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Thou com’st in such a questionable shape 
That I will speak to thee Shakespeare, Hamlet 

Whence and what art thou, execrable shape Milton, Paradise Lost 

Summary. A major step forward in geophysics during the last 25 years has 
been the progress in the determination of the Earth’s shape and gravity field, 
from the halting steps of the first satellite orbit analyses to the global solu- 
tions expanded in spherical harmonics up to degree 36, and from painstaking 
gravity surveys on land to the detailed regional geoids derived from altimeter 
observations. No other geophysical quantity pertaining to lateral variations in 
the structure of the crust and mantle is now known with a comparable 
accuracy and spatial resolution. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAn increasingly acute problem has been to 
find ways to validate the global results since differences between individual 
solutions remain substantial. Absolute tests are not available but statistical 
comparisons produce some useful insight into the status of the recent gravity 
field models. A number of recent models are evaluated in this paper. A 
primary conclusion is that the gravity or geoid anomalies are frequently not 
as well determined as stated by the autbors. We estimate, for example, that 
the root mean square errors of the geoid heights deduced from models by 
Lerch et al. and Gaposchkin are about 3 m  and that maximum errors may 
exceed 10m in some places. A considerable part of this comes from uncer- 
tainties in the low degree harmonics, in particular the degree and order 3 
coefficients and more generally the odd degree coefficients, for while the 
signal-to-noise ratio of these coefficients is high the power in the spectrum is 
also high. Most tests developed for evaluating the gravity fields are insensitive 
to the long wavelength components in the spatial spectrum. Future projects 
call particular attention to improving the high degree part of the geopotential 
spectrum but thought should also be given to these low degree harmonics. 
Considerable progress in determining the gravity field can still be made by 
using data already available. 
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Introduction 
Nineteen fifty-eight saw the launching of the first United States artificial satellite and of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Geophysical Journal, two events that were to come together the same year with a paper 
dealing with the determination of the Earth’s gravity field from satellite observations. Prior 
to these events, knowledge of terrestrial gravity was restricted to surface observations and, 
apart from the submarine measurements initiated by Vening Meinesz, the observations were 
restricted to the more readily accessible land areas (see Heiskanen zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Vening Meinesz 1958, 
for a review of the data available at that time). In consequence, the global expansions of the 
gravity field were restricted to the first few terms of the spherical harmonic expansions (see, 
for example, Jeffreys 1959, fig. 21). Even these coefficients were poorly known. 

The use of artificial satellites as sensors of the Earth’s gravity field was anticipated before 
Sputnik zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 was launched in 1957 and early analyses of satellite orbit perturbations, particu- 
larly of the Sputnik 2, Explorer I and Vanguard I spacecrafts, quickly revolutionized the 
study of the Earth’s gravity field. The first published results appear to have been those of 
Buchar (1958) and Merson & King-Hele (1958), both published in Nature, of Jacchia 
(1958), published in a Smithsonian Astrophysical report, and of Cook (1958), published in 
the Geophysical Journal. Buchar estimated the dynamical flattening zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC,, (see below) on the 
assumption that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC, and higher degree terms are negligible. Merson & King-Hele established 
that this assumption was unrealistic but, from one satellite orbit alone (Sputnik 2), they 
could only produce a linear relation between C2, and C,. Jacchia analysed Sputnik 2 and 
Vanguard 1 orbits to estimate both of these coefficients. Cook combined the Merson & 
King-Hele results with Jeffreys’s analysis of surface gravity in what was the first attempt at 
combining these two quite distinctly different estimates of the gravitational potential. 
Results for the odd zonal harmonic Cm were first published by O’Keefe, Eckels & Squires 
(1959) and Kozai (1959). Preliminary results for some of the higher degree zonal harmonics 
soon followed, notably by King-Hele and Kozai. These early results have been reviewed by 
King-Hele (1 961) (see also this issue). 

That the ellipticity of the Earth’s equator (defined by the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACZ2, SZ2 terms) could result in a 
measurable perturbation in satellite motion was recognized already by O’Keefe & Batchelor 
(1957). Compared to the zonal harmonic perturbations, the longitude-dependent terms will 
generally cause orbital perturbations that are of short period and it was sometimes argued 
that these coefficients could not be determined from the analysis of tracking data of 
satellites (e.g. Cook 196 1). Izsak (1 961), however, using Baker-Nunn camera observations, 
derived results for the ellipticity coefficients, as did Kaula (1961a) using the Minitrack 
interferometry tracking system. In addition to C,, and SZ2, Kaula also obtained estimates 
for the (4,1), (4,2), (6,1) and (6,2) degree and order coefficients. Newton (1962) analysed 
Doppler observations of the early navigation satellites and obtained estimates of some of 
these low degree tesseral harmonics. 

It was recognized at a very early stage that these results, however preliminary they may 
have been, pointed to an Earth that was out of hydrostatic equilibrium (e.g. Cook 1958) and 
that, when combined with the precession constant, the dynamical flattening provided an 
estimate of the Earth’s moment of inertia (O’Keefe 1959; Henriksen 1960). It was also 
recognized that the departures from hydrostatic equilibrium implied either a finite strength 
for the mantle or dynamic processes within it (MacDonald 1962). O’Keefe (1960) argued 
that convection would not maintain the implied gravity anomalies and that the mantle 
possessed a finite strength, as already argued by Jeffreys (1959). Kopal (1962), on the other 
hand, argued for convection in the mantle. Others simply stated that the potential 
coefficients derived from the satellite orbits were meaningless since that below the crust the 
Earth, per definition, must be in hydrostatic equilibrium. This point persisted in some circles 
at least up to 1966 (Ledersteger 1967). 

K .  Lambeck and R. Coleman 
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The year 1966 saw two major advances in satellite geodesy. One was the publication of 
the Smithsonian Astrophysical Observatory’s comprehensive gravity field model complete to 
degree and order 8 (Lundquist zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Veis 1966). This solution was based on Baker-Nunn camera 
observations. It, and the earlier Doppler-based solution by Guier & Newton (1965), provided 
valuable material for speculating about mantle convection (e.g. Runcorn 1967). The second 
major advance of 1966 was the publication of Kaula’s meory of Satellite Geodesy (Kaula 
1966a). His systematic development of close Earth satellite orbital theory, already fore- 
shadowed in Kaula (1961b), quickly became the basis for many subsequent analyses of orbit 
perturbations. 

The 1966 Smithsonian solution was followed some four years later by a much improved 
model in which the gravitational potential was expanded to degree and order 16 (Gaposchkin 
& Lambeck 1970, 1971). This solution contained a significant amount of laser range 
measurements in addition to Baker-Nunn observations. It was also one in which, for the first 
time, the introduction of surface gravity observations actually led to an improved represen- 
tation of the satellite motion. Also for the first time, relations between the global gravity 
field and plate tectonics emerged, with plate margins, particularly converging ones, tending 
to be associated with positive anomalies while stable plate interiors tended to be associated 
with negative gravity anomalies (see Kaula 1972, for a discussion of these relations). Further 
iterations were published by Gaposchkin (1 973, 1974, 1977). These solutions have generally 
been referred to as ‘Standard Earth’ models and we use the notation SE followed by the 
year of publication. Independent solutions also appeared from the Goddard Space Flight 
Center (Smith et al. 1976; Lerch et al. 1979). These solutions are usually referred to as 
Goddard Earth Models, or GEM solutions. The Groupe de Recherches de Geodesie Spatiale 
in France and the Geodetic Research Institute in Munich jointly developed the capability 
for global potential modelling (Balmino, Reigber & Moynot 1976, 1978). These solutions 
are referred to by an acronym GRIM whose original meaning appears to have been lost. 
While these later solutions may not have added much to the geophysical understanding of 
the gravity field, they have provided valuable and independent verification of the satellite 
results. 

By about 1977 the solutions appeared to be approaching the limits of the methods of 
analysing perturbation in the satellite motion as deduced from ground-based tracking data, 
whether camera, electronic or laser. The launch in 1975 of GEOS 3, the much-heralded radar 
altimeter-carrying satellite, represented a next important step in measuring the Earth’s 
gravity field. This was followed in 1978 by the short-lived but productive SEASAT 1. 
Preliminary global solutions incorporating these observations have been published by 
Gaposchkin (1980) (SE 1980), Lerch et al. (1981) (GEM 10B) and Reigber et al. (1982) 
(GRIM 3). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Gravity field representation 
It is convenient to expand the gravitational potential U(r, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4, A) in spherical harmonics 
according to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1 GM 
U(r, & A )  = ~ (1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt f zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf (F) Pl,(sin@) [C,, cosmA +Si,sinmA]) . ( I )  

r 1=2 i n - 0  

In this expansion r, 4, A are the geocentric distance, latitude and longitude of the point at 
which this potential is evaluated, referred to a set of inertial axes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAXi. If longitude is defined 
relative to a meridian fixed to the Earth then A = h t 0, where the sidereal angle 8 defines 
the orientation of the Earth in space. For present purposes the XI, X ,  axes may be taken 
to lie in the equatorial plane and X 3  as being parallel to the rotation axis of the Earth. The 
Pi,(sin Cp) are the Legendre functions of degree I and order m. Different definitions are used 
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in the literature but the two principal ones are the unnormalized functions defined as (e.g. 
Heiskanen zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Moritz 1967) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK. Lambeck and R. Coleman 

dmPl,(sin (J) 
plm (sin$) = (1 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

d (sin ( J ) ~  ' 
with 

1 d' 
Plo(sin @) = __ ___ (sin'+l)', 

2'1! d(sin(J)' 

or the fully normalized functions defined as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
p l m  = Nlm Plm > 

where Nlm is the normalizing factor 

N ; ~  =(2-6,,)(21+ l)(Z-m)!/(Z+m)! (2c) 

and where 
defined such that 

= 1 when m = 0, otherwise 6,, = 0. The fully normalized functions are 

[em (sin (J) cos m h]  'do = [em (sin (J) sin mh] 'do = 477 

where the integral is taken over the surface o of a unit sphere. 

internal mass distribution of the planet according to 

d zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1, 
The Clm , Sl, are the (unnormalized) Stokes coefficients, representing integrals of the 

where the integral is over the massM of the Earth. In normalized form 

G m  = Clm IN',. (3b) 

In equation (1) G is the gravitational constant and R is the mean equatorial radius. Note that 
the definition of the Stokes coefficients is a function of the last two parameters. 

The use of the spherical harmonic expansion of the potential is mathematically con- 
venient in that the so-expanded potential satisfies Laplace's equation outside the Earth and 
that the expansion converges outside a sphere that encompasses all mass of the Earth (e.g. 
Heiskanen & Moritz 1967). Furthermore, this representation results in a convenient spectral 
decomposition of the perturbations in the satellite motion from the Keplerian state (Kaula 
1966a). 

The sensitivity of the satellite to the gravitational potential depends on three factors. 
First, the potential decreases with altitude; with contributions from higher degree harmonics 
attenuating more rapidly than contributions from lower degree harmonics according to the 
r-'(R/r)' term in equation (1). Secondly, the Stokes coefficients themselves tend to decrease 
with degree according to a rule first noted by Kaula, namely that 

o zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACG,,S,,} = ~ 1 0 - ~ / z ~  (4) 

with A = 0.85 (Lambeck 1976). Taken together, these two factors imply an attenuation of 
the potential with wavelength and altitude according to 

r (y;. 
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Thirdly, in a general way, the higher the order zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm of the harmonics the shorter will be the 
period and the smaller will be the amplitude of the perturbation (Kaula 1966a; Gaposchkin 
1973). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(An exception to this is the special case of resonance, discussed below.) The conse- 
quence of this attenuation is two-fold. On the one hand, it should be possible to describe the 
satellite motion with high precision using a finite number of terms in the expansion (I),  but, 
on the other hand, the gravity field can be determined from the perturbation analysis with 
only a limited resolution. Fig. 1 illustrates schematically these limitations for typical close- 
earth satellites. In a general way the potential coefficients of degrees and orders that lie out- 
side the shaded area bounded by the curves I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAA’ cannot be determined from 1 m 
accurate tracking data. The curves Z=m and CC’ defines the region of coefficients that 
cannot be detected with 20 cm accurate tracking data. The gain in resolution is substantial, 
from a complete field of degree 10 for the 1 m data to about degree 18 for the 20 cm data. 

By 1977 the accuracy of laser ranging data had improved to about 20cm (e.g. Pearlman 
et al. 1977) for the Smithsonian instrumentation, and to about lOcm (e.g. Vonbun 1977) 
for the Goddard lasers. Most of the data collected in earlier years had a precision of only 1 m 
or worse. Thus an appropriate average precision estimate for all the laser observations at that 
time may be about 50cm and the satellite should be sensitive to a field expanded up to 
about degree 14 (curves BB‘ of Fig. 1). Equally important to  precision is that there are a 
number of satellites, in different orbits, that are sensitive to a particular group of potential 
coefficients. This arises from the fact that there are groups of coefficients that introduce 
perturbations of equal period. To separate them it is desirable to track satellites with 
different orbital characteristics, particularly with different inclinations. In recent years 
precise tracking has been restricted to only a few of the laser reflector tracking satellites. 
Most recent observations are restricted to three satellites of which one, LAGEOS, on a very 
high altitude orbit, is sensitive only to harmonics of relatively low degree ( 5  8). Referring to 
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Figure 1. Schematic representation of the non-zonal Stokes coefficients that can be determined from 
satellite orbit perturbation analyses. With tracking data precise to 1 m, coefficients lying in the shaded 
region to the left of the curves AA‘ can be determined. With 50cm tracking data this boundary is 
shifted to BB’, and with 2Ocm tracking data the limits have shifted to CC’. The coefficients between 
the curve D and A’, B‘, C’ are determined from resonance analyses. 
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Fig. 1, only two satellite orbits are available in such recent solutions as that of Lerch et al. 
(1981) from which the harmonics in the region between the curves zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABB' and CC' can be 
determined. Solutions based on satellite observations alone may, therefore, exhibit strong 
correlations between the higher degree and order coefficients. 

As a result of these limitations, attention has been focused on alternative methods of 
determining the gravity field, by radar altimeter measurements of the shape of the geoid 
over oceans, by measuring the differences in potential between neighbouring low altitude 
satellites, or by measuring the gradient of gravity in a low altitude spacecraft. These alter- 
natives have been discussed by the National Research Council (1 979) and Lambeck (1979). 
In these approaches the spherical harmonic representations of the potential quickly become 
unwieldy and some alternatives have been explored by Kaula (1 983). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

K .  Lambeck and R. Coleman 

Intercomparisons: a statistical evaluation 

A principal difficulty in interpreting the gravity field models published over the years is the 
inability to make objective evaluations of the solutions. Surface gravity has often been used 
as a standard for evaluating the purely satellite solutions (e.g. Kaula 1966b; Lambeck 1971) 
but the quality of this data set is itself questionable when treated globally. More recently, 
altimeter data have been used for comparison purposes, but these tests, as used by Lerch zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
er al. (1979) and Reigber er al. (1982), are generally insensitive to the very long wavelength 
components of the gravitational potential or geoid heights. The precision with which the 
satellite motion can be described is also used as a criterion for evaluating gravity field models 
but it must be recalled that what is sought is a set of geophysically meaningful parameters that 
describes this field, not necessarily a set of parameters that defines the motion of a particular 
satellite or group of satellites. Klokocnik zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Pospisilova (1981) discuss one such test in which 
the effect of a linear combination of selected harmonics on the satellite motion is evaluated. 
The real difficulty with applying these tests to final iterations is that the data are rarely 
independent since optimum solutions will incorporate surface gravity, radar altimetry and 
satellite observations in an iterative process. These tests are important for establishing 
relative weights of the constituent data sets. An intercomparison of different solutions, by 
estimating what information is common to the various models, is more straightforward, 
although this does not provide an absolute test of the quality of the solution. 

The normalized discrete power spectrum of the gravitational potential defined by 
equation (1) is given as (e.g. Kaula 1967) 

- 
where C1,,,, 6 Gm and c2rm = g m .  Two independent estimates U1 and U2 of the potential, 
each expanded according to (1) up to the same degree I* and order m*, can be written as 

u1= u, + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA€1 ; u, = u, + €2 (7) 

where U, is the true contribution to the total potential defined either by all harmonics with 
1 G I * ,  m G m* or by a subset of potential coefficients. The el and e2 are the errors in the 
estimates of the U1 and U2. If the expected value of a quantity x is denoted by E(x) and the 
mean value of this quantity by (x), then with the assumption that el,  e2 and Uo are 
uncorrelated zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
E { (U,  - U2)2 } = ( (U1 - U2)2 ) = ( U: ) - 2 ( U1 Uz ) + ( U; ) 
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where C(l)il, are the Stokes coefficients corresponding to the potential zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU1 and the 
C(z)il, correspond to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU,. Also 

The first of these relations (8a) provides a measure of the agreement between the two 
estimates of the potential and 

((U1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- U2)’> = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE {e:} + E 

The second quantity (8b) is a measure of the amount of information common to the two 
estimates of the potential, or a measure of the true power in the geopotential spectrum. 
These comparisons can be carried out for the total field up to  a fixed degree or, alternatively, 
for each degree separately although, in the latter case, the estimates for the lower degree 
terms become unreliable because of the small sample sizes. 

Results zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
PRE-ALTIM ETER S O L U T I O N S  

By 1978 the three principal solutions of the global gravity field were by Gaposchkin (1977), 
Lerch et  al. (1979) and Balmino et  al. (1978). The Gaposchkin solution, referred to here as 
SE 1977, is based mainly on an analytical description of the satellite motion (see also 
Gaposchkin 1973). In the other two solutions the equations of motion are solved directly 
by numerical integration (e.g. Balmino 1975; Gaposchkin 1979). The virtues of the former 
approach are its elegance, that it leads to a deeper understanding of the orbital mechanics, 
and that long orbital arcs (about 30 days or more) can be analysed without excessive 
computer requirements. On the negative side, for high precision orbits the theory becomes 
complex due to the need to take into account the interaction between C2, and the tesseral 
harmonics. The virtues of the latter approach are its potentially high accuracy and its 
convenience. Orbital arc lengths are generally limited to about one week, making the 
approach less convenient for analysing long period perturbations. 

The only satellite observations used by Gaposchkin in the SE 1977 solution are laser 
ranges to nine satellites tracked from 14 stations. Essentially the same data are used in the 
other two solutions. Balmino et  al., in their GRIM2 solution, used the less precise camera 
data as well. Lerch et al., in producing their GEM9 and 10 models, used laser, camera, 
Doppler and other electronic data, some of which is less precise than the laser data by as 
much as three orders of magnitude and which, because orbital arc lengths are short, must 
add little to the solution. In this last-mentioned solution a total of 840 000 observations to 
30 satellites have been used. This includes about 250000 laser range observations to the 
same nine satellites used by Gaposchkin and Balmino et  al, Two solutions are given by Lerch 
el al. One, GEM9, is based on satellite tracking data only and the second, GEM10, includes 
surface gravity. The SE 1977 and GRIM2 solutions represent iterations upon earlier models 
in which all the satellite orbits have been recomputed using the best available force models 
and gravity field parameters. In general the GEM series of models are not true iterations 
in this sense. Rather, the successive models represent increasing amounts of observation 
equations, referenced to a variety of force models and physical parameters, without the 
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orbits being recomputed with the improved parameters of the previous iteration. In conse- 
quence, while the solutions may converge it may be that they do not converge on the true 
potential zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. 

The three solutions differ in their treatment of both zonal and resonant harmonics. The 
latter are discussed separately below. Gaposchkin adopts a set of zonal coefficients derived 
separately from long-arc analyses (Gaposchkin 1973) and keeps the resulting values fixed 
in the solution for the longitude dependent terms. Balmino zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al. include the zonal harmonic 
observation equations of Kozai (1969), Gaposchkin (1973) and Cazenave et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAat. (1972) in 
their inversion for all the Stokes coefficients. Lerch et al. apparently solve for all harmonics 
simultaneously without introducing observation equations based on long-arc analyses. Since 
the orbital arcs analysed are restricted to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 or 7 days, whereas the zonal harmonic pertur- 
bations are of much longer period, the coefficients are determined mainly from the short 
period perturbations that they introduce into the satellite motion. The less precise electronic 
data mentioned above would contribute to the determination of the zonal harmonics if long 
orbital arcs were analysed. 

Because of the inability to solve for the higher degree and order terms, surface gravity 
data have been incorporated in all three solutions. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA very similar basic data set of l o x  1" 
mean values has been used throughout. Minor differences exist in the manner in which these 
data have been combined into larger (5" x 5" or 550 x 550 km) area means but this is unlikely 
to be important. More significant is that in all three solutions little attempt has been made to 
critically evaluate the data: the fact that area means exist for all 1 O x  1 " blocks over Asia, for 
example, is a consequence of prediction rather than of the availability of measurement. As 
reported to one of us, observed area means over the Soviet Union point to  gross errors in 
the predicted values used in these compilations and to significant discrepancies between the 
observed values and the global models discussed here. 

Gaposchkin solved for the harmonics up to degree and order 24 without assuming any 
a priori information on the power spectrum of the potential. Balmino et al. determine the 
coefficients to degree and order 30 while Lerch et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal. include coefficients to degree and 
order 22. Because the satellites are insensitive to many of the coefficients in these expan- 
sions, both Balrnino et al. and Lerch et al. have imposed constraints to control the inversion 
of otherwise ill-conditioned matrices. This process assumes that the potential coefficients 
decay according to some a priori rule, in this case Kaula's rule (4). The imposed condition 
equations are of the form 

K. Lambeck and R. Coleman 

( C ~ , , , , ~ , , , , ) = O ~ A I O - ~ / ~ ~  (9) 

Balmino et al. impose these constraints on the lower degree harmonics ( I  G 10) while Lerch 
et al. impose these constraints on the non-resonant harmonics with I >  12. That this condi- 
tion is required for the lower degree harmonics is perhaps symptomatic of insufficient 
precise tracking data to permit a separation of the coefficients. That the need is seen to 
introduce the constraint for the high degree harmonics confirms the earlier conclusion that 
the satellite tracking data alone are inadequate, and that the surface gravity data are also 
insufficient. One consequence of introducing the constraint (9) is that the resulting geo- 
potential spectrum may not reflect the true nature of the gravity field since the rule (4) is 
not a law. While there are simple physical explanations for it ( e g  Lambeck 1976; Kaula 
1977), there are no reasons why the actual spectrum should not depeart from it at any wave- 
number. 

Fig. 2 illustrates the power spectra for the three solutions, SE 1977, GEM10 and GRIM2. 
The zonal harmonics have been excluded in these spectra calculations. Power is comparable 
in all three solutions up to about degree 13, but at higher degrees the Goddard model 
(GEM10) yields significantly lower power estimates. This is a direct consequence of the 
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Degree 1 
Figure 2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPower spectrum of the normalized gravitational potential V;(U as estim_ated from three solu- 
tions which do not include altimetry data. Also indicated is the ‘best’ estimate ( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU: ) of this power and 
the uncertainty estimate E ( U ~ )  of this quantity. The dashed curve represents the average error spectrum. 
Difference spectra, defined by (8a) are also indicated. 

constraint (9) imposed in that solution. Comparisons of pairs of solutions provides estimates 
of the ‘true’ power in the spectrum according to the relation (8b). Fig. 2 illustrates the ‘best’ 
estimate of this spectrum zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( U ;  ) namely the mean of the three, not now independent, 
estimates ( U a ) .  The obvious assumption made here is that all three solutions are of compar- 
able accuracy. The uncertainty estimates of this mean spectrum are also indicated. This 
quantity E(U;)  is defined as 
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where the index i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1, 2, 3 refers to the three possible estimates of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( U i  ). At higher degrees 
these estimates approach or equal the signal. The mean spectrum remains strongly biased by 
the Goddard model. Also illustrated in Fig. 2 are the difference spectra defined by (8a). 
These may be considered as estimates of the upper limits to the individual error spectra. 
AlLeady at degree 12 the difference spectra approach the power estimate of thezignal, 
( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAUg). Estimates of the error spectra, defined by the expressions (8c) and (8d) with ( U ;  ) for 
the estimate of the true power, are not very satisfactory since they are frequently negative. 
For the low degrees this is mainly a consequence of small sample sizes but it may also reflect 
departures from the conditions of independence assumed above. This will be in part due to 
the very similar data sets and force models used in all solutions and in part due to the intro- 
duction of the constraint (9) in the GRIM and GEM models. 

K .  Lambeck and R. Coleman 

The total power in the error spectrum of the potential zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAUi is given by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 

and the root mean square geoid height error EN is 

An upper limit to eN is given by 

Total power 

in the three solutions is comparable (Table I), for while the GEM1 0 solution contains least 
power at high degrees this represents only a small contribution to the total power. At low 
degrees (I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt lo), the power estimates are least in the GRIM2 model (Table 2) and this also 
points to the influence of the condition (9). Within the common wavenumber range of 
2 5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA12 22, the accuracy of the geoid heights as defined by (1 la) ranges from 2.3 to 4.7m 
according to the particular solution. Upper limits of this quantity, defined by (1 lb), are of 
the order 5-6 m (Table 1). A check on these error spectra follows from a comparison with 
the quantity E ( U ~ )  defined by (10). In general e(U;)  is approximately equal to the mean of 
the three error estimates at all degrees except at low degrees where better agreement is found 
if E ( U ~ )  is compared with 

That much of the contribution to the error estimates comes from the low degree 
harmonics, particularly I = 2 and 3, is perhaps the most important point to emerge from 
these comparisons: for while the signal-to-noise ratio of these harmonics is high these 
harmonics remain inadequately known, in an absolute sense. Table 3 summarizes the degree 
3 coefficients: major discrepancies between the solutions occur for the sine terms. Why these 
differences occur is not obvious to us although one reason may be the neglect of the 
coupling terms between the zonal and tesseral harmonics in the analytical solution of 
Gaposchkin. These results do explain why these gravity field models do not describe the 
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Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. Comparisons of total power in the potential spectrum zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
21 Vf( i7)  for three gravity models. The summation is for all non- 
zonal harmonics with 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< 1 < 22. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU’, ) is the average of the three 
estimates of the true power in the geopotential. The power in the error 
spectra are defined by equations ( l l a )  and ( l lb) .  All power estimates 
are to be multiplied by (GMR-1,10-6)2. The rms geoid height errors 
are in metres. 
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SE 1977 GRIM2 GEM10 

x v;(w 21.82 21.49 21.40 
1 

2( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2) 21.24 k 0.56 
I 

2 E { 2 }  0.55 0.24 0.13 
I 

2 IE{cZ) I 0.83 0.61 0.5 1 
I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
fN 4.7m 3.1 2.3 
EN I max 5.8 5.0 4.6 

Table 2. Power estimates of the potential and error spectra for three models. All power estimates are to 
be multiplied by (GMR-.’ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA10-6)2. The rms geoid height error estimates ( in metres) are defined according 
to equations (1 1). 

I (3 )  

2 7.932 
3 7.961 
4 2.193 
5 1.25 9 
6 0.755 
7 0.464 
8 0.168 
9 0.168 

10 0.108 

z 2 1.008 
X I  I 

e d m )  
~ N I  max(m) 

SE 1977 

v;(u) 
7.870 
8.239 
2.222 
1.283 
0.719 
0.447 
0.170 
0.236 
0.086 

21.272 

E ( f 2 )  

- 0.062 
0.279 
0.032 
0.024 

- 0.036 
-0.017 

0.002 
0.068 

-0.022 

0.268 
0.542 

3.3 
4.7 

GRIM2 

V f ( 0  

8.051 
7.847 
2.169 
1.225 
0.833 
0.506 
0.155 
0.176 
0.172 

21.134 

E i c 2 )  

0.119 
-0.1 14 
-0.024 

0.034 
0.079 
0.042 

0.008 
0.064 

0.195 
0.497 

2.8 
4.5 

-0.013 

GEMlO 

Vf( i7)  

7.882 
7.850 
2.217 
1.348 
0.774 
0.549 
0.241 
0.181 
0.123 

21.165 

Table 3. Third degree Stokes coefficients (x lo6) from different geopotential solutions. 

ClWl GEMlO SE 1977 GRIM2 GEML2 GEMlOB 

c30 0.958 0.960 0.961 0.958 0.959 
c3, 2.028 2.049 1.962 2.029 2.031 
s3, 0.252 0.277 0.155 0.250 0.253 
‘3 2 0.893 0.918 0.864 0.903 0.894 

c 3 3  0.700 0.665 0.712 0.722 0.713 
s 3 3  1.412 1.489 1.557 1.414 1.419 

s3* -0.623 -0.681 - 0.545 -0.616 - 0.621 

E ( c 2 )  

-0.050 
-0.111 

0.024 
0.085 
0.019 
0.085 
0.073 
0.015 
0.015 

0.155 
0.477 

2.5 
4.4 

SE 1980 

0.960 
2.038 
0.275 
0.884 

0.671 
1.496 

-0.627 
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motion of the LAGEOS satellite as well as they ought to. This point must have been recog- 
nized by Gaposchkin for he determined a new solution by adding laser observations of 
LAGEOS to the SE 1977 solution (Gaposchkin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Mendes 1977). (Neither details nor 
coefficients of this solution have been published). Lerch, Klosko & Patel (1 982) have also 
added LAGEOS observations to the GEM9 solution to obtain an improved field denoted by 
GEML2. Clearly this solution is strongly correlated with the GEMlO solution and this is 
reflected in the results in Table 3. We return to this solution below. 

Fig. 3 illustrates the difference between the GEMlO and SE 1977 solution where both are 
expanded to include terms up to degree and order zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 .  A significant part of this comes from 
the 3,3 coefficients. That the largest discrepancies occur over oceanic areas could reflect a 
problem associated with the surface data since gravity data in most of these regions are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

K .  Lambeck and R. Coleman 

Figure 3. Difference in the geoid solutions GEM10 and SE 1977 with both solutions truncated so as to 
include all harmonics with I ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm < 5. Contour interval is 1 m, shaded areas are negative. 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. Same as Fig. 3 but with I ,  m < 16. Contour interval is 3 m. 
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sparse. However, it could be anticipated that these data should not contribute significantly 
to the low degree terms. The dipole-like discrepancy over the Indian Ocean reflects a 
difference in the location of the negative anomaly south of India at 70" east longitude. 

Of the solutions considered, none appear to be very reliable at high degrees (see Fig. 2). 
An appropriate point at which to truncate the expansions is perhaps at about degree 16 or 18 
where the difference power spectrum, defined by @a), begins to exceed the signal. Neither 
the satellite nor surface data contain useful information beyond this degree. Fig. 4 illustrates 
the difference in geoid heights for the SE 1977 and GEM10 models, with both solutions 
truncated at degree 16. Some of the discrepancies now exceed 18 m, with many of the larger 
differences occurring over the unsurveyed southern oceans, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAsia, Africa and Antarctica. 

If a conclusion is to be drawn at all from these solutions it is that the Gaposchkin 
solutions do not meet the requirements of a Standard Earth model, that the Lerch zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAef al. 
models may not be as good as their names imply and that the Balmino et al. solution is not 
as severe as implied by its acronym. 

ALTIMETER SOLUTIONS 

Solutions which incorporate GEOS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 altimetry observations in addition to the above data 
sets have been published by Gaposchkin (1980) (SE 1980), by Lerch et al. (1981) and by 
Reigber et al. (1982) (GRIM3). Gaposchkin computed l o x  1" area altimeter mean geoid 
heights, using the satellite ephemeris provided with the altimeter data. 550 x 550 km area- 
means were then computed and for each value an observation equation was established 
which equated the mean height of the area with a geoid expansion in terms of the Stokes 
coefficients. Uncertainties in the mean heights arise from ephemeris errors, altimeter 
measurement errors, 'oceanographic noise' and inadequate sampling. The observation equa- 
tions were combined with the solution reported by Gaposchkin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Mendes (1977) based on 
laser range data to 10 satellites and surface gravity. The inversion was for all non-zonal 
harmonics to degree and order 30. It represents a departure from earlier practice in that it 
does not appear to be a true iteration since the GEOS 3 orbits to which the altimeter data 
have been referenced, have not been adjusted. 

Power in the SE 1980 model is reduced from that in the earlier iteration SE 1977 for 
most of the degrees common to the two. At low degrees, the difference is substantial 
(compare Tables 2 and 4) but because of the intervening LAGEOS solution it is not possible 
to draw conclusions about the influence of the altimetry data on the low degree harmonics. 
A comparison of SE 1980 and GEML2 (Lerch et al. 1982), both truncated at degree 5 ,  is 

Table 4. Power estimates of the potential in two recent solutions containing LAGEOS 

observations. The error estimates of the power zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE ( E : )  E ( E : )  refer to the SE 1980 and 
GEML2 solutions respectively. All power estimates are to be multiplied by (GMR-' lo-'))'. 
The rms geoid height errors are in metres. 

1 v; (U,) Vf(Ud cvt;, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE (€:I E ( E : )  

SE 1980 GEML2 

7.791 7.899 7.845 -0.054 0.054 
8.093 7.893 7.988 0.105 -0.095 
2.269 2.226 2.246 0.023 -0.020 
1.207 1.349 1.263 - 0.056 0.086 

c 19.360 19.367 19.342 0.0 18 0.025 
CI I 0.238 0.255 

0.86 1.01 
3.12 3.23 
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summarized in Table 4. Both solutions contain zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALAGEOS orbits. Power in the harmonics 
2-5 is very comparable. Agreement between them is better than SE 1977 and GEMlO. 
Nevertheless, the maximum geoid height errors are still important, about 3 m  for both 
solutions, but rms estimates according to (1 la) are better, about 1 m for GEML2 and 0.9 for 
SE 1980 for the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 5 , 5 )  truncated geoids. Because of the small sample sizes these low degree 
error estimates remain unreliable. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA major part of this discrepancy again comes from the 
(3,3) coefficients. 

Reigber et al. have used a similar approach to Gaposchkin except that they do not use the 
altimeter data directly; instead, they introduce area-mean gravity anomalies deduced from 
the altimeter and surface gravity observations. The altimeter data entering into this calcu- 
lation follow from a set of mean geoid heights that are similar to those used by Gaposchkin. 
The solution may suffer, therefore, from the same limitation of introducing error from the 
original GEOS 3 reference orbits. The rationale for first computing gravity anomalies is not 
evident and may introduce a number of unnecessary uncertainties. First, this process 
decreases the signal-to-noise level at high frequencies since the calculation is essentially one 
of differentiation of the geoid heights. Secondly, and more important, the computation of 
gravity anomalies over the oceans from altimetry data, requires a knowledge of gravity on 
land. Unsatisfactory gravity data, as they are for many areas, therefore contaminate the 
results and unpredictable errors may occur, particularly in the vicinity of continental 
margins. Finally, the surface gravity data enter into the solution a second time when the 
altimeter derived gravity anomalies over the oceans are combined with the surface gravity 
measurements over both land and sea. The GRIM3 solution is complete to  degree and order 
36. Comparisons of this model with the other two indicates that its precision at low degrees 
is comparable to that of SE1980 and that the GEMlOB and GEML2 models may be some- 
what superior to the other two. Some problems apparently occur in this solution from the 
introduction of Doppler data (B. Moynot 1982, private communication) and until this is 
clarified we do not consider the solution further. A new iteration, GRIM4, is in preparation. 

Lerch et al. (1981) present two altimeter solutions, GEMlOB and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1OC. In 10B a subset 
of altimeter data has been selected for each observation for which an equation has been 
established that relates the observation to: (1) the sea surface geometry and, (2) the Stokes 
coefficients required to describe the satellite motion. That is, the observation equation is 
of the form 

K. Lambeck and R. Coleman 

hobs r(Kj,&>Cil'rn') -R(cilrn) (1 2) 

where the first function defines the position of the spacecraft in terms of orbital elements 
Ki, surface force parameters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&, and those Stokes functions required to define the satellite 
motion with an accuracy that is commensurate with that of the altimeter height obser- 
vation bobs. The second function describes the ocean surface to a degree and order that is 
commensurate with the accuracy of the altimeter data. In general one would expect that 
I > l ' ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArn > m'. The introduction of the above observation equation into the GEM solutions 
appears to have been carried out in two steps although the documentation is not clear on 
this point. In the first instance the altimeter data and GEOS3 laser tracking observations 
have been used to establish improved oibital elements Ki using a fixed gravity field, 
apparently GEM9. In the second step, equations of the form (12) are introduced - together 
with all the other observation equations - and treating the orbital elements as known 
quantities. This process leaves the distinct impression, but we stand to be corrected, that the 
final solution will be at least partly constrained by the GEM9 results. In particular, it 
suggests that the 10B solution retains the influence of the condition (9), even though it has 
now not been explicitly introduced. The solution is complete to degree and order 36. In a 
second solution, GEMIOC, Lerch et al. introduce a global set of l o x  1" altimeter observed 
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geoid heights, apparently using the orbital ephemeris provided with the altimeter data. They 
also replaced the 5"x 5" gravity anomaly data set by a 1" x 1" set. In the resulting inversion 
the GEMlOB coefficients were held fixed and harmonics of degree 36-1 80 were estimated. 
This assumes that the GEMlOB harmonics are error-free, an unlikely situation. It also 
assumes that gravity is sufficiently well known over land to compute l o x  1" area means. But 
if their data set includes value for all 1" squares, this is largely a result of prediction. We do 
not consider this solution further. 

Comparisons of the GEMlO and 10B models, using the above formalism, clearly violates 
the fundamental assumptions of independence. Nevertheless, some comments can be 
usefully made. One is that the power in 10B exceeds that in GEMlO for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI >  12. This points 
to the decreased influence of the constraint (9) imposed in GEM1 0. Considerable differences 
in power occur at lower degrees between the two GEM models, a difference to which the 
troublesome third-degree terms contribute a substantial part. This may point to either 
numerical instabilities in the inversion or to 'oceanographic noise' in the latter solution. We 
cannot comment on the first except that in the GRIM2 model, using comparable laser 
tracking data, Balmino et al. found it necessary to constrain the low degrees by the 
condition (9). We can, however, test for the second interpretation. We write for the geoid 
heights N (equivalent to the dimensionless form of the potential as used in equation 6) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
NIOB zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= Nio + Woceanic (13a) 

where Nlo and NloB refer to geoid heights based on the two GEM models and where 
GNoceanic is the sea surface topography arising from the departure of the mean sea surface 
from the geoid. Then 

R - ~  ( N ? O B )  ( u:OB) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 ( U:o) (13b) 

since there should be no correlation between the two quantities on the right-hand side of 
(13a). This is indeed observed for the harmonics from 3 to 7 and suggests that the 10B zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Degree zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 
5 10 15 20 25 30 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 SE 1980 
10'1 

GEMlOB 

GEM 108 - SE 1980 

d'. 

10'4 

Figure 5. Power spectrum of the gravitational potential according to the solutions GEMlOB and SE 1980 
both of which contain some GEOS 3 altimeter observations. The difference spectrum is also indicated. 
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Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAComparison of total power of the gravitational potential in the 
two solutions including altimetry data for non-zonal harmonics with 
2 < I < 30. These estimates and error spectra are to be multiplied by 
(GMR-’ The rms geoid height errors are in metres. 

SE 1980 GEMlOB 

c zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv ; m  21.399 21.544 
I 

Z( lJ i )  21.290 
I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
x E(EZ) 0.109 0.254 
I 

EN(m) 2.11 3.22 

spectrum contains some oceanographic information. However, for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 = 3 ,  using the 
coefficients in Table 3, GNoceanic = 1.4m. This is too large to be attributed to sea surface 
topography (Mather et al. 1978). Similar conclusions are reached for other low (I G 10) 
degree harmonics. For others ( UfOB ) < ( Uf,) and this also points to  noise in the solutions. 
A comparison of the SE 1977 and SE 1980 models yields the same conclusions. 

The statistical comparison of the two ‘independent’ solutions, SE 1980 and GEMlOB, 
is illustrated in Fig. 5. Total power in the common wavenumber range 2 G zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 G 30, excluding 
zonal harmonics, is comparable (Table 5). This is despite the observation that for 12  12 the 
power in the Gaposchkin solution exceeds that in the GEMlOB model. The error spectrum. 
estimated according to (8c) leads to comparable total power for the two solutions, corres- 
ponding to rms geoid height errors of about 2 m .  As before, much of this comes from the 
lower degree terms particularly the odd degree harmonics. Thcestimate ( U i )  from these 
two solutions is consistently greater for low degrees than ( U : )  deduced from the pre- 
altimeter solutions. This can only be partly attributed to the influence of the constraint (9) 
introduced into the GRIM2 model. The difference in power for 2 G 1 G 8 between these two 
estimates of the ‘true’ power, corresponds to an rms geoid height difference of 1.5 m. This is 
greater than can be readily attributed to oceanographic noise. 

Fig. 6 illustrates the difference in geoid height between the GEMlOB and SE 1980 
solutions, with both truncated at 5 3 .  The general pattern is the same as illustrated in Fig. 3 

Figure 6. Difference in the geoid solutions GEMlOB and SE 1980 with both solutions truncated to 
include harmonics with I ,  rn < 5. Contour interval is 1 m, shaded areas are negative. 
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60 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAim zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmo zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAzio zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7. Same as Fig. 6 but with I ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm < 16. Contour interval is 3 m. 

except that the amplitudes of the major discrepancies are reduced (from an rms of 5 to 3 m). 
That is, either the influence of the altimeter observations is already seen in these long wave- 
lengths or the difference is a result of the LAGEOS data introduced into the Smithsonian 
solution. 

At higher degrees, the GEMlOB spectrum exhibits a substantial increase in power at 
1 = 13 compared with that at 1 = 12 and for 1 > 13. A similar tendency is seen in the GEM10 
solution. In the latter case this could be attributed to the influence of the constraint (9) 
which was applied for degrees I >  12. Fig. 7 illustrates the differences for the two fields 
(GEMlOB and SE 1980) truncated at degree 16. This can be compared directly with Fig. 4 
illustrating the same result for the pre-altimeter models. The introduction of the altimeter 
data has removed many of the earlier discrepancies over the southern oceans, but the large 
discrepancies over Asia and Africa remain. Not insignificant differences also remain over the 
oceans: for example in the central Pacific. There is also a tendency for the discrepancies to 
increase above latitudes of about 60°, where there is no GEOS 3 altimetry coverage. These 
results point to differences in relative weighting of surface gravity, altimetry and orbit 
perturbation data. This is a well-known, but still largely unresolved, problem in gravity field 
modelling (e.g. Gaposchkin & Lambeck 1971). The usual approach is one of trial and error. 
Gaposchkin (1980) discusses this in some detail and has experimented with various combi- 
nations of weights. Lerch et  al. (1981) are less clear in their discussion of the problem. 

RESONANCES 

In some situations a satellite’s motion can resonate with certain harmonics in the Earth’s 
gravity field. This occurs when the mean motion (n)  of the satellite is an integer fraction 
of the Earth’s rate of rotation (8), or when 

q ~ ( 1 - 2 ~  +q)n-mB = 0. (14) 

Here p = 0,1, . . . I  and 4 = 0, k l ,  +2 ,  . . are integers arising from the expansion of the 
potential into Keplerian coordinates (Kaula 1966a). Mathematically, the resonance arises 
because 7 enters into the divisor of the perturbation equations describing the satellite’s 
departures from Keplerian motion. Physically, the resonance arises when successive ground 
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tracks of the satellite are separated by an interval in longitude that is equal to the wave- 
length of the geopotential harmonic. After a number of revolutions of the satellite in its 
orbit, the ground track sequence repeats itself exactly, and the satellite’s motion is perturbed 
in an identical manner, enhancing the earlier perturbation. 

The existence of these resonance conditions, particularly for geostationary orbits, has 
long been recognized (e.g. Sehnal 1960; Groves 1960; Cook 1960). For geostationary 
satellites the resonance occurs primarily when Zmpq zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 2200 or 210(-1). But resonances also 
occur for the coefficients zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZmpq = 4210, 421 (-l), 6220, 622(-1) etc. The satellite may 
therefore resonate to many harmonics of the same order zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm. Because the magnitude of the 
perturbation is proportional to the factor ( S ) ,  and for geostationary orbits R/r = 6.6, these 
higher degree resonances will generally be unimportant. For a typical satellite orbiting the 
planet nearly 13 times a day, the resonance occurs from lmpq = 13,13,6,0; 15,13,7,0; 
17,13,8,0 etc., with the frequency of the perturbation being given approximately by (14). 
Observations of the resonances then provide a linear relation between the Stokes coefficients 
of degree and order 13,13; 15,13; 17,13 etc. with coefficients that are orbit dependent (e.g. 
Yionoulis 1966). The contributions from the higher degrees (15,17 etc.) decay, but slowly. 
Secondary resonances occur for lmpq = 14,13,6,-1; 16,13,7,-1, etc. but these will only be 
significant for eccentric orbits. By selecting satellite orbits for which the condition (14) is 
nearly met, many of the higher degree and order harmonics in the gravitational potential can 
be determined, provided that there are sufficient satellites in different orbits to separate all 
coefficients contributing to the resonances. It is these resonance harmonics that permit the 
coefficients near m = 13,14 in Fig. 1 to be determined. The resonances discussed are for the 
combination of indices such that 1-2p + q = 1 and n = me. In general, resonances occur 
when 1-2p + q = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj or when n = jme where j is an integer. Of these only the j = 1 (the above 
case) and j = 2 resonances have been observed (e.g. Anderle & Smith 1968). Thus for a 
satellite making 14 revolutions day-’ the resonant harmonics will be of order 28 ( j  = 3 
resonances were reported by G. Balmino and C. Reigber in 1976, and may be significant 
in the orbital motion of the satellite Starlette). 

No general theory yet exists for handling the resonances of close Earth satellites although 
theories have been developed for resonances due to a single potential coefficient or subset of 
coefficients (e.g. Morando 1962; Allan 1973). Complete theories are complicated by the fact 
that the orbit may be resonant with many harmonics of different orders, as well as by the 
need to take into account interactions with other perturbations mainly due to the zonal 
harmonics and air drag. When f (equation 14) becomes small but not zero, linear theories 
remain largely adequate and, for these reasons, near-resonant cases have been extensively 
used in studies of the Earth’s gravity field (e.g. Gaposchkin 1973; Reigber & Balmino 1975; 
Wagner 1974). 

The higher the order m the greater must be the mean motion or the lower the orbital 
altitude for resonance to occur. For the low altitude orbits the number of Stokes coefficients 
that contribute to the resonances becomes large and a considerable number of satellites in 
different orbits of similar resonance characteristics need to be analysed (e.g. King-Hele & 
Walker 1982a). But low altitude satellites suffer appreciably from drag forces and for this 
reason such orbits are usually ignored in gravity field analysis. However, the drag also draws 
the satellite through the resonance configuration, maximising this gravitational perturbation. 
This has been used to great effect by King-Hele and co-authors to determine 14th- and 15th- 
order harmonics (King-Hele, Walker & Gooding 1979; King-Hele & Walker 1982a; see also 
Wagner & Klosko 1975; KlokoEnik 1975). Preliminary analysis of 16th-order harmonics 
have also been carried out (Walker 1982). 

The importance of the resonance harmonics is that they permit estimates of otherwise 
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inaccessible harmonics of high degree and order. They therefore provide a measure of the 
physical behaviour of the geopotential at high wavenumbers, something that is useful in 
statistical interpretations of the gravity field. In the present context the resonance harmonics 
are also of considerable value in that they provide an independent test of those gravitational 
potential solutions that are primarily based on non-resonant, orbit analyses, surface gravity 
and altimetry data. 

In the solutions by Gaposchkin, any resonance conditions are treated simultaneously with 
the shorter period perturbations. This is a convenient way to  proceed since Gaposchkin’s 
analytical approach to describing the orbital motions enable him to  include the longer period 
perturbations in his analyses. Problems of coupling between the resonance and zonal 
coefficients may, however, restrict the potential accuracy of the analytical solutions. In the 
GRIM models the observation equations include any terms arising from near resonance. 
These models also include the observation equations determined by King-Hele, Reigber zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& 
Balmino and Klokoh’nik & Kostelecky. This strengthens considerably the solution but these 
resonance results cannot now be used for independent testing purposes. Lerch et al. do not 
state explicitly how the resonances are treated in their solutions. Many of the satellite 
orbits used in their work are only in shallow resonance (where -j in equation 14 is not 
particularly small) and the resonance periods are of the order of a few days, comparable 
in duration to the computed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 or 7 day orbital arcs. Hence these cases can be treated simi- 
larly to the non-resonant terms by assuring that the observation equations include the 
appropriate additional terms. For other satellites the resonance period is considerably greater 
than the orbital arclengths and it is not clear how these are treated in the recent Goddard 
solutions. Most of the resonances included in the Smithsonian and Goddard solutions are 
for orders 9-14. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A solution for 14th-order harmonics is by King-Hele zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al. (1979) who estimated the 
coefficients 1, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm from 14,14 to 22,14. These harmonics can be compared with the global 
solutions in the same statistical manner as before. In this case U ,  and U,  (equation 7) 
refer to the two estimates of the potential defined by the above 14th-order resonance 
harmonics according to: (1) the resonance study (U, ) ,  and (2) the global solution 
(&). Table 6 summarizes the results for the comparison of the King-Hele et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQZ. solution with 
GEMlOB. The estimate of the power in the error spectrum of Ul is significantly less than 
that corresponding to U,, as would be anticipated in view of the special nature of the 
resonance phenomenon and of its analysis. Signal-to-noise ratios are high for both solutions, 
reflecting the good agreement between the two. On the assumption that the power in the 
error spectra is independent of degree throughout the range in question, the total power can 
be estimated and compared with that obtained from the intercomparisons of the global 
solutions. The agreement between the two error estimates so obtained for GEMlOB is most 
satisfactory (Table 7). 

A similar comparison can be carried out for the 15th-order harmonics which have been 
analysed most thoroughly by King-Hele & Walker (1982a). Their preferred solution is for 
degrees 15-23. The results of the comparison with GEM1 OB are given in Tables 6 and 7 and 

Table 6 .  Comparison of power in the spectra of the resonance coefficients according to King- 
Hele and coauthors ( U : )  and to the GEMlOB solution ( U:) .  n is the number of coefficients 
determined in the resonance analyses. All power estimates are to be multiplied by 
(GMR-I)*  1 0 4 5 .  

Order n C u: ) CU:, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACut) E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+;I E {G 
14 18 6.14 6.61 5.63 0.51 1.04 
15 20 6.31 6.56 6.03 0.29 0.53 
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Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7. Comparison of total power in the error spectra 
from: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1) degrees 14-22 as determined from the compari- 
sons of the 14th-order resonance analyses of King-Hele 
E {ei} , and GEMlOB E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(e:} and the comparable estimate of 
the latter E {e:} as determined from the comparison of 10B 
with SE 1980; (2) degrees 15-24, 15th-order resonances; 
(3) degrees 14-24, 14th- and 15th-order resonances. All 
power estimates are to be multiplied by (GMR-’)* 

Order E w E 1.3 E E l  
1 14 9.2 18.7 21.0 
2 15 5.6 10.3 17.7 
3 14 .t 15 8.8 17.2 23.1 

they lead to similar conclusions to those reached for the 14th-order resonances. In parti- 
cular, the estimate of the GEMlOB power spectrum based on the intercomparison with the 
Gaposchkin (1980) solution appears to be realistic. Similar tests carried out between these 
resonance studies and the SE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1980 model confirms KingHele’s conclusion, that these higher 
degree and order terms are less well determined than the corresponding coefficients in 
GEMIOB. Nevertheless, the resulting SE 1980 error estimates agree with those derived from 
the comparison of this model with 10B. 

Resonances with 29th-, 30th- and 3 1st-order harmonics have been analysed by King-Hele 
& Walker (1982b) but individual coefficients were only obtained for the 30th order and 
degrees 30 ,32 ,34  and 36. These compare favourably with the GEMlOB results. 

Discussion 

From the above comparisons it is not obvious as to which solution is the most accurate or 
reliable and at what point the available geoid or gravity expansions become dominated by 
noise, or at what degree they should be truncated before geophysical interpretations are 
attempted. What is more obvious is that not insignificant discrepancies may occur in all 
solutions. This alone should lead to caution in interpreting any one result, particularly when 
it is noted that many of the discrepancies occur over geologically interesting areas. 

Perhaps the single most important point to emerge is that the solutions do not model the 
geoid with the accuracies claimed by some of the authors. In terms of signal-to-noise ratios, 
the low degree harmonics are well established. Yet geoid height differences between the 
solutions GEMlOB and SE 1980 are in excess of 3 m  when both fields are truncated at a 
lowly degree and order of 5 (see Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6) .  The GEML2 model of Lerch et al. (1 983) gives an 
improved result for the low degree harmonics when it is compared with SE 1980 (Table 4). 
Yet the discrepancies are such that we have little confidence in the statement by these 
authors that this model represents the geoid with 8cm precision in the wavenumber range 
2 5 1 S 4. Their statement of precision is based mainly on a comparison with other GEM 
models. But good agreement with 10B is not a measure of accuracy. Neither is the criterion, 
that GEML2 predicts the motion of a geostationary satellite, entirely adequate since such a 
satellite is relatively insensitive to harmonics other than 2,2. The inadequacy of the low 
degree harmonics in describing the satellite motion has also been emphasized by Klokocnik 
& Pospisilova (1981). 

These cautionary conclusions reached about these geoid height accuracies means that the 
present solutions may not be adequate for exploring the long wavelength and low frequency 
characteristics of the sea surface topography (the difference between the geoid and the 
physical ocean surface). This is confirmed by the work of  Marsh & Martin (1982) who found 
it necessary to further modify the GEM models in order to obtain what they consider to be 
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Figure 8. Same as Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 but with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI ,  m 4 22. 

satisfactory sea surface topography. The rms geoid height difference between this adjusted 
model and GEMlOB is 20 cm for 2 G I G 5 and 55 cm for 2 Q I G 10. The statistical compari- 
son of non-zonal solutions with and without altimeter data suggests that the power of the 
sea surface topography is of the order 1.5-2 m compared with an 'expected' power of the 
order of 20cm. Possibly a more realistic estimate of the precision of the GEMlOB and 
GEML2 geoids is about 50 cm for I Q 5. What is required to  improve the low degree field, so 
as to produce geoids of sub-decimetre accuracy, is one or a number of LAGEOS type 
satellites in different inclination orbits, satellites that can be tracked with great precision and 
which are predominantly sensitive to the lower degree harmonics. 

At higher degrees, the signal-to-noise ratio of the coefficients increases, yet the power in 
the potential decreases. Hence the rms error of the geoid heights for the total field is 
dominated by the uncertainties in the low degree terms. This appears to be the reason for 
the claims by Lerch et aZ. that their GEM10 and GEMlOB models have an accuracy of about 
1.5 m. The tests they employ are generally insensitive to the low degree harmonics: surface 
gravity, short-arc altimeter passes and satellite-to-satellite tracking data used to evaluate these 
solutions do not provide good control on the low degree terms. Nor do the resonance tests 
performed by Lerch et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaZ. We conclude, from the statistical comparison with the SE 1980 
solution and the resonance solutions of King-Hele et al., that a more appropriate rms geoid 
height error is about 2 m for the GEM1 OB model, and about 3 m for the SE 1980 model. 

In both models, noise estimates approach the signal at degree I r 2 2 .  Individual discrep- 
ancies between the two solutions exceed 1 0 m  in several instances for expansions truncated 
at this degree (Fig. 8). When truncated at degree 16 the maximum difference, in excess of 
12m, occurs over the Tibetan plateau. This difference - as is the one north-east of Japan - 
is mainly a consequence of a displacement of the geoid height anomaly in one solution 
relative to the other; with both solutions modelling in a quite similar manner the series of 
geoid undulations over Tibet and Sinkiang but the locations of the highs and lows differing 
by nearly 500 km. In the solution truncated at degree 22 (Fig. S), the majority of the larger 
discrepancies occur over: (1) continents for which surface gravity data are poor, i.e. Africa, 
Antarctica and Asia, (2) at latitudes above about &60", in the regions unsampled by the 
GEOS 3 altimeter data, and (3) in oceanic regions where the GEOS 3 data used in the two 
solutions were relatively sparse, mainly the central and southern Pacific and the north-west 
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Pacific (see fig. 2 of Gaposchkin 1980, and fig. 1 of Lerch et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal. 1981). (Note that neither 
solution used the complete GEOS data set now available.) 

Figs 9 and 10 illustrate the two geoid solutions truncated at degree and order 22. 
These two figures should be viewed together with their difference (Fig. S), particularly in 
geophysical interpretations. King-Hele (1975) has described the geoid as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA‘. . . the western 
hemisphere has been taken over by a goat which is in deep discussion with a man from the 
east whose cranium dominates Asia’. With the longitude convention adopted here the two 
individuals are no longer on speaking terms and have turned their backs on each other. 
Elsewhere King-Hele referred to the high-brow as Popeye! 

What should be done to improve the state of the present knowledge of the Earth’s gravity 
field? zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA shopping list for future projects is easy to provide and would include additional 
LAGEOS-type satellites for the low degree field and low altitude satellite-to-satellite tracking 
experiments for the high degree field. The fulfilment of the order is of course a different 
matter. But even without these additional satellites, considerable progress should be possible 
from a re-examination of the available data. In doing this, some general points to be con- 
sidered would include the following. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

K.  Lambeck and R. Coleman 

(1) The introduction of additional laser tracking data of LAGEOS and STARLETTE, the 
low altitude equivalent of the former. Most of these data are already available. The former 
will help strengthen the solution at low degrees while the latter will also help in strengthen- 
ing the solution for intermediate degrees. The addition of further Doppler data may also be 
beneficial for improving the low degree part of the solution, for while these data are less 
precise than the laser observations they are usually more continuous. 

(2) A careful scrutiny of the surface gravity data and the elimination of the unreliable 
data for the predominantly unsurveyed areas. 

( 3 )  The incorporation of satellite-to-satellite tracking data, mainly from the GEOS 3/ 
ATS 6 experiment. Analyses of these data shows that they contain considerable gravitational 
information. More significant, such tracking data are available over the continents of South 
America, and southern Asia (Kahn, Klosko & Wells 1981) where surface gravity data are 
inadequate. 

(4) The incorporation of a more complete set of GEOS 3 altimeter observations and the 
introduction of SEASAT data. hproved methods of incorporating these data should be 
developed. 

(5) The incorporation of more recent observation equations for zonal (e.g. King-Hele, 
Brookes & Cook 1981) and resonance (e.g. King-Hele et al. 1979 and King-Hele & Walker 
1982a) harmonics as constraints in the general inversions. 

Possibly it is out of place to suggest specific improvements that could be made to indivi- 
dual solutions, particularly when the available documentation may not be sufficiently 
complete to form a basis for a considered critique. Nevertheless some points should be made 
about the GEM models. One is that the successive solutions do not appear to represent true 
iterations. Therefore it remains unclear to  what extent any one solution is influenced by 
earlier ones. We would like to see a solution in which all orbits have been re-computed using 
the best available force models, consistent sets of parameters and the most up-todate 
versions of the computer programs. Secondly, we would like to  see a more careful considera- 
tion of what data should be included. We do not think, for example, that the addition of 
Minitrack data contributes to the overall solution in short-arc analyses. Thirdly, we would 
like to see a more complete discussion of the relative weighting considerations that must 
have gone into the inversions. In making these comments we do not wish to degrade the 
work done during the last twenty-five years in reaching the present knowledge of the gravity 
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field. What we wish to emphasize is that even better solutions can be achieved with the data 
available at present. Examples of this are seen when we turn to the altimetry data alone. 
Figs 11 and 12 illustrates two examples of regional geoids computed from GEOS3 and 
SEASAT altimetry data. The south-west Pacific geoid (Fig. 11) is discussed in detail else- 
where. The geoid accuracy is of the order of k50cm for the shorter wavelengths zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
-10" zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Figure 11. Regional geoid zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfor the south-west Pacific determined from all available GEOS 3 and SEASAT 

data. Contour interval is 1 m. 
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The Earth’s shape: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA192-1982 51 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(300 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAkm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ X G 2000 km) although, if we consider the results of Fig. 8, there may be some 
uncertainty in the magnitude of the overall south to north geoid slope. For the 
Mediterranean (Fig. 12) there may be a comparabIe long wavelength uncertainty but the 
shorter wavelength information should also be accurate to about k50cm. There are no other 
geophysical observations, not even bathymetry (Lambeck zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Coleman 1982a, b), that are 
better known than this. These regional geoids are proving to be of very considerable value in 
studies of specific geophysical problems, whether they be ocean ridges (Sandwell & Schubert 
1980), transform faults (Cazenave, Lago & Dominh 1982), seamounts (Lambeck 1981) or 
convection in general (McKenzie e ta [ .  1980). 
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Note added zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin proof 

This paper cannot be conskered as a complete review since much of the information 
required for a thorough investigation of published gravity models remains unavailable. This is 
particularly true for the latest GEM models and for GRIM 3 .  Perhaps, by pointing the bone 
at aspects of various solutions, this information will be forthcoming in the open literature. 
The initial response to this paper by some of the protagonists of the various models has 
already given us more insight into their work. But we do not think that this invalidates the 
basic conclusion; that the various models are not as good as they are said to be. If they were, 
the differences between them should not be so great as they are (Figs 7 and 8). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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