
ORI GIN AL PA PER

The early effects of afforestation on biodiversity
of grasslands in Ireland

Erika Buscardo Æ George F. Smith Æ Daniel L. Kelly Æ Helena Freitas Æ
Susan Iremonger Æ Fraser J. G. Mitchell Æ Saoirse O’Donoghue Æ
Anne-Marie McKee

Received: 30 October 2006 / Accepted: 23 October 2007 / Published online: 8 February 2008
� Springer Science+Business Media B.V. 2008

Abstract The target rate of afforestation in Ireland over the next 30 years is 20,000 ha

per year, which would result in an increase of the forest cover from the current 10% to

17%. In order to promote sustainable forest management practices, it is essential to know

the composition and conservation value of habitats where afforestation is planned and the

effects of subsequent planting upon biodiversity. The objectives of this study were to

investigate changes in vegetation composition and diversity of grasslands 5 years after

afforestation with Sitka spruce (Picea sitchensis) and determine the primary ecological and

management factors responsible for these changes. Species cover, environmental and

management data were collected from 16 afforested and unplanted improved and wet

grassland site pairs in Ireland. Our results indicate that 5 years after tree planting, there

were significant changes in richness, composition, and abundance of species. Competitive

and vigorous grasses were more abundant in planted than in unplanted sites, as were

generalist species found in both open and wooded habitats, while small-stature shade-

sensitive species were less abundant. Vascular plant species richness and Shannon’s

diversity index were higher in unplanted wet grassland, than in the planted sites. Bryophyte

species richness was higher in planted improved grassland than in unplanted sites. The

differences were primarily the result of the exclusion of grazing, ground preparation,

changes in nutrient management and drainage for afforestation. Drainage ditches provided

a temporary habitat for less competitive species, but the overall effect of drainage was to

reduce the diversity of species dependent on wet conditions. Variance partitioning showed

differences in the relative influences of environmental and management variables on

biodiversity in the two habitats, probably due to the greater pre-afforestation grazing

pressure and fertilisation levels in improved grasslands. The differences in biodiversity
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between planted and unplanted grasslands indicate that afforestation represents a threat to

semi-natural habitats where distinctive and highly localised plant communities could

potentially occur.

Keywords Afforestation � Biodiversity � Grassland � Ordination � Plantation �
Variation partitioning

Abbreviations
CCA Canonical correspondence analysis

Dbh Diameter at breast height (1.3 m)

TVE Total variation explained

IG Improved grassland

WG Wet grassland

TI Total inertia

Introduction

In most European countries, large areas of land are being converted from agriculture to

forestry (Elemans 2004; Wulf 2004). In Ireland, afforestation of agricultural land is pro-

gressing at one of the highest rates in Europe (MCPFE 2003). The government objective is

to increase the country’s forest cover from its current level of approximately 10% to 17%

by 2030 to create a forest industry of sufficient scale to meet economic and social targets

(Department of Agriculture Food and Forestry 1996; Forest Service 2000). This proposed

large-scale and rapid expansion of forestry will alter the landscape radically in many parts

of the country, with significant implications for biodiversity.

The net effects of afforestation will depend on the biodiversity of the new forest and on

that of the habitat it replaces. Afforestation of improved grasslands may be of net benefit to

biodiversity, particularly in intensively managed landscapes. However, it is likely that

afforestation is mostly being carried out on the less agriculturally productive land (Heritage

Council 1999). The most ecologically interesting grasslands are semi-natural communities

that are long established and usually species-rich (Byrne et al. 1997). Recent survey work

in eastern Ireland shows that semi-natural grasslands exist as isolated fragments within an

intensively farmed landscape (Byrne et al. 1997). Most semi-natural grasslands lack formal

nature conservation designations that preclude afforestation; therefore, sites of high bio-

diversity value could potentially be planted. Changes in grassland management, including

afforestation, may induce corresponding changes in the structure of the vegetation or plant

species composition (Alard et al. 1994). The conservation of semi-natural grasslands will

depend therefore on the awareness at the planning stage of the effects the proposed forest

will have on them and the surrounding area.

Most research on the effects of afforestation on understorey plant communities focuses

on the mature stages of plantation development and emphasises the role of forest structure,

particularly canopy cover (Hill and Jones 1978; Hill 1979; Sykes et al. 1989; Wallace et al.

1992; Wallace and Good 1995; Fahy and Gormally 1998; Ferris et al. 2000; French 2005).

In contrast, early changes in composition and structure of vegetation following affores-

tation have received comparatively little attention. The vegetation of planted areas is

influenced by the cessation of agricultural practices, such as grazing, burning, liming and

fertiliser application, and by forest establishment operations, notably land drainage,
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ploughing or other ground preparation, and tree planting (Wallace et al. 1992). For

example, cessation of grazing often results in the loss of several species from plant

communities in the face of competition from a restricted range of aggressive grasses such

as Molinia caerulea and Festuca rubra (Welch and Rawes 1964; Ball 1974). Other veg-

etation changes may be due to some of the changes in soil properties reported from

pastures converted to plantations (Parfitt et al. 1997; Alfredsson et al. 1998; Jobbàgy and

Jackson 2003, 2004; Farley and Kelly 2004). After plantation, grassland communities are

progressively replaced by species characteristic of shady environments, notably bryo-

phytes, and species of disturbed soils, especially rushes and grasses (Hill and Jones 1978;

Hill 1979; Wallace et al. 1992; Ferris et al. 2000; French 2005). Afforestation of upland

vegetation replaces specialised associations which are present at both extremes of the

fertility gradient with less distinctive communities in which generalist species prepon-

derate (Wallace et al. 1992), and it is likely that afforestation has a similar impact on

lowland grasslands. However, the extent to which changes in forest structure or changes in

land management at the early stages of afforestation are responsible remains unclear.

Better understanding of the relative importance of different factors influencing understorey

plant diversity will inform decisions on whether to plant particular habitats or sites. It will

also improve biodiversity management in existing forests and inform efforts to restore

open habitats in former plantation forests.

Given recent increases in the rate of afforestation, the paucity of previous studies and

the potential for significant biodiversity loss, there is a need for research to determine the

effects of land use change from grassland to coniferous plantation forest. The objective of

this study was to investigate the effects of afforestation on the composition and structure of

species assemblages and the relationships of the changes observed with ecological and

management factors. The patterns of variation in biodiversity and soil properties were

assessed in 16 recently afforested sites and 16 non-afforested equivalent habitats in two

vegetation types, improved grasslands and unimproved wet grasslands.

Materials and methods

Study sites

Sixteen pairs of sites were selected in two habitat types that are commonly used for

afforestation: eight improved agricultural grasslands and eight unimproved wet grasslands

(Fig. 1). The first is characterised by intense management, subjected to fertilisation

(ground rock phosphate, artificial N and N-P-K fertiliser) and heavily grazed or used for

silage making, while the second is used for generally less intensive livestock grazing and is

subjected to a lower fertilisation rate than improved grasslands. The site locations were

selected to encompass the geographic and environmental range occupied by these grass-

land types in Ireland. The grasslands were defined according to a broad classification

scheme developed by the Heritage Council (Fossitt 2000). Improved grasslands were

typically dominated by Lolium perenne and Trifolium repens. Wet grasslands included

oligotrophic sites characterised by Molinia caerulea, Juncus acutiflorus and Agrostis
canina and more base-rich sites characterised by such species as Carex hirta, Iris
pseudacorus and Filipendula ulmaria. Each pair of sites consisted of one pre-afforestation

site and one post-afforestation site, which were geographically (usually adjacent) and

environmentally matched. The planted sites were comprised of 5 year old forest of Sitka

spruce (Picea sitchensis), the most commonly planted species in Ireland (Forest Service
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2004), often mixed with a smaller amount of Japanese larch (Larix kaempferi). The

improved grasslands were mostly on brown earth soils, with two site pairs on brown

podzolics. Wet grasslands were located on gley soils with mull humus.

Data sampling procedure

Fieldwork was conducted during the summers of 2002 and 2004. In each site three plots

(10 m 9 10 m) were surveyed. All plots were orientated with the corners at the four

cardinal points of the compass. Within each 10 m 9 10 m plot, two smaller subplots

measuring 2 m9 2 m were placed at opposite corners perpendicular to the slope. In

afforested sites, plots were placed so that the 4 m2 plots did not include any drainage

ditches. Within each 100 m2 plot the presence of all vascular plant species was recorded as

well as the presence of bryophytes forming patches more than 50 cm2. Species that

dominated the vegetation were noted, but no other abundance data were collected. The

average height and percent cover of vegetation in each of several layers/growth-form

Fig. 1 Map of Ireland showing the geographical location of the 16 site pairs. s indicates improved
grasslands, m indicates unimproved wet grasslands
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categories were recorded: saplings, shrubs (as defined by growth form), field layer

(herbaceous vegetation, including ferns) and ground layer (mosses and liverworts). Also

recorded were the percent cover of bare soil or rock, percent cover of litter and percent

cover of standing water. For every 4 m2 subplot a list of vascular plant and bryophyte

species was made and their percentage cover estimated to the nearest 5%. Below 5% two

additional cover-abundance categories were distinguished: (a) 3% and (b) 0.5%. For all

bryophytes only species forming patches more than 5 cm2 were recorded. For each

2 m 9 2 m subplot, we recorded height and percentage cover of each of the four vege-

tation layers listed above and height and diameter at breast height (dbh—1.3 m) of each

sapling occupying 5% or more of the plot (dbh was not recorded for trees \ 2 m tall).

The nomenclature of vascular plants, mosses and liverworts follows Stace (1997), Smith

(2004) and Paton (1999) respectively.

For each 10 m 9 10 m plot the following environmental and management data were

recorded: latitude, longitude, slope, aspect (degrees), elevation, soil drainage (3-point

scale: poorly-, moderately- or well-drained), grazing intensity (4-point scale: from 0, no

sign of mammal grazing to 3, heavy grazing), recreational use (3-point scale: 0, no sign of

human impact; 1, sign of low-impact human presence; 2, high impact human recreational

use), presence or absence of drainage ditches and other aspects of site management. Aspect

was transformed to a linear scale such that southwest aspect was assigned a value of 1,

northeast aspect was assigned a value of 0 and northwest and southeast aspects had a value

of 0.5:

If 0� x� 225! x0 ¼ x� 45j j
180

; if 226� x� 360! x0 ¼ 405� x

180

where x = aspect and x0 = transformed aspect.

Soil samples were collected from each 10 m9 10 m plot to a depth of 10 cm. Each

sample was comprised of nine evenly spaced subsamples. Soil pH was determined on field-

moist samples using a glass electrode on a 2:1 distilled water:soil suspension. Soil samples

were air-dried and analysed for: total N by Indophenol Blue method (Berthelot 1859) with

colorimetric detection at 630 nm, total orthophosphate P by the Molybdenum Blue method

(Murphy and Riley 1962) with colorimetric detection at 880 nm, and total Ca, Mg and K

by Atomic Absorption Spectroscopy using a Varian SpectrAA 400. Organic matter content

was determined by loss on ignition. Soil element percentages were converted to mg/L after

calculation of bulk density following the method of Jeffrey (1970). Adjacent to one of the

100 m2 plots in each site, a 30 cm deep soil pit was dug, the soil profile was sketched and

the soil type determined according to the Irish classification (Gardiner and Radford 1980).

Data analyses

The floristic data were analysed using Canonical Correspondence Analysis (CCA)

(ter Braak 1986) on 4 m2 subplots (82 and 126 species for improved grasslands and

unimproved wet grasslands, respectively) employing mean abundance data (obtained by

averaging abundances of the two 4 m2 subplots located in each 100 m2 plot). Separate

CCAs were conducted for the two grassland types. All the planted tree species were

eliminated from the vegetation records prior to analysis. Multivariate analyses were per-

formed using CANOCO version 4.5 (ter Braak and Smilauer 2002). Forward selection was

used to select significant explanatory variables. Only those significant at the p \ 0.05 level
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were included. Significant variables were divided into two groups: environmental variables

and management variables. To quantify the contribution of each class of variables in

explaining species composition, variation partitioning was performed using partial CCA

(Borcard et al. 1992; Økland and Eilertsen 1994). Partial ordination is an important tool for

studying residual variation after ‘factoring out’ one or more variables (Legendre and

Legendre 1998; ter Braak and Smilauer 2002). This method not only allows statistical

testing, but also provides a quantification of the variation explained by the different sets of

variables (Økland and Eilertsen 1994). Three CCAs (the first constrained by all significant

environmental and management variables, the second constrained by environmental

variables only and the third constrained by management variables only) and two partial

CCAs (the first constrained by environmental variables with management variables as

covariables and the second constrained by management variables with environmental

variables as covariables) were performed on each habitat data set (4 m2 subplots). Sig-

nificances of the CCAs were tested using a Monte Carlo permutation test (with 499

permutations for both explanatory variables and final results) against the null hypothesis of

no difference between planted and unplanted sites. Default options were employed,

including the reduced model in permutation tests.

The following diversity indices were calculated for each 4 m2 subplot: vascular plant

species richness, bryophyte species richness, Shannon diversity index (H0) (Pielou 1975)

and the evenness index (J0), an index which describes the dominance structure of species

(Smith and Wilson 1996). The mean of the two subplots was the experimental unit. Species

richness was also calculated for each 100 m2 plot. Species frequency in unplanted and

planted sites (using presence/absence in 100 m2 plots) was compared using the McNemar

test (Sokal and Rohlf 1995) followed by the Hochberg procedure for controlling experi-

mentwise error rates for multiple independent tests (Hochberg 1988). To test the

differences in species richness, Shannon diversity index and evenness between unplanted

and planted sites, paired t-tests were used. Soil data in planted and unplanted sites were

compared using paired t-tests and non-parametric Wilcoxon’s paired signed-ranks tests.

Statistical testing was carried out using SPSS version 12.0 (SPSS 2003).

Results

Species frequency

The major aspect of the change in species frequency after afforestation of improved

grassland was the increase in competitive grasses such as Arrhenatherum elatius and

Festuca rubra and the drastic decrease of species of neutral pasture, including small-stature

grassland herbs such as Bellis perenne, Cerastium fontanum, Ranunculus repens, Tarax-
acum officinale agg., Trifolium repens and grasses such as Lolium perenne (Table 1).

Rubus fruticosus was completely absent from the unplanted grasslands (but abundant in the

surrounding hedges) and occurred in 13 of the planted plots.

Plantations on wet grassland had higher frequencies of species of wet, disturbed con-

ditions, such as Carex viridula and Riccardia chamedryfolia than unplanted wet grasslands

(Table 2). Tall, highly competitive species like Deschampsia cespitosa and Rubus fruti-
cosus agg. were more frequent in planted than unplanted sites, while low-growing herbs

like Ranunculus flammula, R. repens and Trifolium repens were more frequent in unplanted

plots.
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In both the habitat groups there were no significant differences in mean vascular plant

species richness in 100 m2 plots between planted and unplanted sites according to paired

t-tests. Vascular plant species richness was significantly higher in unplanted 4 m2 subplots

of unimproved wet grassland (Table 3). Bryophyte species richness in 100 m2 plots was

significantly higher in planted improved grassland than in unplanted sites. Evenness was

somewhat higher in improved grassland planted subplots (p = 0.07), and Shannon’s

diversity index was significantly lower in wet grassland planted plots.

No species in the Irish Red Data Book for vascular plants (Curtis and McGough 1988)

or bryophytes listed as rare by Holyoak (2003) were found in the habitat or plot surveys.

Table 1 Significant changes in species frequency (%) between unplanted and afforested site pairs in
improved grassland 10 m 9 10 m plots

Species UP P p-value

Arrhenatherum elatius 0 41.67 ***

Festuca rubra 33.33 83.33 *

Potentilla anglica 0 33.33 *

Rubus fruticosus 0 54.17 *

Bellis perennis 58.33 12.5 *

Cardamine spp. 50 0 **

Cerastium fontanum 79.17 16.67 ***

Lolium perenne 100 20.83 ***

Ranunculus acris 41.67 0 *

Ranunculus repens 91.67 33.33 **

Rumex obtusifolius 50 8.33 *

Taraxacum officinale agg. 87.5 37.5 *

Trifolium repens 83.33 16.67 ***

N = 24, UP unplanted, P planted

p-values are the results of the McNemar test (*p \ 0.05, **p \ 0.01, ***p \ 0.001), adjusted to control for
the experimentwise error rate

Table 2 Significant changes in species frequency (%) between unplanted and afforested site pairs in
unimproved wet grassland 10 m 9 10 m plots

Species UP P p-value

Carex viridula 8.33 54.17 *

Deschampsia cespitosa 16.67 70.83 **

Kindbergia praelonga 8.33 50 *

Riccardia chamedryfolia 0 29.17 *

Rubus fruticosus 4.17 58.33 **

Ranunculus flammula 41.67 12.5 *

Ranunculus repens 91.66 54.17 *

Senecio jacobaea 33.33 0 *

Trifolium repens 66.67 29.17 *

N = 24, UP unplanted, P planted

P-values are the results of the McNemar test (*p \ 0.05, **p \ 0.01), adjusted to control for the experi-
mentwise error rate
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However, some unplanted wet grassland communities were of high conservation value.

Four sites contained communities referable to the EU Habitats Directive Annex I habitat

‘Molinia meadows on calcareous, peaty or clayey-silt-laden soils (6410)’ (European

Commission 1999).

Ordination and variance partitioning

Twelve explanatory variables in the improved grassland subplots and eleven in the

unimproved wet grassland subplots significantly explained variation in species abundances

(Table 4). The most important variables accounting for variation in improved grasslands

were sapling height, elevation, shrub cover and drainage ditches. The largest fractions of

variation explained by single variables in unimproved wet grasslands were observed for

northing, shrub cover, ground layer cover, elevation, easting and sapling height.

The differences in improved grassland plant community composition between planted

and unplanted sites were driven by a management gradient along the first axis (Fig. 2).

Axis 1 explained 13% of the total variability in the species data. It was positively corre-

lated with sapling height, field layer height and litter cover, and negatively correlated with

grazing. Axis 2 explained 7.6% of the variability and was most closely associated with

elevation. There was a contrast between species typical of grassland characterised by

intensive management (e.g. Lolium perenne, Taraxacum officinale agg., Bellis perenne,

Trifolium spp., Cynosurus cristatus and Cerastium fontanum) on the left hand side of the

ordination diagram in correspondence with the unplanted plots, and competitive grasses

(e.g. Agrostis stolonifera, Arrhenatherum elatius, Deschampsia cespitosa and Elytrigia
repens) and species that characterise abandoned pastures and field margins (e.g. Rubus
fruticosus agg., Urtica dioica) on the right hand side of the ordination diagram, in asso-

ciation with the planted plots. Bryophyte species such as Fissidens bryoides, Thuidium
tamariscinum and Lophocolea bidentata were also found in planted sites, related to

management variables and to variables indirectly related to afforestation and grazing

cessation (i.e. field height and shrub cover).

Table 3 Mean values ± SEM of vascular plant species richness (VSR), bryophyte species richness (BSR),
Shannon’s diversity index (H0) and evenness index (J0) in 100 m2 plots and 4 m2 subplots in unplanted and
planted sites in improved (IG) and wet grasslands (WG)

Improved grasslands Unimproved wet grasslands

UP P p-value UP P p-value

100 m2

VSR 17.1 ± 2.0 14.5 ± 1.8 0.298 28.9 ± 1.7 25.8 ± 2.3 0.320

BSR 0.2 ± 0.1 0.96 ± 0.2 0.020 2.4 ± 0.6 4.1 ± 0.8 0.167

4 m2

VSR 10.1 ± 1.4 8.0 ± 0.9 0.261 17.7 ± 1.5 10.9 ± 0.9 0.006

BSR 0.5 ± 0.2 0.4 ± 0.2 0.336 2.4 ± 0.6 1.6 ± 0.4 0.485

H0 1.45 ± 0.17 1.44 ± 0.14 0.962 2.37 ± 0.08 2.02 ± 0.12 0.023

J0 0.57 ± 0.42 0.67 ± 0.3 0.070 0.74 ± 0.01 0.73 ± 0.24 0.415

UP unplanted, P planted

N = 8 site pairs in each group. p-values indicate the results of paired t-tests between site pairs, significant
differences among planted and unplanted sites are indicated in bold type
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Planted and unplanted wet grassland plots from the same site pairs were separated along

a management gradient, but the separation between them was not as defined as in improved

grassland. One extreme of the management gradient included the more heavily grazed

unplanted plots, whereas afforested plots containing drainage ditches and taller saplings

were located towards the other extreme (Fig. 3). Axes 1 and 2 explained the same amount

of variation in the species data equal to approximately 8%. Axis 1 was positively correlated

with northing and negatively correlated with drainage ditches while there were not vari-

ables which were specifically correlated with axis 2. Species like Agrostis stolonifera and

Festuca rubra were positively related to the plantation management variables. Biogeo-

graphical and soil variables, such as northing and K concentration, were relatively more

important in structuring plant communities in wet grasslands than in improved grasslands.

Variation partitioning between the environmental and management data sets is shown in

Table 5. Environmental variables counted for 75% of the total variation explained in

unimproved wet grassland subplots and approximately 55% in improved grassland sub-

plots. The contribution of management factors was similar between the two data sets and

equal to approximately 25% of the TVE. In unimproved wet grassland plots, the small

amount of variation accounted by both of the two sets of explanatory variables together

indicated that the interaction between management and environmental variables was weak.

In contrast, shared variation between the two sets of explanatory variables was consider-

able in improved grassland subplots and accounted for 20% of total variation explained.

Soils

Total nitrogen and calcium concentrations in improved grasslands were significantly higher

in unplanted than in planted sites (Table 6). Soil pH was lower in the planted sites. There

Table 4 Variation explained
by significant environmental
and management variables in
CCAs of mean species abun-
dances in 4 m2 subplots in
improved and unimproved wet
grasslands

TI total inertia, IG improved
grassland, WG unimproved wet
grassland, M management
variable, E environmental
variable

Significant variables were
included by forward selection
(P B 0.05)

Variable Set Fraction of TI

IG WG

Ground layer cover E 0.030 0.048

Field layer height E 0.026 –

Shrub height E – 0.034

Shrub cover E 0.047 0.059

Litter cover E 0.030 –

Easting E 0.021 0.044

Northing E – 0.063

Slope E 0.036 –

Aspect E – 0.027

Elevation E 0.062 0.055

K E – 0.023

Mg E 0.034 –

Sapling height M 0.114 0.042

Sapling cover M 0.030 –

Grazing M 0.030 0.027

Drainage ditches M 0.039 0.029
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were also significant differences in organic carbon and litter cover percentage between

planted and unplanted improved grasslands. No significant differences were found in soil

properties between planted and unplanted wet grasslands, although the results indicate

Fig. 2 Samples-species-explanatory variables triplot from CCA (axes 1 and 2) performed on improved grassland
4 m2 subplots: species fit range is between 3 and 100% (i.e. 82 species were reduced to 64). s = unplanted plots;
d = planted plots; Gco = ground layer cover; Fht = field layer height; Hco = shrub cover; Lco = litter cover;
Eas = easting; Slo = slope; Ele = elevation; Mg = magnesium; Sht = sapling height; Sco = sapling cover;
Grz = grazing; Ddi = drainage ditches; agrocapi = Agrostis capillaries; agrostol = Agrostis stolonifera;
angesylv = Angelica sylvestris; anthodor = Anthoxanthum odoratum; arrhelat = Arrhenatherum elatius; bell-
pere = Bellis perennis; bracruta = Brachythecium rutabulum; bromhord = Bromus hordeaceus;
callcusp = Calliergonella cuspidate; cardsp = Cardamine sp.; careechi = Carex echinata; careoval = Carex
ovalis; centnigr = Centaurea nigra; cerafont = Cerastium fontanum; cirspalu = Cirsium palustre; cono-
maju = Conopodium majus; cynocris = Cynosurus cristatus; dactglom = Dactylis glomerata;
desccesp = Deschampsia cespitosa; elytrepe = Elytrigia repens; epilobsc = Epilobium obscurum; kind-
prae = Kindbergia praelonga; festrubr = Festuca rubra; fissbryo = Fissidens bryoides; galipalu = Galium
palustre; holclana = Holcus lanatus; holcmoll = Holcus mollis; juncacut = Juncus acutiflorus; junceffu = Jun-
cus effusus; leonautu = Leontodon autumnalis; lolipere = Lolium perenne; lophbide = Lophocolea bidentata;
lotupedu = Lotus pedunculatus; luzucamp = Luzula campestris; planlanc = Plantago lanceolata; plan-
majo = Plantago major; poaannu = Poa annua; poahumi = Poa humilis; poaprat = Poa pratensis;
poatriv = Poa trivialis; poteangl = Potentilla anglica; poteanse = Potentilla anserine; poteerec = Potentilla
erecta; poterept = Potentilla reptans; prunvulg = Prunella vulgaris; pteraqui = Pteridium aquilinum; ranuac-
ri = Ranunculus acris; ranubulb = Ranunculus bulbosus; ranurepe = Ranunculus repens; rubufrut = Rubus
fruticosus agg.; rumeacet = Rumex acetosa; rumeobtu = Rumex obtusifolius; rumesang = Rumex sanguineus;
scronodo = Scrophularia nodosa; stacpalu = Stachys palustris; stelgram = Stellaria graminea; tarasp =
Taraxacum sp.; thuitama = Thuidium tamariscinum; trifprat = Trifolium pratense; trifrepe = Trifolium repens;
urtidioi = Urtica dioica; verocham = Veronica chamaedrys; vicicrac = Vicia cracca; vicisepi = Vicia sepium
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possible trends in calcium, nitrogen, organic carbon and litter cover percentage (Table 6).

The difference in soil pH between unplanted and planted wet grasslands was almost

significant (p = 0.06).

Fig. 3 Samples-species-explanatory variables triplot from CCA (axes 1 and 2) performed on unimproved
wet grassland 4 m2 subplots: species fit range is between 7 and 100% (i.e. 126 species were reduced to 55).
s = unplanted plots; d = planted plots; Gco = ground layer cover; Hht = shrub height; Hco = shrub
cover; Eas = easting; Nor = northing; Asp = aspect; Ele = elevation; K = potassium; Sht = sapling
height; Grz = grazing; Ddi = drainage ditches; achiptar = Achillea ptarmica; agrocaca = Agrostis canina
subsp. canina; agrocapi = Agrostis capillaris; agrostol = Agrostis stolonifera; agrovine = Agrostis
vinealis; alopprat = Alopecurus pratensis; brizmedi = Briza media; callcusp = Calliergonella cuspidata;
caltpalu = Caltha palustris; calyargu = Calypogeia arguta; cardprat = Cardamine pratensis; care-
bine = Carex binervis; caredist = Carex disticha; careechi = Carex echinata; carehirt = Carex hirta;
carepuli = Carex pulicaris; careviri = Carex viridula; cirsdiss = Cirsium dissectum; dactfuch = Dacty-
lorhiza fuchsii; dactmace = Dactylorhiza maculata supsp. ericetorum; epilobsc = Epilobium obscurum;
epilpalu = Epilobium palustre; euphrost = Euphrasia rostkoviana; festovin = Festuca ovina; fest-
prat = Festuca pratensis; festrubr = Festuca rubra; filiulma = Filipendula ulmaria; glycflui = Glyceria
fluitans; hylosple = Hylocomium splendens; juncbulb = Juncus bulbosus; junccong = Juncus conglome-
ratus; junceffu = Juncus effusus; lathprat = Lathyrus pratensis; lophbide = Lophocolea bidentata;
lotucorn = Lotus corniculatus; lotupedu = Lotus pedunculatus; luzumult = Luzula multiflora; moli-
caer = Molinia caerulea; pellepip = Pellia epiphylla; plagundu = Plagiomnium undulatum;
poteerec = Potentilla erecta; prunvulg = Prunella vulgaris; pseupuru = Pseudoscleropodium purum;
ranuflam = Ranunculus flammula; ranurepe = Ranunculus repens; rhytlore = Rhytidiadelphus loreus;
rubufrut = Rubus fruticosus agg.; rumeacet = Rumex acetosa; sagiproc = Sagina procumbens; saliau-
ri = Salix aurita; salirepe = Salix repens; senejaco = Senecio jacobaea; sphacusp = Sphagnum
cuspidatum; trifrepe = Trifolium repens; ulexeuro = Ulex europaeus
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Discussion

Changes in vegetation following afforestation result from a series of factors, some of which

are imposed quickly whilst others develop gradually; these may act simultaneously or

sequentially (Sykes et al. 1989). The substantial differences in species richness, relative

abundance and species composition observed between planted and unplanted sites were

primarily due to removal of grazing, changes in nutrient management and drainage for

afforestation. Wallace and Good (1995) studied the effects of afforestation on upland plant

communities in England and found that in the early stages (\6 years), stands tend to have

poorly developed woodland flora; although cover may be high, the species present on

mineral soils tend to be those characteristic of unmanaged sites. Sykes et al. (1989)

reported the effects of reduced grazing and ground preparation following afforestation of

upland grasslands. They found that grasses and rushes increase most in frequency, while

species of wet habitats and small stature species become less frequent. These changes are

similar to what we have found in lowland situations in this study.

In afforested improved grasslands, vigorous and competitive grasses commonly found

in both wooded and unwooded habitats were significantly more frequent and less com-

petitive ruderal species, which generally have open habitat affinities, were significantly less

frequent than in unplanted sites. Analogous floristic changes were recorded in grasslands

after the exclusion of grazing in other studies (Welch and Rawes 1964; Ball 1974; Stránská

2004). The first response to release from heavy grazing is a change in the structure of the

Table 5 Variation partitioning of species data in 4 m2 plots in improved grasslands (IG) and wet grasslands
(WG) between environmental (E) and management (M) explanatory variables using partial CCA

Data set Fraction of TI

nE nM TVE X E M S

IG 8 4 0.498 0.502 0.273 0.125 0.100

WG 8 3 0.454 0.546 0.342 0.102 0.010

S variation shared between E and M, X unexplained variation, nE, nM number of significant variables from
the E and M sets of explanatory variables used in each ordination, TI total inertia

Table 6 Comparison of soil properties (mean ± SEM) in unplanted (UP) and planted sites (P) of improved
grassland (IG) and unimproved wet grassland (WG) (n = 8 for each grassland type)

IG WG

UP P p-value UP P p-value

N (mg/L)a 3,844 ± 154 3,235 ± 164 0.008 4,470 ± 239 4,229 ± 133 0.188

P (mg/L)a 734 ± 67 673 ± 43 0.394 552 ± 38 546 ± 27 0.896

K (mg/L)a 6,709 ± 848 7,494 ± 795 0.120 4,833 ± 529 5,240 ± 506 0.348

Ca (mg/L)b 8,063 ± 3641 2,935 ± 854 0.036 2,119 ± 377 1,582 ± 250 0.090

Mg (mg/L)a 2,458 ± 360 2,260 ± 329 0.276 1,675 ± 129 1,751 ± 161 0.484

pHa 6.59 ± 0.30 6.04 ± 0.29 0.044 5.76 ± 0.09 5.50 ± 0.14 0.060

Organic C (mg/L)b 8,728 ± 1001 6,360 ± 557 0.030 11,184 ± 1,001 10,724 ± 1120 0.483

Litter cover (%)b 2.79 ± 0.70 14.29 ± 2.45 0.012 6.67 ± 1.52 8.88 ± 1.08 0.164

Significant differences among planted and unplanted sites are indicated in bold type

Statistical tests: aT-test and the bnon-parametric Wilcoxon’s paired signed-ranks test
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community to one of greater height and more abundant tussocks; this is accompanied by a

change in the competitive balance between species, with the gradual loss of some species,

increase in others and invasion of new species (Ball 1974). The higher bryophyte species

richness found in planted improved grasslands suggests they have colonised the new

habitat under the shade of the taller ungrazed grasses. Some colonising species may be

present in the soil bank or may invade from neighbouring vegetation (Stránská 2004).

Surrounding habitats, such as hedgerows and other ecological corridors like rivers and road

banks, represent a potential resource of species which may be able to colonise the newly

afforested areas. In this study, a decrease in grazing pressure allowed highly competitive

species, such as Rubus fruticosus and Arrhenatherum elatius, to colonise the grassland

from neighbouring hedgerows. In many cases, this may lead to a species-poor community

mostly dominated by vigorous grasses. However, improved grasslands are themselves

species-poor habitats, and therefore afforestation of these habitats will have little short-

term impact on biodiversity.

In unimproved wet grasslands, changes were similar but less marked if compared with

improved grasslands, because of generally lower pre-afforestation grazing pressures and

fertilisation. Drainage contributed to the decrease in species preferring wet conditions and

also to the increases in competitive species. Drainage ditches were responsible for the

discrepancies between plot scales in species richness differences between planted and

unplanted wet grasslands. They were included in 100 m2 plots, but not 4 m2 plots, and

provided new, reduced-competition habitats for bryophytes and pioneer vascular plant

species such as Riccardia chamaedryfolia and Carex viridula. This accounts for the lack of

a difference in species richness at the 100 m2 scale while species richness at the 4 m2 was

lower in planted sites due to greater competitive pressures.

Variation between the floristic composition of unplanted and planted grassland is related

to both natural variability and forestry induced changes, including changes in drainage,

ground preparation and shading by trees (Wallace and Good 1995). In this study, the

relative importance of explanatory variables differed between improved grassland and

unimproved wet grassland plots. Environmental variables explained a higher fraction of the

variation in unimproved wet grasslands (75.3%) than in improved grasslands (54.8%). This

difference is best explained by the higher variation in environment among unimproved wet

grassland sites. The low percentage of shared variation (2.2%) between environmental and

management variables in unimproved wet grasslands showed that the two sets of

explanatory variables were weakly correlated. On the other hand, in improved grasslands

environmental variables accounted for 25% of the variation, and the two sets of variables

shared 20% of the total variance explained, showing that the effects of afforestation and the

consequent cessation of grazing on vegetation communities were apparently greater in

improved grasslands than in wet grasslands. This finding is reflected by differences in soil

properties which were found only for improved grasslands, where plantations had lower

total nitrogen, calcium and organic carbon and higher soil acidity. Although it is possible

that some of these differences in soil chemistry between paired sites were present prior to

afforestation, studies examining the shift of native grassland to forest reveal various

degrees of surface soil acidification after conifer establishment (Page 1968; Hornung 1985;

Reich et al. 2005).

The decline in pH may be associated with the loss of exchangeable cations, particularly

Ca, organic acid inputs and increased soil respiration (Page 1968; Hornung 1985; Jobbágy

and Jackson 2003), and accumulation of cations in tree biomass (Hornung 1985; Parfitt

et al. 1997). In the present study, where the trees were still small, it is unlikely that the

acidification was due to tree nutrient uptake. The pH decrease may therefore be linked to
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lower soil Ca after afforestation and/or to organic acid inputs which enter the soil pre-

dominantly from the surface, causing maximum acidification in the topsoil. As litter

percentage cover increased significantly under Picea sitchensis differences in pH levels

between unplanted and planted sites in this study could also have been caused by differ-

ences in quantity and quality of litter, litter decomposability and microbial activity.

Lower nitrogen in afforested sites could be explained by several factors including the

accumulation of nitrogen in tree biomass which is expected to be greatest within the first

15 years of plantation (Gholz et al. 1985), denitrification (loss of total N) and leaching of

N due to enhanced mineralisation/nitrification (Parfitt et al. 1997). In this study, most

improved grassland sites had previously been fertilised annually with synthetic N-P-K

fertilisers and/or animal manure. Fertiliser applications ceased after afforestation, leading

to a temporal gradient of decreasing fertility which may represent a further explanation for

the observed difference in total nitrogen.

Concentrations of soil organic C in topsoil were significantly lower under Sitka spruce

compared with unplanted improved grassland. The causes of changes in soil organic

carbon when land use is changed may be ascribed to soil disturbance through ploughing or

ripping, clearing of the original vegetation and control of competing vegetation in the

initial years (Turner and Lambert 2000). Other important factors affecting soil carbon are

previous land uses, climate, soil texture, site management, type of forest established

(Polglase et al. 2000), and low production of detrital materials (e.g. litterfall, root turnover)

in the early stages of stand development (Parfitt et al. 1997).

The absence of significant differences between unplanted and planted sites in unim-

proved wet grasslands might be due to the greater organic matter content and consequent

buffering capacity of the wet soils, to the clay texture, to water logging conditions which

could have delayed the effects of conversion between grasslands and plantation, and to a

lower fertilisation rate of pre-afforested sites. In addition, variability in soil chemistry

among wet grassland site pairs probably obscures differences between planted and

unplanted sites.

Conclusions

The initial effects of afforestation appeared to be largely the results of three factors:

exclusion of grazing, forestry drainage and changes in nutrient management. The impacts

of afforestation on vegetation and soil properties of the studied habitats were greater in

improved grasslands than in wet grasslands. Species sensitive to shading declined under

competitive pressure from vigorous grasses and other aggressive colonist species. Drainage

ditches provided a temporary habitat for new pioneer and less competitive species, but the

overall effect of drainage contributed to a reduction in species richness and diversity.

Planted improved grasslands had lower total nitrogen, calcium, organic carbon and pH than

unplanted grasslands; these differences may be the result of ground preparation for

afforestation and the effects of conifer litter, but it is impossible to rule out pre-existing

differences. Any changes may have been lessened in wet grassland by several factors, e.g.

soil texture and poor drainage. Since afforestation of these sites occurred only 5 years

ago—a short period compared with the age of a mature forest—more changes may be

expected to occur in the next few years. The tree saplings were still small, and the planted

habitats were still grasslands rather than woodlands. When the trees become more mature

and form a closed canopy, the understorey vegetation will be almost completely eliminated

if it is a densely shading species such as Sitka spruce (Hill 1979; French 2005). Because of
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its short- and long-term effects, we conclude that afforestation will have a detrimental

effect on semi-natural habitats. Such habitats, such as semi-natural wet grasslands, should

not be afforested, unless similar habitats are abundant in the landscape. On the other hand,

the effect of afforestation on improved and semi-improved grasslands will be neutral or

positive, particularly in landscapes that contain little semi-natural woodland habitat.
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