and whose projection K on M is
acyclic. This means that K has a neighborhood U whose inclusion i into M induces
the null map i∗ : H1(U, R) −→ H1(M, R).

(9.2) Theorem. Let c0 be a cohomology class such that the number of static
classes in A(c0) is finite and greater than one. Assume in addition that all the
sets H̃c0(S,S ′) are neat. Then the class c0 is in the interior of its class of ��-
equivalence.

Let us gather some preliminary consequences of the hypotheses.

(9.3) Lemma. We assume the hypotheses of the Theorem. Let S0 be a static class
and V0 be a neighborhood of S0.

(i) There exists an open neighborhood V of S0, contained in V0, such that the
boundary of V does not intersect I(Ec0,S0).

(ii) There exists an ¡acyclic open set U ⊂ V0 − S0 and a static class S1 such
that the intersection U ∩ I(Ec0,S0) is not empty, compact, and contained in
H(S0,S1).

Proof. Let V0 be a neighborhood of S0, sufficiently small for Lemma (4.4) to
apply, so that we have

V0 ∩ I(Ec0,S0) = S0 ∪
⋃

S∈E(c0)−S0

(
H(S0,S) ∩ V0

)
,

where the union is taken on all static classes S �= S0. We shall also assume that
V̄0 ∩ A(c0) = S0.

For each static class S, let us consider an acyclic compact set K̃(S0,S) which
contains one and only one point in every orbit of H̃(S0,S), and denote by K(S0,S)
its projection on the base. Clearly, the sets K̃(S0,S),S ∈ E(c0) − S0, are pairwise
disjoint and they all belong to the Lipschitz graph Ĩ(Ec0,S0), so that their pro-
jections K(S0,S) on the base are also pairwise disjoint. Let us consider a static
class S �= S0. For n large enough, we have π ◦ φ−n(K̃(S0,S)) ⊂ V0. In addition,
since K(S0,S) is acyclic in M , the compact K̃(S0,S) is acyclic in T ∗M . As a con-
sequence, the compact set φ−n(K̃(S0,S)) is acyclic in T ∗M and contained in the
Lipschitz graph Ĩ(Ec0,S0), so that π ◦φ−n(K̃(S0,S)) is acyclic in M . Consequently,
recalling that the number of static classes is finite, there is no loss of generality in
supposing that the sets K(S0,S),S ∈ E(c0) − S0, are all contained in V0.
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Let us prove that each of the sets K̃(S0,S) is isolated in Ĩ(Ec0,S0). Let F be
a compact neighborhood of S0 which does not intersect any of the finitely many
compact sets K(S0,S),S ∈ E(c0)−S0. Since the points of K̃(S0,S) are α-asymptotic
to S̃0 and ω-asymptotic to S̃, and since there are finitely many static classes, there
exists an integer N such that all the sets π ◦ φn(K̃(S0,S)), n ∈ N,S ∈ E(c0) − S0,
are contained in F for n � −N , and do not intersect V̄0 for n � N . The set
(V0 −F )∩I(Ec0,S0) is thus covered by finitely many pairwise disjoint compact sets
of the form π ◦ φn(K̃(S0,S)), n ∈ Z,S ∈ E(c0) − S0. As a consequence, each of the
sets K(S0,S) is isolated in (V0 − F ) ∩ I(Ec0,S0), and then also in I(Ec0,S0). Let
us fix a static class S1 �= S0 such that K(S0,S1) is not empty. Such a static class
exists by (4.9). Then, we can find an open neighborhood U ⊂ V0 of K(S0,S1) such
that U is acyclic and such that U ∩ I(Ec0,S0) = K(S0,S1) is a non-empty compact
set contained in H(S0,S1). We have proved (ii).

Let us again consider the finite family of pairwise disjoint compact sets π ◦
φn(K̃(S0,S)), n ∈ Z, |n| � N,S ∈ E(c0) − S0. There exists a finite family of
pairwise disjoint compact sets K′

n(S0,S), n ∈ N, |n| � N,S ∈ E(c0)−S0, such that
K′

n(S0,S) is a neighborhood of π ◦φn(K̃(S0,S)). We can clearly assume in addition
that the sets K′

n(S0,S) do not intersect S0. The set

V = V0 −
⋃

n∈N,|n|�N,S∈E(c0)−S0

K′
n(S0,S)

is an open neighborhood of S0 which is contained in V0, and its boundary does not
intersect I(Ec0,S0). We have proved (i). �

The following Proposition is the main step in the proof of the Theorem.

(9.4) Proposition. Let c0 satisfy the hypotheses of Theorem (9.2). For each weak
KAM solution G0 ∈ Vc0 , there exists a number ε > 0 and an integer N such that,
if G ∈ P and c ∈ H1(M, R) satisfy

‖G − G0‖ � ε and |c − c0| � ε,

then G �N c.

(9.5) Proof of the Theorem. We assume the Proposition. Let us cover the
compact set Vc0 by a finite number of balls B(Gi, εi), where εi is given by the
Proposition applied to Gi. Since the function c restricted to V is proper, the union
of these finite balls covers the sets Vc for c sufficiently close to c0. The Theorem
holds by Proposition (6.5). theorem

We now prove the Proposition in three steps.

(9.6) Step 1. Let G ∈ Vc0 be a fixed point. If there exist only finitely many static
classes in A(c0), then there exists an elementary solution E0 and a neighborhood
U0 of the corresponding static class S0 such that G|U0 = E0|U0 .

Proof. Let us fix the solution G = Gc0,u. We define a partial order on the set
of static classes by saying that S � S ′ if, for each x ∈ S and x′ ∈ S ′, we have
hc0(x, x′) = u(x′)−u(x). It is easy to check that this relation satisfies the following
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three axioms of order relations:
• S � S,
• S � S ′ and S ′ � S ′′ =⇒ S � S ′′,
• S � S ′ and S ′ � S =⇒ S = S ′.

Since the number of static classes is finite, there exists an initial element S0, that
is, an element which is not greater than any other element. Let us write

u(x) = min
a∈A

u(a) + hc0(a, x)

and consider, for each point x, the set A(c0) ∩ (G ∧ Ĕc0,x) of points a where the
minimum is reached. Let us first assume that x ∈ S0. In this case, a is a point
of minimum if and only if the static class Sa of a satisfies Sa � S0. Since the
class S0 is initial, this implies that Sa = S0, or equivalently, that a ∈ S0. In
other words, for x ∈ S0, the compact set A(c0) ∩ (G ∧ Ĕc0,x) does not intersect
static classes other than S0. This implies that, for x sufficiently close to S0, the
set A(c0) ∩ (G ∧ Ĕc0,x) does not intersect static classes other than S0. Since, for
each x, the set A(c0) ∩ (G ∧ Ĕc0,x) contains a static class, we conclude that, for x
sufficiently close to S0, we have

S0 = A(c0) ∩ (G ∧ Ĕc0,x).

As a consequence, we have, if x is sufficiently close to S0,

u(x) = u(a) + hc0(a, x),

for each a ∈ S0. In other words, the difference x �−→ hc0(a, x)−u(x) is the constant
u(a) in a neighborhood of S0. step 1

(9.7) step 2. Let S0 be a static class of A(c0) and let U0 be a neighborhood of S0

satisfying (ii) of (9.3). There exists a static class S1, an open neighborhood U1 of S1

and, for each δ > 0, a number ε > 0 and an integer N with the following property:
If G ∈ P satisfies ‖G − Ec0,S0‖U0 � ε and c ∈ H1(M, R) satisfies |c − c0| � ε, then
there exists a pseudograph G′ ∈ Pc such that ‖G′ − Ec0,S1‖U1 � δ and

G|U0 �N G′
|U1

.

Proof. There exists a static class S1 and an acyclic open set U ⊂ U0 −A(c0) such
that

I(Ec0,S0) ∩ Ū = I(Ec0,S0) ∩ U

is a compact set K ⊂ H(S,S1). Let us fix a point x0 ∈ S0, and denote by u0 the
function hc0(x0, .).

(9.8) Lemma. There exists a neighborhood U1 of S1 such that the equality

T∞
c0,Uu0(y) = hc0(x0, x1) + hc0(x1, y) = hc0(x0, x) + hc0(x, x1) + hc0(x1, y)

holds for all x ∈ K, y ∈ U1, and x1 ∈ S1. As a consequence, we have

Φ∞
U

(
Ec0,S0

)
|U1

= Ec0,S1|U1 ,

and the minimum in the definition of T∞
c0,Uu0(y) is not reached outside of K when

y ∈ U1.
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Proof. Let us set v = T∞
c0,Uu0 for simplicity. Recall, from (3.9), that all weak

KAM solutions v ∈ Vc0 satisfy v(y) = mina∈A(c0) v(a) + hc0(a, y). Here, we obtain

(�) v(y) = min
x∈Ū ,a∈A(c0)

hc0(x0, x) + hc0(x, a) + hc0(a, y).

We claim that, for y ∈ S1, the set of minimizing pairs (x, a) is K × S1. Indeed, if
(x, a) ∈ K × S1, then x ∈ Ec0,x0 ∧ Ĕc0,a, so that hc0(x0, x) + hc0(x, a) = hc0(x0, a),
and

hc0(x0, x) + hc0(x, a) + hc0(a, y)

= hc0(x0, y) = min
(z,z′)∈M×M

hc0(x0, z) + hc0(z, z′) + hc0(z
′, y).

Hence we have

hc0(x0, x) + hc0(x, a) + hc0(a, y) = min
(z,z′)∈Ū×A(c)

hc0(x0, z) + hc0(z, z′) + hc0(z
′, y).

We have proved that the pairs of K × S1 are minimizing in the equation (�) for
y ∈ S1.

Let us now prove that they are the only minimizing pairs. A pair (x, a) is mini-
mizing if and only if hc0(x0, a) + hc0(a, y) = hc0(x0, y) and hc0(x0, x) + hc0(x, a) =
hc0(x0, a). The second equality implies

x ∈ Ec0,S0 ∧ Ĕc0,S(a) ⊂ I(Ec0,S0).

Since I(Ec0,S0) ∩ Ū = K, this implies x ∈ K. If x ∈ K and a ∈ A(c0), then
the equality hc0(x, a) = hc0(x, y) + hc0(y, a) holds for all y ∈ S1. Indeed, let
x(n) = π ◦ φn(x,−∂1h(x, a)) be the projection of the orbit of the only point of
Ĕc0,S(a) above x. We have, for each n ∈ N, the equality of calibration by −hc0(., a):

Ac0(0, x, n, x(n)) + nα(c0) = hc0(x, a) − hc0(x(n), a).

Let nk be an increasing sequence of integers such that the subsequence x(nk) has a
limit ω ∈ S1. Taking the liminf as k −→ ∞, we get hc0(x, ω) � hc0(x, a)−hc0(ω, a),
which implies the desired equality for ω, and then for all points of S1.

Since (x, a) is a minimizing pair for v(y), we get, by decomposing hc0(x, a) in
the expression of v,

v(y) = hc0(x0, x) + hc0(x, y) + hc0(y, a) + hc0(a, y),

and, since v(y) � hc0(x0, x)+hc0(x, y), we finally obtain that hc0(y, a)+hc0(a, y) �
0 so that a ∈ S1. We have proved the claim. In addition, we have proved, for x1 ∈ S1

and x ∈ K, the equality

v(x1) = hc0(x0, x) + hc0(x, x1) = hc0(x0, x1).

As a consequence, for y ∈ S1, each point a ∈ A(c) which is minimizing in the
equation

v(y) = min
a∈A(c0)

v(a) + hc0(a, y)

belongs to S1. Since S1 is isolated in A(c), the conclusion also holds for y sufficiently
close to S1. We then have the equality

v(y) = v(x1) + hc0(x1, y) = hc0(x0, x) + hc0(x, x1) + hc0(x1, y)

for all x1 ∈ S1 and x ∈ K (and no other x in Ū). �

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



658 PATRICK BERNARD

(9.9) Applying (6.4), we get the existence of a positive ε′ and of integers N � N ′

such that each G ∈ P which satisfies ‖G − Ec0,S0‖U � ε′ also satisfies

G|U �N ′ ΦN,N ′

U (G)|U1 .

Since Φ∞
U

(
Ec0,S0

)
|U1

= Ec0,S1|U1 in view of the Lemma, and by (6.3), the integers
N and N ′ can be chosen such that, in addition, we have

‖ΦN,N ′

U (Ec0,S0) − Ec0,S1‖U1 � δ/2.

Reducing ε′ if necessary, we can furthermore assume, by continuity of ΦN,N ′

U , that

‖ΦN,N ′

U (G) − ΦN,N ′

U (Ec0,S0)‖U1 � δ/2

when ‖G − Ec0,S0‖U � ε′, so that

‖ΦN,N ′

U (G) − Ec0,S1‖U1 � δ.

Since U is acyclic, for each cohomology c and each pseudograph G, there exists
a pseudograph G(c) which has cohomology c and such that G|U = G(c)|U . There
exists a positive ε such that, if |c − c0| � ε and if ‖G − Ec0,S0‖U � ε, then we have

‖G(c) − Ec0,S0‖U � ε′.

Note that this norm does not depend on the choice of G(c). As a consequence,
setting G′ = ΦN,N ′

U (G(c)), we have c(G′) = c,

G|U = G(c)|U �N ′ G′
|U1

,

and
‖G′ − Ec0,S1‖U1 � δ.

step 2

(9.10) Step 3. Let S1 be a static class in A(c0) satisfying (i) of (9.3), and let U1

be a fixed neighborhood of S1. There exist a number δ > 0 and an integer N such
that, if G′ ∈ P satisfies ‖G′ − Ec0,S1‖U1 � δ, then G′

|U1
�N c(G′).

Proof. There exists an open neighborhood V1 ⊂ U1 of S1 such that I(Ec0,S1) ∩
V1 = I(Ec0,S1) ∩ V̄1. (This is (i) of (9.3).) Let x1 be a point of S1 and set
u1 = hc0(x1, .). Recall that (by definition)

T∞
c0,V1

u1(x) = min
y∈V̄1

hc0(x1, y) + hc0(y, x).

Taking y = x1 in this expression, we obtain the inequality T∞
c0,V1

u1(x) � u1(x). On
the other hand, we have the triangle inequality u1(x) � hc0(x1, y) + hc0(y, x) for
each y, so that T∞

c0,V1
u1(x) = u1(x) and

min
y∈V̄1

hc0(x1, y) + hc0(y, x) = hc0(x1, x) = min
y∈M

hc0(x1, y) + hc0(y, x).

By (3.6) the points y, where this last minimum is reached, belong to I(Ec0,S1). As
a consequence, for each x ∈ M , the points where the minimum is reached in the
definition of T∞

c0,V1
u1(x) belong to I(Ec0,S1)∩V1, which is a compact set contained

in V1. In view of (6.4), there exist integers N and N ′ and a positive real number δ
such that, if G′ ∈ P satisfies ‖G′ − Ec0,S1‖V1 � δ, then

G′
|V1

�N ΦN,N ′

V1
(G′). step 3

The Proposition obviously follows from the three steps above. Proposition
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Applications

10 Twist maps

The case where M = T is well known and has been studied many times. The
resulting time-one flow is then a finite composition of right twist maps of the biin-
finite annulus T ∗

T. In view of (0.10), much of what is known on the existence of
orbits with prescribed behavior is summed up in the following discussion.

(10.1) Let G ∈ H1(T, R) be the set of cohomology classes of invariant curves which
are Lipschitz graphs. The set G is closed, and every point c ∈ G is alone in its class
of ��-equivalence, as follows from (5.2). Conversely, if c does not belong to G, then
all the sets I(G),G ∈ Vc, are properly contained in T. It follows that R(G) = R

for each G ∈ Vc, so that R(c) = R and, in view of (0.11), c is in the interior of
its class of equivalence. The classes of ��-equivalence are the points of G and the
connected components of the complement of G.

(10.2) For completeness, we recall without proof some of the special properties of
Aubry sets in dimension one; see [14] for example. The function α is differentiable,
and its differential α′(c) is the rotation number of every orbit of Ñ (c). If α′(c) is
irrational, then there is only one element in Vc. If α′(c) is rational, then the Mather
set M̃(c) is made of periodic orbits.

11 Generalized Arnold example

(11.1) In this application, we take

M = T × N,

where N is a compact manifold of dimension d − 1, and denote by q = (q1, q2)
the points of M . We assume that the homology group H1(N, Z) is not trivial.
We denote the points of TM by (q, v) = (q1, q2, v1, v2), where (q1, v1) ∈ TT and
(q2, v2) ∈ TN . In the same way, we denote by (q, p) = (q1, q2, p1, p2) the points of
T ∗M . We will consider the projection π1 : T × N −→ T and the induced mapping

π∗
1 : H1(T, R) −→ H1(T × N, R).

(11.2) Let us fix a point 0 in N . We will consider Lagrangian systems which satisfy

L(t, q1, q2, v1, v2) > L(t, q1, 0, v1, 0)

for all (q2, v2) �= (0, 0), all t ∈ R and all (q1, v1) ∈ TT. Let ∂vL : TM −→ T∗M be
the Legendre transform associated to L. We denote by T1 the submanifold T×{0}
of M , by T ∗T1 the submanifold {q2 = 0, p2 = 0} of T ∗M , and TT1 the submanifold
{q2 = 0, v2 = 0} of TM . We have

∂vL(TT1) = T ∗
T1,

and this manifold is invariant under the Hamiltonian flow. Moreover, the restric-
tion of the flow to T ∗T1 is the Hamiltonian flow of the restriction H1(t, q1, p1) :=
H(t, q1, p1, 0, 0) of H. Setting L1(t, q1, v1) = L(t, q1, 0, v1, 0), we see that L1 is the
Lagrangian associated to H1. We denote by φ1 the restriction of φ to T ∗T.

(11.3) Theorem. Under the non-degeneracy conditions (11.4) and (11.5) to be
specified below, the image of π∗

1 is contained in one class of ��-equivalence.
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(11.4) Genericity property for φ1. We assume that every rotational invariant
circle of φ1 which contains a periodic orbit is completely periodic (every orbit of this
circle is periodic). We could, more simply, require that the map φ1 does not have
any invariant circle containing a periodic orbit. This property is known to be generic
in any reasonable sense of the term. However, allowing periodic circles includes the
important case where φ1 is integrable, as in the original Arnold’s example.

(11.5) Non-degeneracy of external homoclinics. We assume that, for each
c ∈ π∗

1(H1(T, R)), there exists a finite Galois covering P : M0 −→ M such that the
set

ÑL◦TP (P ∗(c)) − T ∗P−1(T ∗
T1)

is not empty and contains finitely many orbits. Note that, since H1(N, Z) is not
zero, it follows from (7.2), (4.5), and (11.6) below that there exists a finite Galois
covering P : M0 −→ M such that the set under consideration is not empty. So the
important point of our assumption is finiteness. As the reader will see in the proof,
this assumption could be somewhat weakened.

(11.6) Lemma. For each cohomology c = π∗
1(c1) with c1 ∈ H1(T, R), we have

N (c) ⊂ T1. As a consequence, the restriction to T1 gives a bijection between the
set Vc and the set Vc1 associated to the Lagrangian L1 on TT1.

Proof. Let us fix a cohomology c1 ∈ H1(T, R) and its image c := π∗
1(c1). Let µ

be a form on T which represents c1 and η be its pull back on M = T×N . Consider
a pseudograph G ∈ Vc and write it G = Gη,u. We want to prove that Ĩ(G) ⊂ T ∗

T1.
Let (q(t), p(t)) be the trajectory of the Hamiltonian flow starting in Ĩ(G). We have,
for k < l in Z,

u(q(l)) − u(q(k)) =
∫ l

k

L(σ, q(σ), q̇(σ)) − µq1(σ)(q̇1(σ)) + α(c) dσ

and

u(q1(t), 0) − u(q1(s), 0) �
∫ l

k

L(σ, (q1(σ), 0, q̇1(σ), 0)) − µq1(σ)(q̇1(σ)) + α(c) dσ.

It follows that∫ l

k

L(σ, q(σ), q̇(σ)) − L(σ, (q1(σ), 0), (q̇1(σ), 0)) dσ � 2(maxu − min u).

Let us denote by L̃ the function

L̃(t, q, v) = L(t, q, v) − L(t, (q1, 0), (v1, 0))

which is positive except on TT1. Since the integral
∫

R
L̃(σ, q(σ), q̇(σ))dσ is finite,

we have
lim inf
|σ|−→∞

L̃(σ, q(σ), q̇(σ)) = 0,

and consequently lim inf |σ|−→∞(q2(t), v2(t)) = 0. We now return to the inequality
∫ l

k

L̃(σ, q(σ), q̇(σ))dσ � u(q(t)) − u(q1(t), 0) − u(q(s)) + u(q1(s), 0),
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from which we get ∫ ∞

−∞
L̃(σ, q(σ), q̇(σ))dσ = 0,

which implies that (q2, v2) ≡ 0. We have proved that Ĩ(G) ⊂ T ∗
T1. �

(11.7) Let us fix cohomologies c = π∗
1(c1), c1 ∈ H1(T, R), such that there exists

an invariant Lipschitz graph G in Vc1 . If the rotation number of φ1|G is irrational,
then Vc1 contains only one element. As a consequence, Vc also contains only one
element, so that Ñ (c) = Ã(c) = G, and there is only one static class in Ã(c). If
the rotation number is rational, then in view of (11.4) the graph G is a union of
periodic orbits, so that G = M̃(c). As a consequence, we have A(c) = T1, and
there is only one static class.

In view of (11.5), there exists a finite Galois covering P : M0 −→ M such that
the Lagrangian L ◦ TP satisfies the hypotheses of (9.2). As a consequence, the
cohomology P ∗(c) is in the interior of its forcing class for L ◦ TP . It follows from
(7.3) that the cohomology c is in the interior of its forcing class for L.

(11.8) Let c = π∗
1(c1) be such that each set I(G),G ∈ Vc, is properly contained in

T1. Applying (0.11), we observe that R(c) = H1(M, R), and c is in the interior of
its forcing class.

(11.9) We have proved that each c ∈ π∗
1(T, R) is in the interior of its forcing

class. Since the subspace π∗
1(H1(T, R)) is obviously connected, it is contained in

one forcing class. �

Appendix

A Semi-concave functions

We recall some useful facts on semi-concave functions. In all this section, M is a
compact manifold of dimension d. It is useful for the sequel to fix once and for all
a finite atlas Φ of M composed of charts ϕ : B3 −→ M , where Br is the open ball
of radius r centered at zero in Rd. We assume that the sets ϕ(B1), ϕ ∈ Φ, cover
M . A family F of C2 functions is said bounded if there exists a constant C > 0
such that

‖d2(u ◦ ϕ)x‖ � C

for all x ∈ B1, ϕ ∈ Φ, and u ∈ F . Note that a bounded family is not required to
be bounded in C0 norm, but will automatically be bounded in C1 norm and thus
equi-Lipschitz. The notion of a bounded family of functions does not depend on
the atlas Φ.

(A.1) A function u : M −→ R is called semi-concave if there exists a bounded
subset Fu of the set C2(M, R) such that

u = inf
f∈Fu

f.

A family U of functions is called equi-semi-concave if there exists a bounded set F
of functions in C2(M, R), and, for each function u ∈ U, a subset Fu of F such that

u = inf
f∈Fu

f.

Let us first collect some easy consequences of this definition. We shall prove later
that the infima could be replaced by minima in these definitions.
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(A.2) An equi-semi-concave set of functions is equi-Lipschitz.

(A.3) If U is an equi-semi-concave set of functions on M , and if the infimum
infu∈U u(x0) is finite for some x0 ∈ M , then the function v(x) = infu∈U u(x) is
finite and semi-concave.

(A.4) Let U be an equi-semi-concave set of functions on N×M , where N is another
compact manifold. Then the functions u(x, .) : M −→ R, x ∈ N, u ∈ U, form an
equi-semi-concave set.

(A.5) We say that the linear form p ∈ TxM is a proximal super-differential of
the function u at point x if there exists a C2 function f such that f − u has a
minimum at x and dfx = p. The definition would not be changed by requiring that
the function f is smooth and that the minimum is strict. We say that a linear form
p ∈ TxM is a K-super-differential of the function u at point x if for each chart
ϕ ∈ Φ and each point y ∈ B2 satisfying ϕ(y) = x, the inequality

u ◦ ϕ(z) − u ◦ ϕ(y) � p ◦ dϕy(z − y) + K‖z − y‖2

holds for each z ∈ B2. It is plain that p is a proximal super-differential of u if and
only if there exists a K > 0 such that p is a K-super-differential of u.

(A.6) A function u on M is called K-semi-concave if it has a K-super-differential
at each point. It is equivalent to require that, for each ϕ ∈ Φ, the function

u ◦ ϕ(y) − K‖y‖2

is concave on B2. As a consequence, if u is K-semi-concave and if p is a proximal
super-differential of u at x, then p is a K-super-differential of u at x.

(A.7) Let u be a continuous function on M , and let Let A be the compact subset
of M formed by points x ∈ M at which both the functions u and −u have a K-
super-differential. Then the function u is differentiable at each point of A, and the
mapping x �−→ du(x) is Lipschitz on A, with a Lipschitz constant that depends only
on K.

This follows from Proposition 4.5.3 in Fathi’s book [15]. We have the following
useful corollary.

(A.8) Let U be an equi-semi-concave set of functions. Then there exists a constant
K with the following property: If u and v are two functions of U and if A is the set
of points minimizing the sum u + v, then the functions u and v are differentiable
at each point of A, and the mapping A � x �−→ dux = −dvx is K-Lipschitz.

(A.9) If un is a sequence of K-semi-concave functions converging uniformly to a
function u, then the function u is K-semi-concave. In addition, if xn is a sequence
of points of differentiability of un, converging to a point of differentiability x of u,
then dun(xn) −→ du(x).

Proof. By the Theorem below, the functions un form an equi-semi-concave, hence
equi-Lipschitz, family of functions. Let xn be a sequence converging to x and pn be
a K-super-differential of un at xn. The sequence pn is bounded, hence we assume
that pn −→ p. Let y ∈ B2 and ϕ ∈ Φ be such that ϕ(y) = x. For n large enough,
the point xn can be written ϕ(yn) with yn ∈ B2. We have the inequality

un ◦ ϕ(z) � un ◦ ϕ(yn) + pn ◦ dϕyn
(z − yn) + K‖z − yn‖2,
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for each z ∈ B2, and at the limit, we obtain

u ◦ ϕ(z) � u ◦ ϕ(y) + p ◦ dϕy(z − y) + K‖z − y‖2.

It means that p is a K-super-differential of u at x. Under the assumptions of the
statement, we have pn = duxn

, and p = dux is the only possible limit of this
bounded sequence, which is thus converging to p. �

(A.10) Theorem. A family U of functions is equi-semi-concave if and only if
there exists a number K > 0 such that all the functions of U are K-semi-concave.
In this case, there exists a bounded subset F ⊂ C2(M, R) and, for each u ∈ U, a
subset Fu of F which has the following properties:

u = min
f∈Fu

f

and, for each point x ∈ M and each super-differential p of u at x, there exists a
function f ∈ Fu such that (f(x), df(x)) = (u(x), p).

In order to prove this result, we need a Lemma:

Lemma. For each K > 0, there exists a bounded subset LK of T ∗M which con-
tains all the proximal super-differentials of all K-semi-concave functions. As a
consequence, the K-semi-concave functions are equi-Lipschitz.

Proof of the Lemma. Let us consider a chart ϕ ∈ Φ, a K-semi-concave function
u, a point y0 ∈ B1, and the point x0 = ϕ(y0). Let p0 be a proximal super-differential
of u at x0, and let us set l = p0 ◦ dϕy0 .

Claim. If ‖l‖ � 11K, then there exists a point y ∈ B2 which is a point of differen-
tiability of u ◦ ϕ and satisfies

‖d(u ◦ ϕ)y‖ � (‖l‖ − 11K)/3

and
u ◦ ϕ(y) < inf

B1
u ◦ ϕ.

Proof of the Claim. Let us first prove that the infimum of u ◦ ϕ in B2 is not
reached in B̄1. Assume, by contradiction, that there exists a point m ∈ B̄1 such
that u ◦ ϕ(m) = infB2 u ◦ ϕ. Then clearly the function u ◦ ϕ is differentiable at m,
its differential is zero, and the inequality

u ◦ ϕ(y0) � u ◦ ϕ(m) + K‖y0 − m‖2

holds. On the other hand, we have

u ◦ ϕ(m) � u ◦ ϕ(z) � u ◦ ϕ(y0) + l(z − y0) + K‖z − y0‖2

for all z ∈ B2. Combining these inequalities gives

l(y0 − z) � K‖z − y0‖2 + K‖y0 − m‖2

for all z ∈ B̄2. Hence ‖l‖ � 5K, which is in contradiction with the hypothesis.
Let us now consider a vector v ∈ R

d of norm 1 and such that l(v) = −‖l‖. We
get

u ◦ ϕ(y0 + v) − u ◦ ϕ(y0) � l(v) + K‖v‖2 = K − ‖l‖.
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Hence the infimum of u ◦ϕ on B2 is not greater than u ◦ϕ(y0)+K −‖l‖. It is then
possible to choose a point y in B2 such that

u ◦ ϕ(y) < min
(
inf
B1

u ◦ ϕ, u ◦ ϕ(y0) + 2K − ‖l‖
)
.

In addition, since the function u ◦ ϕ is differentiable almost everywhere, we can
assume that the function u ◦ ϕ is differentiable at y. We have the inequality

u ◦ ϕ(y0) � u ◦ ϕ(y) + d(u ◦ ϕ)y(y − y0) + K‖y − y0‖2

from which follows

d(u ◦ ϕ)y(y0 − y) � u ◦ ϕ(y) − u ◦ ϕ(y0) + K‖y − y0‖2 � 11K − ‖l‖.

Hence ‖d(u ◦ ϕ)y‖ � (‖l‖ − 11K)/3. This ends the proof of the Claim.
claim

In order to continue the proof of the Lemma, we consider the point y ∈ B2

given by the Claim. There exists a chart ϕ1 ∈ Φ and a point y1 ∈ B1 such that
ϕ1(y1) = ϕ(y) =: x1. Note that u ◦ ϕ1 is differentiable at x1, and define

l1 := d(u ◦ ϕ1)y1 = d(u ◦ ϕ)y ◦ d(ϕ−1 ◦ ϕ1)y1 .

There exists a constant C > 1, which depends only on the atlas Φ, and such that

‖l1‖ � (‖l0‖ − 11K)/C.

If l0 is large enough, then we have ‖l1‖ � 11K; hence we can apply the Lemma
again, and find a chart ϕ2, a point y2 ∈ B2, and a linear form l2. In addition, we
have

u ◦ ϕ2(y2) < inf
ϕ(B1)∪ϕ1(B1)

u,

so that the charts ϕ, ϕ1, and ϕ2 are different. Now if ‖l0‖ is sufficiently large, the
process can be continued further, and we can build inductively, for 0 � i � N , a
sequence xi ∈ B1 of points, a sequence ϕi ∈ Φ of different charts, and a sequence
li of linear forms such that ‖li+1‖ � (‖li‖− 11K)/C. The process can be continued
as long as ‖li‖ � 11K. Recall that the cardinal of Φ is finite, and denote it by |Φ|.
Since all the charts involved in the construction above are different, at most |Φ|
steps can be performed. Hence there exists an integer N � |Φ| such that ‖li‖ � 11K
for i < N , and ‖lN‖ � 11K. This gives a bound to ‖l‖, hence to ‖p‖.

lemma

We now finish the proof of the Theorem. Let us consider a smooth function
g : R

d −→ R such that 0 � g � 1, and such that g = 0 outside of B2 and g = 1
inside B1. Since the K-semi-concave functions are equi-Lipschitz, and since the
manifold M is compact, there exists a number ∆ > 0 such that

max u − min u � ∆

for each K-semi-concave function u. Let us associate, to each chart ϕ ∈ Φ and each
point (x, p) ∈ TxM satisfying x ∈ ϕ(B1), the function fx,p,ϕ : M −→ R defined by

fx,p,ϕ ◦ ϕ(z) := g(z)
(
p ◦ dϕy(z − y) + K‖z − y‖2

)
+ (1 − g(z))∆
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for z ∈ B2, where y = ϕ−1(x), and fx,p,ϕ = ∆ outside of ϕ(B2). The functions
fx,p,ϕ, (x, p) ∈ LK , ϕ ∈ Φ, form a bounded subset F of C2(M, R). For each K-
semi-concave function u, let Fu ⊂ F + R be the set of functions

z �−→ fx,p,ϕ(z) + u(x)

where p is a K-super-differential of u at x. We claim that u = minf∈Fu
f . In

order to prove this claim, observe that, for each y ∈ B1, ϕ ∈ Φ, and p a K-super-
differential of u at x = ϕ(y), we have

fx,p,ϕ − u(x) � u

with equality at x. Indeed, we have the inequalities

u ◦ ϕ(z) − u(x) � p ◦ dϕx(z − y) + K‖z − y‖2

for z ∈ B2 and u � u(x) + ∆. theorem

B Uniform families of Hamiltonians

Let us fix once and for all a Riemann metric on the compact manifold M . We
use this metric to define a norm |v| for tangent vectors and a norm |p| for tangent
covectors.

(B.1) A family of pairs (H, L) of dual Hamiltonians and Lagrangians satisfying
the hypotheses (1.1) and (1.2) is called uniform if:

(i) There exist two superlinear functions h0 and h1 : R+ −→ R such that each
Hamiltonian H of the family satisfies h0(|p|) � H(t, x, p) � h1(|p|).

(ii) There exists an increasing function K(k) : R
+ −→ R

+ such that, if φ is
the flow of a Hamiltonian of the family and if the times t and s satisfy
t − 1 � s � t + 1, then

φs
t

(
{|p| � k}

)
⊂ {|p| � K(k)} ⊂ T ∗M.

(iii) There exists a finite atlas Ψ of M such that, for each chart ψ ∈ Ψ and each
Lagrangian L of the family, we have ‖d2(L ◦ Tψ)(t,x,v)‖ � K(k) for |v| � k.

Note that condition (i) could have equivalently been replaced by the following:
(i′) There exist two superlinear functions l0 and l1 : R+ −→ R such that each

Lagrangian L of the family satisfies l0(|v|) � L(t, x, v) � l1(|v|).

(B.2) The uniform families of highest use are the following. If H is a Hamiltonian,
and if ω is a bounded finite-dimensional convex family of closed one-forms on M ,
then the Hamiltonians H(t, x, p + ωx), ω ∈ Ω, form a uniform family. Equivalently,
the Lagrangians L(t, x, v) − ωx(v) form a uniform family.

(B.3) In a uniform family, we have

|∂pH(t, x, p)| � h0(|p|) − h1(0)
|p|

and

|∂vL(t, x, v)| � l0(|v|) − l1(0)
|v| .

In other words, the Legendre transforms are uniformly proper.
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Proof. In view of the convexity of H, we have

|∂pH(t,x,p)| � H(t, x, p) − H(t, x, 0)
|p| . �

(B.4) Given a Lagrangian L satisfying the hypotheses of (1.2), we define the func-
tion AL(t, x; s, y) : R × M × R × M −→ R by

AL(t, x; s, y) = inf
γ∈Σ(t,x;s,y)

∫ s

t

L(σ, γ(σ), γ̇(σ)) dσ,

where Σ(t, x; s, y) is the set of absolutely continuous curves γ : [s, t] −→ M sat-
isfying γ(t) = x and γ(s) = y. We denote by ΣL

m(t, x; s, y) the set of curves of
Σ(t, x; s, y) which realize the minimum.

(B.5) For each uniform family of Lagrangians, there exists a decreasing function
K1(ε) :]0,∞) −→ R+ such that, if L is a Lagrangian of the family and if t and s
are two real times satisfying t � s + ε, then each curve γ ∈ ΣL

m(t, x; s, y) is C2 and
satisfies |γ̇(σ)| � K(ε) for each σ ∈ [s, t].

Proof. Without loss of generality, we can assume that 0 < ε < t − s < 1. By
comparing the action of γ with that of a geodesic with the same endpoints, we get∫ t

s

l0(|γ̇(σ)|)dσ �
∫ t

s

L(σ, γ(σ), γ̇(σ))dσ � (t − s)l1

(
diam(M)

t − s

)
.

The right hand side is clearly bounded by a constant which depends only of the
parameters of the uniform family and of ε. We obtain

(t − s) min l0(|γ̇(σ)|) � C,

from which it follows, with another constant C, that min |γ̇(σ)| � C. But then in
view of (B.3), we have

min
σ∈[s,t]

|∂vL(σ, γ(σ), γ̇(σ))| � C,

then in view of (ii),
max

σ∈[s,t]
|∂vL(σ, γ(σ), γ̇(σ))| � C,

so that finally, using (B.3) again, we get max |γ̇| � C. We have used the symbol
C for different constants which depend only of ε and of the parameters of the
family. �

Note that the proof does not use (iii) in the definition of uniform families.

(B.6) For each times s < t, the mapping which, to a Lagrangian L, associates the
function

(x, y) �−→ AL(s, x, t, y)
of C(M × M, R), is continuous on each uniform family of Lagrangians endowed
with the topology of uniform convergence on compact sets.

Proof. Let L0 and L1 be two Lagrangians of the family. Let γ(σ) : [s, t] −→ M
be such that

AL0(s, γ(s); t, γ(t)) =
∫ t

s

L0(σ, γ(σ), γ̇(σ)) dσ.

We have

AL1(s, γ(s); t, γ(t)) �
∫ t

s

L1(σ, γ(σ), γ̇(σ)) dσ,
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so that

AL1(s, γ(s); t, γ(t))− AL0(s, γ(s); t, γ(t)) � (t − s) max
|v|�K1(t−s)

L1 − L0,

where K1 is defined in (B.5). By symmetry, we get that

‖AL0(s, .; t, .) − AL1(s, .; t, .)‖∞ � (t − s) max
|v|�K1(t−s)

|L1 − L0|. �

(B.7) Theorem. For each uniform family of Lagrangians and each ε > 0, consider
the set Uε of continuous functions M × M −→ R given by

(x, y) �−→ AL(s, x; t, y),

where t � s + ε and L is a Lagrangian of the family. This set is equi-semi-concave,
hence equi-Lipschitz on M × M . In addition, for each curve γ ∈ ΣL

m(t, x; s, y), the
covector (

− ∂vL(s, γ(s), γ̇(s)), ∂vL(t, γ(t), γ̇(t))
)

is a proximal super-differential of the function AL(s, .; t, .) at point (x, y).

Proof. Let us consider a finite atlas Ψ of M formed by charts ψ : Bd
6 −→ M , where

Bd
r is the Euclidean ball of radius r in Rd. Assume that the open sets ψ(Bd

1/2),
ψ ∈ Ψ, cover M . Let Φ be the atlas of M ×M composed of products ψ × ψ′, with
ψ ∈ Ψ and ψ′ ∈ Ψ′. The charts ϕ of Φ are defined on B2d

3 , and the images ϕ(B2d
1 ),

ϕ ∈ Φ, cover M × M . In order to prove that the set Uε is equi-semi-concave, we
shall check that it is K-semi-concave for some K. So from now on we shall work in
a fixed chart ϕ = ψ0 × ψ1.

Let (x0, x1) be a point in ψ0(B2) × ψ1(B2), and let y0 and y1 be the preimages
in B2. Let γ(t) : [s, t] −→ M be a curve in Σm(s, x0; t, x1). In view of (B.5), we
have |γ̇| � K1(ε). As a consequence, there exists a constant a > 0, which depends
only on the atlas, on the parameters of the family, and on ε, such that the curve
ψ−1

0 ◦ γ : [s, s + 1/a] −→ Bd
4 is well defined and a-Lipschitz, as well as the curve

ψ−1
1 ◦ γ : [t − 1/a, t] −→ Bd

4 . Let us call y0(σ) and y1(σ) these curves; note that
y0(s) = y0 and y1(t) = y1. Let us now define, for each points z0 and z1 in B4, the
curves

y0(σ, z0) := y0(σ) + (1 + a(s − σ))(z0 − y0)

and
y1(σ, z1) := y1(σ) + (1 + a(σ − t))(z1 − y1).

For simplicity we define the Lagrangians L0 and L1 on R×Bd
4×Rd by the expression

Li(σ, x, v) = L(σ, ψi(x), dψix(v)); shortly, Li = L ◦ Tψi. We have

A(s, ψ0(z0); t, ψ1(z1))

� A(s, x0; t, x1) +
∫ s+1/a

s

L0(σ, y0(σ, z0), ẏ0(σ, z0)) − L0(σ, y0(σ), ẏ0(σ)) dσ

+
∫ t

t−1/a

L1(σ, y1(σ, z1), ẏ1(σ, z1)) − L1(σ, y1(σ), ẏ1(σ)) dσ.

There exists a constant C > 0, which depends only on the atlas, on the parameters
of the family, of ε, and of a, such that, for (t, x, v) ∈ R × Bd

4 × Bd
a and (y, w) ∈
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R × Bd
4 × Bd

a, we have

Li(σ, y, w) − Li(σ, x, v) � ∂xLi(σ,x,v)(y − x) + ∂vLi(σ,x,v)(w − v)

+ C(‖y − x‖2 + ‖w − v‖2).

We get

A(s, ψ0(z0); t, ψ1(z1)) � A(s, x0; t, x1)

+
∫ s+1/a

s

∂xL0(σ,y0(σ),ẏ0(σ))(y0(σ, z0) − y0(σ))

+ ∂vL0(σ,y0(σ),ẏ0(σ))(ẏ0(σ, z0) − ẏ0(σ)) dσ

+
∫ t

t−1/a

∂xL0(σ,y0(σ),ẏ0(σ))(y0(σ, z0) − y0(σ))

+ ∂vL0(σ,y0(σ),ẏ0(σ))(ẏ0(σ, z0) − ẏ0(σ)) dσ

+ C

∫ s+1/a

s

‖y0(σ) − y0(σ, z0)‖2 + ‖ẏ0(σ) − ẏ0(σ, z0)‖2 dσ

+ C

∫ t

t−1/a

‖y1(σ) − y1(σ, z1)‖2 + ‖ẏ1(σ) − ẏ1(σ, z1)‖2 dσ.

Taking advantage of the Euler-Lagrange equations, this simplifies to

A(s, ψ0(z0); t, ψ1(z1)) � A(s, x0; t, x1) − ∂vL0(σ,y0,ẏ0(s))(z0 − y0)

+∂vL1(σ,y1,ẏ1(t))(z1 − y1) + C
1 + a2

a
(‖y0 − z0‖2 + ‖y1 − z1‖2). �
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