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Abstract

The syntactic approach to epistemic logic avoids the logical omniscience problem by taking knowledge as primary
rather than as defined in terms of possible worlds. In this study, we combine the syntactic approach with modal logic,
using transition systems to model reasoning. We use two syntactic epistemic modalities: ‘knowing at least’ a set of
formulae and ‘knowing at most’ a set of formulae. We are particularly interested in models restricting the set
of formulae known by an agent at a point in time to be finite. The resulting systems are investigated from the point
of view of axiomatization and complexity. We show how these logics can be used to formalise non-omniscient
agents who know some inference rules, and study their relationship to other systems of syntactic epistemic logics,
such as Ågotnes and Walicki (2004, Proc. 2nd EUMAS, pp. 1–10), Alechina et al. (2004, Proc. 3rd AAMAS,
pp. 601–613), Duc (1997, J. Logic Comput., 7, 633–648).
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1 Introduction

The most studied formal logics of knowledge and belief, epistemic and doxastic logics1

[16, 25], explain knowledge and belief in terms of a possible worlds semantics [21].
An alternative approach is to take knowledge or belief as primary. The most straightforward
way of doing this is to replace the standard Kripke structures describing the possible worlds
with functions assigning truth values to formulae of the form B!, meaning that ! is believed,
directly. We call this approach the syntactic approach, since the truth value of two epistemic
formulae can differ if the formulae differ syntactically. The syntactic approach allows
modelling more general assumptions about knowledge and belief, for example the lack of
closure conditions or the possibility of believing two mutually inconsistent formulae at the
same time. Indeed, most work using the syntactic approach have been motivated by the
logical omniscience problem (LOP) [22]; that epistemic logic based on possible worlds
semantics describes knowledge which is closed under logical consequence. This is a problem
if we want to model the explicitly computed knowledge of resource bounded reasoners,
for example an agent who chooses which action to perform next based on the formulae it has
deduced. Development of epistemic logics which do not suffer from the problem of logical
omniscience is perceived to be an important challenge in formal specification and verification
of agent systems [32]. See e.g. [16, 27, 31] for surveys of proposed solutions to the LOP.

1 In this article we do not distinguish between knowledge and belief, and will use both terms for the same concept.
In particular, we do not assume that something which is known must be true.
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In this work we study models of the dynamics of syntactic knowledge, i.e. how
syntactically ascribed knowledge can change over time. Such models provide a
description of reasoning as an alternative to logical omniscience. The logics we introduce
in this article do not suffer from the LOP, but are at the same time able to express the
property that although the agent’s knowledge is not closed under logical consequence,
the agent may know some inference rules and may be able to derive consequences from
its beliefs eventually. Formally, the logics are obtained by combining the standard
syntactic approach with modal logics. Transitions in the Kripke structures used to interpret
the logics correspond to acts of reasoning or communication. Thus, the modal ‘diamond’
operator can be used in a formula such as (Bp^B(p!q))!sBq to express that an agent
can use modus ponens: if it believes both p and p!q, then it can get to believe q at the next
point in time.

In addition to being interpreted on transition systems which reflect the evolution of
knowledge, our logics have two more distinguishing features. The first one is the finiteness
assumption: at any point in time, any agent knows only finitely many formulae. We argue that
the finiteness assumption must hold for the explicitly computed knowledge of agents with
finite memory. Second, the language of the logics contains epistemic operators i (‘knowing
at least’) and 5 (‘knowing at most’), which apply to finite sets of formulae. These operators
were introduced in [1], where the logic of static epistemic states was axiomatized and studied
in detail, and a combination of syntactic epistemic knowledge operators and Alternating Time
Temporal Logic (ATL) [7], was introduced. In this article, we investigate intermediate
systems, namely adding i and 5 to standard modal logic. In the modal syntactic epistemic
logics developed in this article, we can express properties such as ‘if the agent knows exactly
the set of formulae T now, then after n steps it may know T closed under n applications of
modus ponens, and nothing else’.

Syntactic approaches to epistemic logic can be classified into logics concerned with static
knowledge, i.e. knowledge at a point in time, or with the dynamics of knowledge, i.e. with
how knowledge evolves over time. Another dimension for classification is the finiteness
assumption, i.e. whether it is assumed that an agent can only know finitely many formulae at
the same time, or whether it may know infinitely many. The logics we present in this article are
dynamic logics of finite knowledge.

Classical syntactic approaches to knowledge [11, 16, 17, 26] generally model static
knowledge with no assumption about finiteness. The logic of general awareness [15] combines
a syntactic and an epistemic approach to static knowledge, and can be used to model finite
knowledge. Ågotnes and Walicki [4, 5] investigate a logic of static syntactic knowledge
without and with, respectively, the finiteness assumption.

Among dynamic approaches, the deduction model [23] assumes that agents’
knowledge is closed under, possibly incomplete, deduction rules, and knowledge is
not required to be finite. Another very general dynamic approach is active logics (formerly
step logics) [12]. An active logic consists of a formal language and inference rules
and models the evolution of a belief set as the rules are applied. Each step in a derivation
is assigned a moment of time. Active logics can be seen as describing transition systems
over discrete linear time, but as far as we are aware this has not been explicitly stated
or used by the authors. Timed reasoning logics (TRL) [6] are in a sense a version of
active logics which makes this intuition precise, and where the applicability of inference
rules always depends only on the current belief set (in active logics, it may depend on
the derivation history). Duc’s Dynamic Epistemic Logic (DEL)2 [10] adds an operator hFii
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to the standard epistemic language; the intuitive meaning of a formula such as hFii! is that
! will be true after some train of thought of agent i. The described logic can be seen
as a dynamic version of the epistemic logic S4n—however, no semantics is given for the
logic. Yet another dynamic approach is Dynamic Syntactic Epistemic Logic (DSEL) [3],
a logic describing how finite syntactic epistemic states can evolve in a branching-time
future, and how coalitions of agents can cooperate strategically to reach certain epistemic
states. DSEL is based on ATL.

Our combination of standard syntactic models and simple transition systems yields an
abstract, general and powerful formalism. Indeed, we show that our framework can be used
to capture several aspects of reasoning and other knowledge dynamics modelled by the
approaches mentioned earlier. For example, our framework gives a semantics for which Duc’s
DEL is sound and complete.

The article is organized as follows. In Section 2, we introduce the language of modal
syntactic epistemic logic and corresponding transition structures. We briefly consider the logic
without the 5 operator, and show that it is axiomatizable by only the axioms of the modal
system K. We consider the properties of accessibility relation which we may find useful to
model time, for example seriality and determinism, and show that adding the corresponding
modal axioms causes the logic to be complete with respect to the expected kind of structures.
Then we introduce the ‘at most’ operator 5, show that it is not definable using ‘at least’, and
provide a complete and sound axiomatization for arbitrary transition systems and for
transition systems satisfying various restrictions on the accessibility relation, such as seriality,
functionality, and transitivity. We show that the complexity of the model-checking problem
and satisfiability-checking problem for the basic modal logic K with 5 is the same as for K.
In Section 4, we introduce a new kind of condition on accessibility relation, corresponding
to the agents knowing some inference rules and/or being able to communicate with each
other. We prove several completeness results for logics with rules. In Section 5, we present
some applications and examples, showing that we can capture important aspects of the
dynamics of syntactic knowledge in TRL, DEL and DSEL, in our framework (including
soundness and completeness of DEL). Finally, we discuss some other related work and
conclude.

2 Syntactic knowledge

We assume that an agent can have different internal states at different times, and that in each
state we can identify a finite set of formulae the agent believes—for example, the formulae
stored in its knowledge base. Apart from finiteness, no restrictions, such as consistency or
closure under consequence, on this set are assumed. Furthermore, we assume that the agent
can act in order to change its current state, that it may have several alternative ways to act
available, and that the available actions are a function of the current state. Such a transition
system between states with syntactically ascribed beliefs can be seen as a general model of
reasoning, including non-monotonic reasoning, belief revision, etc. In later sections

2Which should not be confused with recent work in modelling updates of knowledge states in the light of new or
changed information, often described by the same term [33]. Duc’s logic is a logic of knowledge change as a result of
reasoning.
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we generalize this model to the multiagent case, where agents cannot only reason to change
their own beliefs but also communicate to change other agents’ beliefs.

Formally, we assume that the agent represents its beliefs in an arbitrary object language
OL. Let !(OL)¼{B! : ! 2 OL} (or just ! when OL is clear from context) be the set of
epistemic atoms. A model is a relational structure with a valuation of the epistemic atoms in
each state, with the restriction that only finitely many epistemic atoms can be true in each
state. Thus, a model will be used to interpret an epistemic atom B! as a primitive proposition,
and not as a formula with a modal operator. We write }(X) for the powerset of a set X, and
}fin(X) for the set of all finite subsets of X.

DEFINITION 1
A model is a tuple M¼ (W,R,V), where W is a non-empty set of states, R a binary
relation overW, and V a function V :W!}(!). The class of all models is denotedMðOLÞ (or
justM).

The relation R is used to model acts of reasoning taking the agent from a state where it knows
some finite set of formulae to another state where it knows some other such set. Note that we
do not model time explicitly; intuitively, no transitions happen unless the agent chooses to
perform a reasoning action.

A general model is a model without the finiteness condition:

DEFINITION 2
A general model is a tuple M ¼ (W,R,V) where W is a non-empty set of states, R a binary
relation over W, and V a function V : W!}(!). The class of all general models is denoted
MgenðOLÞ (or justMgen).

We are not interested in general models as such, but they are often useful as an intermediate
stage in constructing a proper model.

Often, it is convenient to be able to refer to the set of object language formulae an agent
believes in a given state. We write VðwÞ for the set {!: B! 2V(w)}, and call VðwÞ the agent’s
epistemic state in state w.

2.1 Knowing at least

M can be used to interpret the language of propositional modal logic, with epistemic atoms as
primitive propositions, in the usual way.

The language LðOLÞ (or just L) is the least language such that:

$ !(OL) are formulae
$ If !, are formulae, then !^ is a formula
$ If ! is a formula, then :! is a formula
$ If ! is a formula, then s! is a formula

For the sake of brevity, we do not introduce non-epistemic primitive propositions, however,
their introduction would not require any non-trivial changes to the subsequent results.

The intended meaning of a formula of the form s! is that the agent can choose some
reasoning act such that ! becomes true in the next state.

We use the usual derived propositional connectives, in addition to œ! for :s:!.
The intended meaning of a formula of the form œ! is thus that ! will be true after any
reasoning act performed by the agent. B!means that the agent knows at least !— he knows !
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and may or may not know something else. When X is a finite set of object formulae, we write
iX—read ‘the agent knows at least X’— as a shorthand:

"f"1; . . . ;"ng¼
df
B"1 ^ . . . ^ B"n:

If X is a singleton set, we often omit brackets and use the equivalent notations "!, "{!}
and B! interchangeably.

The interpretation of L in general models is defined as usual in modal logic. When
M¼ (W,R,V) and w2W:

M;w % B" , " 2 VðwÞ
M;w %^! , 9ðw;w0Þ2RM;w0 % !

M;w % :! , M;w 6% !

M;w % ! ^  , M;w % ! and M;w %  

Some examples of formulae and informal interpretations are:

$ 4fp; p! qg !^4q: the agent can reason with modus ponens from p, p!q
$ ^4q!4fp; p! qg: the agent can only infer q by using modus ponens from the

premises p and p!q
$ 4p!^:4p: the agent may forget p in the next state
$ 4p!^4p: the agent may remember p in the next state
$ 4p!œ4p: the agent must remember p in the next state

The class of modelsM is completely axiomatized by the modal logic K (in the language L).
The logical system K consists of the axiom schemes

(Prop) !, when ! is a substitution instance of a propositional tautology
(K) œ ð!!  Þ! ðœ!!œ Þ
and the rules
(Modus Ponens) From !;!!  prove  
(Gen) From !, prove œ !
In completeness proofs, we will often need to transform one (general) model into another

while preserving satisfaction of certain formulae. We describe here two such transformations.
First, we review the well-known concept of bisimulation, and, second, we describe a new and
more general type of transformation which we call #-bisimulation.

A brief review of the concept of a bisimulation (see, e.g. [8] for further details):

DEFINITION 3 (Bisimulation)
Let M¼ (W,R,V) and M0¼ (W0,R0,V0) be two (general) models. A relation Z & W'W0 is a
bisimulation between M and M0 iff the following three conditions hold:

(1) For all w2W, w02W0: if Zww0 then V(w)¼V0(w0) (w and w0 satisfy the same atoms)
(2) For all w2W, w02W0: if Zww0 and Rwv then there is a v02W0 such that Zvv0 and R0w0v0

(3) For all w2W, w02W0: if Zww0 and R0w0v0 then there is a v2W such that Zvv0 and Rwv

It is well known that bisimulation preserves satisfiability: if Z is a bisimulation betweenM and
M0 and Zww0, then M;w % ! iff M0;w0 % ! for any formula ! 2 L.

Next, we define #-simulation and show a corresponding preservation result.
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DEFINITION 4 (#-bisimulation)
Let #&!, and let M¼ (W,R,V) and M0¼ (W0,R0,V0) be two (general) models. A relation Z
&W'W0 is a #-bisimulation between M and M0 iff the following condition holds, in addition
to conditions (2) and (3) for standard bisimulation:

(30) For all w 2 W, w0 2 W0: if Zww0 then V(w) \#¼V0(w0) \# (w and w0 satisfy the same
atoms from # )

We write M !# M0 to denote the fact that there is a #-bisimulation between M and M0;
we write w !# w0 to denote the fact that there is a #-bisimulation Z between M and M0 such
that wZw0.

It is easy to see that when # ¼ !, #-bisimulation and bisimulation coincide.
For a L formula !, let Subf ð!Þ be the set of subformulae of !, where subformulae

of the form B are treated as atomic subformulae (not parsed further). Let At(!) be the set of
epistemic atoms occurring in !, namely B  2 At(!) if B 2 Subf ð!Þ.

The following theorem shows that #-bisimulation preserves satisfaction of formulae with
epistemic atoms in #.

When # & !, let Lð#Þ denote the subset of L containing formulae ! with
At(!) & #.

THEOREM 1
Let w be a state in a (general) model M, and w0 a state in a (general) model M0.

w !# w0 ) 8!2Lð#ÞðM;w % !,M0;w0 % !Þ

PROOF. Let M ¼ (W,R,V) and M0 ¼ (W0,R0,V0). If we assume that w !# w0, we can prove
that the equivalence holds for any ! 2 Lð#Þ by structural induction. For the base case, ! 2 !
and ! 2 #. M;w % ! iff ! 2 V(w) iff ! 2 V(w) \ # iff, by (1) in Definition 4, ! 2 V0(w0) \ # iff
M0;w0 % !. The inductive step can be shown in exactly the same way as for standard
bisimulation. g

Theorem 1 formally shows the intuitive property that satisfaction of a formula does not
depend on the valuation of atoms not mentioned in the formula.

We say that a logic is weakly complete with respect to a class of models, if all formulae valid
in the class are provable. A logic is strongly complete if for any set of formulae $, any logical
consequence of $, i.e. any formula valid in the class consisting of all the models of $, is
provable from $.

THEOREM 2
K is sound and weakly complete with respect toM.

PROOF. It suffices to show that any K-consistent formula ! is satisfied in M. Let
MK ¼ ðWK;RK;VKÞ be the canonical model for K (this is a general model, and not
necessarily a model inM, since it may be that VK(w) is infinite for some state w). ! is true in
at least one of the states in MK. Let Mf ¼ ðWf;Rf;VfÞ be as follows: Wf ¼WK, Rf ¼ RK and
for every w 2Wf, VfðwÞ ¼ VKðwÞ \ Atð!Þ. Clearly, for every world w, MK;w % ! iff
Mf;w % !. Vf(w) is finite for each w, since there are only finitely many epistemic atoms in
At(!). Thus, Mf 2 M and ! is satisfied in Mf. g
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The semantics we have given for the language L is not compact. A counterexample to
compactness is the theory $ ¼ fB! : ! 2 OLg. $ is not satisfiable inM, but each of its finite
subsets is. Thus, K is not strongly complete with respect toM.

2.2 Useful axioms

In this section, we consider imposing additional conditions on the accessibility relation in the
models.

2.2.1 Unbounded reasoning

Many syntactic approaches to epistemic logic [3, 6, 12] are based on the view that
reasoning does not have an end point, but goes on indefinitely. This explains logical non-
omniscience without sacrificing rationality: an agent can eventually get to know any
particular fact it is able to compute, but can never get to know all of them at the same time.
In the modelsM, the assumption that an agent should be able to do any reasoning at all in
a given state of the system is not made. In this section, we restrict the logic by adding
this assumption.

Semantically, it corresponds to requiring that the accessibility relation is serial. A serial
model is a model (W,R,V) where the accessibility relation is serial, i.e. where for each world
w2W there exists a u2W such that Rwu. The class of all serial models is denotedMs.

Proof-theoretically, the assumption of unbounded reasoning corresponds to adding the
axiom schema

(D)œ !!^!
The modal system KD is K extended with the D axiom.

THEOREM 3
KD is sound and complete with respect toMs.

PROOF. Like the proof of Theorem 2, with the canonical model for KD. g

2.2.2 Deterministic reasoning

The models inM are models of nondeterministic reasoning, in the sense that an agent may
have several possible transitions from one state. In this section we explore the special case
when reasoning is deterministic, i.e. when there is at most (or exactly, in the case of
unbounded reasoning) one possible next state for each state. Formally, a deterministic model is
one in which the accessibility relation is a (partial) function. The set of all deterministic
models is

Md ¼ fðW;R;VÞ 2 M : Rwu and Rwv) u ¼ vg

and the class of all deterministic serial models isMds ¼Md \Ms.
Proof-theoretically, we add the axiom schema

(F) ^!!œ !
The modal systems KF and KDF are K and KD extended with the F axiom,

respectively.
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THEOREM 4
KF is sound and complete with respect toMd.

PROOF. The axiom F is valid inMd, which suffices to show soundness. For completeness, let !
be a KF consistent L formula. By the standard result in modal logic, there is a general model
M with a deterministic accessibility relation, where ! is satisfied. M can be transformed into a
deterministic model Mf, where all epistemic states are finite, by setting VfðwÞ ¼ VðwÞ \ Atð!Þ
for every w. Mf satisfies ! and belongs toMd. g

THEOREM 5
KDF is sound and complete with respect toMds.

PROOF. Axioms F and D are valid inMds, which gives soundness. The proof of completeness
is analogous to the proof of Theorem 4. g

2.3 Knowing at most

In the previous section, we presented different axiomatizations of ‘knowing at least’ a finite set
of formulae in basic modal logic. The i operator was defined by the B operator. In this
section, we add a dual operator 5 from [4] to the language. The intended meaning of 5X is
‘the agent knows at most the finite set X’.

The language L5ðOLÞ (or just L5) is the language LðOLÞ with the following additional
clause in its definition: 5X is a formula for every finite set X 2 }finðOLÞ of object formulae.
We use the same derived connectives as in LðOLÞ, in addition to DX for 4X ^ 5X. The
intended meaning of DX is ‘‘the agent knows exactly the finite set X’’. An example of an L5
formula is:

5ðf!;:!g [ XÞ!œð5ðf!g [ XÞ _ 5ðf:!g [ XÞÞ

(which is true if the agent resolves all inconsistencies in the next state), or

D ðf!;!!  g [ XÞ!^D ðf!;!!  ; g [ XÞ

(which is true if the agent can apply the rule modus ponens).
The interpretation of the language L5ðOLÞ inMðOLÞ is defined as for the language L, with

the following definition for the new clause:

M;w % 5X, VðwÞ & X

It is easy to see that

M;w % 4X, VðwÞ ( X

M;w % DX, VðwÞ ¼ X

THEOREM 6
The operator 5 is not definable in LðOLÞ when the object language is infinite.
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PROOF. Let X be a finite set of object language formulae. We show that for any L formula !,
there is a model M0 and a state w such that M0;w 6% !$ 5X. Let ! be an L formula, and let
M;w % ! where M ¼ ðW;R;VÞ (if ! is unsatisfiable we are done, since every formula 5X is
satisfiable). Let Y be the set of atoms occurring in !. M0 ¼ ðW;R;V0Þ where V0ðw0Þ ¼ Vðw0Þ
when w0 6¼ w and V0ðwÞ ¼ VðwÞ [ fB#g where # 62 Y [ X. Existence of such a # is ensured
by the fact that the object language is infinite and both Y and X are finite. M and M0 are
Y-bisimilar, so by Theorem 1, M0;w % !. However, because B# 2 V0ðwÞ and # 62 X,
M0;w 6% 5X. g

The proof above essentially uses the fact that L5ðOLÞ formulae are not preserved under
#-bisimulation, or that their truth value depends on assignment to atoms which do not occur
in the formula. Most logics satisfy the principle of locality: the truth value of a formula does
not depend on the assignment to variables other than the formula’s free variables. This is such
an obvious property that it usually goes unremarked; however some logics do violate it. This
phenomenon was investigated for predicate logics in e.g. [28]; for propositional logics, the
only example we know of in addition to the logic of 5, is a related logic of operators ‘knowing
at least n formulae’ [2] and the logic of only knowing [24].

Although formulae of L5ðOLÞ are not preserved under #-bisimulation, they are preserved
under an operation which we call epistemic filtration through #.

Recall the definition of At(!) for ! 2 LðOLÞ. We extend it to ! 2 L5ðOLÞ as follows. For an
L5ðOLÞ formula !, let Subf ð!Þ be the set of subformulae of !, where subformulae of the form
B and 5X are treated as atomic formulae. B 2 Atð!Þ if either B 2 Subf ð!Þ, or for some X
such that  2X, 5X 2 Subf ð!Þ.

DEFINITION 5
Let # & !, and M¼ (W,R,V) be a (general) model. An epistemic filtration of M through #
is a model M0¼ (W0,R0,V0) where W0¼W, R0¼R, and for every w, V0(w) is the same as V(w)
with respect to the atoms in #, and all atoms B 2 VðwÞ which are not in # are replaced in
V0(w) by some fresh atom B" 62 #.

Note that V(w), for every w, can be represented as Y [ Z, where Y&# and Z \ #¼ 6 0. The
operation above can be seen as replacing V(w) with V0(w)¼Y if Z¼ 6 0, and V0ðwÞ ¼ Y [ fB"g
otherwise.

As before, we refer to the sublanguage of L5ð!Þ which only refers to atoms from # as
L5ð#Þ. In particular, 5f!1; . . . ;!ng is in L5ð#Þ if B!1; . . . ;B!n 2 #.

THEOREM 7
L5ð#Þ-formulae are preserved under epistemic filtration through #.

PROOF. Let ! 2 L5ð#Þ and let M¼ (W,R,V) be a (general) model. We argue by induction
on the complexity of ! that for every w2W, M;w % ! iff M0;w % !, where M0 is a result
of filtrating M through #.

Clearly, for B 2 #, B 2V(w) iff B 2 V0(w). The cases for booleans ands are trivial. The
only interesting case is the case of 5. We are going to show that for every set of epistemic
atoms X & # the following condition holds:

VðwÞ & X iff V0ðwÞ & X

From this it would immediately follow that if fB" : " 2 Xg & #, then M;w % 5X iff
M0;w % 5X.
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First, consider the case when V(w) & #. Then V0(w)¼V(w) and the condition above holds
trivially, for any set of epistemic atoms X. In the other case, V(w) contains at least one atom
B 62#. Then V0ðwÞ ¼ ðVðwÞ \#Þ [ fB"g for some fresh B" 62 #. For X & #, the condition
V(w) & X iff V0(w) & X holds trivially, since if V(w) contains a non-# atom, V(w) & X is false,
and so is V0(w) & X (because V0(w) contains B" which is not in # and hence not in X). g

COROLLARY 1
Every L5ðOLÞ formula which has a general model, has a model.

We now present axiomatizations of logics with the 5 operator. The axiomatizations extend
the axiomatization of the purely epistemic fragment (i.e. without the modal logic) in [4].

2.3.1 Axiomatization

The properties of 5 are captured by the following axiom schemata [4]:
(E1) 4X! :5 Y when X6&Y
(E2) 5ðY [ f$gÞ ^ :B$ !5Y
(E3) 5X!5Y when X&Y

E1 says essentially that iX ^5Y (believing all formulae in X and at most the formulae
in Y) implies X & Y. Note that X & Y is not a formula in the logic, so instead we formulate the
axiom schema which declares all instances ofiX ^ 5Y with X 6& Y inconsistent. E2 allows us
to narrow down the set of beliefs: if we know that the agent believes at most f$1; . . . ; $ng and
does not believe $n, then we can conclude that it believes at most f$1; . . . ; $n)1g. Finally, E3
simply states that 5 is monotone.

We write K5 for K extended with E1–E3, and similarly for other systems and axioms.
A logical system is defined relative to a logical language, and whenever 5 is involved we
implicitly take the language to be L5ðOLÞ.

Before proving weak completeness for K5 with respect to M, we are going to show an
auxiliary result: that every K5-consistent formula is satisfied in a general model (that is,
a model with possibly infinite epistemic states). Then we will use the fact that each general
model for a formula ! can be transformed into a model for ! by epistemic filtration.

The general model Mc ¼ ðWc;Rc;VcÞ we construct is ‘almost’ a canonical model for K5:
Wc is the set of L5ðOLÞ-maximal K5-consistent sets, Rc is the canonical relation, but Vc is not
the canonical valuation. Particularly, Mc is constructed over an extended object language
OL [ fp̂g, where p̂ is some primitive proposition not in the original object language OL. Thus,
Vc : Wc! }ð!ðOL [ fp̂gÞÞ, and Mc 2 MgenðOL [ fp̂gÞ (the epistemic filtration technique will
transform Mc to a model M 2 MðOLÞ). The results extend those of [5], who use an auxiliary
proposition p̂ to get satisfiability in the non modal case.

A notation which will be useful is Belw ¼ f" : B" 2 wg for a set w & L5ðOLÞ.

DEFINITION 6
Let p̂ 62 OL. Define the general canonical model Mc ¼ ðWc;Rc;VcÞ 2 MgenðOL [ fp̂gÞ as
follows:

$ Wc is the set of all L5ðOLÞ-maximal K5-consistent subsets of L5ðOLÞ
$ ðw; vÞ 2 Rc iff 8!2L5ðOLÞð! 2 v)^! 2 wÞ
$ Vc : Wc! }ð!ðOL [ fp̂gÞÞ is defined by cases. If w contains an occurrence
of 5X for some X 2 }finðOLÞ, then VcðwÞ ¼ fB" : B" 2 wg. Otherwise VcðwÞ ¼
fB" : B" 2 wg [ fBp̂g.
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The reason for adding Bp̂ in the last clause is to provide a ‘witness’ for failure of 5X for any
X 2 }finðOLÞ: p̂ 62 X but p̂ 2 VcðwÞ.

THEOREM 8
Every K5-consistent set of L5ðOLÞ formulae is satisfied in the general canonical model Mc

defined in Definition 6.

Before we prove Theorem 8, we need the following intermediate result.

LEMMA 1
Let w be a L5ðOLÞ-maximal K5-consistent set. If there is an X0 such that 5X0 2 w, then for
every X 2 }finðOLÞ

5X 2 w, Belw & X

PROOF. Let 5X0 2 w. For the direction to the right, let 5X 2 w and let " 2 Belw. If it were the
case that " 62 X, then, since B" 2 w, :5 X 2 w by E1 which contradicts the consistency of w.
Thus, " 2 X. For the direction to the left, let Belw & X. If X0 & X, then 5X 2 w by E3 and we
are done, so assume that X0 6& X. Let "1; . . . ;"k be the formulae in X0 but not in X, i.e.
X0 n X ¼ f"1; . . . ;"kg (X0,X are finite). Since Belw & X and "i 62 X, "i 62 Belw for any i2[1,k].
Thus, for each i, B"i 62 w, and by maximality :B"i 2 w. By (k applications of) E2,
5ðX0 n f"1; . . . ;"kgÞ 2 w, and since X0 n f"1; . . . ;"kg & X, 5X 2 w by E3. g

The Lindenbaum lemma which states that we can extend every K5-consistent set to a
K5-consistent and L5ðOLÞ-maximal set, holds by the usual proof and will be used without
explicit reference.

The existence lemma also has a standard proof:

LEMMA 2 (Existence Lemma for Mc)
For any w 2Wc, if ^! 2 w there is a v 2Wc such that ðw; vÞ 2 Rc and ! 2 v.

The final piece we need for the proof of Theorem 8 is the truth lemma:

LEMMA 3 (Truth Lemma for Mc)
For each w2Wc and ! 2 L5ðOLÞ

Mc;w % !, ! 2 w

PROOF. The proof is by induction on the length of !. We will only do the case for 5, as the
rest is standard:
! ¼ 5X : We have two cases.

First, assume that for some X0, 5X0 2 w. Then by the definition of Vc, VcðwÞ ¼ Belw. By
Lemma 1, 5X 2 w iff Belw & X, which is equivalent to 5X 2 w iff VcðwÞ & X, hence
5X 2 w iff Mc;w % 5X.
Second, assume that 8X0 5 X0 62 w, in which case Bp̂ 2 VcðwÞ. We must show that
Mc;w 6% 5X. Since X 2 }finðOLÞ (! 2 L5ðOLÞ), p̂ 62 X and thus VcðwÞ 6& X which is the
same as Mc;w 6% 5X. g

Theorem 8 follows from Lemma 3 and the standard Lindenbaum argument.
By Theorem 7, since ! is satisfied in a general model Mc ¼ ðWc;Rc;VcÞ, it also has a model

Mf which is a result of filtrating Mc through At(!).
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THEOREM 9
If a formula ! 2 L5ðOLÞ is satisfiable in a general model M ¼ ðW;R;VÞ 2 MgenðOL [ fp̂gÞ,
then it is satisfiable in a model Mf ¼ ðWf;Rf;VfÞ 2 MðOLÞ, where Wf ¼W and Rf ¼ R.

PROOF. This follows immediately from Theorem 7: we take an epistemic filtration of M
through At(!), choosing some fresh formula " 2 OL to obtain an epistemic atom B" 62 Atð!Þ
to replace all non-At(!) atoms in Vf, including p̂. g

THEOREM 10
K5 is sound and weakly complete with respect toM.

PROOF. Soundness follows from the easily seen fact that E1-E3 are valid—in addition to
validity of K and the fact that MP and Gen preserve validity.

Completeness follows from Theorem 8 and Theorem 9. g
Before we proceed to investigate the complexity of K5, it is useful to state explicitly some

obvious facts concerning the logic.

FACT 1
Formulae of K5 are preserved under bisimulation.

The proof of this fact is totally standard.
The modal degree of a K5 formula is the (greatest) depth of nesting of modal operators ^

in the formula.

FACT 2
Formulae of K5 of modal degree less or equal to n are preserved under n-bisimulation.

The notion of n-bisimulation is defined for example in [8]; intuitively, it means that the
similarity between models can be maintained not indefinitely, as in the case of bisimulation,
but for at least n steps.

Also, by the standard modal filtration argument,

FACT 3
Each satisfiable formula of K5 is satisfiable in a finite model.

From the facts above, it follows that

FACT 4
Each satisfiable formula of K5 of modal degree less or equal to n has a finite tree model of
depth n.

Given a finite model M and a state w satisfying a formula ! of modal degree n, we
can unravel M into a tree model with the root w, and cut it off at depth n. In the resulting
model M’, the root is n-bisimilar to w in M, hence satisfies the same formulae of depth less or
equal to n.

2.4 Complexity of K5
The model-checking complexity of K5 is the same as the model-checking complexity of K.
Checking whether a subformula of the form 5X is true in an epistemic state s can be done in
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time linear in the size of X, provided that it is possible to check in constant time whether a
formula is in the epistemic state or not, and provided we keep a record of the size of each
epistemic state. To verify whether 5X is true, given an epistemic state s, set up
a counter initially equal to the size of s, and check for every formula in X whether
it is in s, and if it is, decrement the counter. If we have checked all formulae in X and the
counter is equal to 0, then the formula 5X is true, else it is false (there are formulae in s which
are not in X).

To see that the satisfiability problem for K5 is PSPACE-complete, observe first that it is
PSPACE-hard since K5 includes K; on the other hand, K5 has models of polynomial depth,
and the usual NPSPACE algorithm can be used to guess branches of the model, which can be
written using polynomial space. Since NPSPACE¼PSPACE, the satisfiability problem for
K5 is in PSPACE.

2.5 Additional axioms

We take assumptions about unbounded and deterministic reasoning into account—now for
the language L5. It is straightforward to show that adding the standard modal axioms such as
F, D and 4 to K5 produces logics which are sound and weakly complete with respect to the
corresponding classes of models.

THEOREM 11
KF5 is sound and weakly complete with respect toMd.

PROOF. Soundness follows from the fact that the F axiom is valid inMd.
For completeness, consider a KF5-consistent formula !. By Theorem 8, it is satisfied in a

general canonical model. By the standard modal argument, the presence of the F axiom allows
to transform this model into a deterministic model (F forces all accessible worlds to satisfy the
same formulae, and identical worlds can be glued together, yielding a bisimilar model). By
Theorem 9, ! has a model inMd. g

THEOREM 12
KD5 is sound and complete with respect toMs.

PROOF. Straightforward from Theorem 8 and Theorem 9. g

THEOREM 13
KDF5 is sound and complete with respect toMds.

PROOF. Straightforward from Theorem 8 and Theorem 9. g

Finally, if we would like to consider ^ as a temporal ‘at some point in the future’ operator
(which is useful in the subsequent comparison section), we need to consider transitive models.
Let Mt be the class of all transitive models.

Syntactically, this corresponds to the axiom schema
ð4Þ^^!!^!

THEOREM 14
K45 is sound and complete with respect to Mt.

PROOF. Straightforward from Theorem 8 and Theorem 9. g
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3 The multiagent case

We have up to now considered only the single agent case, for simplicity. Henceforth,
we will be more general and prove results also for the multiagent case where there are
n agents % ¼ f1; . . . ; ng. In this case both syntax and semantics are defined over
!n ¼ fBi! : ! 2 OL; i 2 %g in place of !.

DEFINITION 7
A model in the multiagent case is a tuple M ¼ ðW;R1; . . . ;Rn;VÞ where W is a non-empty set
of states, Ri a binary relation over W, and V a function V : W! }finð!nÞ. The class of
all multiagent models is denoted Mn, and similarly for other model classes (Ms

n for serial
models, etc.).

A tuple ðs1; . . . ; snÞ of finite epistemic states (si * OL) is associated with each state s 2W :
si ¼ f! : Bi! 2 VðsÞg.

Different from the single agent case is that a state w no longer corresponds to the state of a
single agent, but to a global state of a system consisting of several agents, each with its own
epistemic state. Intuitively, the fact that ðw;w0Þ 2 Ri means that agent i can change the system
from state w to state w0. Thus, agent i can potentially affect the epistemic states of other
agents in addition to his own. In Section 4 we use this fact to model both reasoning and
communication in a multiagent system. Note that the transitions available to agent i depend
the state of the whole system.

The logical language for the case of n agents, denoted L5n , is defined from !n in
the same way L5 is defined from !, with the operators ^ and 5 replaced by indexed
operators ^i and 5i for each agent i (1 + i + n). The interpretation in multiagent models is
straightforward, with Ri interpreting ^i and si interpreting Bi and 5i. An example of an L52
formula is:

51fpg ^ 52fqg !^1 52 fp; qg

This formula may be true of a system where agent 1 may communicate its beliefs
to agent 2, and agent 2 has no other way of acquiring new beliefs. In details: if it is the
case that, right now, agent 1 knows at most p, i.e. it knows either only p or nothing
at all, and agent 2 knows at most q, then agent 1 can perform an action (a communication
action) such that after the action it holds that agent 2 at most knows p and q.
In other words, after the action agent 2 might still know q, if it already knew it
before the action, and might know p if it was communicated by agent 1, but since it was
assumed that agent 2 has no other ways of acquiring new beliefs, it can not know anything
else at this point. Further examples involving the knowledge of rules are discussed in
Section 4.

Axiomatization of the multiagent case is obtained by indexing modalities and epistemic
operators by agents; for example, the epistemic axioms become

(E1) 4iX! :5i Y when X 6& Y
(E2) 5iðY [ f$gÞ ^ :Bi$ !5iY
(E3) 5iX!5iY when X & Y

and we can express that agent i can always make a transition by adding an axiom schema
(D) œi!!^i!
All the preceding proofs can easily be modified to show that the corresponding results hold

also for the multiagent case.
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4 Examples of complete logics which capture knowledge of inference or
communication rules

In this section, we consider multimodal logics defined by conditions on the accessibility
relations, which involve epistemic states. Intuitively, in these logics, transitions between
states correspond to an epistemic action performed by one of the agents. We find it
useful to distinguish two kinds of epistemic actions. The first kind is an internal action
by the agent, corresponding to applying an inference rule (or an internal state
update rule, in general). This kind of action only affects the agent’s state. The second kind
of action is communicating something to other agents. This is seen as broadcast
communication, and as a result not only the agent’s own state, but also the states of other
agents may be updated.

An internal inference rule could be, for example, modus ponens. There are a number of
possibilities for expressing the fact that an agent is capable of reasoning by modus ponens.
For example, we can say that an agent can make a transition using MP:

4iMP : 8!;  ½!;!!  2 si ) 9s0ðRiðs; s0Þ ^  2 s0iÞ-

Another possibility is requiring that MP is the only way to update the agent’s state, or that the
agent knows at most MP:

5iMP : Riðs; s0Þ) 9!;!!  2 siðs0i ¼ si [ f g ^
^

j6¼i
s0j ¼ sjÞ

This definition of ‘knowing at most MP’ can be seen as ‘the only possible updates are MP
updates’, and, again, several other definitions are possible.

A communication rule could, for example, allow agent i to tell agent j one of the formulae it
believes:

4iCommij: 8!½! 2 si ) 9s0ðRiðs; s0Þ ^ ! 2 s0jÞ-

As above, we can also require that this is the only epistemic action agent i could perform:

5iCommij: Riðs; s0Þ) 9! 2 siðs0j ¼ sj [ f!g ^
^

k6¼j
s0k ¼ skÞ

Any number of similar conditions on the accessibility relations can be considered.
In this section, we show some completeness results. One concerns axiomatizing monotonic

reasoners:

Moni : 8jðRjðs; s0Þ) si & s0iÞ

This condition says that after any transition (by any agent j), agent i’s belief state does not
decrease. Syntactically, this corresponds to the following axiom schema:
(Mi) ð4iX!œj4iXÞ ^ ð^j 5i X!5iXÞ ðfor all jÞ:

THEOREM 15
KMi5n is sound and weakly complete with respect to models satisfying Moni.
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PROOF. Soundness is obvious; for completeness, consider a general model Mc as in
Definition 6, where Mi holds in all worlds. This forces epistemic states of i in the
general canonical model to satisfy the inclusion Moni : whenever s0 is reachable from s,
si & s0i (first conjunct of Mi). Consider a KMi5n-consistent formula !, and let
Awareið!Þ ¼ f : Bi 2 Atð!Þg. Now consider an epistemic filtration Mf of Mc through
At(!). Let us denote the epistemic state of i in state s as sfi in the new model. For all states s
where sfi is defined as si \ Awareið!Þ, Rf

jðsf; s0fÞ implies sfi & s0fi , because si & s0i. Suppose sfi is
defined as ðsi \ Awareið!ÞÞ [ f"ig, that is, a special formula "i is added to sfi . Moni would be
violated if for some s0, Rf

jðsf; s0
fÞ and "i 62 s0fi . This is only possible if for some 5iX, 5iX 2 s0

and 5iX 62 s. But this is forbidden by the second conjunct of Mi. Hence, ! has a model where
Moni holds. g

Note that we also can axiomatize Moni for the language without 5—then we only need the
first conjunct of Mi.

Now consider the following natural class of conditions on the accessibility relations, which
we will call addition conditions. Those conditions correspond to ‘knowing at least’ rules of the
following form: if agent i believes formulae !1; . . . ;!n, then agent i can reach a state where
agent j (possibly j ¼ i ) believes formulae  1; . . . ;  k :

!1; :::;!n 2 si ) 9s0ðRiðs; s0Þ ^  1; :::;  k 2 s0jÞ

Examples of such addition conditions are 4iMP and 4iCommij above.

THEOREM 16
Any set of addition conditions of the form

!1; . . . ;!n 2 si ) 9s0ðRiðs; s0Þ ^  1; :::;  k 2 s0jÞ

is axiomatizable by adding to Kn axiom schemes of the form

"if!1; :::;!ng !^i"jf 1; :::;  kg

PROOF. Soundness is straightforward.
For completeness, consider a general canonical model where the axioms hold. In the

general canonical model, if 4if!1; . . . ;!ng 2 s, there is an Ri-accessible state s0 with
4jf 1; . . . ;  kg 2 s0, and the addition condition holds.

Now we need to produce a model for a consistent formula ! with finite epistemic states,
where the semantic condition still holds. We modify the proof of Theorem 2 as follows. Take
a world s which satisfies !, and unravel the model M so that s is the root of the model. Now
intersect the epistemic state of all agents j in s with Awarejð!Þ as before; however for states s0
reachable from s in k steps, intersect s0j with Awarejð!Þ closed under k applications of the
addition condition. For example, if i ¼ j and the condition is 4iMP, then Awareið!Þ would be
closed under k applications of modus ponens. g

THEOREM 17
Kn together with an axiom schema
ðA1Þ 41f!;!!  g !^141f g

is sound and weakly complete with respect to models satisfying 41MP.

PROOF. The theorem follows from Theorem 16. g
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It is much harder to axiomatize knowing ‘at most’ a rule. To get a feeling for the reason
why, consider axiomatizing knowing at most modus ponens. We want to say something like: if
a formula  is in the agent’s state after a transition, then it has either been there before the
transition, or has been added as a result of applying modus ponens to some !!  , ! which
are in the agent’s state. However, there are infinitely many formulae !; expressing this would
require quantification over formulae:

^i"i ! "i _ 9!ð"if!;!!  gÞ

A partial solution—which still requires only the language with ‘at least’ only—is to restrict
our attention to rules which have a ‘subformula property’, such as the rule of conjunction
introduction:

5i ^int :Riðs; s0Þ) 9!;  2 siðs0i ¼ si [ f! ^  g ^
^

j6¼i
s0j ¼ sjÞ

THEOREM 18
The class of models satisfying 5i^int is axiomatizable by adding to Kn the following axiom
schemes:

(C1) ^i4ið! ^  Þ! ½4ið! ^  Þ _ ð4i! ^ 4i Þ-
(C2) ^i4iX!4iX _

W
!^ 2X4ifXnf! ^  gg

(C3) ^i4jX!4jX where j 6¼ i
(C4) 4jX!œi4jX

PROOF. Note that C1 corresponds specifically to knowing the rule of conjunction
introduction, whereas C2–C4 in some form are necessary for any ‘knowing at most’ a rule
and state that at most one formula is added after any transition, and the states of other agents
are not changed after the transition.

Soundness is straightforward. For completeness, consider a formula ! consistent with the
axioms. Build a general canonical model for !, with potentially infinite epistemic states. The
axioms C3 and C4 will force the epistemic states of agents other than i to stay unchanged
along the accessibility relation Ri. C2 makes sure that if Riðs; s0Þ, then at most one new
formula is in s0i compared to si, and this formula is of the form  1 ^  2. Finally, C1 makes
sure that if a formula of the form  1 ^  2 is added to s0i, then  1;  2 2 si.

Using this general canonical model, we build a model for ! with finite epistemic states as
before, intersecting each epistemic state with Awareið!Þ. This means that the resulting model
contains only finitely many non-trivial transitions for conjunction introduction, but this does
not violate the 5i^int condition. g

Completeness results for ‘knowing at most’ other inference rules with the subformula
property can be proved analogously.

In general, however, we can axiomatize ‘knowing at most’ a rule, even when the rule does
not have the subformula property, using the ‘at most’ operator rather than quantification
over formulae.

THEOREM 19
The class of models satisfying 5iMP is axiomatizable by adding to K5n the following axiom
schemes:

(B1) 5iX!œi
W

!;!! 2X5iðX [ f gÞ
(B2) ^i4iX!4iX _

W
 2X4iðXnf gÞ

(C3) ^i4jX!4jX where j 6¼ i
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C4 4jX!œi4jX
C5 ^i 5j X!5jX

PROOF. For soundness, observe that B1 states that agent i’s epistemic state grows by at most
one formula derived by MP at each step. B2 states that if agent i believes a set of formulae X
in the next state, then it either already believes all formulae in X in the current state, or it
believes exactly one formula less. C3 as before says that agents other than i do not acquire new
beliefs along Ri, and C4 and C5 assert that all agents’ epistemic states grow monotonically
along Ri.

For completeness, consider a general model Mc as in Definition 6. We are going to
transform it into a model for a consistent formula !0 which satisfies condition 5iMP. Assume
that Riðs; s0Þ holds. Axioms C4 and C5 make sure that for all j 6¼ i, s0j ¼ sj. We need to show
that s0i ¼ si [ f g for some !;!!  2 s0i. Axiom C4 guarantees that si & s0i. Axiom B2 makes
sure that there is at most one extra formula  in s0i compared to si; now we know that s0i ¼ si or
s0i ¼ si [ f g for some  62 si.

If for some X, 5iX 2 s, then by axiom B1, in all Ri-accessible worlds the epistemic state of i
can have at most one extra  , and it has to be derived by MP. Note that 5iX!œi? follows
from B1 if there are no formulae of the form !;!!  2 X; in this case there are no Ri

accessible worlds.
The world s may however contain no formula of the form 5iX. In this case, we cannot

guarantee that if a formula was added, then it was added by MP. We fix those worlds,
together with the finiteness requirement for epistemic states, by epistemic filtration through
Atð!0Þ, closed under applications of MP. Now if a world s does not contain 5iX, si contains a
special formula "i; in the accessible world s0, s0i also contains "i. If there are no !, !!  in si
such that  is the formula justifying the Ri transition, we add "i !  to si. g

Note that the notions of ‘knowing at least’ and ‘knowing at most’ a rule we have discussed
in this section are not the only possible ones. For example, interpretations of knowing modus
ponens different from the ones used in 4iMP or 5iMP can be proposed. In Section 5.3 we
briefly discuss other versions.

5 Applications and examples

As mentioned in the introduction, dynamic aspects of syntactic knowledge have been studied
before. Here, we apply our framework to reason about examples of properties from the
literature involving reasoning and communication.

5.1 Timed reasoning logic

TRL was introduced in [6]. TRL is a family of logics parameterized by a set of agents A
and a rule system (set of inference rules and associated rule application strategy) for
each agent. Here, we show that we can apply our framework to reason about concepts
from TRL.

Each agent i 2 A has a local state which is a finite set of formulae in some logical language
(propositional, predicate, modal, etc.). Different agents may use different languages at
different points in time: at time t, agent i speaks the language Lit. The local state of agent i at
time t, mi

t, is a finite set f!1; . . . ;!ng of formulae of the agent’s language at time t, Lit. This set
may be empty or inconsistent.
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Each agent has some rules to produce a new state given its current state and any new beliefs
obtained by observation. Each model is equipped with a function obs, which takes a step t and
an agent i as arguments and returns a finite set of formulae in the agent’s language at that step
(observed facts). This set is added to the agent’s state at the same step (observations are
instantaneous). Each agent has an associated function infi, which maps a finite set of formulae
in the language Lit to another finite set of formulae in the language Litþ1 (an agent’s
computation of the next state).

DEFINITION 8
Let A be a set of agents and fLit : i 2 A; t 2 Ng a set of agent languages. A TRL model M is a
tuple hobs; finfi : i 2 Ag; fmi

t : i 2 A; t 2 Ngi where obs is a function which maps a pair ði; tÞ
to a finite set of formulae in Lit, infi is a function from finite sets of formulae in Lit to finite
sets of formulae in Litþ1, and each mi

t is a finite set of formulae in Lit such that
mi

tþ1 ¼ infiðmi
tÞ [ obsði; tþ 1Þ.

It is assumed that there is a definition of a well-formed formula associated with each of the
agent’s languages Lit. If i is an agent, t is a moment of time, and ! a well-formed formula of
the language Lti , then ði; tÞ : ! is a well-formed labelled formula of TRL.

A labelled formula ði; tÞ : ! is true in a model, M % ði; tÞ : !, iff ! 2 mi
t (the state indexed by

(i,t) in M contains !). A labelled formula ði; tÞ : ! is a logical consequence of a set of labelled
formulae $, $ % ði; tÞ : !, iff for every model M, if M % $ then M % ði; tÞ : !.

One of the versions of TRL, TRL(STEP), models agents which at each step apply all their
inference rules to all their beliefs (but not to formulae derived as a result). The name of the
logic reflects its similarity with step logic [13].

The syntax of TRL(STEP) rules is as follows:

ði1; tÞ : !1; :::; ðin; tÞ : !n

ði; tþ 1Þ :  

Here, t is a universally quantified variable over time points, and i1; . . . ; in; i are fixed labels
corresponding to names of agents.

Let R be a set of TRL(STEP) inference rules. A labelled formula ði; tÞ : ! is derivable from a
set of labelled formulae $ using R ($ ‘R ði; tÞ : !) if there is a sequence of labelled formulae
ði1; t1Þ : !1; . . . ; ðin; tnÞ : !n such that:

(1) Each formula in the sequence is either a member of $, or is obtained from the previous
formulae by one of the inference rules in R; and

(2) the last labelled formula in the sequence is ði; tÞ : !, namely ðin; tnÞ : !n ¼ ði; tÞ : !.

There are two kinds of TRL(STEP) rules. The first kind of rule involves just one agent and
corresponds to this agent’s internal inference rules (infi function). These rules are called
internal rules.

The second kind of rule involves several agents and corresponds to exchange of information
between agents, which is modelled using the obs function. These rules are called
communication rules. Communication rules have the form:

ði; tÞ : !
ðj; tþ 1Þ :  
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A TRL model M conforms to a set of TRL(STEP) rules R if

(1) For every internal rule in R of the form

ði; tÞ : !1; :::; ði; tÞ : !n

ði; tþ 1Þ :  

infi in M satisfies the property

!1; :::;!n 2 mi
t¼) 2 infiðmi

tÞ

(2) For each communication rule in R of the form

ði; tÞ : !
ðj; tþ 1Þ :  

obs in M satisfies the property

! 2 mi
t¼) 2 obsðj; tþ 1Þ

The following theorem was proved in [6]:

THEOREM 20
Given a set of TRL(STEP) rules R, for any finite set of labelled formulae $ and a labelled
formula !, $ ‘R ! iff $ %R !, where R is the set of models conforming to R and %R is the
consequence relation restricted to the models in R.

There is a straightforward correspondence between a TRL model (conforming to a set of
rules) and a model inMds (satisfying a corresponding set of addition conditions). Indeed, a
TRL model can be represented as consisting of a sequence of states m0;m1; . . . ;mt; . . . where
the set of epistemic states associated with each mt is ðm1

t ; . . . ;m
n
t Þ. Each pair mt)1;mt is

connected by a successor relation R ¼ R1 ¼ . . . ¼ Rn which is deterministic and serial. Note
that this class of models can be axiomatized by adding to KDFn a set of axiom schemes

^i!$^j!

for every pair i; j 2 A. Then for convenience we can use an unindexed modality defined as

^!¼df ^1!

For each rule of the form

ði; tÞ : !1; . . . ; ði; tÞ : !n

ð j; tþ 1Þ :  

the TRL model conforms to, there is an addition condition

!1; . . . ;!n 2 si ) 9s0ðRiðs; s0Þ ^  2 s0jÞ

in the corresponding model inMds.

20 of 34 Dynamics of Syntactic Knowledge



THEOREM 21
Any class of TRL models conforming to a set of TRL(STEP) rules R can be axiomatized
by adding to KDFn the set of axiom schemes
(Aij) ^i!$^j!
and, for each rule r 2 R of the form

ði; tÞ : !1; . . . ; ði; tÞ : !n

ðj; tþ 1Þ :  

an axiom schema
(Ar) 4if!1; . . . ;!ng !^i4j 

PROOF. The proof is very similar to the proof of Theorem 16, but in the completeness proof
the general canonical model has deterministic serial accessibility relations Ri with the
additional property that Ri ¼ Rj for all i, j. g

5.2 Dynamic epistemic logic

The logic we have presented can be seen as a generalization of DEL [10]. Duc [10] defines
the logical language LDE by extending the standard epistemic language with one modal
operator hFi i for each agent i. The intended interpretation of the formula hFi i! is that ! is
true after agent i has performed some train of thought (some sequence of reasoning steps).
While the name given to the logic may suggest otherwise, DEL seems to be closer related to
temporal logic than to dynamic logic [20]: the intended interpretation of the hFi i operator
is like the interpretation of the ‘future’ operator from temporal logic, and the logical
language allows no composition of actions inside the modal operators—there is only one
modal operator hFi i for each agent and no PDL-like composite operators such as hFi/i or
hFi [ Fji.

Formally, LDE is defined over a number of agents n and a set of primitive propositions & as
follows. LE is the standard epistemic language over n and & (Duc uses Ki instead of our Bi

for belief/knowledge). LE and LDE are the least sets such that:

& & LE LE & LDE

if 1 + i + n and ! 2 LE; then Ki ! 2 LE if ! 2 LDE; then :! 2 LDE

if ! 2 LE; then :! 2 LE if !;  2 LDE; then ð!!  Þ 2 LDE

if !;  2 LE then ð!!  Þ 2 LE if 1 + i + n and ! 2 LDE; then hFii! 2 LDE

The operator ½Fi- is defined as a dual to hFii in the usual way: ½Fi-! 0 :½Fi-:!. DEL
is presented via a logical system DES4n over the language LDE, intended to be a
‘dynamic’ version of S4n. In the definition of the system, a sublanguage LþE & LE of
persistent formulae is used. LþE contains all the formulae of LE without any occurrences of the
knowledge operators Ki (called objective formulae) and is closed under the following
conditions:

If !;  2 LþE ; then ð! ^  Þ 2 LþE
If !;  2 LþE ; thenð! _  Þ 2 LþE

If ! 2 LþE ; then Ki ! 2 LþE
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DES4n has the following axiom schemata:

PC1: !! ð ! !Þ
PC2: ð!! ð ! $ÞÞ! ðð!!  Þ! ð!! $ÞÞ
PC3: ð: ! :!Þ! ð!!  Þ
TL1: ½Fi-ð!!  Þ! ð½Fi-!! ½Fi- Þ
TL2: ½Fi-!! ½Fi-½Fi-!
DE1: Ki! ^ Kið!!  Þ! hFiiKi 
DE2: Ki!! !
DE3: Ki!! ½Fi-Ki!; if ! 2 LþE
DE4: hFiiKið!! ð ! !ÞÞ
DE5: hFiiKiðð!! ð ! $ÞÞ! ðð!!  Þ! ð!! $ÞÞÞ
DE6: hFiiKiðð: ! :!Þ! ð!!  ÞÞ
DE7: hFiiKiðKi!! !Þ
DE8: Ki!! hFiiKiKi!; if ! 2 LþE

and the following inference rules:

R1:
‘DES4n !;‘DES4n !!  

‘DES4n  

R2:
‘DES4n !

‘DES4n ½Fi-!

PC1-PC3 and R1 axiomatize propositional logic, TL1-TL2 and R2 the temporal operator hFii
and DE1-DE8 the epistemic operator Ki and the interaction between the temporal and
epistemic operators.

Duc does not define a formal semantics for DEL.3 The main motivation behind DEL is to
describe agents who are non-omniscient but nevertheless rational and non-ignorant.
Examples of DES4n theorems intended to illustrate this are:

Kið! ^  Þ! hFiiKi!

ðKi! ^ Ki Þ! hFiiKið! ^  Þ
Ki::!! hFiiKi!

We now show that we can successfully apply our framework to the mentioned
open problem of DEL: to provide a semantics for which the logic is sound and complete.
Our logic can be seen as a generalization of DEL along two dimensions: the temporal and
the epistemic.

In the temporal dimension, the two logics have the same set of modalities, written^i in our
logic and hFii in DEL for each agent i. In our basic system,^i has the temporal interpretation
‘some next state’, while as mentioned above the intended interpretation of hFii is ‘some future
state’. As we have seen in Section 2.5, we can easily extend our basic system to give the latter

3 In [9], he describes semantics and proves completeness for a simpler system, although with respect to what we
call general models, where an agent may know infinitely many formulae.
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interpretation of ^i : by using transitive frames and extending the logical systems with the 4
axiom.

In the epistemic dimension, while the agents described by DEL are not logically
omniscient in the sense that there are no conditions on what an agent must know, there are
nevertheless quite strong assumptions about the agents’ reasoning mechanisms. Particularly,
an agent:

$ Can reason perfectly in propositional logic (DE4-DE6, R1)
$ Can never get to know anything false or inconsistent (and knows this) (DE2, DE7)
$ Always reasons monotonically. Only persistent formulae are included in this definition of

monotone reasoning, however. Particularly, temporal indexicals (e.g. KihFii!) and
negative epistemicals (e.g. :Ki!) are not persistent. Monotonicity is a quite strong
assumption, and is incompatible with e.g. belief revision or ‘forgetting’.

$ Can do positive introspection (DE8)

Our logic is a general framework which does not make any of these assumptions. The
assumptions do, however, define a special class of our models.

In the remainder of this section, we provide a complete and sound semantics for Duc’s
logic, based on the models in M satisfying additional conditions. We can work in the
language L (Section 2.1), as we do not need the 5 operator. We can view LDE formulae as L
formulae by:

(1) Taking the object language OL ¼ LE:
(2) Making the following very minor modification of L, due to the fact that we for reasons of

simplicity up until now have not included primitive propositions directly as well formed
formulae (as defined in Section 2.1, while Bp is a well formed formula, p is not). Add the
primitive DEL propositions & as primitive propositions in L, and change the definition of
V in the models as follows to interpret also &: V : W)!}finð! [&Þ (still with the proviso
that for every world w and agent i the set fBi" : Bi" 2 VðwÞg is finite (otherwise it is a
general model), and we still keep the notation of VðwÞ for the set f" : Bi" 2 VðwÞg). The
truth definition for & is standard: M;w % p , p 2 VðwÞ.

(3) Reading a Ki operator as Bi.
(4) Reading a hFii operator as ^i:

In what follows, we write Ki! for Bi! and hFii for ^i, to be consistent with Duc’s notation.
Let Axi be the set of formulae DE4–DE7 prescribe that agent i must know in some

accessible state:

Axi ¼

!! ð ! !Þ;
ð!! ð ! $ÞÞ! ðð!!  Þ! ð!! $ÞÞ;
ð: ! :!Þ! ð!!  Þ;
Ki!! !

8
>><

>>:

9
>>=

>>;

for all !;  ; $ 2 LDE.
Let MDEL *M (respectively, Mgen;DEL *Mgen) be the class of (general) models

M ¼ ðW;R1; . . . ;Rn;VÞ satisfying the following conditions for each agent i and each state
w 2W :

D1 Ri sis transitive
D2 If Riðw; vÞ, Ki! 2 VðwÞ and ! 2 LþE , then Ki! 2 VðvÞ (Monotonicity)
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D3 For every !, if Ki! 2 VðwÞ, then M;w % ! (Knowledge)
D4 If Ki!; Kið!!  Þ 2 VðwÞ, then 9 v ðRiðw; vÞ & Ki 2 VðvÞÞ
D5 For every % 2 Axi, 9 v ðRiðw; vÞ & Ki% 2 VðvÞÞ
D6 If Ki! 2 VðwÞ and ! 2 LþE , then 9 v ðRiðw; vÞ & KiKi! 2 VðvÞÞ.

As an intermediate result, we first give soundness and completeness of DES4n with respect to
the class of general models (that is, models where the epistemic states do not have to be finite),
satisfying conditions D1-D6,Mgen;DEL. A similar result was proved in [9]. We then prove the
main, and more difficult, result: completeness with respect toMDEL.

THEOREM 22
DES4n is sound and strongly complete with respect toMgen;DEL.

PROOF. Appendix A. g

THEOREM 23
DES4n is sound and weakly complete with respect toMDEL.

PROOF. Appendix B. g

5.3 Dynamic syntactic epistemic logic

DSEL [3] is, as mentioned in the introduction, a logic describing how finite syntactic epistemic
states can evolve in a branching-time future, and how coalitions of agents can cooperate
strategically to reach certain epistemic states, based on ATL. In Section 4, we studied how to
express reasoning rules, such as modus ponens, in our framework, by using the operators
4;5;^, etc. One of the distinguishing features of DSEL is that it has syntactic objects
standing for rules, allowing referring to rules directly in the logical language. The logical
language has operators similar to 4 and 5 which take sets of rules, rather than sets of
formulae, as arguments, in order to express properties of reasoning similar to 4iMP and
5iMP from Section 4. However, the exact notions of knowing at least and knowing at most a
set of rules are different from the ones we discussed in Section 4—exactly how will be clear
momentarily—and we shall in this section apply our framework to characterise these notions.
There is no complete axiomatization of DSEL, and we saw in Section 4 that complete
axiomatization of concepts related to ‘knowing at most’ a rule is difficult, so we limit the
discussion here to defining the corresponding model classes with our language rather than
investigating completeness.

In order to avoid too many technical details, we do not present the formal syntax of DSEL
rules here. It suffices here to know that there exist a set RUL of rules (these are syntactic
objects that can be parts of formulae, rather than semantic objects), and an interpretation
function ½½1-- interpreting each set of rules R & RUL as a relation over finite sets of object
language formulae:

½½R-- & }finðOLÞ ' }finðOLÞ:

Intuitively, when ðX;YÞ 2 ½½R--, X and Y are a sets of formulae corresponding to the antecedent
and consequent, respectively, of some rule in R. An important difference between DSEL rules
and the type of rules we discussed in Section 4 is that the former describe complete epistemic
states—they say that the rule (or set of rules) R can take you from knowing exactly the
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formulae in a set X to knowing exactly the formulae in a set Y (ðX;YÞ 2 ½½R--), while the latter
describe what we called addition constraints.

The following are the DSEL variants of knowing at least/at most a (set of) rule(s) R
(the semantic framework of DSEL is different from ours, so the following are reasonable
re-interpretations of the DSEL concepts in our semantics). We say that an agent who
knows exactly formulae X knows at least rules R for reasoning (in the DSEL sense)
if he can access a world where he knows exactly C for each ðX;CÞ 2 ½½R--. Dually, he
knows at most R for reasoning if for every world he can access where he knows exactly C,
ðX;CÞ 2 ½½R--. Formally, let M ¼ ðW;R1; . . . ;Rn;VÞ be a model and R a set of rules. In a
state w 2W :

ATLEAST)R ðViðwÞ; s0Þ 2 ½½R--) 9ðw;w0Þ2RiViðw0Þ ¼ s0

Agent i knows at least the ruleðsÞ R
ATMOST)R ðViðwÞ; s0Þ 2 ½½R--( 9ðw;w0Þ2RiViðw0Þ ¼ s0

Agent i knows at most the ruleðsÞ R
EXACTLY )R ðViðwÞ; s0Þ 2 ½½R--, 9ðw;w0Þ2RiViðw0Þ ¼ s0

Agent i knows exactly the ruleðsÞR

In DSEL, these three semantic properties are expressible directly by expressions 4
;

iR, 5
;
iR

and D
;

iR, respectively, where 4
;

i;5
;
i;D

;

i are special operators that work on rules. The
question is whether such properties can be expressed indirectly in L5n , without an explicit
syntax for rules and operators that work on rules. It is easy to see that none of the three
properties given above are expressible by a single L5n formula. We instead give
characterizations by translating a set of rules to a set of L5n formulae.

DEFINITION 9
Translations f : }ðRULÞ! }ðL5n Þ and g : }ðRULÞ! }ðL5n Þ are defined as follows:

fðRÞ ¼ fDiX!^iDiY : ðX;YÞ 2 ½½R--g

gðRÞ ¼ fDiX!œi:DiY : ðX;YÞ 62 ½½R--g

THEOREM 24
Let M ¼ ðW;R1; . . . ;Rn;VÞ be a model and R a set of rules.

(1) M;w % fðRÞ, ATLEAST) R holds in w
(2) M;w % gðRÞ, ATMOST) R holds in w
(3) M;w % fðRÞ [ gðRÞ, EXACTLY) R holds in w

PROOF.

(1) )) Let M;w % fðRÞ and ðViðwÞ; s0Þ 2 ½½R--. M;w % DiViðwÞ, so M;w %^i Di s0, i.e. there
exists ðw;w0Þ 2 Ri such that M;w % Dis0 and thus s0 ¼ Viðw0Þ.
() Let ATLEAST-R hold in w, let ðX;YÞ 2 ½½R-- and let M;w % DiX. Since
ðViðwÞ;YÞ 2 ½½R--, there exists ðw;w0Þ 2 Ri such that Y ¼ Viðw0Þ. Thus, M;w %^iDiY.

(2) )) Let M;w % gðRÞ and ðw;w0Þ 2 Ri and s0 ¼ Viðw0Þ. M;w %^iDis0. Assume that
ðViðwÞ; s0Þ 62 ½½R--. M;w % DiViðwÞ, so M;w %œi:Di s0, which is a contradiction. Thus,
ðViðwÞ; s0Þ 2 ½½R--.
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() Let ATMOST-R hold in w, let ðX;YÞ 62 ½½R-- and let M;w % DiX. Since
ðViðwÞ;YÞ 62 ½½R--, by ATMOST-R 8ðw;w0Þ2RiY 62 Viðw0Þ. Thus, M;w %œi:DiY.

(3) Immediate. g

It follows that the models of fðRÞ (gðRÞ) are exactly the models where ATLEAST-R
(ATMOST-R) holds in every state.

5.3.1 Communication

In DSEL, reasoning is seen as a generalization of communication: reasoning is ‘communica-
tion to oneself’. Thus, rules can be used to reason about both concepts.

However, there is a difference in the intuitive interpretation of knowing a reasoning rule
and knowing a communication rule. In the former case, formalized earlier, the consequent
of the rule is assumed to describe the complete next epistemic state of the agent. In the latter,
the consequent should only be interpreted as a part of the next epistemic state of the agent.
Formally, we can describe the fact that i knows a set of rules R for communication to j in state
w of model M ¼ ðW;R1; . . . ;Rn;VÞ as follows:

ATLEAST)R0 ðViðwÞ; s0Þ 2 ½½R--) 9ðw;w0Þ2Ris
0 & Vjðw0Þ

Agent i knows at least the ruleðsÞ R for communication to j

ATMOST)R0 ðViðwÞ; s0Þ 2 ½½R--( 9ðw;w0Þ2Ris
0 & Vjðw0Þ

Agent i knows at most the ruleðsÞ R for communication to j

EXACTLY)R0 ðViðwÞ; s0Þ 2 ½½R--, 9ðw;w0Þ2Ris
0 & Vjðw0Þ

Agent i knows exactly the ruleðsÞ R for communication to j

A corresponding translation is:

DEFINITION 10
Translations f0 : }ðRULÞ! }ðL5n Þ and g0 : }ðRULÞ! }ðL5n Þ are defined as follows:

f0ðRÞ ¼ fDiX!^i4jY : ðX;YÞ 2 ½½R--g
g0ðRÞ ¼ fDiX!œi:4jY : ðX;YÞ 62 ½½R--g

THEOREM 25
Let M ¼ ðW;R1; . . . ;Rn;VÞ be a model and R a set of rules.

(1) M;w % f0ðRÞ, ATLEAST)R0 holds in w
(2) M;w % g0ðRÞ, ATMOST)R0 holds in w
(3) M;w % f0ðRÞ [ g0ðRÞ, EXACTLY)R0 holds in w

PROOF. Similar to the proof of Theorem 24. g

6 Related work

In the introduction we discussed some classes of logics which use the syntactic approach. In the
previous section, we established certain relationships between our framework and three other
logics describing the dynamics of syntactically ascribed knowledge. It was shown that we can
completely axiomatize an interesting timed reasoning logic [6] which was in turn inspired by

26 of 34 Dynamics of Syntactic Knowledge



step logics [13]. We also saw that our framework can also be seen as a generalization of DEL
[10]. When it comes to DSEL [1], in Section 5 we only applied our framework to express
knowledge of reasoning and communication rules. DSEL does, however, also have temporal
operators from ATL which cannot be expressed in our framework, so we cannot completely
describe DSEL. Aside from that, there are other interesting differences in the semantic
assumptions of DSEL as well. In particular, in DSEL it is assumed that the next state of the
system is a function of choices/actions made by all agents simultaneously, while we assume that
the next state is a function of a choice/action made by a single agent.

Another related strand of work which we did not analyse earlier is the work by Sierra et al.
[30] on architectures of multiunit knowledge bases. Their work has different motivations,
but quite similar outcome to our approach to epistemic logic.

Sierra et al. propose to use a version of dynamic logic, which they call Descriptive Dynamic
Logic (DDL), to describe a system of communicating ‘units’, each with a different initial
logical language and theory and its own internal inference rules; in addition there are ‘bridge
rules’ which allow units to exchange information.

In each state, units are assigned finite sets of formulae in their languages; we would call
those formulae beliefs, Sierra et al. call them theories of the units. A significant restriction
made in [30] is that not just the theories of units, but also the sets of all possible formulae in
the units’ languages are finite.

Internal actions of units in DDL correspond to ‘deduction steps’ in the internal logic of the
unit, that is, all possible instances of applications of inference rules (denoted as ½$ ‘kk !-,
where k is the name of the unit, $ [ f!g is a set of formulae in k’s language, and k has an
inference rule by which $ derives !). Inter-unit actions correspond to bridge rules, so that if
there is a bridge rule by which $ in the theory of k implies ! in the theory of l, then this
instance of its application corresponds to an operator ½$ ‘kl !-.

DDL is given a complete axiomatization parametrized by unit’s languages and inference
rules. This results relies on having the unit’s languages finite and cannot be used to axiomatize
the logics considered in this article, as far as we can see.

The work on logics of awareness [14, 15] and unawareness [19] can arguably also be
classified as a syntactic approach to belief, since a syntactic awareness filter is superimposed
on the agent’s beliefs which are defined using the possible worlds approach. However, the
main difference between our approach and the logics of awareness is that the latter abstract
from dynamics of beliefs and do not model the evolution of the awareness set as a result
of the agent’s inference or computation. The same applies to logics of algorithmic knowledge
[18, 16, 29], where the agent’s beliefs are modelled as closed under the agent’s ability to
compute consequences (which is elegantly modelled in [29] as a set of rewrite rules).

7 Conclusions

We combined the syntactic approach to epistemic logic with modal logics in order to model
transitions between states of knowledge. The two epistemic operators i and 5, were used to
express (finite) lower and upper bounds on knowledge, respectively. We were mostly
interested in models where agents are restricted to only knowing finitely many formulae at
each point in time. We studied axiomatization and complexity of the resulting logics.
In particular, and perhaps most interesting from a logical point of view, we demonstrated
techniques for dealing with the finiteness assumption and the 5 operator, separately and
combined.
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We have thus shown how a modal epistemic logic may be used to formalise rational, but
non-omniscient agents. This problem is a challenge to the standard epistemic modal logics,
where knowledge is closed under logical consequence. This makes these logics unsuitable for
specifying and verifying properties of non-omniscient agents, which may be able to reliably
apply a set of inference rules. We have investigated the formal properties of such logics, and
shown how to axiomatize several interesting classes of transition systems in them. One of the
classes provides a semantics for the logic introduced in [10]. We are optimistic that this type of
logics can be used to formulate properties of agents in standard verification tasks, and plan to
investigate their use in model-checking resource-bounded reasoners in further work.
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[5] T. Ågotnes and M. Walicki. Strongly complete axiomatizations of ‘‘knowing at most’’
in syntactic structures, In CLIMA VI, volume 3900 of Lecture Notes in Computer Science
(LNCS), F. Toni and P. Torroni, eds, pp. 57–76, London, UK, Springer, Berlin/
Heidelberg, June 2006.

[6] N. Alechina, B. Logan and M. Whitsey. A complete and decidable logic for resource-
bounded agents. In Proceedings of the 3rd International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2004). pp. 606–613, ACM Press, New York,
2004.

[7] R. Alur, T. A. Henzinger and O. Kupferman. Alternating-time temporal logic. In
Proceedings of the 38th Annual Symposium on Foundations of Computer Science,
pp. 100–109, Florida, Miami Beach, IEEE, New York, 20–22 October 1997.

28 of 34 Dynamics of Syntactic Knowledge



[8] P. Blackburn, M. deRijke and Y. Venema. Modal Logic, volume 53 of Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press, Cambridge, 2001.

[9] H. N. Duc. Logical omniscience vs. logical ignorance on a dilemma of epistemic logic.
In Progress in Artificial Intelligence, 7th Portuguese Conference on Artificial Intelligence,
EPIA ’95, Funchal, Madeira Island, Portugal, October 3-6, 1995, Proceedings, volume 990
of Lecture Notes in Computer Science, C. A. Pinto-Ferreira and N. J. Mamede, eds,
pp. 237–248, Springer, Berlin, 1995.

[10] H. N. Duc. Reasoning about rational, but not logically omniscient, agents. Journal of
Logic and Computation, 7, 633–648, 1997.

[11] R. A. Eberle. A logic of believing, knowing and inferring. Synthese, 26, 356–382, 1974.
[12] J. Elgot-Drapkin, S. Kraus, M. Miller, M. Nirkhe and D. Perlis Active logics: A unified

formal approach to episodic reasoning. Technical Report CS-TR-4072 and UMIACS-TR-
99-65, University of Maryland, 1999.

[13] J. J. Elgot-Drapkin and D. Perlis. Reasoning situated in time I: Basic concepts. Journal of
Experimental and Theoretical Artificial Intelligence, 2, 75–98, 1990.

[14] R. Fagin and J. Y. Halpern. Belief, awareness and limited reasoning. In Proceedings
of the Ninth International Joint Conference on Artificial Intelligence, pp. 491–501,
Los Angeles, CA, Morgan Kaufmann, Los Altos, California, 1985.

[15] R. Fagin and J. Y. Halpern. Belief, awareness and limited reasoning. Artificial
Intelligence, 34, 39–76, 1988. A preliminary version appeared in [14].

[16] R. Fagin, J. Y. Halpern, Y. Moses and M. Y. Vardi. Reasoning About Knowledge.
The MIT Press, Cambridge, MA, 1995.

[17] J. Y. Halpern and Y. Moses. Knowledge and common knowledge in a distributed
environment. Journal of the ACM, 37, 549–587, 1990.

[18] J. Y. Halpern, Y. Moses and M. Y. Vardi. Algorithmic knowledge. In Proceedings of the
5th Conference on Theoretical Aspects of Reasoning about Knowledge, Pacific Grove, CA,
USA, March 1994, R. Fagin, ed., pp. 255–266, Morgan Kaufmann, Los Altos,
California, 1994.
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[28] I. Németi. Fine-structure analysis of first-order logic. In Arrow logic and multi-modal
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Appendix

A Proof of Theorem 22

First, let us consider soundness. We want to prove that for every set of formulae $ and
formula !0, if $ ‘DES4n !0, then $ %gen;DEL !0, where $ %gen;DEL !0 denotes logical
consequence with respect to Mgen;DEL (M;w % $ implies that M;w % !0 for every
M 2 Mgen;DEL). The proof is by induction on the length of the derivation of !0 from $.
Clearly, the inference rules preserve validity. We need to show that every instance of an axiom
schema of DES4n is valid on the class Mgen;DEL. The axiom schemes PC1 – PC3 are valid
classical tautologies. It is well known that TL1 is valid in all Kripke models and that TL2 is
valid in all models with a transitive accessibility relation. DE1 is valid because of condition
D4: if some state w satisfies Ki! and Kið!!  Þ, then by D4, w has a successor which satisfies
Ki , so w satisfies hFiiKi . DE2 is valid because of the condition D3: if Ki! is true in w, then !
has to be true in w. DE3 is valid due to the Monotonicity condition D2. DE4–DE7 are valid
because of D5. Finally, DE8 is valid because of D6.

The proof of completeness proceeds in a standard way. Suppose $0 6‘DES4n !0; we show that
then there exists a model and a state where $0 is satisfied and !0 is not, so $0 6%gen;DEL !0.
In other words, we show how to construct a satisfying model for $0 [ f:!0g provided this set
is DES4n -consistent. For convenience, we will refer to this set as $. Any DES4n -consistent set
can be extended to a maximal consistent set in a standard way. Let Mc ¼ ðWc;Rc

1; . . . ;R
c
n;V

cÞ
be the canonical model for DES4n. Recall that Mc is a general model; we must show that
Mc 2 Mgen;DEL. It is straightforward to show that each Ri is transitive, because each state in
the model contains TL2. Now we have to show that conditions D2-D6 hold. Suppose for some
w, Ki! and Kið!!  Þ 2 VcðwÞ. This means, by the definition of Vc, that Ki!;Kið!!  Þ 2 w.
Since w is maximal, it also contains Ki! ^ Kið!!  Þ and Ki! ^ Kið!!  Þ! hFiiKi (DE1).
Since it is closed under inference, it also contains hFiiKi . By the truth lemma, hFiiKi is true
in w. Hence w has a successor v where Ki is true, which by the truth lemma implies
Ki 2 VcðvÞ. Analogously, we can show that D3-D6 hold. This completes the argument that
Mc 2 Mgen;DEL; since $ is consistent, it is contained in one of the states inMc, and by the truth
lemma, is satisfied there.
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B Proof of Theorem 23

The proof of soundness is identical to the proof in Theorem 22.
For completeness, assume that !0 is a DES4n-consistent formula. We will construct a model

satisfying !0, in several stages. First we will construct a general model Mc satisfying !0. Then
we will transform this model into a proper model with finite epistemic states. An overview of
the transformations starting with Mc and ending with a model M with finite epistemic states
satisfying !0 is as follows:

Mc )!
generated submodel

Mg )!
unravelling

M0 )!transitive closure
Mt )!restriction of valuations

M

Let Mc ¼ ðWc;Rc
1; . . . ;R

c
n;V

cÞ be as in the proof of Theorem 22 (the canonical model for
DES4n). We showed that Mc satisfies D1–D6, but it may have infinite epistemic states and
thus not be in the classMDEL. At least one of the states in Mc satisfies !0; let us call that state
w0. We will now unravel Mc around w0, and then take the transitive closure; and we will end
up with a transitive tree (general) model Mt. The unravelling around w0 is defined as follows,
cf. [8], pp. 220–221 for further discussion. Let Mg ¼ ðWg;Rg

1; . . . ;R
g
n;V

gÞ be the (general)
submodel of Mc generated by w0: it is the smallest submodel of Mc such that w0 2Wg and
u 2Wg whenever w 2Wg and Rc

i ðw; uÞ for some i. The unravelling of the general model Mg

around w0 2Wg is the general model M0 ¼ ðW0;R01; . . . ;R0n;V0Þ such that:

$ W0 is the set of all finite sequences ðw0;w1; . . . ;wnÞ, n 2 0, such that w1; . . . ;wn 2Wg and
Rg

i1
ðw0;w1Þ;Rg

i2
ðw1;w2Þ; . . . ;Rg

in
ðwn)1;wnÞ for some i1; . . . ; in.

$ R0iðw1; . . . ;wkÞðv1; . . . ; vlÞ iff ðw1; . . . ;wkÞ ¼ ðw1; . . . ; vl)1Þ and Rg
i ðvl)1; vlÞ

$ V0ððw0;w1; . . . ;wnÞÞ ¼ VgðwnÞ

The result of unravelling around w0 is an intransitive tree where w0 is the root. The transitive
unravelling Mt ¼ ðWt;Rt

1; . . . ;R
t
n;V

tÞ is obtained by taking the transitive closure of each of
the relations in the unravelling M0. Note the following properties of the transitive unravelling:

Rt
iððw0; . . . ;wkÞ; ðv0; . . . ; vlÞÞ) Rc

i ðwk; vlÞ ðA:1Þ
Rt

iðr1; r2Þ) r1is a prefix of r2 ðA:2Þ

We argue that (A.1) and (A.2) hold. Let r1 ¼ ðw0; . . . ;wkÞ and r2 ¼ ðv0; . . . ; vlÞ. If Rt
iðr1; r2Þ,

then there exist a path s0; . . . ; sj 2W0, j 2 0, of R0i steps between the two sequences; i.e., such
that R0iðr1; s0Þ, . . ., R0iðsj; r2Þ. In turn, this means that there exist u0; . . . ; uj 2Wg such that

s0 ¼ ðw0; . . . ;wk; u0Þ Rg
i ðwk; u0Þ

..

.

sj ¼ ðw0; . . . ;wk; u0; . . . ; ujÞ Rg
i ðuj)1; ujÞ

ðv0; . . . ; vlÞ ¼ ðw0; . . . ;wk; u0; . . . ; uj; vlÞ Rg
i ðuj; vlÞ

The previous equation shows that (A.2) holds (r1 is a proper prefix of r2 since R
0
i, and thus Rt

i ,
is irreflexive). Since Rc

i is transitive and includes Rg
i , it also follows that Rc

i ðwk; vlÞ and thus
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(A.1) holds. We now show that Mt and Mc are bisimilar. Let Z &Wt 'Wc be defined as
follows:

ðw0; . . . ;wnÞZwn

We show that Z is a bisimulation between Mt and Mc, by the three required conditions
(Definition 3):

(1) Vtðw0; . . . ;wkÞ ¼ V0ðw0; . . . ;wkÞ ¼ VgðwkÞ ¼ VcðwkÞ
(2) Immediate by (1).
(3) We must show that if ðw0; . . . ;wkÞ 2Wt and Rc

i ðwk; vÞ for some v 2Wc, then there exists a
sequence ðv0; . . . ; vlÞ 2Wt with vl ¼ v such that Rt

iððw0; . . . ;wkÞ; ðv0; . . . ; vlÞÞ. This holds
immediately by taking ðv0; . . . ; vlÞ ¼ ðw0; . . . ;wk; vÞ: wk 2Wg and thus v 2Wg and thus
Rg

i ðwk; vÞ, and Rt
iððw0; . . . ;wkÞðw0; . . . ;wk; vÞÞ.

Since Mc and Mt are bisimilar, for every state w reachable from w0, Mc;w % ! iff
Mt; ðs;wÞ % !, for every formula ! and sequence s 2Wt (we use (s, w) to denote the sequence
resulting from concatenating the element w to the sequence s). This includes the special case
when s is empty, w ¼ w0, and ! ¼ !0. Since for every state (s, w) in Mt there is a bisimilar state
w in Mc, we can also show that all of the conditions D1–D6 are satisfied in Mt. D1
(transitivity) holds immediately for Mt. D2 (monotonicity) holds because if Ki! 2 Vtððs;wÞÞ,
and ! 2 LþE , and Rt

iððs;wÞ; ðs0; vÞÞ, then Ki! 2 VcðwÞ (by construction of Vt), Rcðw; vÞ (by (1)),
and Ki! 2 VcðvÞ (because Mc satisfies D2). By the bisimulation between ðs0; vÞ and v,
Ki! 2 Vtððs0; vÞÞ. Similarly for D3: suppose Ki! 2 Vtððs;wÞÞ. Then Ki! 2 VcðwÞ. Then, since Mc

satisfies D3, Mc;w % !. By the bisimulation, Mt; ðs;wÞ % !. D4–D6 hold because for every
ðs;wÞ 2Wt, if ðs;wÞ satisfies a certain formula, then it has a bisimilar state w in Wc, which
satisfies the same formula and has a successor v which satisfies another required formula; by
the bisimulation, ðs;wÞ then also has a successor ðs;w; vÞ which satisfies the same formula.

So, the root w0 of M
t satisfies !0; conditions D1–D6 continue to hold. Now we are going to

transform Mt into a proper model, by intersecting the epistemic state in all states in Mt with a
finite set of formulae; we need to do this in such a way that !0 is still satisfied at the root and
conditions D1–D6 continue to hold. More precisely, the epistemic states at level k in the tree
model M0 (where w0 is at level 0, and its one step successors at level 1, etc.) are going to be
intersected with a finite set of formulae Lk , defined inductively as follows. Note that there are
infinitely many levels in the tree due to seriality imposed by DE4–DE7.

Let henceforth At(!) denote the set of primitive propositions and epistemic atoms which
occur outside the scope of any epistemic operators in a formula !. For example,
AtððhFiiKiKiðp ^ qÞÞ! pÞ ¼ fKiKiðp ^ qÞ; pg—this set does not contain Kiðp ^ qÞ nor q since
both the epistemic atom Kiðp ^ qÞ and the primitive proposition q only occur within the scope
of an epistemic operator. In the following definition, given a set of epistemic atoms X & !,
ClðXÞ denotes the closure of X under nested epistemic atoms: ClðXÞ is the least set such that
(i) X & ClðXÞ and (ii) if Ki! 2 ClðXÞ then Atð!Þ & ClðXÞ.

L0 ¼ ClðAtð!0ÞÞ
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Lk ¼ ClðInfðLk)1 [ fK1%1k)1; . . . ;Kn%nk)1gÞÞ, where, for each agent i, %i1; %
i
2; . . . is some

enumeration of the (countable) set Axi, and InfðXÞ, for some set of epistemic atoms X, is the
set containing X and formulae derived from X by a single application of the following rules:

Ki!;Kið!! Þ
Ki 

fKi!

KiKi!

Note that if X is finite, so is ClðInfðXÞÞ, and thus that Lk is finite for each k.
Consider the resulting model M ¼ ðW;R1; . . . ;Rn;VÞ: W ¼Wt, Ri ¼ Rt

i and

Vðw0; . . . ;wkÞ ¼ Vtðw0; . . . ;wkÞ \ Lk

We need to prove the following statements about M:

Truth M;w0 % !0

Finiteness Epistemic states in M are finite.

D1–D6 Conditions D1–D6 are satisfied.

Here is the proof for each of these statements.

Truth M and Mt are Atð!0Þ-bisimilar (take Z to be the identity relation on Wt).
Theorem 1 says that formulae only containing atoms from Atð!0Þ are is preserved
under Atð!0Þ-bisimilation. Since Mt;w0 and M;w0 agree on Atð!0Þ and Mt;w0 % !0,
it follows that M;w0 % !0.

Finiteness Atð!0Þ is finite, and each epistemic state is a subset of a finite set Lk.
D1 the accessibility relation in M is transitive, because it is transitive in Mt.
D2 Let Riðw; vÞ, ! 2 LþE , Ki! 2 VðwÞ. We need to show that Ki! 2 VðvÞ. We have that

Rt
iðw; vÞ, so by (A.2) the sequence w is a prefix of the sequence v; say w ¼ ðv0; . . . ; vkÞ

and v ¼ ðv0; . . . ; vlÞ with k + l. Ki! 2 VtðwÞ, and since Monotonicity holds in Mt,
Ki! 2 VtðvÞ. We also have that Ki! 2 Lk, and since Lk & Ll, Ki! 2 Ll. Thus,
Ki! 2 VðvÞ ¼ VtðvÞ \ Ll.

D3 Let Ki! 2 VðwÞ ¼ VtðwÞ \ Lk, where w ¼ w0; . . . ;wk. We must show that M;w % !. We
first point out that

Clðf!0gÞ & Lk ) ðM;w % !0 ,Mt;w % !0Þ

holds for all !0 by induction over the structure of !0. We have that Mt;w % Ki! and
thus Mt;w % ! by Knowledge for Mt. We also have that Ki! 2 Lk and thus that
Clðf!gÞ & Lk. It follows that M;w % !.

D4 Let Ki!;Kið!!  Þ 2 VðwÞ ¼ VtðwÞ \ Lk, where w ¼ ðw0; . . . ;wkÞ. By D4 for Mt, there
is a v ¼ ðv0; . . . ; vlÞ such that Rt

iðw; vÞ and Ki 2 VtðvÞ. By (2) l 2 k, and since
Ki!;Kið!!  Þ 2 Lk it follows that Ki 2 Ll by construction of Lkþ1. Thus,
Ki 2 VðvÞ ¼ VtðvÞ \ Ll. Since Rt

iðw; vÞ, Riðw; vÞ.
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D5 Let % 2 Axi and w ¼ ðw0; . . . ;wkÞ 2W. We must show that there is a
v ¼ ðv0; . . . ; vlÞ 2W such that Riðw; vÞ and Ki% 2 VðvÞ ¼ VtðvÞ \ Ll. % is one of the
elements in the enumeration of Axi in the definition of Lk, say % ¼ %ij . We first show that
for any u 2W:

u ¼ ðu0; . . . ; umÞ;m 2 j) 9u0 2W
Riðu; u0Þ
Ki% 2 Vðu0Þ

!
ðA:3Þ

By D5 for Mc, there is a umþ1 2Wc such that Rc
i ðum; umþ1Þ and Ki% 2 Vcðumþ1Þ. Let

u0 ¼ ðu0; . . . ; um; umþ1Þ. Rg
i ðum; umþ1Þ (um 2Wg), so R0iðu; u0Þ and thus Rt

iðu; u0Þ and
Riðu; u0Þ. Ki% 2 Vgðumþ1Þ, so Ki% 2 V0ðu0Þ ¼ Vtðu0Þ. Ki% ¼ Ki%ij 2 Lj, and, since m 2 j,
Lj & Lmþ1, we have that Ki%ij 2 Vtðu0Þ \ Lmþ1 ¼ Vðu0Þ and (A.3) holds. Now in
the case that k 2 j, we are done by (A.3). Let k < j. Rg

i is serial (D5 holds for Mg),
so there exist wkþ1; . . . ;wj 2Wg such that Rg

i ðwk;wkþ1Þ; . . . ;Rg
i ðwj)1;wjÞ. Thus,

R0iðw; ðw0; . . . ;wk;wkþ1ÞÞ; . . . ; R0iððw0; . . . ;wj)1Þ; ðw0; . . . ;wj)1wjÞÞ. By transitivity,
Rt

iðw; ðw0; . . . ;wjÞÞ. By (A.3) there is a u0 such that Riððw0; . . . ;wjÞ; u0Þ and
Ki% 2 Vðu0Þ, and by transitivity again we get that Riðw; u0Þ and we are done.

D6 Let w ¼ ðw0; . . . ;wkÞ 2W, ! 2 LþE and Ki! 2 VðwÞ ¼ VtðwÞ \ Lk. Ki! 2 VtðwÞ ¼ V0ðwÞ.
Since M0 satisfies D6, there is a v 2W0 such that R0iðw; vÞ and KiKi! 2 V0ðvÞ. It must be
the case that v ¼ ðw0; . . . ;wk;wkþ1Þ for some wkþ1 2W0. It follows that Rt

iðw; vÞ and
KiKi! 2 VtðvÞ. Again, it follows that Riðw; vÞ. By construction of Lkþ1, since Ki! 2 Lk,
we have that KiKi! 2 Lkþ1. Thus, KiKi! 2 VðvÞ ¼ VtðvÞ \ Lkþ1.
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