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Abstract

The Earth Mover’s Distance (EMD) is a distance mea-
sure between distributions with applications in image re-
trieval and matching. We consider the problem of comput-
ing a transformation of one distribution which minimizes its
EMD to another. The applications discussed here include
estimation of the size at which a color pattern occurs in an
image, lighting-invariant object recognition, and point fea-
ture matching in stereo image pairs. We present a monoton-
ically convergent iteration which can be applied to a large
class of EMD under transformation problems, although the
iteration may converge to only a locally optimal transfor-
mation. We also provide algorithms that are guaranteed to
compute a globally optimal transformation for a few specific
problems, including some EMD under translation problems.

1. Introduction

A major challenge in image retrieval applications is that
the images we desire to match can be visually quite differ-
ent. This can happen even if these images are views of the
same scene because of illumination changes, viewpoint mo-
tion, occlusions, etc.. Two common approaches to measure
image similarity modulo some given factors are: (I) com-
pare invariant image signatures (e.g. [4]), and (II) compare
non-invariant signatures with a distance measure that allows
for differences due to the given factors (e.g. [6, 12]).

The challenge in approach (I) is to compute invariants
that still distinguish images with differences that should be
penalized. Using invariants computed over entire images as-
sumes that two images are similar only if all the information
in one image matches all the information in the other. Such
a complete matching measure is usually not appropriate in
an image retrieval system because semantic image similarity
often follows from only a partial match. Approach (II) is
better in the partial matching case since invariance can be
built on top of a distance function which allows for partial
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matching. Of course, approach (I) can be modified to use in-
variants computed over parts of images, but this can require
quite a lot of space because invariants must be computed for
all image regions which might be matched at query time.

A very general distance measure with applications in
content-based image retrieval is the Earth Mover’s Distance
(EMD) between distributions ([10]). The EMD allows for
partial matching, and has been successfully used for measur-
ing image similarity with respect to color and texture ([11]).
For example, in [11] the color signature of an image is a col-
lection of dominant image colors in CIE-Lab space ([16]),
where each color is weighted by the fraction of image pixels
classified as that color. Also in [11], the texture signature of
a single texture image is a collection of spatial frequencies in
log-polar coordinates, where each frequency is weighted by
the amount of energy present at that frequency. Experiments
in [10] show the superiority of the EMD for color-based im-
age retrieval over many histogram dissimilarity measures,
including a common quadratic form distance ([8]).

In this paper, we extend the EMD to allow unpenalized
distribution transformations. The goal is to find a trans-
formation of one distribution which minimizes its EMD to
another, where a set of allowable transformations is given.
Consider, for example, using the EMD to measure object
similarity with respect to color. An EMD between color
signatures does not account for lighting differences. In [4],
the authors show that an illumination change results in a lin-
ear transformation of image pixel colors (under certain rea-
sonable assumptions). For the texture signatures mentioned
above, a change in texture scale and orientation results in a
translation of signature points in log-polar spatial frequency
space.

The EMD under transformation (EMDG) problem is to
computeming2G EMD(x; g(y)), where x = f(xi; wi)g

m
i=1

and y = f(yj ; uj)g
n
j=1 are summary distributions (we also

call them signatures) for the images being compared and
G is a set of transformations. For example, the points xi
and yj are points in CIE-Lab space and log-polar spatial
frequency space in the color and texture cases, respectively.
The weightswi and uj are the amounts of features xi and yj
present in the images. The set of allowable transformations



is application-dependent. In the lighting-invariant object
recognition application,G is the set of linear transformations
fgLg, and gL(y) = f(Lyj ; uj)g. For texture comparison
which is insensitive to differences in scale and orientation,G
is the set of translations fgtg, and gt(y) = f(yj+t; uj)g. In
both these examples, the allowable transformations change
the points of a distribution but leave its weights fixed. We
shall also consider a set of transformations G = fgcg in
which gc changes only the weights of a distribution as
gc(y) = f(yj ; cuj)g. This set arises in estimating the size
at which color pattern occurs in a color image.

We begin in section 2 with a brief review of the EMD. In
section 3, we consider the problem of computing the EMD
under various transformation sets. We start in section 3.1
with a discussion of the scale estimation application and
the correspondingEMDG problem in which g 2 G changes
only distribution weights. This EMDG problem has struc-
ture which we exploit to compute a globally optimal trans-
formation. In section 3.2, we consider EMDG problems in
which g 2 G changes only distribution points. For such G,
we present in section 3.2.1 a very general, monotonically
convergent iteration called the FT iteration. We apply the
FT iteration to the applications of lighting-invariant object
recognition and point feature matching in stereo images in
sections 3.2.2 and 3.2.3, respectively. The main drawback
of the FT iteration is that it may converge to only a locally
optimal transformation. In sections 3.2.4 and 3.2.5, we dis-
cuss EMD under translation problems which can be solved
directly for a globally optimal translation. Finally, section 4
contains some concluding remarks.

2. The Earth Mover’s Distance (EMD)

We denote a discrete distribution as a set of weighted
points x = f(xi; wi)g

m
i=1 � (X;w) 2 DK;m, where X =

[ x1 � � � xm ], with each xi 2 RK , wi � 0. Here K is the
dimension of the ambient space of the points xi, and m is
the number of points. The weight of x is w� =

Pm
i=1 wi.

Given two distributions x = (X;w) 2 DK;m and y =
(Y; u) 2 DK;n, a flow between x and y is any matrix
F = (fij) 2 R

m�n. Intuitively, fij is the amount of weight
at xi which is matched to weight at yj . F is a feasible flow
between x and y iff (i) fij � 0, (ii)

Pn
j=1 fij � wi, (iii)Pm

i=1 fij � uj , and (iv)
Pm

i=1

Pn
j=1 fij = min(w�; u�).

Constraint (ii) ensures that the weight in y matched to xi
does not exceedwi. Similarly, (iii) ensures that the weight in
x matched to yj does not exceed uj . Finally, constraint (iv)
forces the total amount of weight matched to be equal to the
weight of the lighter distribution. In the unequal-weight case
w� 6= u�, some weight in the heavier distribution remains
unmatched.

Let F(x;y) denote the set of all feasible flows between
x and y. The work done by a feasible flow F 2 F(x;y)

in matching x and y is given by WORK(F;x;y) =Pm
i=1

Pn
j=1 fijd(xi; yj), where d(xi; yj) is the “ground

distance” between xi and yj . The Earth Mover’s Distance
EMD(x;y) is the minimum amount of work to match x and
y, normalized by the weight of the lighter distribution:

EMD(x;y) =
minF2F(x;y) WORK(F;x;y)

min(w�; u�)
: (1)

In other words, the EMD is the average ground distance that
weights travels during an optimal flow. The work minimiza-
tion problem in (1) is a special type of linear program called
the transportation problem, and it can be solved efficiently
by the transportation simplex algorithm ([5]).

The EMD matches all the weight in the lighter dis-
tribution. The partial Earth Mover’s Distance EMD


matches only a given fraction 
 2 (0; 1] of the weight of
the lighter distribution. The constraint (iv) is replaced byPm

i=1

Pn
j=1 fij = 
min(w�; u�) to define F
(x;y), and

the minimum work is normalized by 
min(w�; u�).

3. The EMD under Transformation Sets

The EMD under transformation set G is defined as
EMDG(x;y) = ming2G EMD(x; g(y)), where g(y) is
the result of applying the transformation g 2 G to the
distribution y. In words, we seek a transformation of
one distribution which minimizes its EMD to another.1

The partial EMD under transformation set G is simply
EMD


G(x;y) = ming2G EMD
(x; g(y)).

3.1. Example Use in Scale Estimation
(only weights change)

In this section, the problem of estimating the size at
which a color pattern occurs in an image is phrased and
efficiently solved as an EMDG problem. Suppose that a
pattern occurs in an image as a fraction c� 2 (0; 1] of the
total image area. An instance is shown in Figure 1(a). Let
x and y = (Y; u) denote unit-weight color signatures of the
image and pattern, respectively. A small set of dominant
image colors fxigmi=1 in CIE-Lab space is computed via
the color clustering algorithm in [9]. The weight wi is the
fraction of image pixels whose nearest color cluster is xi.
See Figure 1(b),(d). We use d = L2.2

Since (Y; c�u) is lighter than x, the computation
EMD(x; (Y; c�u)) finds an optimal matching between c�

of the image color weight and the color weight in (Y; c�u).
Consider the ideal case of an exact pattern occurrence in

1In some situations, the symmetric definition EMDG(x;y) =
min(ming2G EMD(x; g(y));ming2G EMD(g(x); y)) may be more
appropriate.

2Euclidean distance in CIE-Lab space matches perceptual distance be-
tween two colors that are not very different ([16]).



the image, with the same color clusters used in x and y for
the pattern colors. Then the c� of x’s color weight con-
tributed by the pattern occurrence will match exactly the
color weight in (Y; c�u), and EMD(x; (Y; c�u)) = 0. Fur-
thermore, EMD(x; (Y; cu)) = 0 for c 2 (0; c�] since there
is still enough image weight of each pattern color to match
all the weight in (Y; cu).

In general, we will prove thatEMD(x; (Y; cu)) decreases
as c decreases and eventually becomes constant for c 2
(0; c0], as shown in Figure 1(e). If the graph levels off at a
small EMD, then the pattern might occur in the image, and
we take c0 to be the scale estimate. Consider the example in
Figure 1. The scale estimate c0 is such that the amounts of
red and yellow in the scaled pattern signature (Y; c0u) are
roughly equal to the amounts of red and yellow in the image,
as shown in Figure 1(c). At scale c0, there is still plenty of
image weight to match the other pattern colors in (Y; c0u).
If there were a bit more red and yellow in the image, then
the scale estimate c0 would be a bit too high (> c�).

The main property of our scale estimation method is that
in the ideal case it overestimates the scale by the minimum
amount of background clutter over all pattern colors, where
the amount of background clutter for a color is the amount
of that color present in the image but not part of the pattern
occurrence. In practice, we have observed scale estimates
which are a little smaller than predicted by an ideal case
analysis. Just one pattern color with a small amount of
background clutter in the image is enough to obtain an ac-
curate scale estimate. Note that an accurate scale estimate
is computed in Figure 1 even though there is a lot of back-
ground clutter for the dark green in the Comet label.

Now consider the function E(c) = EMD(x; (Y; cu)).
The distribution (Y; cu) has total weight c � 1 = w�, so

E(c) =
min(fij)2F(x;(Y;cu))

Pm
i=1

Pn
j=1 fijd(xi; yj)

c
;

where (fij) 2 F(x; (Y; cu)) iff fij � 0,
Pm

i=1 fij = cuj ,
and
Pn

j=1 fij � wi. Now set hij = fij=c. Then

E(c) = min
(hij)2F((X;w=c);y)

mX

i=1

nX

j=1

hijd(xi; yj);

where (hij) 2 F((X;w=c);y) iff (A) hij � 0, (B)Pm
i=1 hij = uj , and (C)

Pn
j=1 hij � wi=c. Note that

F((X;w=c1);y) � F((X;w=c2);y)() c2 � c1 (2)

since the final constraints (C) get weaker (stronger) as c
decreases (increases).

SinceE(c) is a minimum overF((X;w=c);y), it follows
from (2) that E(c1) � E(c2) iff c1 � c2. Now consider
Q � Rmn defined by (A) and (B), and P (c) � Rmn

defined by (C), so that F((X;w=c);y) = Q \ P (c). Q

is bounded since its constraints imply that hij 2 [0; uj ].
The polytopeP (c) converges toRmn as c decreases to zero
since 1=c increases to1. SinceQ is bounded,9 c0 for which
Q � P (c) 8c � c0. It follows that F((X;w=c);y) = Q
and E(c) = E(c0) for c � c0.

The scale estimation problem is theEMDG problem c0 =
max arg mingc;0<c�1 EMD(x; gc(y)), where gc(y) =
(Y; cu). In practice, we take as the scale estimate the largest
c for which there is no real improvement in the EMD when
c is decreased. The estimate c0 can be found efficiently
via binary search. See Figure 2. Initially, we assume c0 2
[cmin; 1]. At any step, we have localized c0 2 [clow; chigh].
Let cmid = (clow + chigh)=2. If E(cmid) = E(clow), then
c0 2 [cmid; chigh]. Here “=” is approximate with respect
to a parameter "d. Otherwise, E(cmid) > E(clow) and
c0 2 [clow; cmid]. The search stops once jchigh�clowj � "c,
the required accuracy. In the SEDL image retrieval system,
the optimal flow when c = c0 is used to find quickly image
regions similar in color signature to the query pattern ([2],
pp. 189–200).

Figure 3 shows some results of the scale estimation al-
gorithm for the color pattern problem. The scale estimate is
very accurate in the examples shown in Figure 3(a)-(c). In
the example shown in Figure 3(d), the scale is overestimated
because the pattern occurs twice within the image. Since
our method does not use the positions of colors, it cannot
tell the difference between one pattern occurrence at scale
c1 + c2 and two pattern occurrences at scales c1 and c2.
See pp. 85–96 in [2] for more details and examples.

3.2. Point Transformations

In contrast to the previous section, we now consider sets
of transformations that modify the points of a distribution
but leave its weights fixed. Since g(y) = (g(Y ); u) has the
same weights as y, we have F(x;y) = F(x; g(y)) and

EMDG(x;y) =
ming2G;F2F(x;y)WORK(F;x; g(y))

min(w�; u�)
:

(3)
W (F; g) = WORK(F;x; g(y)) is linear in F , so the mini-
mum value in (3) occurs at one of the vertices of the convex
polytopeF(x;y). Therefore, we can computeEMDG(x;y)
by solving ming2GW (F; g) for each vertex F of F(x;y).
Although this strategy is guaranteed to find a globally opti-
mal transformation, it is not practical because the number of
vertices of F(x;y) is usually very large even for relatively
small values of m and n.

Given F or g, we can solve for an optimal value of the
other. This leads to an iteration which alternates between
finding the best flow for a given transformation, and the best
transformation for a given flow. It generates a sequence of
(F; g) pairs for which W decreases or remains constant at
every step. The details are given in the next section.
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Figure 1. Scale Estimation. (a) pattern, image, and pattern scaled by the scale estimate c0. (b),(d)
pattern, image signatures. (c) pattern signature with weights scaled by c0. (e) EMD(x; (Y; cu)) v. c.
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Figure 2. Scale Estimation Algorithm. Binary search narrows the interval in which c0 must occur.
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Figure 3. Scale Estimation Results. See the text for discussion.
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Figure 4. FT Iteration example. See the text.

3.2.1. The FT Iteration

Consider the following iteration that begins with an initial
transformation g(0):

F (k) = arg min
F2F(x;y)

mX

i=1

nX

j=1

fijd(xi; g
(k)(yj)); (4)

g(k+1) = arg min
g2G

mX

i=1

nX

j=1

f
(k)
ij d(xi; g(yj)): (5)

The minimization in (4) is the transportation problem. Since
this iteration alternates between finding an optimal Flow and
an optimal Transformation, we refer to (4) and (5) as the FT
iteration. It can be applied to equal-weight and unequal-
weight distributions.

Figure 4(a) shows an example with a dark and a light
distribution that we will match under translation starting
with g(0) = 0. The best flow F (0) for g(0) is shown by
the labelled arcs connecting dark and light weights. This
flow matches half (.5) the weight over a large distance. We
should expect the best translation for F (0) to move the .7
dark weight closer to the .8 light weight in order to decrease
the total amount of work done by F (0). Indeed, g(1) aligns
these two weights as shown in Figure 4(b). The best flow
F (1) for g(1) matches all of the .7 dark weight to the .8
light weight. No further translation improves the work –
g(2) = g(1) and the FT iteration converges.

Define WORK(k) = W
�
F (k); g(k)

�
. Then (4)

and (5) implyW
�
F (k+1); g(k+1)

�
�W

�
F (k); g(k+1)

�
and

W
�
F (k); g(k+1)

�
� W

�
F (k); g(k)

�
, respectively (by defi-

nition, F (k+1) is optimal for g(k+1), and g(k+1) is optimal
for F (k)). It follows that WORK(k+1) �WORK(k). The
decreasing sequence WORK(k) is bounded below by zero,
and hence it converges. There is, however, no guarantee that
it converges to the global minimum of WORK(F;x; g(y)).
In general, the iteration must be repeated with different g(0)s
in search of a globally optimal transformation.

It is easy to see that transformations which are only lo-
cally optimal can occur in unequal-weight cases. If x is L
copiesy�tl ofy, thenEMD(x;y�tl) = 0 for l = 1; : : : ; L.
If the copies of y in x are well-separated, then we can pro-
duce � L � 1 only locally optimal translations by slightly

perturbing the points in each copy of y. We have observed
that only locally optimal transformations can also occur in
equal-weight cases ([2], pp. 163–170).

The FT iteration can also be applied with the partial EMD
since F
(x; g(y)) = F
(x;y) if g does not change distri-
bution weights. Furthermore, it can be modified to give
a decreasing EMD sequence if a transformation changes
points and modifies weights by a factor c. Such problems
arise, for example, if a distribution point contains the po-
sition of an image region with some property, the corre-
sponding weight is the region area, and a similarity trans-
formation of the image plane is allowed. The basic idea
is to choose F (k) from an increasing sequence of flow sets
F (k). ThenW

�
F (k+1); g(k+1)

�
�W

�
F (k); g(k+1)

�
since

F (k+1) is an optimal flow for g(k+1) chosen from F (k+1),
and F (k) 2 F (k) � F (k+1). The change of variables
hij = fij=c (as used in section 3.1) yields an equivalent
EMD problem in which the weight of the lighter distribution
is constant throughout the iteration, and hence a decreas-
ing WORK sequence gives a decreasing EMD sequence.
See pp. 148–151 in [2] for details.

The FT iteration is similar to the ICP (Iterative Clos-
est Point) iteration ([1]) used to register 3D shapes. The
computation of an optimal flow plays the same role as the
computation of the closest “model shape” points to the “data
shape” points in the ICP iteration. Both these steps deter-
mine matches used to compute a transformation that im-
proves the EMD/registration. Another well-known appli-
cation of the alternation idea is the EM algorithm ([7]) for
computing mixture models in statistics.

The FT iteration can be applied whenever the op-
timal transformation problem (5) can be solved. If
we let [a1 � � � aN ] = [x1 � � �x1x2 � � �x2 � � �xm � � �xm],
[b1 � � � bN ] = [y1 � � � yny1 � � � yn � � � y1 � � � yn],
and [c1 � � � cN ] = [f11 � � � f1nf21 � � � f2n � � � fm1 � � � fmn],
where N = mn, then (5) can be rewritten as
ming2G

PN
k=1 ckd(ak; g(bk)). Given a correspondence be-

tween point sets, the goal is to find a transformation of the
points in one set that minimizes the sum of weighted dis-
tances to corresponding points in the other set.

The above problem has been solved with d = L22 for
translation (straightforward calculus), Euclidean and sim-
ilarity transformations ([14]), linear transformations ([3]),
and affine transformations (easy extension to the linear so-
lution). The optimal translation problems with d = L2 and
d = L1 are covered in [15], while the case d = L1;T , the
L1 distance in a circular domain with period T (e.g. angles
with T = 2�), is covered on pp. 142–146 in [2]. This last
distance arises in the previously discussed texture similarity
application in allowing for unpenalized differences in tex-
ture orientation (pp. 135–137 in [2], [11]). We show the
generality of the FT iteration in the next two sections by
applying it for a few different Gs and with the partial EMD.
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Figure 5. Object Database. For some objects, signatures are computed over only the outlined area.

3.2.2. Lighting-Invariant Object Recognition

For a linear, trichromatic color imaging system with a 3D
linear model for the reflectance functions of object surfaces,
Healey and Slater ([4]) showed that an illumination change
results in a linear transformation of image pixel colors. The
following experiment uses a subset of the images in [4].
There are four images of each object, one under nearly
white illumination and the other three under yellow, green,
and red illumination. See Figure 5 for images of the objects
under white light.

Images are indexed by unit-weight color distributions in
the RGB color space. Our experiment3 uses each image as
the query, where the desired distance is the EMD under a
linear transformation with d = L22. To compare a database
signature x to a query signature y, we applied the FT it-
eration twice: once to transform y so that it is as close as
possible to x, and once to transform x so that it is as close
as possible to y. Both trials were started with g(0) equal to
the identity map. The smaller of the results of the two trials
is used as the distance between x and y. Ideally, the closest
images to the image of an object are the other three images
of the same object.

Figure 6 shows the results of our experiment. These
results are excellent, but not perfect as in [4]. It is possible
that we are not finding the globally optimal transformation
in some comparisons.

3.2.3. Point Feature Matching in Stereo Images

In this section, we use the partial EMD under a transfor-
mation set EMD


G to compute the best partial matching of
two point feature sets extracted from stereo image pairs.
The fraction parameter 
 compensates for the fact that only
some features appear in both images, and the set parame-
ter G accounts for the appropriate transformation between
corresponding features. In our experiments, we extract 50
features of an image using an algorithm due to Shi and
Tomasi ([13]). See the first two columns of Figure 7. The
points in the distribution summary of an image are its fea-
ture locations, and the weight of each point is one. The
ground distance is d = L22 between image coordinates. We
set 
 = 0:5, so only 25 of the 50 features per image will be
matched, and use g(0) = I , the identity map.

3All experiments in this work were done on a 250 MHz SGI Indigo2.

In the first example, we match features in two images
from a motion sequence in which the camera moves ap-
proximately horizontally and parallel to the image plane.
Figure 7(a) shows the result of applying the FT iteration
with G = T , the group of translations. For this camera
motion, all image points translate along the same direction,
but the amount of translation for an image point is inversely
proportional to the depth of the corresponding scene point.
The model of a single translation vector is accurate for a
set of features that correspond to scene points with roughly
the same depth. In this example, the FT iteration matched
features on objects toward the back of the table.

The images in Figure 7(b) are from a motion sequence
with a forward camera motion perpendicular to the image
plane. Here we apply the FT iteration with G = S, the
set of similarity transformations. In the final example, we
match features in images of a toy hotel. The results of the
FT iteration with G = A, the set of affine transformations,
are shown in Figure 7(c). In all three cases, it appears that
the FT iteration converged to a globally optimal transfor-
mation. In many examples, however, running the iteration
once leads to only a locally optimal solution. In the next two
sections, we consider two equal-weight EMD under trans-
lation problems which can be solved directly for a globally
optimal translation.

3.2.4. Equal-Weight EMDT with d = L22

It is easily proven thatmint
Pm

i=1

Pn
j=1 fij jjxi�(yj+t)jj

2
2

occurs at t� = (
Pm

i=1

Pn
j=1 fij(xi�yj))=

Pm
i=1

Pn
j=1 fij .

In the equal-weight case, F 2 F(x;y) requires
Pm

i=1 fij =
uj and

Pn
j=1 fij = wi since all the weight in both distri-

butions must be matched. Using these facts, t� = x � y,
where x =

Pm
i=1 wixi=w� and y =

Pn
j=1 ujyj=u� are

the centroids of x and y. The translation that lines up the
centroids is optimal for every feasible flow. To compute
EMDT ;L2

2

(x;y) for equal-weight x and y, we simply com-
pute EMD(x;y � (x� y)).

3.2.5. Equal-Weight EMDT in 1D with d = L1

There is a simple solution to computing the EMD between
equal-weight distributions in 1D with d = L1 that involves
the cumulative distribution functions (CDFs). See Fig-
ure 8(a). The CDF for x starts at 0, increases an amount wi
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Figure 6. Query Results. The column labels are the query images, and the row labels are the
illuminants (W)hite, (Y)ellow, (G)reen, and (R)ed. The boxed entry, for example, indicates that the
yellow (Y ) dragon image is returned as the second closest image for the green dragon (DG) query
image. The number at the bottom of each column is the total of the ranks in that column, where 10
is the ideal value. The query precision is perfect for 21 of the 28 queries, and the average rank sum
is 10.4. One run of the FT iteration required an average of 7:4 steps and 4:6 seconds to converge.

at each point xi, and eventually becomes w� at the largest
point xm. The CDFs for x and y are the bold and regular
thickness staircase graphs, respectively. Since x and y are
equal-weight distributions, the two CDFs become constant
at the same value w� = u�. The EMD is equal to the area
between the CDFs (shaded) divided by the total weight ([2],
pp. 71–80). The corresponding optimal CDF flow is indi-
cated with arrows.

The CDF flow is given by fCDFij = j[Wi�1;Wi] \

[Uj�1; Uj ]j, where Wk =
Pk

i=1 wi, Ul =
Pl

j=1 uj , and
W0 = U0 = 0. Here the points and weights in a distribution
are numbered according to increasing position along the real
line. The partial sumsU0; U1; : : : ; Un are the same for every
translated version of y, so the CDF flow is an optimal flow
between x and y� t for every translation t. See Figure 8(b),
where we have re-used the labels yj instead of using yj+t in
order to save space. To compute the EMD under translation
in this case, we simply solve the optimal translation problem
for d = L1 ([15]) with F = FCDF.

4. Conclusion

The EMDG problem is an example of the common com-
puter vision problem of simultaneously estimating depen-
dent sets of parameters (e.g. shape and motion in structure
from motion, or motions and groups in motion mixture mod-
els). Avoiding local minima during iterative improvement
of the estimation is a challenging problem in general, and the
difficulty is magnified in theEMDG problem because partial
matching is allowed. Some cases with special structure that
allow direct computation of a globally optimal transforma-
tion were identified. In the absence of such structure, how-
ever, an important area for future work is to develop efficient
and effective strategies for choosing initial transformations
for the FT iteration which are close to a global optimum,
particularly in partial matching cases where choosing g(0)

based on global statistics such as centroids and principal
components will not work.
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Figure 7. Point Set Matching. See the text. We report the number of steps S and the time T in seconds
(s) for the FT iteration to converge. (a) S = 11, T = 1:8s. (b) S = 4, T = 1:1s. (c) S = 8, T = 36:2s.
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Figure 8. The Equal-Weight EMD under Translation in 1D with d = L1. The same flow FCDF is optimal
for (a) x and y, and (b) x and y � t. See the text for details.


