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Theorem 3.2. Let A be a real *-algebra with unit 1 satisfying the following condition: 

for a in A, a*a = 0 implies that a = 0. Suppose that A is also a real inner product 
space such that II 1 II = 1 and Ila*aII Ila 112 for all a in A. Then A is isomorphic to R., 
C, or H. 

Proof Let Sym(A) := {a A : a* = a), and let a belong to Sym(A). Consider the 

subalgebra B of A that comprises all polynomials in a with real coefficients. Then 
B is contained in Sym(A). Hence B satisfies hypotheses of Theorem 3.1. Since B is 
also commutative, B is isomorphic to R or C. Hence a = X1l for some real or complex 
number ). This shows that Sym(A) itself is isomorphic to R or C. Now the conclusion 
follows from Lemma 2.1 of [1]. 0 

ACKNOWLEDGMENTS. The author thanks the referee for several suggestions that improved this note. A 
version of this paper appeared in the Souvenir (meant for internal circulation) of FORAYS 2002, the inter- 

collegiate maths festival organized by the Department of Mathematics, I.I.T. Madras on February 23 and 24, 
2002. 
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The Early History of the 
Ham Sandwich Theorem 
W. A. Beyer and Andrew Zardecki 

The following theorem is the well-known ham sandwich theorem: for any three given 
sets in Euclidean space, each offinite outer Lebesgue measure, there exists a plane that 
bisects all three sets, i.e., separates each of the given sets into two sets of equal mea- 
sure. The early history of this result seems not to be well known. Stone and Tukey [2] 
attribute the theorem to Ulam. They say they got the information from a referee. Is this 
correct? The problem appears in The Scottish Book [1] as problem 123. The problem 
is posed by Steinhaus. A reference is made to the pre-World War II journal Mathesis 
Polska (Latin for "Polish Mathematics"). This journal is not easy to locate. It was fi- 

nally located in the mathematics library of the University of Illinois, which seems to 
be the only library in the United States having the complete journal. One of the items 
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in the journal is a note on the ham sandwich theorem. This note clarifies the theorem's 
early history. Andrew Zardecki has translated the note from Polish into English for 
inclusion here. 

The note can be divided into two parts. In the first part, the Ulam-Borsuk theorem 
is assumed to be correct and the ham sandwich is proved. This is a fairly easy proof. In 
the second part, a new proof of the Ulam-Borsuk theorem is given. That part is harder. 
The proof was found by Auerbach. It is claimed in the reference at the beginning of 
the translation to be easier than the proof given by Borsuk. 

In the translation, the title "NOTES" is similar in use to that title in this MONTHLY. 
The title "From Topology" refers to a subdivision of NOTES that deals with topology. 
The translation follows. 

A Note on the Ham Sandwich Theorem 
Hugo Steinhaus and others 

From Mathesis Polska XI, (1938), pp. 26-28. 

NOTES 
From Topology 

Several years ago, Mr. Ulam conjectured the following theorem: if a sphere is 
mapped continuously into a plane set, there is at least one pair of antipodal points 
having the same image; that is, they are mapped into the same point of the plane. 
This was proved by Mr. Borsuk in 1933 (Fundamenta Mathematicae, XX, p. 177), 
extending the theorem to n dimensions. 

In the illustration of Mr. Steinhaus the Ulam-Borsuk theorem reads: at any moment, 
there are two antipodal points on the Earth's surface that have the same temperature 
and the same atmospheric pressure. In fact, if the temperature at point P is x (P) and 
the pressure is y(P), we have a continuous mapping of a sphere into the xy-plane. 
According to the theorem, there is a point P of the sphere such that its image and the 
image of its antipode P' are the same point of the plane; therefore, the temperature and 
the pressure at P and P' are the same. Of course, instead of temperature and pressure 
we could talk about average insolation and average rainfall, etc. 

Is it always possible to bisect three solids, arbitrarily located, with the aid of an 
appropriate plane? This question, posed by Mr. Steinhaus, can be answered using Bor- 
suk's theorem, as shown by Mr. Banach. [The question refers to problem 123, due to 
Steinhaus, in The Scottish Book [1].] It can be formulated as follows. Can we place a 
piece of ham under a meat cutter so that meat, bone, and fat are cut in halves? 

For a sphere centered at S let us assign to each point P on the sphere a plane p 
perpendicular to SP. If we have three sets A, B, and C in space, which we are about 
to bisect, sets having finite (nonzero) volumetric measures a, b, and c, respectively, 
we consider a plane q parallel to p. We agree to call the upper side of q the side that 
corresponds to side P of the plane p; furthermore, we require that the measure of the 
part of set A located on the upper side of q be a/2. Such a location is always possible; 
if there is more than one plane q satisfying this condition, we choose the location that 
bisects the distance between the extreme locations. We now take the volume of the part 
of B on the upper side to be temperature at P, the volume of the part of C on the upper 
side of q to be the pressure at P. If we apply our "meteorological" theorem, we obtain 
two antipodal points P and P' with the same temperature and pressure. However, the 
same plane qo corresponds to the antipodal points; therefore, it bisects not only A, but 
also B and C, Q.E.D. 
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These applications (as well as the other known ones) make it interesting to obtain 
an easy proof of Borsuk's theorem, at least for an ordinary sphere. Such a proof was 
recently produced by Mr. Auerbach. Here we follow Mr. Steinhaus, who simplified the 
proof a little (by removing from it the general monodromy theorem). 

We proceed by contradiction, assuming that the functions x(P) and y(P) that map 
a sphere into the xy-plane assign to P an image (x, y) different from the image (x', y') 
of its antipodal point P'. Therefore, the length of the vector whose origin is (x, y) and 
head is (x', y') attains a positive minimum m as P sweeps over the sphere. This vector 
forms an angle f(P) with respect to the positive direction of the x-axis, f (P) being 
a multivalued function of P. Different branches [in the original: determinations] of 
f(P) differ by multiples of the full angle. If, for a given point P, we fix the angle 
f(P) (for example, as the smallest nonnegative one), then the angle to a neighboring 
point Q is determined by the condition: 

If(P)- f(Q)l < r/2. (1) 

To this end [of obtaining a contradiction] we find a number d such that, for any 
points P and Q on the sphere whose distance is less than d, the values of functions 
x(P) and y(P) at P and Q differ by less than m/3. When PQ is smaller than d, (1) 
is satisfied for a certain (and unique) branch f(Q). It is now easy to define f(P) so 
as to be single-valued on the entire sphere. We define f(P) for P = PO located at 
the north pole; then, using (1), we extend the definition to all points Q belonging to a 
zone encompassing the pole. We advance to a neighboring zone using the fact that for 
each point Q of the zone there exists a point P on the border of the first zone situated 
north of Q whose distance from Q is smaller than d, and so forth. Having defined a 
single-valued f(P), we note that f is a continuous function, since in a neighborhood 
of any point there is one and only one continuous continuation of f(P); namely, the 
continuation that satisfies equation (1); that is, the condition that we always meet. The 
function 

r(P) = f (P) - f (P'), (2) 

where P' denotes the antipode of P, is also continuous. It is seen from the definition 
of f(P), however, that f(P') differs from f(P) by an odd multiple of a half angle; 
that is, 

r(P) = (2ko + 1)7r, (3) 

where ko is an integer. If in formula (2) we substitute P' for P, we get r (P') = -r (P). 
The same substitution in (3) leads to r(P') = (2ko + 1)7r. We thus obtain 2ko + 1 = 
-2ko - 1 or ko = -1/2, contradicting the fact that ko is an integer. In the case of a 
sphere or another convex solid, one can choose an interior point S and regard as an- 
tipodes the ends of diameters passing through S. The theorem will hold, which implies 
that, by connecting with straight lines the points having the same temperature and 
pressure, we fill the interior of a sphere (solid). 

Mr. Auerbach noted that Mr. Borsuk's theorem has the following algebraic conse- 
quence. A system of n equation with n unknowns 

R1 O,R2= 0,...,Rn-1 - x2++ 2...+x=1, (4) 

where the polynomials Rk have real coefficients and contain only odd powers of vari- 
ables x1,x2, ... , xn, has at least one real solution. 

[This is the end of the translation.] 

60 @ THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 111 

This content downloaded from 79.178.8.233 on Thu, 22 May 2014 19:13:20 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


The conclusion from the foregoing is that Steinhaus conjectured the ham sandwich 
theorem and Banach gave the first proof, using the Ulam-Borsuk theorem. This shows 
that Stone and Tukey were not correct in attributing the ham sandwich theorem to 
Ulam. However, Ulam did make a fundamental contribution in proposing the antipodal 
map theorem. 

Remarks. We first mention a recent application by Blair Swartz of ham sandwich 
theorems for fractions other than 1/2 to interface reconstruction in hydrodynamic cal- 
culations. See paragraph 20 of the web site: 

http://www-troja.fjfi.cvut.cz/~ liska/bbw/abs-list.html 
There is a cautionary note stating that for some shapes or configurations of cells there 
exist n-tuples of mass fractions that cannot be simultaneously sliced from cells. 

Finally, we note a paper by Steinhaus [3] that represents work Steinhaus did in 
Poland on the ham sandwich problem in World War II while hiding out with a Polish 
farm family. 

ACKNOWLEDGEMENT. We thank Sharon Smith for help in finding material in Polish libraries. 
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Roots Appear in Quanta 
Alexander R. Perlis 

We start with a special case. Consider an irreducible quintic polynomial 

f (X) = X5 + a X4 + a2X3 + a3X2 + a4X + a5 

with rational coefficients and with three real roots and one pair of complex conjugate 
roots. For example, f(X) could be X5 - 10X + 5. 

Question. If a is a root of f, then how many roots of f lie in the field Q(a)? 

The field Q(a) is obtained by adjoining the root a to Q. Thus Q(a) contains at least 
one root of f, and of course it can contain at most five roots of f. 

Answer. The number r(f) of roots of f in Q(a) is 1. We prove that, for an arbitrary 
irreducible polynomial f and root a, r(f) divides the degree of f. For the quintic 
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