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Abstract

The Earth Mover’s Distance (EMD) is a distance mea-
sure between distributions with applications in image re-
trieval and matching. We consider the problem of comput-
ing a transformation of one distribution which minimizesits
EMD to another. The applications discussed here include
estimation of the size at which a color pattern occursin an
image, lighting-invariant object recognition, and point fea-
ture matching in stereo image pairs. e present a monoton-
ically convergent iteration which can be applied to a large
class of EMD under transformation problems, although the
iteration may converge to only a locally optimal transfor-
mation. We also provide algorithms that are guaranteed to
computea globally optimal transformation for a few specific
problems, including some EMD under trandlation problems.

1. Introduction

A major challenge in image retrieval applicationsis that
the images we desire to match can be visualy quite differ-
ent. This can happen even if these images are views of the
same scene because of illumination changes, viewpoint mo-
tion, occlusions, etc.. Two common approachesto measure
image similarity modulo some given factors are: (1) com-
pare invariant image signatures (e.g. [4]), and (I1) compare
non-invariant signatureswith a distance measure that allows
for differences due to the given factors (e.g. [6, 12]).

The challenge in approach (I) is to compute invariants
that still distinguish images with differences that should be
penalized. Usinginvariantscomputed over entireimagesas-
sumesthat two imagesaresimilar only if al theinformation
in oneimage matches all the information in the other. Such
a complete matching measure is usually not appropriate in
animageretrieval system because semanticimagesimilarity
often follows from only a partial match. Approach (1) is
better in the partial matching case since invariance can be
built on top of a distance function which allows for partial
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matching. Of course, approach (1) can bemodified to usein-
variants computed over parts of images, but this can require
quitealot of space becauseinvariants must be computed for
all image regionswhich might be matched at query time.

A very general distance measure with applications in
content-based imageretrieval is the Earth Mover’s Distance
(EMD) between distributions ([10]). The EMD allows for
partial matching, and hasbeen successfully used for measur-
ing image similarity with respect to color and texture ([11]).
For example, in[11] the color signature of animageisacol-
lection of dominant image colors in CIE-Lab space ([16]),
where each color isweighted by the fraction of image pixels
classified asthat color. Alsoin[11], thetexture signature of
asingletextureimageisacollection of spatial frequenciesin
log-polar coordinates, where each frequency is weighted by
the amount of energy present at that frequency. Experiments
in[10] show the superiority of the EMD for color-based im-
age retrieval over many histogram dissimilarity measures,
including a common quadratic form distance ([8]).

In this paper, we extend the EMD to alow unpenalized
distribution transformations. The godl is to find a trans-
formation of one distribution which minimizesits EMD to
another, where a set of alowable transformationsis given.
Consider, for example, using the EMD to measure object
similarity with respect to color. An EMD between color
signatures does not account for lighting differences. In[4],
the authors show that an illumination changeresultsin alin-
ear transformation of image pixel colors (under certain rea-
sonable assumptions). For the texture signatures mentioned
above, a change in texture scale and orientation resultsin a
trand ation of signature pointsin log-polar spatial frequency
space.

The EMD under transformation (EMDg) problem is to
computemin,cg EMD(x, g(y)), wherex = {(x;, w;) } 12,
andy = {(y;,u;)}}-, are summary distributions (we also
call them signatures) for the images being compared and
G isaset of transformations. For example, the points x;
and y; are points in CIE-Lab space and log-polar spatial
frequency space in the color and texture cases, respectively.
Theweightsw; and u; aretheamountsof featuresz; and y;
present in theimages. The set of allowable transformations



is application-dependent. In the lighting-invariant object
recognitionapplication, G isthe set of linear transformations
{91}, and g1.(y) = {(Ly,,u;)}. For texture comparison
whichisinsensitiveto differencesin scale and orientation, G
istheset of trandations{g; }, and g;(y) = {(y;+¢,u;)}. In
both these examples, the allowabl e transformations change
the points of a distribution but leave its weights fixed. We
shall also consider a set of transformations G = {g.} in
which g. changes only the weights of a distribution as
9c(y) = {(yj,cu;)}. Thisset arisesin estimating the size
at which color pattern occursin a color image.

We beginin section 2 with abrief review of the EMD. In
section 3, we consider the problem of computing the EMD
under various transformation sets. We start in section 3.1
with a discussion of the scale estimation application and
the corresponding EMDg probleminwhich g € G changes
only distribution weights. This EMDg problem has struc-
ture which we exploit to compute a globally optimal trans-
formation. In section 3.2, we consider EMDg problemsin
which g € G changes only distribution points. For such G,
we present in section 3.2.1 a very general, monotonically
convergent iteration called the FT iteration. We apply the
FT iteration to the applications of lighting-invariant object
recognition and point feature matching in stereo imagesin
sections 3.2.2 and 3.2.3, respectively. The main drawback
of the FT iteration is that it may convergeto only alocally
optimal transformation. In sections 3.2.4 and 3.2.5, we dis-
cuss EMD under trandation problems which can be solved
directly for aglobally optimal trandation. Finally, section 4
contains some concluding remarks.

2. The Earth Mover’s Distance (EM D)

We denote a discrete distribution as a set of weighted
pointsx = {(z;,w;)}™, = (X,w) € DX™ where X =
[z1 -+ x|, Witheach z; € RE, w; > 0. Here K isthe
dimension of the ambient space of the points z;, and m is
the number of points. Theweight of x iswy = E;’;l w;.

Given two distributions x = (X, w) € DX andy =
(Y,u) € DX, a flow between x and y is any matrix
F = (fi;) € R™*™_ Intuitively, f;; istheamount of weight
at «; which is matched to weight at y;. F' is afeasible flow
between x and y iff (i) fi; > 0, (ii) Z;’:l fij < w, (iii)
Diey fig S wgoand (iv) 320, Y00, fij = min(ws, us).
Congtraint (ii) ensures that the weight in y matched to z;
doesnot exceed w;. Similarly, (iii) ensuresthat theweightin
x matched to y; does not exceed w;. Finally, constraint (iv)
forcesthe total amount of weight matched to be equal to the
weight of thelighter distribution. Inthe unequal-weight case
wy, # ux, Some weight in the heavier distribution remains
unmatched.

Let F(x,y) denote the set of all feasible flows between
x and y. The work done by afeasible flow F € F(x,y)

in matching x and y is given by WORK(F,x,y) =
Yoy 25y fijd(xi,y;), where d(z;,y;) is the “ground
distance” between z; and y;. The Earth Mover’s Distance
EMD(x, y) istheminimum amount of work to match x and
y, normalized by the weight of the lighter distribution:

minpe r(xy) WORK(F,x,y)

EMD =
(X, y> min(wg, UE)

D

In other words, the EMD isthe average ground distance that
weightstravel sduring an optimal flow. Thework minimiza-
tion problemin (1) isaspecial type of linear program called
the transportation problem, and it can be solved efficiently
by the transportation simplex algorithm ([5]).

The EMD matches al the weight in the lighter dis-
tribution. The partial Earth Mover’'s Distance EMD”
matches only a given fraction v € (0, 1] of the weight of
the lighter distribution. The constraint (iv) is replaced by
>ty >oj—y fij = ymin(ws, us) to define 77 (x, y), and
the minimum work is normalized by v min(wy, uy,).

3. The EMD under Transfor mation Sets

The EMD under transformation set G is defined as
EMDg(x,y) = mingeg EMD(x,9(y)), where g(y) is
the result of applying the transformation ¢ € G to the
distribution y. In words, we seek a transformation of
one distribution which minimizes its EMD to another.!
The partial EMD under transformation set G is smply
EMD{ (x,y) = mingeg EMD” (x, g(y)).

3.1. Example Usein Scale Estimation
(only weights change)

In this section, the problem of estimating the size at
which a color pattern occurs in an image is phrased and
efficiently solved as an EMDg problem. Suppose that a
pattern occurs in an image as a fraction ¢* € (0, 1] of the
total image area. An instanceis shown in Figure 1(a). Let
x andy = (Y, u) denote unit-weight color signatures of the
image and pattern, respectively. A small set of dominant
image colors {z;}™, in CIE-Lab space is computed via
the color clustering algorithm in [9]. The weight w; isthe
fraction of image pixels whose nearest color cluster is ;.
See Figure 1(b),(d). Weused = L.

Since (Y,c*u) is lighter than x, the computation
EMD(x, (Y, c*u)) finds an optimal matching between c¢*
of the image color weight and the color weight in (Y, ¢*u).
Consider the ideal case of an exact pattern occurrence in

'In some situations, the symmetric definition EMDg(x,y) =
min(mingeg EMD(x, g(y)), mingeg EMD(g(x),y)) may be more
appropriate.

2Euclidean distance in CIE-Lab space matches perceptual distance be-
tween two colors that are not very different ([16]).



the image, with the same color clusters used in x and y for
the pattern colors. Then the ¢* of x's color weight con-
tributed by the pattern occurrence will match exactly the
color weight in (Y, ¢*u), and EMD(x, (Y, ¢*u)) = 0. Fur-
thermore, EMD(x, (Y, cu)) = 0 for ¢ € (0, ¢*] since there
is still enough image weight of each pattern color to match
al theweightin (Y, cu).

Ingenera, wewill provethat EMD(x, (Y, cu)) decreases
as ¢ decreases and eventually becomes constant for ¢ €
(0,¢], as shown in Figure 1(e). If the graph levels off at a
small EMD, then the pattern might occur in the image, and
wetake ¢ to bethe scale estimate. Consider the examplein
Figure 1. The scale estimate c° is such that the amounts of
red and yellow in the scaled pattern signature (Y, c°u) are
roughly equal to the amountsof red and yellow intheimage,
as shown in Figure 1(c). At scale ¢, thereis till plenty of
image weight to match the other pattern colorsin (Y, c%u).
If there were a bit more red and yellow in the image, then
the scale estimate c° would be a bit too high (> ¢*).

Themain property of our scale estimation method is that
in the ideal case it overestimates the scale by the minimum
amount of background clutter over all pattern colors, where
the amount of background clutter for a color is the amount
of that color present in the image but not part of the pattern
occurrence. In practice, we have observed scale estimates
which are a little smaller than predicted by an ideal case
analysis. Just one pattern color with a small amount of
background clutter in the image is enough to obtain an ac-
curate scale estimate. Note that an accurate scale estimate
is computed in Figure 1 even though there is a lot of back-
ground clutter for the dark green in the Comet label.

Now consider the function E(c) = EMD(x, (Y, cu)).
Thedistribution (Y, cu) hastotal weight ¢ < 1 = wy;, S0

E(c) = Min (£, ye F(x,(Y,cu)) Z?ll Z}Ll fijd(l'i:yj),
C
where (fZJ) € .7:(X, (Y, CU)) iff f” >0, EZI f” = cuy,
and Z?:l fij < w;. Now set h” = fij/c. Then

m n

E(c) = min hiid(zi,y:),
© (hi;)EF(X,w/c),y) ZZ J ( yg)

i=1 j=1

where (h;;) € F(X,w/c),y) iff (A) hy; > 0, (B)
2?;1 hij = Uj, and (C) Z?:l hij < wi/c. Note that

F((X,w/er),y) CF(X,w/ca),y) &= ca <1 (2

since the final constraints (C) get weaker (stronger) as ¢
decreases (increases).

Since E(c) isaminimumover F((X,w/c),y),itfollows
from (2) that E(c;) > E(c) iff ¢1 > ¢o. Now consider
@ C R™" defined by (A) and (B), and P(c) C R™"
defined by (C), so that F((X,w/c),y) = Q@ N P(c). Q

is bounded since its constraints imply that h;; € [0, u;].
The polytope P(c) convergesto R™" as c decreasesto zero
sincel/cincreasesto co. Since( isbounded, 3 ° for which
Q C P(c) Ve < 0. Itfollowsthat F((X,w/c),y) = Q
and E(c) = E(c°) forc < °.

The scale estimation problemisthe EMDg problemc® =
max arg ming, o<c.<1 EMD(X, g.(y)), where g.(y) =
(Y, cu). In practice, wetake asthe scal e estimate the largest
¢ for which thereis no real improvement in the EMD when
c is decreased. The estimate c° can be found efficiently
via binary search. See Figure 2. Initially, we assume ¢® €
[cmin, 1]. At any step, we have localized c® € [clow, Chigh]-
Lét cmia = (Clow + Chigh)/2. If E(cmia) = E(ciow), then
® € [Cmid, Chign]. Here “="'is approximate with respect
to a parameter £4. Otherwise, E(cmia) > E(ciow) and
e [Clow, Cmid]- The search stops 0nce|chigh - clow| <eée
the required accuracy. Inthe SEDL image retrieval system,
the optimal flow when ¢ = ¢° is used to find quickly image
regions similar in color signature to the query pattern ([2],
pp. 189-200).

Figure 3 shows some results of the scale estimation al-
gorithm for the color pattern problem. The scale estimateis
very accurate in the examples shown in Figure 3(a)-(c). In
the example shownin Figure 3(d), the scaleis overestimated
because the pattern occurs twice within the image. Since
our method does not use the positions of colors, it cannot
tell the difference between one pattern occurrence at scale
c1 + c» and two pattern occurrences at scales ¢; and c».
See pp. 85-96in [2] for more details and examples.

3.2. Point Transfor mations

In contrast to the previous section, we now consider sets
of transformations that modify the points of a distribution
but leave its weights fixed. Since g(y) = (¢(Y"), ) hasthe
sameweightsasy, we have F(x,y) = F(x, ¢(y)) and

mingeg, rer(xy) WORK(F,x,9(y))
min(wy, us) '
©)

W (F,g) = WORK(F,x,g(y)) islinear in F', so the mini-
mum valuein (3) occurs at one of the vertices of the convex
polytope F(x,y). Therefore, wecan compute EMDg (x, y)
by solving mingeg W (F, g) for each vertex F' of F(x,y).
Although this strategy is guaranteed to find a globally opti-
mal transformation, it is not practical because the number of
vertices of F(x,y) isusualy very large even for relatively
small values of m and n.

Given F or g, we can solve for an optimal value of the
other. This leads to an iteration which alternates between
finding the best flow for agiven transformation, and the best
transformation for a given flow. It generates a sequence of
(F, g) pairs for which W decreases or remains constant at
every step. The details are given in the next section.

EMDyg (x,y) =
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Figure 1. Scale Estimation. (a) pattern, image, and pattern scaled by the scale estimate °. (b),(d)
pattern, image signatures. (c) pattern signature with weights scaled by c°. () EMD(x, (Y, cu)) V. c.
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Figure 2. Scale Estimation Algorithm. Binary search narrows the interval in which ¢® must occur.

Figure 3. Scale Estimation Results. See the text for discussion.



Figure 4. FT lteration example. See the text.

3.2.1. TheFT lteration

Consider the following iteration that begins with an initial
transformation g(?:

F® = arg Fe?lily sz” m,,g )) “)

=1 j=1

gkt = = arg m1n ZZfl(]

i=1 j=1

(zirg(y5))- (B

Theminimizationin (4) isthetransportation problem. Since
thisiteration alternates between finding an optimal Flow and
an optimal Transformation, werefer to (4) and (5) asthe FT
iteration. It can be applied to equal-weight and unequal-
weight distributions.

Figure 4(a) shows an example with a dark and a light
distribution that we will match under translation starting
with ¢(® = 0. The best flow F(® for ¢(°) is shown by
the labelled arcs connecting dark and light weights. This
flow matches half (.5) the weight over alarge distance. We
should expect the best trandation for F(©) to move the .7
dark weight closer to the .8 light weight in order to decrease
the total amount of work done by F(©). Indeed, ¢() aligns
these two weights as shown in Figure 4(b). The best flow

1) for ¢() matches all of the .7 dark weight to the .8
light weight. No further transation improves the work —
g = g and the FT iteration converges.

Define WORK® W (F®) g®).  Then (4)
and (5)imply W (Fk+1) k1)) < W (F®), g(k+1)) and
W (FR), gk+D) < W (F®), g()), respectively (by defi-
nition, F**1) js optimal for g(*t1) and ¢(¥*1) is optimal
for F(®). 1t follows that WORK*+Y) < WORK™. The
decreasing sequence WORK ) is bounded below by zero,
and henceit converges. Thereis, however, no guaranteethat
it convergesto the globa minimum of WORK(F, x, g(y)).
Ingeneral, theiteration must berepeated with different ¢(©'s
in search of aglobally optimal transformation.

It is easy to see that transformations which are only lo-
cally optimal can occur in unequal-weight cases. If x is L
copiesy®t; of y, thenEMD(x, y®t;) = 0fori =1,..., L.
If the copies of y in x are well-separated, then we can pro-
duce > L — 1 only locally optimal translations by slightly

perturbing the pointsin each copy of y. We have observed
that only locally optimal transformations can also occur in
equal-weight cases ([2], pp. 163—-170).

TheFT iteration can also be applied with the partial EMD
since 77 (x,g(y)) = F(x,y) if g does not change distri-
bution weights. Furthermore, it can be modified to give
a decreasing EMD sequence if a transformation changes
points and modifies weights by a factor ¢. Such problems
arise, for example, if a distribution point contains the po-
sition of an image region with some property, the corre-
sponding weight is the region area, and a similarity trans-
formation of the image plane is alowed. The basic idea
is to choose F'(*) from an increasing sequence of flow sets
F®) . ThenW (Fk+1) gk+1)) <17 (F(#) g(k+1)) since
F+1) s an optimal flow for g+ chosen from F(k+1),
and F®) ¢ Fk) c F*+1)  The change of variables
hij = fij/c (as used in section 3.1) yields an equivalent
EMD probleminwhichtheweight of the lighter distribution
is constant throughout the iteration, and hence a decreas-
ing WORK  sequence gives a decreasing EMD sequence.
See pp. 148-151in[2] for details.

The FT iteration is similar to the ICP (lterative Clos-
est Point) iteration ([1]) used to register 3D shapes. The
computation of an optimal flow plays the same role as the
computation of the closest “model shape” pointsto the“ data
shape” pointsin the ICP iteration. Both these steps deter-
mine matches used to compute a transformation that im-
proves the EMD/registration. Another well-known appli-
cation of the aternation idea is the EM algorithm ([7]) for
computing mixture modelsin statistics.

The FT iteration can be applied whenever the op-
timal transformation problem (5) can be solved. |If
we |et [al...aN] [561"'$1$2"'$2"'$m"'$m],
[b1 -+~ bn] = (Y1 YnY1 - Yn Y1 Yn),
and [c;---en] = [fi1-- flanl f2n' fm1"'fmn].
where N = mn, then (5) can be rewritten as
mingeg fo:l erd(ar, g(by)). Given acorrespondence be-
tween point sets, the goal is to find a transformation of the
points in one set that minimizes the sum of weighted dis-
tances to corresponding pointsin the other set.

The above problem has been solved with d = L2 for
trangdlation (straightforward calculus), Euclidean and sim-
ilarity transformations ([14]), linear transformations ([3]),
and affine transformations (easy extension to the linear so-
[ution). The optimal trandation problemswith d = L. and
d = L, are covered in [15], whilethe case d = L r, the
L, distancein acircular domain with period T' (e.g. angles
with T' = 27), is covered on pp. 142-146in [2]. Thislast
distance arisesin the previoudly discussed texture similarity
application in allowing for unpenalized differencesin tex-
ture orientation (pp. 135-137 in [2], [11]). We show the
generality of the FT iteration in the next two sections by
applying it for afew different Gs and with the partial EMD.
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Figure 5. Object Database. For some objects, signatures are computed over only the outlined area.

3.2.2. Lighting-Invariant Object Recognition

For alinear, trichromatic color imaging system with a 3D
linear model for the reflectance functions of object surfaces,
Healey and Slater ([4]) showed that an illumination change
resultsin alinear transformation of image pixel colors. The
following experiment uses a subset of the images in [4].
There are four images of each object, one under nearly
white illumination and the other three under yellow, green,
and red illumination. See Figure 5 for images of the objects
under white light.

Images are indexed by unit-weight color distributionsin
the RGB color space. Our experiment? uses each image as
the query, where the desired distance is the EMD under a
linear transformation with d = L2. To compare a database
signature x to a query signature y, we applied the FT it-
eration twice: once to transform y so that it is as close as
possible to x, and once to transform x so that it is as close
aspossibleto y. Both trials were started with ¢(%) equal to
theidentity map. The smaller of the results of thetwo trials
isused as the distance between x and y. Ideally, the closest
images to the image of an object are the other three images
of the same object.

Figure 6 shows the results of our experiment. These
results are excellent, but not perfect asin [4]. It is possible
that we are not finding the globally optimal transformation
in some comparisons.

3.2.3. Point Feature Matching in Stereo I mages

In this section, we use the partial EMD under a transfor-
mation set EMD/; to compute the best partial matching of
two point feature sets extracted from stereo image pairs.
The fraction parameter v compensates for the fact that only
some features appear in both images, and the set parame-
ter G accounts for the appropriate transformation between
corresponding features. In our experiments, we extract 50
features of an image using an algorithm due to Shi and
Tomasi ([13]). See the first two columns of Figure 7. The
points in the distribution summary of an image are its fea-
ture locations, and the weight of each point is one. The
ground distanceis d = L2 between image coordinates. We
set v = 0.5, so only 25 of the 50 features per image will be
matched, and use ¢(°) = I, the identity map.

3All experiments in this work were done on a 250 MHz SGI Indigo?.

In the first example, we match features in two images
from a motion sequence in which the camera moves ap-
proximately horizontally and parald to the image plane.
Figure 7(a) shows the result of applying the FT iteration
with G = T, the group of trandations. For this camera
motion, all image points trandate along the same direction,
but the amount of tranglation for an image point isinversely
proportional to the depth of the corresponding scene point.
The model of a single trandlation vector is accurate for a
set of featuresthat correspond to scene points with roughly
the same depth. In this example, the FT iteration matched
features on objects toward the back of the table.

The images in Figure 7(b) are from a motion sequence
with a forward camera motion perpendicular to the image
plane. Here we apply the FT iteration with G = S, the
set of similarity transformations. In the final example, we
match features in images of atoy hotel. The results of the
FT iteration with G = A, the set of affine transformations,
are shown in Figure 7(c). In all three cases, it appears that
the FT iteration converged to a globally optimal transfor-
mation. In many examples, however, running the iteration
onceleadsto only alocally optimal solution. Inthe next two
sections, we consider two equal-weight EMD under trans-
lation problems which can be solved directly for a globally
optimal trangation.

3.2.4. Equal-Weight EMD7 with d = L2

Itiseasily proventhat min; 331" 327, fij|lzi— (y;+1)[13
occursatt* = (372, >0 fij(xi—y;))/ Yiey Yj=1 fij-
Intheequal-weight case, F' € F(x,y) requiresd " | f;j =
uj and 327, fij = w; since al the weight in both distri-
butions must be matched. Using these facts, t* = X — ¥y,
wherez = > wiz;/ws andy = 2?21 u;y;/us are
the centroids of x and y. The trandation that lines up the
centroids is optimal for every feasible flow. To compute
EMD 2 (x,y) for equal-weight x and y, we simply com-
pute EMD(x,y & (X — ¥)).

3.2.5. Equal-Weight EMD in 1D withd = L,

Thereis a simple solution to computing the EMD between
equal-weight distributionsin 1D with d = L; that involves
the cumulative distribution functions (CDFs). See Fig-
ure 8(a). The CDF for x starts at 0, increases an amount w;
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Figure 6. Query Results.

The column labels are the query images, and the row labels are the

illuminants (W)hite, (Y)ellow, (G)reen, and (R)ed. The boxed entry, for example, indicates that the
yellow (Y) dragon image is returned as the second closest image for the green dragon (D¢) query
image. The number at the bottom of each column is the total of the ranks in that column, where 10
is the ideal value. The query precision is perfect for 21 of the 28 queries, and the average rank sum
is 10.4. One run of the FT iteration required an average of 7.4 steps and 4.6 seconds to converge.

at each point z;, and eventually becomes ws; at the largest
point x,,. The CDFs for x and y are the bold and regular
thickness staircase graphs, respectively. Sincex and y are
equal-weight distributions, the two CDFs become constant
at the same value ws, = ux. The EMD isequal to the area
between the CDFs (shaded) divided by the total weight ([2],
pp. 71-80). The corresponding optimal CDF flow is indi-
cated with arrows.

The CDF flow is given by f5PF = [[W; 1, Wi] N
[Uj—1,Uj]l, where Wi, = S0 wi, Uy = 32 uj, and
Wo = Ug = 0. Herethe pointsand weightsin adistribution
are numbered according to increasing position along thereal
line. Thepartial sumsUy, Uy, ..., U, arethesamefor every
translated version of y, so the CDF flow is an optimal flow
betweenx andy & ¢ for every trandationt. See Figure8(b),
wherewe havere-used thelabelsy; instead of using y; +t in
order to save space. To compute the EMD under trandation
inthiscase, we simply solvethe optimal trand ation problem
ford = L, ([15]) with F = FCPF,

4. Conclusion

The EMDg problemis an example of the common com-
puter vision problem of simultaneously estimating depen-
dent sets of parameters (e.g. shape and motion in structure
from motion, or motionsand groupsin motion mixture mod-
els). Avoiding local minima during iterative improvement
of theestimationisachallenging problemin general, and the
difficulty ismagnifiedinthe EMDg problem becausepartial
matching is allowed. Some cases with special structure that
allow direct computation of a globally optimal transforma-
tion were identified. I1n the absence of such structure, how-
ever, animportant areafor futurework isto devel op efficient
and effective strategies for choosing initial transformations
for the FT iteration which are close to a global optimum,
particularly in partial matching cases where choosing ¢(°)
based on global statistics such as centroids and principal
componentswill not work.
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Figure 7. Point Set Matching. See the text. We report the number of steps S and thetime T in seconds
(s) for the FT iteration to converge. (a) S=11,T =1.8s. (b) S=4,T =1.1s. (c) S =8, T = 36.2s.

Figure 8. The Equal-Weight EMD under Translation in 1D with d = L;. The same flow FCP¥ is optimal
for (a) x and y, and (b) x and y & t. See the text for details.



