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ABSTRACT

The early motivation for and development of diagonal increments
to ease matrix inversion in least squares (LS) problems is discussed.
It is noted that this diagonal incrementation evolved from three major
directions: modification of existing methodology in non-linear LS,
utilization of additional information in linear regression, and the
improvement of the numerical condition of a matrix. The interplay
among these factors, and the advent of ridge regression are considered
in an historical and comparative framework.
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1. INTRODUCTION

The problem of matrix inversion with minimum computation and high
accuracy has a long and rich history. Hotelling (1943) gave an early overview
of the methodology. He included such currently-burgeoning topics as eigenvalue
use and the nature of error analysis (cf. Peters and Wilkinson, 1979). Two
years later, Waugh and Dwyer (1945) published a similar summary, concentrating
on the more compact and efficient methods. An extensive review by von Neumann
and Goldstine (1947) discussed the steps involved and accuracies of the then-
available methods, becoming a popular early reference.

A problem many early authors recognized was that, for an ill-conditioned
matrix, inversion beomes particularly difficult. The resulting inverse may
only be approximately equal to the true inverse, and when the inverse is being
used to solve the system of equations

Ag = 1 , (1.1)

12, suffers from unnatural variability. This can bring about

the solution, A~
problems in interpretation and use of the results.

To invert an ill-conditioned matrix, some early authors attempted to slowly
work the ill-conditioning out of the inversion process. For example, Guttman
(1946), and, later, Herzberger (1949) based an early method on the construction
of sucessively larger sub-matrices. Another approach, known as precon-
ditioning, involved linearly transforming the system to improve its condition
(see Jennings and Ajiz, 1984). By far the more popular attempt has been to
correct A slightly in order to make it easier to invert using a standard

method. This correction comes in the form of the addition of a small positive

quantity to the diagonal elements of A; a diagonal incrementation, A + kI.
1,

Very early on it was recognized that (A + kI)—1 would be very close to A

Duncan (1944) and also Guttman (1946),\gave the relationship
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-1y alycp - valuyval (1.2)

(A-uwlvl=a
When D =1 =V and U = -kI, (1.2) gives

(a+ kDt =t ckea s algla (1.3)
For very small k the second term in (1.3) is negligible, suggesting that (A +
kI)"1 will closely approximate Al [Henderson and Searle (1981) give an
interesting account of the development of (1.2) and of some associated
quantities.]

In a wide variety of statistical applications, such a matrix inversion has
received increasing attention over the past two decades. DiPillo (1976) intro-
duced diagonal increments to a classification procedure in discriminant analy-
sis. Reduced variance and improved performance resulted. Bhapkar (1973)
explored their use in developing an alternative to the usual comparison of pro-
portions in matched samples. Khare and Federer (1981) substituted (A + 1)t

1 to obtain inter-block solutions for the treatment effects in an

for A~
incomplete block design. Their increment was a ratio of experimental to inter-
block variance, r=c€2/ch.

The greatest statistical attention devoted to diagonal incrementation has

involved parameter estimation in the linear model

E[Ynx1] = anpoxI (1.4)
The least squares (LS) regression estimates of g,
b= (x'X) X'y, (1.5)

are critically based on (X'X)'l. When X'X is ill-conditioned, as occurs fre-
quently, for example, in polynomial regression (Bradley and Srivastava, 1979),
the LS estimates become unstable. Small perturbations in the data, Y, can lead
to large changes in the solution vector. In order to achieve some reduction in

this variation, Hoerl (1962) suggested the use of X'X + kI in place of X'X.
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This became known as ridge regression, and the procedure sparked a large
literature (see Smith and Campbell, 1980). '

Although statisticians have provided great motivation and use for diagonal
incrementation, it is in the engineering sciences where the conéept first
arose. Prompted by problems in fitting non-1inear equations to data, the
method has been thriving there for some 40 years. We start, in Section 2, by
considering this non-linear LS development. In Section 3 we follow this deve-
lopment into the linear model, and in Section 4 we continue through to overlaps

with the Bayesian regression framework. Section 5 gives a short summary.

2. THE ORIGINS OF DIAGONAL INCREMENTATION

In December 1943, Kenneth Levenberg presented a paper at the American
Mathematical Society's annual meetings in Chicago. Entitled "A Method for the
Solution of Certain Non-linear Problems in Least Squares," the paper was
published the following year (1944). It involved Levenberg's work at the War
Department's Frankford Arsenal. There, he had noticed that the usual LS method
for approximating a non-linear function, E[Y]=F(X,g), did not always improve
upon the initial estimates of the function's parameters. If the LS estimates
strayed too far from their initial values, B*, then the values of ABj = bj -
Qj* would be quite large. Denote the residuals by f(X,b). Then, their first

order Taylor approximation,
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P
Yi' Fi(X,b) = fi(X,b) ~ fi(x,s*) + }E Aﬁj(bfi/aaj) , (2.1)
j=1
would be greatly in error. This occurs because of the neglect of the higher
order terms, (ABj)2, (Aﬁj)3, etc., in the Taylor approximation. Levenberg's
algorithm was designed to insure improvement of g* by limiting, or "damping”,
the values of IAﬁjl, accomplishing this by minimizing a weighted sum of these
differences:
n p
w2 [f,-(X.B*) +.E Asj(afi/aaj):lz + zuj(Asj)z . (2.2)
i=1 3=l j=1
The normal equations which resulted from this approach were the same as the
ordinary ones except for the coefficients of the principal diagonal. These
were incremented by quantities proportional to the weighting factors, uj, on
the parameter differences.

Levenberg went on to show that when the uj were all equal, the direc-
tional derivative of the residual sum of squares (taken at w=0 along the new
solution vector) would be a minimum. Without loss of generality, he took these
values all equal to one. The diagonal increment then became a constant, equal
to w'l. Although designed for the solution of non-linear LS problems -
literally a modification of the Taylor series method - this was the first pre-
sented use of diagonal incrementation.

As digital computer technology progressed in the 1950's, so did the abi-
lity of these computgrs to handle more and more complicated algorithms. This
helped in the dissemination of Levenberg's procedure, which was rather tedious
to work out by hand. The value of w was, of course, critical to the entire

estimation process, and it became known as the Levenberg parameter (Wilde and
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Beightler, 1967). However, the algorithm did not gain widéspread attention
very quickly. It was the independent development of a procedure very much like
Levenberg's that led to its current-day notoriety (e.g. over two dozen cita-
tions in 1981).

While developing computer algorithms and associated procedures at
duPont's Engineering Labs during the 1950's and 1960's, Donald Marquardt made
discoveries very similar to Levenberg's. Just as Levenberg had noticed
problems with the Taylor series approach, Marquardt recognized a disparity in
the other computerized non-linear LS approach, known as the steepest descent,
or gradient, approach. There, proper convergence from the initial values was
not always assured, and the procedure sometimes lead to nonsensical results.
Marquardt explains,

“At first by plotting and later by algebraic calcu-

lation, I had observed that the gradient and the

Taylor-series methods invariably give correction

vectors whose included angle . . . is nearly a

right angle. Recognition of the orientation of

these vectors in the sum-of-squares. contours

explained for the first time the apparently anoma-

Tous behaviors of the [two] methods" (1979).
These observations led Marquardt to reconcile these two earlier approaches.
This was done in an algorithm which displayed some of the better properties of
both predecessors, while avoiding some of their limitations. The work was
published in 1963. Critical to it was the development of a Lagrange parameter,
A, which varied monotonically over (0,») (the Taylor series and gradient method
correspond to the two extremes for A). The parameter was used to control the
iterative solution of the non-linear normal equations. At each iteration,
equations of the form

(X'x + Al)g = X'Y (2.3)

were solved so that the iterative residual sum of squares was always
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decreasihg. The resulting algorithm had the ability to converge quickly from a
wide range of initial estimates (Marquardt, 1963). It became an important tool
in the estimation of non-linear parameters, with, e.g., almost 1000 citations
between 1963 and 1977 (Marquardt, 1979).

As can be seen, the motivation, development, structure, and optimality of
Levenberg's and Marquardt's algorithms are almost identical. Indeed, both
authors are now referred to as its progenitors (Kennedy and Gentle, 1980), and
x=w’1 is now called the Levenberg-Marquardt parameter (Moré, 1977). However,
Marquardt was not aware of Levenberg's work throughout much of his research
period. He was only informed of it, by H. 0.. Hartley, just before the 1963
paper went to press. The best Marquardt could do was to comment on Levenberg's
paper in his Acknowledgments (the 1944 paper is referenced last, out of alpha-

betical order) and thank Hartley for bringing it to his attention.

3. LINEAR MODELS AND RIDGE REGRESSION

One very interesting comment Marquardt makes is to highlight the
"corollary numerical benefit" of adding A to the diagonal of X'X, in that it
helps improve the condition of the matrix (1963, p.439). This was precisely
Arthur Hoerl's observation of the previous year; he reported that incrementing
the diagonal of X'X by some small positive quantity was a helpful way to
correct for any ill-conditioning. Later works (Hoerl and Kennard, 1970;
Marquardt, 1970) developed this into a formal approach to estimating g, and the
problem of ill1-conditioned regression has since generated a great deal of
interesting work (Bradley and Srivastava, 1979; Hocking, 1983; Wold, et al.,
1984).

Much of the early justification fﬁr this ridge regression procedure was

more heuristic than theoretic. Indeed, finding a theoretically optimal basis
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for the ridge procedure has been a lengthy process (cf. Rolph, 1976;
Strawderman, 1978; Casella, 1980), and is still not fully developed. Still,
the observation that X'X+kI can be numerically easier to invert than X'X is
very true, and the correspondence and timing of Hoerl's (1962) and Marquardt's
(1963) observations was no coincidence; both men were involved in statistical
research with the duPont group. Throughout the the 1960's and 1970's, Hoerl,
Kennard, and Marquardt worked at improving and developing their results on
diagonal incrementation. The Wilmington, Deleware area was where much of the
early research on ridge regression was performed, and the works of all three
men were critically intertwined.

An important, positive aspect of the ridge method was the improvement in
conditioning the diagonal incrementation provided. It is a strange anomaly
then, that in the history of ridge's development, neither Hoerl nor Marquardt
was the first to note it. The first indication of the usefulness of digonal
incrementation - indeed, the first use of the matrix notation A + kI - came
from James Riley (1955). Riley's approach was of a slightly different nature
than that of Marquardt's and Levenberg's, but did bear some resemblance to that
of Hoerl and Kennard. Instead of starting with a non-linear problem and deve-
loping the diagonal increment k, Riley simply proposed the use of the increment
and then examined its usefulness; again, a more heuristic approach.

To solve AB=Z, Riley set C=A+kI so that A=C-kI and thus

Al - s me™! . (3.1)
m=0
Then, a solution is
8 = Atz = T kehTelz . (3.2)

m=0
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For k>0, when all of the eigenvalues of A are positive (e.g., if A is symmetric
and positive definite), the eigenvalues of kC‘1 are all contained in (0,1).
Hence (3.2) converges (Riley, 1955, p.98). For very small values of k (Riley

2-M where M is the number of decimal places being carried), terms

suggested 10
involving k™ in (3.2) are negligible for m1l, and the resulting approximation
is the ridge estimator; i.e. for A=X'X and Z=X'Y, we write

[--]

T OKMxx o+ kDTMOX + kDY~ (xx + kDY (3.3)
m=0
Riley then used a number of different measures of matrix condition to show that

C is better conditioned than A, suggesting a sort of numerical improvement. In
particular, he considered the ratio of largest to smallest (absolute) eigen-
values for the matrix. This is one form of the well-known condition number
(cf. Marshall and Olkin, 1965, 1969; Longley, 1981; Casella, 1985). As Riley
shows, the condition number of A + kI is always smaller than that of A (for
k>0).

Except perhaps for the use of the term, Riley's work could be considered
as an early example of ridge methodology. Unfortunately, Marquardt did not
know of Riley's paper, while Hoerl and Kennard (1970) gave it only passing
reference [when they utilized some of Riley's matrix manipulations to help show
that their (non-stochastic) ridge estimator dominated the risk of the LS esti-
mator over a portion of the parameter space]. However, even Riley fell victim
to a similar oversight. His only reference to Levenberg's (1944) work occured

late in his 1953 paper, in the last appendix. It too was done in passing.

4. BAYES APPROACH TO THE REGRESSION PROBLEM
Before Riley's (1955) paper appeared, James Durbin (1953) published a

work, entitled "A Note on Regression when there is Extraneous Information About
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one of the Coefficients." In it, he considered model (1.4) when there was some
outside, unbiased estimator of the first regression coefficient, By~ At issue
was how to best use the information about By in estimating 8. By applying
Aitken's (1935) extension of Gauss's LS theorem on best linear unbiased estima-
tors, Durbin showed that the normal equations were only slightly modified by
this additional information. The difference from the ordinary LS expressions
was the addition of the ratio 02/0)2 to the leading diagonal term in X'X, where
var(Yi) = ¢2 and var(b,) = 012. Later authors (Theil, 1963; Lee, et al., 1968;
_Havenner and Craine, 1981) successfully applied this approach to a number of
statistical and mathematical problems. Of particular interest was a paper by
Chipman (1964), which considered topics ranging from multicollinearity to
problems of estimability in LS regression. It was well-written, paying close
attention to the various historical perspectives, as well as to analytical and
technical rigor. Durbin (1953) also considered estimation of the ratio 02/012
when both variances were unknown and when there is outside information on 8.
The results were similar.

These results are also similar to the estimators produced when operating
under a Bayesian framework. Hoerl and Kennard (1970) noted that, under the
prior distributional assumption

B ~ Np(o,oBZI) (4.1)
the Bayes estimator, when Y ~ Nn(XB,ozl), is
B = (X'X + kI)"Ix*y (4.2)
where k=°2/°82 (notice the similarity to the Khare and Federer [1981] ratio
mentioned in Section 1). The authors are quick to point out the link to ridge
regression by noting the similarity of (4.2) to (3.3). This is an interesting

property of the ridge estimator, showing that it is mathematically equivalent
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to this Bayes estimator (of course, their motivations are substantively dif-
ferent; each solves a different statistical problem). Lindley and Smith (1972)
go into greater detail on this Bayes regression problem, and the result can be
traced back in the literature at least as far as Raiffa and Schlaifer (1961,
Ch.13), although it was probably known long before this.

Unfortunately, the similarity of (4.2) to Durbin's eariler work has not
been extensively discussed in the literature. Even in an excellent and exten-
sive review by Draper and van Nostrand (1979), Durbin's work is left unmen-
tioned (although both the Levenberg [1944] and Riley [1955] papers are properly
described). It seems that Durbin's contribution to the diagonal increment

problem was fated for early anonymity.

5. SUMMARY

There are three basic problems that led to the use of matrix diagonal
increments. First, the improvement of a non-linear LS solution when the usual
methods fail to provide acceptable estimates. This was first investigated by
Levenberg (1944) and later by Marquardt (19635. Next, the utilization of addi-
tional information about a regression parameter by Dubin (1953), which was
later developed into the Bayes approach by Lindley and Smith (1972), and many
others (see Rolph, 1976). And third, the need to improve the condition of a
matrix in order to solve a system of simultaneous equations with less dif-
ficulty and greater precision (Riley, 1955). On the surface, the ridge
regression procedure would seem to derive much of its motivation from the last
of these three research problems. Far deeper, however, one can find an

interesting interplay among all three.
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