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THE DYNKIN-LAMPERTI ARC-SINE LAWS
FOR MEASURE PRESERVING TRANSFORMATIONS

MAXIMILIAN THALER

Abstract. Arc-sine laws in the sense of renewal theory are proved for return
time processes generated by transformations with infinite invariant measure
on sets satisfying a type of Darling-Kac condition, and an application to real
transformations with indifferent fixed points is discussed.

1. Introduction

The aim of the present paper is to contribute to the investigation of the prob-
abilistic laws inherent in dynamical systems with infinite invariant measure. We
deal in particular with the iterated maps on the unit interval with indifferent fixed
points studied in [13], [14] and [16]. The first impulse for the considerations in this
paper came from computer experiments with maps of this type ([15]).

The probabilistic laws considered are the arc-sine laws of renewal theory in the
sense of E.B. Dynkin and J. Lamperti ([6], [9]). The underlying processes are
determined by the successive visits to subsets of the state space under the iteration
of a transformation with an infinite invariant measure. The lack of independence is
compensated by J. Aaronson’s uniform set condition introduced in [3]. Choosing a
condition of this type has been suggested by J. Lamperti’s condition (U) in [9] and
the theorem in [16].

The paper is organized as follows. In section 2 we introduce the random variables
to be studied and the necessary prerequisites from ergodic theory and probability
theory. In section 3 we state and prove our version of the Dynkin-Lamperti theorem.
In section 4 we discuss the application of the theorem to the class of one-dimensional
maps referred to above.

2. Preliminaries

Let (M,R, µ) be a σ−finite measure space, and let T : M → M be a conservative,
ergodic, measure preserving transformation. Let D denote the set of probability
measures on R absolutely continuous with respect to µ. These measures represent
the admissible initial distributions for the processes associated with the iteration
of T . The symbol D will also be used for the set of the corresponding densities.
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We recall the notion of the wandering rate, which plays a key role in our context.
Let A ∈ R be a set of positive finite measure, and let

An =
n⋃

k=0

T−kA, n ≥ 0.

Then the (order of the) sequence {µ(An)} is called the wandering rate of A. From
the probabilistic point of view it is essential to note that

µ(An) =
∫

A

min{ϕ, n + 1} dµ (n ≥ 0),

where ϕ is the first return time to the set A (cf. [3], [14]).
The random variables to be studied in this paper arise in the following way.
Consider the process of successive vists to a fixed set A ∈ R of positive finite

measure under the iteration of T, where the iterated point is chosen according to
some distribution ν ∈ D. Inspecting the process at time n leads to the observation
of the variables

Zn(x) := max{ k ≤ n : T k(x) ∈ A} , x ∈ An ,

Yn(x) := min{ k > n : T k(x) ∈ A} , x ∈ M ,

Vn(x) := Yn(x)− Zn(x) , x ∈ An.

According to the terminology of renewal theory, n− Zn is the spent waiting time,
Yn − n the residual waiting time and Vn the total waiting time, if the process is
inspected at time n. For notational simplicity we suppress the dependence of the
variables on the set A. Since T is conservative and ergodic, for all ν ∈ D

lim
n→∞ ν(An) = 1, and ν({Yn < ∞}) = 1 for all n ≥ 1.

It is convenient to extend the definition of Zn and Vn to M by putting Zn = 0 on
M \ An. The way the extension is specified will not affect our statements, as is
immediate if the process starts in A with probability 1.

We shall be interested in the asymptotic distributional behaviour of the random
variables Zn, Yn, Vn. The type of convergence is made precise by the following no-
tation. If Xn : M → [0,∞] (n ≥ 1) is a sequence of measurable functions and ξ is
a random variable on [0,∞], we write

Xn
ν−→ ξ,

if the distribution of Xn with respect to ν (ν ∈ D) converges to the distribution
of ξ in the usual sense (see [1]).

The limiting distributions occurring in our context are the so called generalized
arc-sine distributions and their relatives. For 0 < α < 1 we denote by ζα a random
variable on [0, 1] with density

fζα(x) =
sin πα

π

1
x1−α(1− x)α

, 0 < x < 1 .

Hence ζα has the B(α, 1 − α) distribution, called the generalized arc-sine distribu-
tion. Continuous extension to the parameter interval [0, 1] yields ζ0 = 0 and ζ1 = 1.
We recall that the moments of ζα are given by

E(ζr
α) = (−1)r

(−α
r

)
(r ≥ 0 , α ∈ [0, 1]).

In particular, E(ζα) = α for all α ∈ [0, 1] .
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The reciprocal ζ−1
α has the density

fζ−1
α

(x) =
sin πα

π

1
x(x− 1)α

, x > 1 ,

if 0 < α < 1. The continuous extension is given by ζ−1
0 = ∞ and ζ−1

1 = 1.
(Throughout the paper we will follow the conventions 1

0 = ∞, 1
∞ = 0.)

Finally, for 0 < α < 1 let ηα denote a random variable on [0,∞) with density

fηα(x) =
sin πα

π

1− (max{1− x, 0})α

x1+α
, x > 0 ,

extended by η0 = ∞, η1 = 0. We note that P (ηα > 1) = τ(α) for all α ∈ [0, 1],
where

τ(α) =
sinπα

πα
, 0 < α ≤ 1, τ(0) = 1.

As mentioned in the introduction we adopt the concept of uniform sets from [3].
It is an appropriate type of Darling-Kac condition for our purpose (cf. also [5], [9],
[2]).

Let T̂ : L1(µ) → L1(µ) denote the operator dual to g 7→ g ◦ T, g ∈ L∞(µ) . A
set A ∈ R, 0 < µ(A) < ∞, is called uniform for f ∈ D, if there exists a sequence
{an} of positive real numbers such that

(
1
an

n−1∑
k=0

T̂ kf )|A −→ 1 in L∞(µ|A∩R) .

Integration shows that µ(A) an ∼
∑n−1

k=0 ν(T−kA) (n → ∞), where ν is the proba-
bility measure with density f . A is called a uniform set, if it is uniform for some
f ∈ D.

Using arguments as in the proof of Proposition 3.7.5 in [3] one can see that T
admits uniform sets if and only if it is pointwise dual ergodic. A slightly refined
reasoning shows that, if { 1

an

∑n−1
k=0 T̂ kf} converges to a positive finite limit function

g on a set of positive measure, then g is constant thereon. Hence it is no restriction
admitting only constant limits in the definition. Concerning the relationship to
condition (U) in [9] see the remark at the end of the next section, where we will
also review the arguments just referred to in terms of Laplace transforms.

For the background on Karamata’s theory of regular variation needed in the se-
quel we refer to [4] and [7]. In particular, we shall repeatedly make use of Lamperti’s
criterion for regular variation ([8]):

Let g : (0, β) → (0,∞) (β > 0) be differentiable and convex. Then g is regularly
varying for x → 0 with index ρ (ρ ∈ R) , if and only if

lim
x→0

xg′(x)
g(x)

= ρ.

The criterion extends to rapid variation, i.e. to the cases ρ = ±∞ .

3. The limit theorem

With the preparations in section 2 we can now state our main result.

Theorem 1. Let A ∈ R, 0 < µ(A) < ∞, be a uniform set, and let α be in [0, 1] .
Then the following assertions are equivalent.

(1) The wandering rate of A is regularly varying with index 1− α.

(2) 1
n Zn

ν−→ ζα for all ν ∈ D.
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(3) 1
n Yn

ν−→ ζ−1
α for all ν ∈ D.

(4) 1
n Vn

ν−→ ηα for all ν ∈ D.

(2), (3) and (4) may be replaced by the assertion that the respective sequence
converges in distribution to some random variable on [0,∞] with respect to some
ν ∈ D. If the limiting random variables are ζ, ξ, η respectively, the parameter α is
recovered by the relations E(ζ) = α, E(ξ−1) = α, and P (η > 1) = τ(α).

We note first that parts of the implications of Theorem 1 are immediate from
the following identities (see [6]).

For 1 ≤ k ≤ n ,

{Zn ≤ k} = {Yk > n} ,

and, more generally, for 1 ≤ k ≤ n ≤ m ,

{Zn ≤ k, Yn > m} = {Zm ≤ k} .

The first identity shows that the statements on {Yn} are equivalent to those on
{Zn}. The second identity shows that (2) implies (4). For, if (2) holds with 0 < α <
1, then due to the second identity the joint distribution of ( 1

n Zn, 1
n Yn) converges

to the distribution with density

− ∂

∂y
fζα(

x

y
)

1
y

, 0 < x < 1 < y,

and a standard computation then yields (4). The implication is obvious if α = 0 or
α = 1.

The first of the two lemmas to follow together with a proposition of J. Aaronson’s
will show that it suffices to consider one specific probability measure in D.

Lemma 1. Let A ∈ R be a set of positive finite measure, and let {Xn} be any of
the sequences {Zn}, {Yn}, {Vn}. Then

1
n

(Xn −Xn ◦ T ) ν−→ 0 for all ν ∈ D.

Proof. Let ϕ denote the time of the first visit to the set A after time 0. Let ε > 0
be given, and let

Kε,n := {ϕ ≤ n,
1
n
|Zn − Zn ◦ T | ≥ ε}.

Choose n so large that 1
n < ε. Since

|Zn(x)− Zn(Tx)| =
{

1, x ∈ {ϕ ≤ n} ∩ T−(n+1)Ac,
n− Zn(x), x ∈ T−(n+1)A,

we have

Kε,n =
⋃

nε≤k≤n−1

{Zn = n− k} ∩ T−(n+1)A

=
⋃

1+nε≤k≤n

T−(n−k+1)(A ∩ {ϕ = k}) .

Using the invariance of µ we obtain

µ(Kε,n) =
∑

1+nε≤k≤n

µ(A ∩ {ϕ = k}) ≤ µ(A ∩ {ϕ ≥ 1 + nε}) ,
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and therefore
lim

n→∞µ(Kε,n) = 0 .

This implies limn→∞ ν(Kε,n) = 0 for all ν ∈ D, and hence finishes the proof for the
sequence {Zn} , since limn→∞ ν({ϕ > n}) = 0 anyway.

To verify the assertion for {Yn} , note that

|Yn(x) − Yn(Tx)| =
{

1, x ∈ {Yn < ∞} ∩ T−(n+1)Ac,

ϕ(T n+1x)− 1, x ∈ T−(n+1)A,

and hence, if n > 1
ε ,

{Yn < ∞,
1
n
|Yn − Yn ◦ T | ≥ ε} = T−(n+1)(A ∩ {ϕ ≥ 1 + nε}) .

Again we complete the argument using the invariance of µ . The sequence {Vn}
inherits the asserted property from {Zn} and {Yn} .

As an immediate consequence of Lemma 1, if A ∈ R is a set of positive finite
measure and {Xn} is any of the sequences in question,

g(
1
n

Xn)− g(
1
n

Xn ◦ T ) ν−→ 0

for all g ∈ C([0,∞]) and all ν ∈ D. Since the convergence is dominated this is
equivalent to

g(
1
n

Xn)− g(
1
n

Xn ◦ T ) w∗−→ 0

in L∞(µ) for all g ∈ C([0,∞]). The reasoning in the proof of Proposition 0 in [1] ( cf.
also [18]) now shows that for every subsequence of N there exists a subsequence {nk}
and a probability measure τ on [0,∞] such that the sequence { 1

nk
Xnk

} converges

in distribution to τ with respect to every ν ∈ D. Thus 1
n Xn

ν−→ ξ for at least one
ν ∈ D implies 1

n Xn
ν−→ ξ for all ν ∈ D.

As in [9] we shall deduce assertion (2) in Theorem 1 from condition (1) by means
of the method of moments. Our procedure is based on a direct generalization of
the asymptotic renewal equation in [2] and [3] (see Lemma 2 below) and on the
observation that for each r ∈ N the sequence of r-th moments of {Zn} is increasing
by the very definition of the variables Zn.

Given a set A ∈ R of positive finite measure let

qn =
µ(A ∩ {ϕ > n})

µ(A)
, n ≥ 0,

and let the Laplace transforms Q(s), U(s), Hr(s) (s > 0, r ∈ N0) be defined by

Q(s) =
∞∑

n=0

qn e−ns ,

U(s) =
∞∑

n=0

ν(T−nA) e−ns ,

Hr(s) =
∞∑

n=0

(
∫

An

(n− Zn)r dν) e−ns .
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Lemma 2. If A ∈ R, 0 < µ(A) < ∞, is uniform for f ∈ D, and ν is the probability
measure with density f, then

Hr(s) ∼ (−1)rU(s)Q(r)(s) ∼ 1
s

(−1)rQ(r)(s)
Q(s)

(s → 0)

for all r ∈ N0 .

Proof. For r, n ≥ 0,∫
An

(n− Zn)r dν =
n∑

k=0

(n− k)r ν(An ∩ {Zn = k})

=
n∑

k=0

(n− k)r ν(T−k(A ∩ {ϕ > n− k}))

=
∫

A

n∑
k=0

T̂ kf (n− k)r1A∩{ϕ>n−k} dµ .

Hence,

Hr(s) =
∫

A

(
∞∑

n=0

T̂ nf e−ns)(
∞∑

n=0

nr 1A∩{ϕ>n} e−ns) dµ .

Since A is uniform for f , the identity

(
∞∑

n=0

T̂ nf e−ns)/U(s) = (
∞∑

n=1

(
n−1∑
k=0

T̂ kf)e−ns)/(
∞∑

n=1

(
n−1∑
k=0

ν(T−kA))e−ns)

yields

(
∞∑

n=0

(T̂ nf)|A e−ns)/U(s) s→0−→ 1/µ(A) in L∞(µ|A∩R) .

Therefore the first relation follows from the above representation of Hr(s).
Observing that limn→∞ ν(An) = 1 we obtain for r = 0

U(s)Q(s) ∼ 1
s

(s → 0) ,

which implies the second relation.

Now we complete the

Proof of Theorem 1. Suppose A is uniform for f , and let Q and Hr be defined with
respect to A , where ν denotes the probability measure with density f . First we
prove the implication (1) ⇒ (2). Since

µ(An) =
n∑

k=0

µ(A ∩ {ϕ > k}) = µ(A)
n∑

k=0

qk , n ≥ 1,

condition (1) together with Karamata’s Tauberian Theorem (cf. [4], [7]) yields

Q(s) ∼ (
1
s
)1−α L(

1
s
) (s → 0) ,

where L is slowly varying at infinity. By the Lamperti criterion resp. the Monotone
Density Theorem of the theory of regular variation we may differentiate treating L
as a constant. This gives

Q(r)(s) ∼ r!
(

α− 1
r

)
(
1
s
)r+1−α L(

1
s
) (s → 0) for all r ≥ 0 .
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With the notation
mβ,r := E(ζr

β)

we then obtain from Lemma 2

Hr(s) ∼ r! m1−α,r (
1
s
)r+1 (s → 0) ,

and hence by differentiation

H
(r−j)
j (s) ∼ (−1)r−jr! m1−α,j (

1
s
)r+1 (s → 0) for 0 ≤ j ≤ r, r ≥ 0 .

Now we pass to the transforms

Gr(s) =
∞∑

n=0

(
∫

M

Zr
n dν) e−ns (s > 0, r ≥ 1)

by means of the identities

Gr(s) = (−1)r
r∑

j=0

(
r

j

)
H

(r−j)
j (s) , and

mα,r =
r∑

j=0

(
r

j

)
(−1)jm1−α,j .

The first is easily verified using

Zr
n =

r∑
j=0

(
r

j

)
(−1)jnr−j(n− Zn)j ;

the second is a consequence of the fact that ζα and 1− ζ1−α have the same distri-
bution. From the asymptotics of the functions H

(r−j)
r we then obtain

Gr(s) ∼ r! mα,r (
1
s
)r+1 (s → 0),

and Karamata’s Tauberian Theorem yields∫
M

Zr
n dν ∼ mα,r nr (n →∞) ,

proving assertion (2). (We note that in the classical case one would work directly
with the transforms Gr, interchanging the roles of Q and U in Lemma 2.)

Assume conversely that 1
nZn

ν−→ ζ for some random variable ζ on [0, 1] with
E(ζ) = α . Then the first moments of { 1

nZn} converge to α, and we know from [9]
that this suffices to obtain condition (1). In fact,

lim
n→∞

1
n

∫
An

(n− Zn) dν = 1− α

together with Lemma 2 yields

lim
s→0

sQ′(s)
Q(s)

= −(1− α) ,

which means that Q(s) is regularly varying for s → 0 with index −(1− α).
It remains to prove that 1

nVn
ν−→ η for some random variable η on [0,∞] with

P (η > 1) = τ(α) implies (1).
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For x ≥ 1,

ν({ 1
n

Vn > x} ∩An) =
n∑

k=0

ν(T−k(A ∩ {ϕ > nx}))

=
∫

A

(
n∑

k=0

T̂ kf) 1A∩{ϕ>nx} dµ .

Since A is uniform for f ,∫
A

(
n∑

k=0

T̂ kf) 1A∩{ϕ>nx} dµ ∼ an µ(A ∩ {ϕ > nx}) (n →∞) ,

where {an} is the associated normalizing sequence. Hence

lim
n→∞ an µ(A ∩ {ϕ > nx}) = P (η > x)

if x is a continuity point of the limiting distribution.
First suppose P (η > 1) > 0. Then, using an argument as in the proof of Lemma

3 in VIII.8 of [7], we see that

lim
t→∞

µ(A ∩ {ϕ > xt})
µ(A ∩ {ϕ > t})

exists and is positive on an x-set of positive measure, and the Characterization
Theorem for regular variation shows that {µ(A ∩ {ϕ > n})} is regularly varying.
Therefore {µ(An)} is regularly varying. Denote the index by 1 − γ (γ ∈ [0, 1]).
Since we already know that this implies η = ηγ , we conclude that τ(γ) = τ(α) , i.e.
γ = α .

If P (η > 1) = 0,

lim
n→∞ an µ(A ∩ {ϕ > nx}) = 0 for all x > 1 .

From the estimate
n∑

k=0

ν(Ak) ≤
∫

A

(
n∑

k=0

T̂ kf) (
n∑

k=0

1A∩{ϕ>k}) dµ ,

contained in the proof of Lemma 2, it follows that

lim inf
n→∞

anµ(An)
n

≥ 1 .

Therefore, choosing x = 2 in the above relation we obtain

lim
n→∞

nµ(A ∩ {ϕ > 2n})
µ(An)

= 0 ,

and hence, taking into account the monotonicity of the sequences involved,

lim
n→∞

nµ(A ∩ {ϕ > n})
µ(An)

= 0 .

By the standard criterion for regular variation of sequences, {µ(An)} is slowly
varying, in accordance with P (η > 1) = τ(1). This completes the proof of Theorem
1.
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Remark. If A ∈ R, 0 < µ(A) < ∞, is uniform for f , then

(
∞∑

n=0

(T̂ nf)|A e−ns)/U(s) s→0−→ 1/µ(A) in L∞(µ|A∩R) ,(∗)

as stated in the proof of Lemma 2. This relation is equivalent to condition (U) in
[9], if we translate it into our context as follows.

A pair (A, f) with A ∈ R, 0 < µ(A) < ∞, and f ∈ D satisfies condition (U) if
there exists a probability measure κ on A ∩R and a function r(E, s) such that

∞∑
n=0

ν(T−nE) e−ns = κ(E) (U(s) + r(E, s)) (E ∈ A ∩R, s > 0)

and sup
E∈A∩R

|r(E, s)|
U(s)

s→0−→ 0 ,

where ν denotes the probability measure with density f and U(s) is defined as
before. We may assume r(E, s) = 0 if κ(E) = 0.

It is immediate that (∗) implies (U) with κ(E) = µ(E)/µ(A), E ∈ A ∩ R. We
show conversely that this is the only possible choice for κ, proving the asserted
equivalence.

Assume that condition (U) holds. Since ν(T−nE) = 0 for all n ≥ 0, if and only
if µ(E) = 0, κ and µ are equivalent on A ∩R. Let g = dκ/dµ. Then,

sup
E∈A∩R

|r(E, s)|
U(s)

= sup
E∈A∩R
κ(E)>0

1
κ(E)

|
∫

E

((
∞∑

n=0

T̂ nf e−ns)/(gU(s))− 1) dκ |

= ||(
∞∑

n=0

T̂ nf e−ns)/(gU(s))− 1 ||L∞(µ|A∩R ) (s > 0) ,

hence

(
∞∑

n=0

(T̂ nf)|A e−ns)/(gU(s)) s→0−→ 1 in L∞(µ|A∩R) .

To see that g is constant we use arguments as in the proof of Proposition 3.7.5 in
[3]. Let a, b ≥ 0 and 0 < s0 < 1 be given so that the set

B := { a U(s) ≤
∞∑

n=0

T̂ nf e−ns ≤ b U(s) for 0 < s < s0 }

has positive measure. Let ϕB denote the time of the first visit to B after time 0,
and let Bn =

⋃n
k=0 T−kB, n ≥ 0. By means of the decomposition

Bn =
n⋃

k=0

T−(n−k)Dk (n ≥ 0), whereDk = B ∩ {ϕB > k} (k ≥ 0),

we obtain the following analogue to the basic formula in the proof of the proposition
mentioned above:

∞∑
n=0

T̂ nf e−ns =
∞∑

n=0

T̂ n(1Dn

∞∑
k=0

T̂ kf e−ks) e−ns +
∞∑

n=0

T̂ n(f.1M\Bn
) e−ns
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(s > 0) . The operator T̂ being positive the formula yields

a

∞∑
n=0

T̂ n1Dn e−ns ≤ (
∞∑

n=0

T̂ nf e−ns)/U(s)

≤ b

∞∑
n=0

T̂ n1Dn + (
∞∑

n=0

T̂ n(f.1M\Bn
))/U(s)

(a.e.) on M for 0 < s < s0. Furthermore, integration over the sets B and Bc ∩
{ϕB = m} (m ≥ 1) shows that

∞∑
n=0

T̂ n(f.1M\Bn
) < ∞ a.e. on M .

Therefore, taking into account that
∑∞

n=0 T̂ n1Dn = 1 a.e. and lims→0 U(s) = ∞,
we get

a ≤ lim inf
s→0

(
∞∑

n=0

T̂ nf e−ns)/U(s) ≤ lim sup
s→0

(
∞∑

n=0

T̂ nf e−ns)/U(s) ≤ b

a.e. on M . This argument shows that

lim
s→0

(
∞∑

n=0

T̂ nf e−ns)/U(s) = c a.e. on M

for some positive constant c. Hence g = 1/µ(A) on A, and (∗) holds.

4. Application to maps with indifferent fixed points

To illustrate the conditions in Theorem 1 we consider the class of piecewise mono-
tone transformations T : [0, 1] → [0, 1] with indifferent fixed points studied in [13],
[14] and [16]. Examples of this type appear in different fields. In statistical physics
they serve as models to study basic features of the phenomenon of intermittency in
the sense of [10].

Let {B(k) : k ∈ I} be a family of pairwise disjoint subintervals of [0,1] with
λ(

⋃
k∈I B(k)) = 1 (λ denoting the Lebesgue measure on the Borel σ−field on

[0, 1] ), and let T : [0, 1] → [0, 1] satisfy the following conditions.

1. For all k ∈ I, T|B(k)
is twice differentiable and TB(k) = [0, 1].

For a non-empty finite set J ⊆ I the interval B(j), j ∈ J, contains a fixed
point xj with T ′(xj) = 1.

2. |T ′| ≥ ρ(ε) > 1 on
⋃

k∈I B(k) \⋃
j∈J (xj − ε, xj + ε) for each ε > 0.

3. For j ∈ J, T ′ is decreasing on (xj − η, xj) ∩B(j) and increasing on (xj , xj +
η) ∩B(j) for some η > 0.

4. T ′′/(T ′)2 is bounded on
⋃

k∈I B(k).
As proved in [13] and [14], T fulfills the basic conditions of section 2 with respect to
the (unique) invariant measure µ equivalent to λ. The density dµ/dλ has a version
h of the form

h(x) = h0(x)
∏
j∈J

x− xj

x− fj(x)
, x ∈ [0, 1] \ {xj : j ∈ J},

where fj denotes the C1−extension of (T|B(j)
)−1 to [0, 1] , and h0 is continuous and

positive on [0, 1].
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Let E(T ) denote the class of Borel subsets of [0, 1] with positive measure which
are bounded away from the indifferent fixed points. The sets in E(T ) are natural
candidates for which Theorem 1 may be expected to hold. Since

T̂f =
1
h

P (fh) ( f ∈ L1(µ) ),

where P is the Perron-Frobenius operator of T with respect to λ, the theorem in
[16] implies that A is uniform for f for all A ∈ E(T ) and all f ∈ D for which fh is
Riemann-integrable on [0, 1]. Hence all sets in E(T ) have the required Darling-Kac
property. Furthermore, by Theorem 3 in [14],

µ(An) ∼ µ(Bn) (n →∞) for all sets A, B ∈ E(T ).

In order to guarantee regular variation of these sequences we add the following
condition.

5. For j ∈ J, Tx− x varies regularly (rapidly) for x → x+
j with index 1 + p+

j (if
xj < 1 ), and x−Tx varies regularly (rapidly) for x → x−j with index 1 + p−j
(if xj > 0 ).

Due to condition 4 the extended real numbers p+
j , p−j belong to [1,∞]. We recall

that rapid variation formally means regular variation with infinite index.
Condition 5 clearly holds with p+

j = p−j = pj , if the local behaviour of T at
xj , j ∈ J, is of the form

T (x) = x± aj |x− xj |1+pj + o(|x − xj |1+pj ) (x → xj)

with aj > 0, 1 ≤ pj < ∞.
Now we can state the desired result.

Theorem 2. Let T : [0, 1] → [0, 1] satisfy the conditions 1− 5 , and let

p := max{ p+
j , p−j : j ∈ J}.

Then the Dynkin-Lamperti arc-sine laws hold with α = 1
p for all sets A in E(T ).

The missing link for the proof of Theorem 2 is provided by the following lemma
which complements Lemma 2 in [14] (see also [12]). Following the notation in [4]
we write f ∈ Rρ(a+), if f is regularly (rapidly) varying for x → a+ with index ρ
and {an} ∈ Rρ, if {an} is a regularly varying sequence with index ρ .

Lemma 3. Let f : [0, η] −→ R (η > 0) be differentiable and concave satisfying
0 < f(x) < x, 0 < x ≤ η. Let an = fn(a0) (n ≥ 0) for some a0 ∈ (0, η], and let
r(x) = x− f(x). Then the following assertions hold.

(a) For all ρ ∈ [0, 1] ,

{ n∑
k=0

ak

} ∈ Rρ , if and only if lim
x→0

(x
∫ η

x

dy

r(y)
)/(

∫ η

x

y

r(y)
dy) = ρ .

(b) If r ∈ R1+p(0+) with 1 ≤ p ≤ ∞, then
{∑n

k=0 ak

} ∈ R1− 1
p
.

If 1 < p < ∞, the converse also holds.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



4604 MAXIMILIAN THALER

Proof. (a) From the theory of regularly varying sequences we know that{ n∑
k=0

ak

} ∈ Rρ , if and only if lim
n→∞(n an)/(

n∑
k=0

ak) = ρ.

Let

b(x) :=
∫ η

x

dy

r(y)
, c(x) :=

∫ η

x

y

r(y)
dy ( 0 ≤ x ≤ η ).

Assume first c(0) = ∞ . Then necessarily f ′(0) = 1, and hence by Lemma 2 in [14],

b(an) ∼ n (n →∞) , and

c(an) ∼
n∑

k=0

ak (n →∞) .

Therefore,

lim
n→∞(n an)/(

n∑
k=0

ak) = ρ , if and only if lim
n→∞ anb(an)/c(an) = ρ.

Since b(an) ∼ b(an+1) (n →∞) and b(x), c(x) are monotone it is readily seen that
the right hand side can be replaced by the corresponding continuous limit.

If c(0) < ∞,
∑∞

k=0 ak converges. This is obviously true if f ′(0) < 1, and is part of
the lemma referred to above if f ′(0) = 1 . Since c(0) < ∞ implies limx→0 x

∫ η

x
dy

r(y) =
0, both sides in (a) hold with ρ = 0 .

(b) Assume r ∈ R1+p(0+), p ∈ [1,∞]. Noting that r is convex we can apply
Lamperti’s criterion to get

lim
x→0

xr′(x)
r(x)

= 1 + p .

Let b(x), c(x) be as above. Integration by parts yields the identity

c(x) = xb(x) +
∫ η

x

b(y) dy .

If c(0) = ∞, we apply l’Hospital’s rule twice to obtain

lim
x→0

(
∫ η

x

b(y) dy)
/
c(x) = lim

x→0
b(x)

/
(

x

r(x)
)

= lim
x→0

1
/
(
xr′(x)
r(x)

− 1 ) =
1
p

.

By part (a),
{∑n

k=0 ak

} ∈ R1− 1
p
. Again this follow obviously if c(0) < ∞.

Suppose now
{ ∑n

k=0 ak} ∈ R1− 1
p

with 1 < p < ∞. Using the above identity
and part (a) we obtain

lim
x→0

(xb(x))
/
(
∫ η

x

b(y) dy) = p− 1 .

Hence
b(x) = x−pL(x) with L ∈ R0(0+) by Lamperti’s criterion.

Since b′(x) = − 1
r(x) is also increasing the criterion yields

1
r(x)

∼ px−1−pL(x) (x → 0),

completing the proof of the lemma.
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Proof of Theorem 2. Let A be in E(T ). We have to show that {µ(An)} ∈ R1− 1
p
.

By Lemma 5 in [14],

µ(An) ∼
∑
j∈J

cj(
n∑

k=0

(fk
j (1)− xj)) +

n∑
k=0

(xj − fk
j (0))

with positive constants cj .

Let j ∈ J be fixed, and xj < 1. Since Tx− x ∈ R1+p+
j
(x+

j ) and T ′ is monotone
in a right neighbourhood of xj ,

lim
x→x+

j

(x− xj)(T ′(x) − 1)
Tx− x

= 1 + p+
j .

Taking into account that T ′(xj) = 1 this implies

lim
x→x+

j

(x− xj)(1 − f ′j(x))
x− fj(x)

= 1 + p+
j ,

i.e. x− fj(x) ∈ R1+p+
j
(x+

j ). Applying part (b) of Lemma 3 to the function f(x) =

fj(xj + x)− xj we see that the sequence
{ ∑n

k=0(f
k
j (1)− xj)

}
is regularly varying

with index 1 − 1
p+

j

. The same reasoning applies to the left hand side of xj ( if

xj > 0 ). Therefore {µ(An)} ∈ R1− 1
p
, where p is the maximum of all numbers

p+
j , p−j , j ∈ J.

Remarks. (i) Concerning the necessity of condition 5, we refer to the special case
where x0 = 0 is the only indifferent fixed point of T . According to the second
statement in part (b) of Lemma 3, in this case the condition

{µ(An)} ∈ R1−α (A ∈ E(T )) with 0 < α < 1

implies condition 5. (Of course, in the general case no inference is possible on fixed
points which do not contribute essentially to the wandering rate.)

(ii) Seeing condition 5 in connection with the asymptotic behaviour of areas
determined by the graph of the invariant density results in a stronger geometric
interpretation of both the index α and the wandering rate.

Let T be of the special form referred to in (i). Let F (z) denote the area under
the graph of the truncated invariant density min{h, z}, i.e. F (z) =

∫ z

0 λ(h > y) dy,
z > 0. Let further ρ(z) be the ratio

ρ(z) =
z λ(h > z)

F (z)
,

and let A be in E(T ) and 0 < α < 1. Then we have the following observations.
1. The wandering rate {µ(An)} is regularly varying with index 1−α, if and only

if limz→∞ ρ(z) = 1− α.
2. If the condition is satisfied,

µ(An) ∼ c.F (n) (n →∞)

for some constant c > 0.

Recall that
h(x) = h0(x).g(x) with g(x) =

x

x− f0(x)
,
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where h0 is continuous and positive on [0,1]. Hence the assertions are not affected,
if we replace h by the function g.

To prove them, let F (z) and ρ(z) be defined with respect to g, and let r(x) =
x− f0(x) in accordance with our previous notation. Since g is decreasing,

F (g(x)) = xg(x) +
∫ 1

x

g(y) dy, 0 < x ≤ 1,

and hence

lim
z→∞ ρ(z) = 1− α , if and only if lim

x→∞(xg(x))
/
(
∫ 1

x

g(y) dy) =
1
α
− 1.

By Lamperti’s criterion, the right hand side implies g ∈ R− 1
α
(0+) resp. r ∈

R1+ 1
α
(0+).

Suppose conversely that r ∈ R1+p(0+), i.e. limx→∞
xr′(x)
r(x) = 1 + p, where 1 <

p < ∞ . Using l’Hospital’s rule we obtain

lim
x→0

(xg(x))
/
(
∫ 1

x

g(y) dy) = p− 1.

This completes the proof af the first assertion and shows that

F (g(x)) ∼ p

∫ 1

x

g(y) dy (x → 0).

For A ∈ E(T ),

µ(An) ∼ µ([an, 1]) ∼ h0(0)
∫ 1

an

g(y) dy

∼ (h0(0)/p)F (g(an)), where an = fn
0 (1), n ≥ 0.

On the other hand,

g(x) ∼ p

∫ 1

x

dy

r(y)
(x → 0),

as is also seen most readily by means of l’Hospital’s rule, and therefore

g(an) ∼ p

∫ 1

an

dy

r(y)
∼ p n (n →∞).

Since F (z) is regularly varying with index 1− 1
p for z →∞,

F (g(an)) ∼ p1− 1
p F (n) (n →∞),

completing also the proof of the second assertion.
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