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ABSTRACT
In this paper we present a novel graph-based data abstrac-
tion for modeling the browsing behavior of web users. The
objective is to identify users who discover interesting pages
before others. We call these users early adopters. By track-
ing the browsing activity of early adopters we can identify
new interesting pages early, and recommend these pages to
similar users. We focus on news and blog pages, which are
more dynamic in nature and more appropriate for recom-
mendation.

Our proposed model is called early-adopter graph. In this
graph, nodes represent users and a directed arc between
users u and v expresses the fact that u and v visit simi-
lar pages and, in particular, that user u tends to visit those
pages before user v. The weight of the edge is the degree to
which the temporal rule “u visits a page before v” holds.

Based on the early-adopter graph, we build a recommen-
dation system for news and blog pages, which outperforms
other out-of-the-shelf recommendation systems based on col-
laborative filtering.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: [Information
filtering]; H.2.8 [H.2.8 Database applications]: [Data
Mining]

General Terms
Algorithms, Experimentation.
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user-browsing analysis, log mining, early-adopter graph,
web-page recommendation.
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1. INTRODUCTION
The digital revolution witnessed during the last decade

has resulted in an explosion of available online content. An
increasing number of people is now using the Internet on a
daily basis to search for specific information, but also to stay
informed by reading the news, or consuming user-generated
content such as blogs.

Web-search engines are popular tools that allow people to
search for information on the Internet. However, web search
is effective only when the users have a clear idea of what
they are looking. On the other hand, in many cases people
have no specific information need, yet they are interested
in discovering interesting and relevant content. Such are
cases when people surf the Web to read news, funny stories,
interesting blog posts, or check what their friends are posting
in social-media platforms. Helping the users to find relevant
content when they do not have a concrete information need
is a problem of information filtering.

Recommender systems aim at producing relevant sugges-
tions to the users of a system, and thus, they are essen-
tial tools in addressing the problem of information filtering.
However, recommender systems offer effective mechanisms
in static and relatively noise-free environments. For exam-
ple, typical applications of recommender systems consist of
recommending movies based on user-rating data, or recom-
mending books based on purchase data, where a purchase
is a clear indication of interest. On the other hand, de-
signing recommender systems for web content, poses signif-
icant challenges due to high dynamicity: new pages appear
continuously and old pages become obsolete very fast. Fur-
thermore, a recommendation system based on user-browsing
data should be able to deal with very high levels of noise,
since visiting a web page is not as clear indication of interest
as, say, renting a dvd to watch a movie or buying a book.

In this paper, we introduce a novel approach for making
personalized web page recommendations, in particular rec-
ommending news articles and blog posts. Our idea is simple
and intuitive: given a user-browsing log, we identify users
who tend to discover interesting pages before others. We
call these users early adopters, a term we borrow from social
sciences, economics and marketing research, in which early
adopters are people who embrace new technologies before
others, buy new products soon after their release, and play
an important role in influencing others to adopt innovations.

In contrast to previous approaches, we do not just identify
clusters of similar users. Instead, we use the input log to
build a directed and weighted graph among users. An edge
between two users, u and v, expresses the fact that u and v
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Figure 1: The workflow of our web-page recommen-
dation framework.

visit similar pages and also that user u tends to visit those
pages before user v. Thus, our model encodes the latent
temporal patterns underlying user visits to web pages. As
with technological innovations we assume that some users
are better and faster in discovering interesting pages and
other users “follow” them. By tracking the browsing activity
of early adopters we can discover new interesting pages early
on, and recommend these pages to users who “follow” the
early adopters.

Our model is inspired by information networks, like twit-
ter, in which users form a social network by following other
users. In such a network, users influence each other, and
information propagates by posts and re-posts of short mes-
sages. Much of social-network analysis research has been
devoted to discovering influential users and quantifying the
degree to which users influence each other [4, 5, 7, 10, 11,
13, 16, 17, 19]. Early adopters in our model correspond pre-
cisely to influential users in an information network, and link
strength expresses the degree to which users are influenced
by other users, as in social influence studies. The main dif-
ference is that the early-adopter graph is implicit, that is,
users are unaware of the behavior of other users. However,
as our results demonstrate, there is sufficient evidence that
users exhibit common behavior and follow patterns of in-
fluence, which can be potentially explained by exogenous
influences (events in the real world) and latent similarities
among user interests.

Contributions. Our contributions can be summarized as
follows: (i) we introduce the novel concept of early-adopter
graph, a model we build based on user-browsing logs; (ii) we
show how to use this model for recommending news articles
and blog posts to users; (iii) we evaluate the recommenda-
tions provided by our system on a real dataset and we prove
that they outperform state-of-the-art recommender systems.

2. MODEL OVERVIEW
In this section we provide an overview of the model. The

outline of the overall workflow is given in Figure 1.
The input to our framework is a dataset D that records

the browsing activity of a set of web users. Abstractly, we
represent the dataset D as a set of triples (u, p, t), indicat-
ing that a user u visited the web page p at time t. For a
user who visited the same page more than once, we keep in
consideration only the first visit.

We create a dataset D by collecting browsing data from

the Yahoo! toolbar. A toolbar is an application installed on
top of a web browser that provides certain search function-
alities, such as quick-links and other utilities.

The model we propose in this paper is an attributed,
weighted, and directed graph G(U,A,Θ, σ, w), which we call
the early-adopter graph, and which can be built from the
dataset D. The early-adopter graph is specified as follows:

• Each node in the early-adopter graph corresponds to
a user u ∈ U . An arc (u, v) ∈ A in the graph de-
notes the fact that there exists a page p ∈ P such that
(u, p, tu), (v, p, tv) ∈ D and tu < tv;

• We assume that we are given a set of topics T = [1, K],
and Θ is a user-topic matrix that associates a topic

distribution �θu to each user u ∈ U . So, θuz = Pr[Z =
z | u] denotes the interest of user u in the topic z ∈ T

and
∑K

z=1 θuz = 1 for each user u ∈ U ;

• The function σ : U → R is a score that represents the
extent to which user u is an early adopter;

• Finally, the arc-weighting function w : A → R repre-
sents the “strength” of the arc (u, v) ∈ A, or in other
terms, the likelihood that a page visited by u will be
then visited by v.

The idea underlying our approach is that whenever an
early adopter u visits a page p for the first time, the informa-
tion can be propagated along the edges of the early-adopter
graph, and the page p can be recommended to other users
v ∈ U . Ranking the page recommendations for each user
will depend on various factors, such as the early-adopter
score σ(u) of the node u, the “influence” score w(u, v) of the
early adopter u to the user v, the topic of the page, and the
interests of the users. We will combine all these factors by
a ranking score s(u, p) for each user u and a page p.

The problem we consider can be seen as a special case of
the typical problem in recommender systems, however, there
are a number of peculiarities. First, we do not have ratings
but only visits to pages, which can be very noisy indications
of interest. Second, we are dealing with a cold-start problem:
we want to recommend new and interesting pages as soon
as possible, even if we do not have sufficient information for
those pages. And third, the pages we want to recommend
are not given as input to the problem, as in the standard
setting of recommender systems, but need to be discovered.
We do this kind of discovery by exploiting the capability of
early adopters to find interesting web pages before others.

3. THE EARLY-ADOPTER GRAPH
In this section we provide details on how to build the

early-adopter graph and how to learn its parameters.

3.1 Dataset and graph construction
As we already explained, we start with a user-browsing log

D, consisting of triples (u, p, t), where (i) u is the anonymous
id of the user, (ii) p is the url of visited page, and (iii) t is the
timestamp of the visit of u at p. We collect such a dataset
by sampling data from the toolbar log of Yahoo!. We restrict
our analysis to five months of data, from January 2011 to
May 2011, and we consider only urls of news pages and blog
sites. To identify which urls correspond to news or blog sites
we use a white list of known such sites. We also restrict our
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dataset to urls whose popularity (the number of distinct
users that visited the page) is greater than 50.

For a pair of users u and v we define the frequency
freq(u, v) of the directed pair (u, v) to be the number of dis-
tinct pages p ∈ P for which we observe in the data that the
user u visited p before user v. In other words, freq(u, v) =
|Pu;v| = |{p ∈ P | (u, p, tu), (v, p, tv) ∈ D and tu < tv}|.

In order to focus our analysis only to relevant arcs and
reduce noise effects, we adopt a minimum support thresh-
old θ ≥ 1. This means that we consider only arcs (u, v) such
that freq(u, v) ≥ θ. In our experiments we use θ = 50, which
gives a pruned graph with 5 202 nodes and 335 091 arcs.

The average degree of 64.41 reflects that the graph is fairly
dense. We also observed that users live on a “small world”,
as demonstrated by the average shortest-path length of 2.57.
The number of communities that maximizes modularity is
54. Moreover, the graph has strong community structure at
microscopic level and weak community structure at macro-
scopic level, as demonstrated by the very high clustering
coefficient of 0.57 and the relatively low maximum value of
modularity of 0.18, respectively.

3.2 Early-adopter score
For a page p ∈ P we use Up ⊆ U to denote the set of

users who visited p. Similarly, for a user u ∈ U we denote
with Pu ⊆ P the set of web pages visited by u. Given a
page pj ∈ P we can then organize the visits that pj received
by all users in a chronologically sorted access list A(pj) :
〈(u1, t1j), (u2, t2j), . . . , (un, tnj)〉, where tij is the timestamp
of the first visit of user i to the page j. Naturally, early
adopters tend to appear at the beginning of such a list.

In this paper we experiment with two different definitions
of early-adopter score. Both definitions produce a score
σ(u) ∈ [0, 1] for all users u ∈ U . The more a user exhibits
an early-adopter behavior, the higher is the score σ(u). The
score σ(u) is computed as an average over all pages visited
by u; more precisely, we define:

σ(u) = 1−
∑

p∈Pu
r(u, p)

|Pu| ,

where r(u, p) is a measure of how early the user u appears
in the access list A(p). We adopt two definitions for r(u, p),
the first one considers only the relative position of the user u
in the list A(p), while the second one considers the relative
time distance.

Relative position: we define the relative-position score to

be pr(u, p) =
|pred(u,p)|+1

|A(p)| , where pred(u, p) is the number of

users who precede u in the list A(p), and |A(p)| is the length
of the list.

Relative time distance: we define the relative-time dis-
tance to be tr(u, p) =

t(u,p)−t0(p)
t∗(p)−t0(p)

, where t(u, p) denotes the

time that the user u visited page p, while t0(p) and t∗(p)
denote the time of the first and last visit to p, respectively.

Example 1 Consider three pages, as shown in Figure 2,
the early-adopter scores for user u3, according to the two
definitions provided above, are as follows:

Relative position: σ(u3) = 1− 1
3
( 3
6
+ 1 + 1

4
) = 0.42.

Relative time distance: σ(u3) = 1− 1
3
( 2
5
+ 1 + 0) = 0.54.

The distributions of the relative-position and relative-
time-distance scores for our dataset are shown in Figure 3(a).

Figure 2: Building the early-adopter graph.

(a) Distribution of σ(u) (b) Distribution of w(u, v)

Figure 3: The distributions of the early-adopter
scores (left), and edge weights (right).

3.3 Arc strength
The strength of (u, v), expressed by a weight w(u, v) ∈

[0, 1], represents the likelihood that a page visited by user u
will be visited by user v.

Providing an estimate for the weight w(u, v) resembles
the problem of learning influence probabilities in social net-
works [11], which are used in applications such as influence
maximization [13]. As we discussed in the introduction, the
main difference between these social-networking studies and
our early-adopter model is that in our application the graph
is not explicit, instead it is reconstructed from user-browsing
actions. Another difference is that we do not assume any un-
derlying propagation model. Nevertheless, the problems are
fairly similar, and thus, it is meaningful to try to estimate
the strength of the arcs by using methods developed in the
literature on social influence.

In this paper, we follow the work of Goyal et al. [11] and
we adopt two basic ways of estimating the strength of an
arc (u, v):

Bernoulli: w(u, v) =
|Pu;v|
|Pu| .

Jaccard: w(u, v) =
|Pu;v|

|Pu∪Pv| .

The Bernoulli measure interprets each visit of u to a page
as a hypothetical attempt of u to influence v in visiting the
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same page. The Jaccard measure considers also the pages
visited by v and not by u: thus, it captures whether v follows
mostly the actions of u and not many more.

One drawback of the two above definitions is that they
consider only the ordering of the visits to the pages but not
the time distance between such visits.

Based on the above consideration, to account for the time
difference between page visits, we substitute the numerator
|Pu;v| of the definitions Bernoulli and Jaccard by a time-
dependent term Δt

u;v, defined as follows:

Δt
u;v =

∑
p∈Pu;v

(
1− t(v, p)− t(u, p)

t∗(p)− t0(p)

)
.

We then obtain two time-dependent versions for arc weights,
in particular:

Bernoulli (time): w(u, v) =
Δt

u;v

|Pu| .

Jaccard (time): w(u, v) =
Δt

u;v

|Pu∪Pv| .

The distributions of edge weights for our dataset are shown
in Figure 3(b).

4. TOPIC MODELING
We now discuss how to extend our model by incorporating

information regarding the topics of interest of the users.
First, we assume that each page belongs to one and only

one topic. Then, we model each user u by a topic distri-

bution �θu, where the z-th coordinate θuz = Pr[Z = z | u]
denotes the interest of user u in the topic z ∈ T , and it is
computed using the empirical frequency that a user visits
pages of a certain topic.

For the classification, we consider 15 topics from the
odp directory, such as entertainment, finance, politics,
sports, etc. Given a topic z ∈ T we construct the vocabulary
V (z), which is a set of terms that it is typically associated
with the topic. The vocabulary is composed of terms ex-
tracted from odp categories and most discriminative words
appearing in the web pages of the dataset.

Given a page p ∈ P we create its bag-of-word represen-
tation B(p), which is made out of terms appearing in the
url, title, and content of the page. We normalize the terms
by removing stop words, removing special characters, and
converting to lower case.

In order to find the topic z for which the vocabulary V (z)
matches best with the bag representation B(p), we apply
a tf.idf-based measure. In particular, given a term t ∈
V (z) we compute the tf.idf(t, p) weight of the term t in the
page p. The classifier assigns the page p to the topic z(p) ∈ T

such that z(p) = argmaxz∈T

{∑
t∈V (z) tf.idf(t, p)

}
. If the

maximum score is zero, p is assigned to the notClassified.
Using the approach described above we are able to assign a

topic distribution to almost all the users in our dataset. We
note that we have used this simple classification algorithm
as a proof-of-concept demonstration, and using a better clas-
sifier has the potential to improve our results.

5. WEB-PAGE RECOMMENDATION
Our recommendation approach leverages the information

found in the early-adopter influence graph G. Given an arc
(u, v) ∈ A we consider suggesting to user v pages that have

been visited by user u. To improve the relevance of our
recommendations, we rank recommendations by consider-
ing the early-adopter score σ(u) of the user u from whom
the recommendation originates, as well as the edge weight
w(u, v) that reflects the strength of the connection between
u and v. Additionally, we use page topics to boost scores of
pages whose topics match the interests of the user v. Over-
all, the recommendation score s(v, p | u) of a page p recom-
mended to v, given that the recommendation has originated
by the early adopter u is:

s(v, p | u) = 1− [(1− σ(u))(1− w(u, v))(1− θvz∗)] ,

where z∗ is the topic of the recommended page p, and θvz∗
is the preference of user v for that topic.

When a page is suggested to v by different early adopters,
the final score s(v, p) of p recommended to v is the sum of
all the scores. Hence,

s(v, p) =
∑

u∈N−(v,p)

s(v, p | u) (1)

where N−(v, p) is the set of early adopters who have an arc
to v and have visited the page p. The recommendation al-
gorithm computes all these scores and then creates a ranked
list of pages to recommend. Our empirical evaluation, de-
scribed in the next section shows that our recommendation
algorithm predicts user clicks with very good precision.

5.1 Empirical evaluation
We evaluate our recommendation algorithm on the

dataset described in Section 3. We split our dataset, at
the level of pages, in two portions: training and test sets.
Referring to our notation in Section 3.2, we form the access
lists A(p) for all pages p and then we split the set of those
lists at a ratio of 80-20 for the training vs. test sets. We also
ensure that the two sets have a similar distribution in terms
of the popularity of the pages.

The training subset is used to build the early-adopter
graph G, learn the early-adopter scores σ(u), the arc weights

w(u, v), and the topic distributions �θu. Given a user v and
the set of early-adopters N−(v), the algorithm recommends
pages visited by u ∈ N−(v) to v. These pages are ranked
by the score defined in Equation (1). The recommendation
algorithm is evaluated by using precision-at-k (p@k) for
k = 1, 5, 10, 15, which gives an indication of the percentage
of recommended pages that are actually visited by v.

We compare our recommendation algorithm against col-
laborative-filtering approaches. We assume that a click on
a page corresponds to a rating equal to 1 while a non-click
corresponds to a rating equal to 0, and we compute user
similarity with Tanimoto and Log-Likelihood coefficients.

For brevity we present the results achieved with the
Bernoulli definition of the edge weights.1 As we can see in
Figure 4, our approach outperforms significantly algorithms
based on collaborative filtering. In particular, the improve-
ment is of 10% for p@1 and of 20% for p@15.

We note that this is a difficult recommendation task, and
a certain level of noise is present. Nevertheless, our method-
ology is completely automated, and we think that it is ap-
propriate for comparing different algorithms.

1The results obtained with the other edge-weight definitions
are qualitatively the same.
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Figure 4: Precision results: early-adopter graph
(EAG) vs. collaborative-filtering (CF).

6. RELATED WORK
Web-usage mining. Web logs represent a valuable source
of information to study user behavior and to improve user
web experience. Bilenko et al. [6] and White et al. [18] ana-
lyze web-activity logs to identify web sites frequently visited
by users after a query. These“popular”destinations are then
used to suggest authoritative websites for queries.
Recommender systems. Recommender systems allow to
learn user preferences and make recommendations, based
on user past behavior. They are used extensively for rec-
ommending products (e.g., books, movies, music, etc.) and
helping people finding web content (e.g., news, photos, etc.).

Das et al. [9] propose a scalable content-agnostic approach
based on collaborative filtering to recommend news. Resnick
et al. [14] present a distributed system for gathering reader
ratings of news.
Social influence and information propagation. Our
work is also related to the large body of research on social
influence and information propagation. The main computa-
tional problems in this area are: (i) distinguishing genuine
social influence from “homophily” and other factors of cor-
relation [3, 4, 8, 10]; (ii) measuring the strength of social
influence over each social link [11, 16, 17, 19]; (iii) dis-
covering a set of influential users [2, 13]. Besides, many
researchers have focused on analyzing data (e.g., twitter

data) to better understand the phenomenon of viral propa-
gation of information in social networks and micro-blogging
platforms [1, 5, 7, 12, 15].

7. CONCLUSIONS
In this paper we introduce a novel approach for recom-

mending web pages. We exploit user-browsing behavior data
to construct an implicit network of influence. We then iden-
tify users who discover interesting pages and we call them
early adopters. The general idea of our framework is to mon-
itor the activity of early adopters, and recommend pages
discovered by them to users who “follow” the early adopters.

The early-adopter graph is a general model and its appli-
cation to other domains deserves further investigation. As
future work we also plan to investigate applying different
influence models to learn edge weights, as well as applying
a more sophisticated topic classifier.
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