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○E

The Earthquake-Source Inversion
Validation (SIV) Project

by P. Martin Mai, Danijel Schorlemmer, Morgan Page, Jean-Paul
Ampuero, Kimiyuki Asano, Mathieu Causse, Susana Custodio, Wenyuan
Fan, Gaetano Festa, Martin Galis, Frantisek Gallovic, Walter Imperatori,
Martin Käser, Dmytro Malytskyy, Ryo Okuwaki, Fred Pollitz, Luca
Passone, Hoby N. T. Razafindrakoto, Haruko Sekiguchi, Seok Goo Song,
Surendra N. Somala, Kiran K. S. Thingbaijam, Cedric Twardzik, Martin
van Driel, Jagdish C. Vyas, Rongjiang Wang, Yuji Yagi, and Olaf Zielke

ABSTRACT

Finite-fault earthquake source inversions infer the (time-depen-
dent) displacement on the rupture surface from geophysical
data. The resulting earthquake source models document the
complexity of the rupture process. However, multiple source
models for the same earthquake, obtained by different research
teams, often exhibit remarkable dissimilarities. To address the
uncertainties in earthquake-source inversion methods and to
understand strengths and weaknesses of the various approaches
used, the Source Inversion Validation (SIV) project conducts a
set of forward-modeling exercises and inversion benchmarks. In
this article, we describe the SIV strategy, the initial benchmarks,
and current SIV results. Furthermore, we apply statistical tools
for quantitative waveform comparison and for investigating
source-model (dis)similarities that enable us to rank the solu-
tions, and to identify particularly promising source inversion ap-
proaches. All SIV exercises (with related data and descriptions)
and statistical comparison tools are available via an online col-
laboration platform, and we encourage source modelers to use
the SIV benchmarks for developing and testing new methods.
We envision that the SIV efforts will lead to new developments
for tackling the earthquake-source imaging problem.

Online Material: Figures of velocity-density structure, source-
receiver geometries, slip-rate functions, input and inverted rup-
ture models, quantitative waveform comparisons. Tables of scalar
source parameters and dissimilarity values.

INTRODUCTION

Finite-fault earthquake-source inversions infer the spatiotemporal
rupture evolution on one or more fault planes using geologic

information, seismic and/or geodetic data, and potentially in-
cluding also (or using exclusively) tsunami measurements. Source
inversions provide important information on the complexity of
the earthquake rupture process. Earthquake source-scaling studies
use finite-fault information to determine rupture parameters for
developing empirical scaling laws that shed light on earthquake
mechanics (Somerville et al., 1999; Mai and Beroza, 2000; Mai
et al., 2005; Manighetti et al., 2005; Blaser et al., 2010; Strasser
et al., 2010). Researchers use the space–time-dependent source
inversion results to develop spontaneous dynamic rupture models
and to work toward a general understanding of earthquake rup-
ture physics (e.g., Heaton, 1990; Bouchon, 1997; Ide and Takeo,
1997; Day et al., 1998; Page et al., 2005; Tinti et al., 2005; Mai
et al., 2006; Gabriel et al., 2012; Causse et al., 2013). For indi-
vidual earthquakes, source studies reveal cascading failure of com-
plex fault systems (Yue et al., 2012) or rerupturing of the
hypocentral region (Lee et al., 2011). Thus, finite-fault inversions
provide the key for discerning earthquake source complexity.

A quantitative understanding of rupture complexity is also
essential for ground-motion prediction studies that require an
adequate characterization of slip heterogeneity to generate real-
istic scenario earthquakes (e.g., Mai, 2009). Slip-heterogeneity
characterizations are based on source models of past earth-
quakes (e.g., Mai and Beroza, 2002; Lavallée et al., 2006;
Causse et al., 2010; Gusev, 2011; K. K. S. Thingbaijam and
P. M. Mai, unpublished manuscript, 2016). Inference on rup-
ture speed and its variation (e.g., Archuleta, 1984; Dunham
and Archuleta, 2004; Bouchon et al., 2010) provide evidence
for the occurrence of supershear rupture velocity, which is criti-
cal not only for realistic ground-motion simulations, but also
for understanding the dynamic rupture process. Finite-fault
slip maps are also needed to compute postmainshock stress
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changes that can be related to the aftershock activity (King
et al., 1994; Stein et al., 1997).

Much of our understanding of earthquake source com-
plexity stems from finite-source rupture models, building on
the pioneering work of Olson and Apsel (1982). A detailed
review of source inversion techniques is beyond the scope of
this article; instead we refer to Ide (2007). To illustrate the general
concept, we use the representation theorem (Aki and Richards,
2002) written as
EQ-TARGET;temp:intralink-;df1;52;637

un�x; t� �

Z
dτ

ZZ
Σ

�si�ξ;τ��× cijpq × vj ×Gnp;q�x; t − τ;ξ;0�dΣ;

�1�

in which �si�ξ; τ�� represents the slip velocity at locations ξ and
times τ, cijpq is the elasticity tensor, vj is the vector normal to the
fault surface Σ, and Gnp;q denotes the medium response to the
generalized force couple in the xq direction with force in the p
direction. un�x; t� is the nth component of the ground-motion
time series at location x. The representation theorem in equa-
tion (1) describes a linear relation between the rupture process
si�ξ; τ� on the fault and the observed displacement un�x; t�.
For practical purposes, Earth structure, fault–receiver geometry,
and the force-couples responses are combined into the Green’s
function G�x; ξ; t�. When solving the inverse problem, we seek
a kinematic parameterization of the space–time-dependent rup-
ture process (e.g., discrete basis functions for the slip-rate distri-
bution si�ξ; τ�) that minimizes the differences between recorded
groundmotions and the predictions (computed using equation 1).
In principle, equation (1) results in a linear inverse problem, but
one that is inherently underdetermined. To solve it, one must
reduce the dimension of the model space to make the problem
overdetermined, for instance through regularization of the solu-
tion by applying a spatial and/or temporal operator (or both).

For computational purposes, the rupture surface in equa-
tion (1) is discretized into small elements (called subfaults) in
which the kinematic rupture process is parameterized using one
or more elementary slip-rate functions. Each of these subfaults
is activated as the rupture front sweeps over the fault plane
with rupture speed vr . In slip inversions, vr is often assumed
constant, in which case the inversion is run several times at
different values of vr to find the optimal vr that leads to
the minimum misfit. A linear multi-time-window source inver-
sion applies more than one elementary slip-rate function to
represent the rupture evolution on a single subfault. Rupture
speed vr may be spatially variable, which can be achieved by
solving for the rupture-onset time at each subfault. Typically,
this is done using a nonlinear inversion approach. When using
the discretized form of equation (1) for earthquake-source in-
version, the inferred rupture model depends also on the chosen
discretization, parameterization, and misfit function, as well as
on the particular method for solving the inverse problem.

Many source inversion methods have been proposed, ei-
ther as constrained linear inversions (e.g., Olson and Apsel,
1982; Hartzell and Heaton, 1983) or nonlinear inversions that
search the model space without stringent constraints (e.g.,
Hartzell et al., 1996; Liu and Archuleta, 2004; Monelli and

Mai, 2008). These inversions use seismic data (strong-motion,
teleseismic; e.g.,Wald et al., 1991; Yoshida et al., 1996), geodetic
measurements (to constrain fault geometry and the final static
displacement; e.g., Jónsson et al., 2002), or a combination of
both, potentially augmented with information on surface rup-
ture or other constraints (e.g., Asano et al., 2005). Slip during
large tsunamigenic megathrust earthquakes can be constrained
by tsunami waveform data (e.g., Satake et al., 2013). Recently,
Gallovic et al. (2015) developed a regularized linear inversion
that is unconstrained in the temporal rupture evolution. The
required Green’s functions G�x; ξ; t� are computed using a va-
riety of techniques and parameterizations of the Earth’s crust
(layered 1D models, full 3D models; e.g., Graves and Wald,
2001; Wald and Graves, 2001), whereas some methods use small
earthquakes as empirical Green’s functions (Dreger, 1994).

Earthquake-source inversions provide tools and models to
investigate earthquake rupture processes and have become an
almost routine analysis for studying rupture kinematics. For
large and important earthquakes, near-real-time finite-fault
source inversions are available online only a few hours after
the event (e.g., Hayes, 2011). Results of many finite-fault stud-
ies are collected in the online SRCMOD database (Mai and
Thingbaijam, 2014; see also Data and Resources). However,
the resolution and robustness of these finite-fault rupture mod-
els is not well understood. For instance, significant differences
are seen for rupture models of the same earthquake but inferred
by different researchers. Figure 1 shows four slip models for the
1999 Mw 7.6 İzmit earthquake (out of six solutions in the
SRCMOD database) that are strikingly different. The discrep-
ancies in these slip distributions have been described previously
(Beresnev, 2003; Ide et al., 2005) and may be attributed to
(1) differences in the data selection and processing; (2) the
methods used for computing the Green’s functions for each
dataset; (3) the assumed Earth structure, fault geometry, and
other geophysical parameters; and (4) the method and param-
eterization for the inversion itself (linearized or fully nonlinear
inversion; spatial and temporal discretization; applied smooth-
ing and regularization). Items (2–3) are directly related to us-
ing equation (1).

Because of our imperfect knowledge of Earth’s structure and
fault geometry, and because of insufficient data, the source inver-
sion problem is nonunique: many rupture-model solutions may
fit the data equally well. Also, rigorous uncertainty quantification
in earthquake source studies is needed but, unfortunately, is often
neglected. An ensemble of solutions is obtained when varying
inversion input parameters and processing steps to investigate
the corresponding model sensitivities (e.g., Custódio et al., 2005;
Konca et al., 2013; Liu et al., 2006; Hartzell et al., 2007). Baye-
sian approaches provide a more formal way to quantify rupture-
model uncertainties (Monelli et al., 2009; Duputel et al., 2012;
Minson et al., 2013), but estimating the full posterior probability
density functions of the inverted source quantities is computa-
tionally still demanding (e.g., Bernauer et al., 2014; Dettmer et al.,
2014; Razafindrakoto and Mai, 2014).

To better understand the limits and robustness of earth-
quake-source inversion methods, and to examine how the
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different steps of the source inversion workflow (steps 1–4,
above) affect the rupture-model results, the earthquake Source
Inversion Validation (SIV) initiative was launched (Page et al.,
2011). The SIVproject extends a previous source inversion test-
ing study (Mai et al., 2007) and seeks to develop new methods
for uncertainty quantification in earthquake source inversions.
A long-term goal of the SIV initiative is also to develop a (semi)
automated source inversion platform on which various
approaches can be tested simultaneously with minimal user in-
tervention to arrive at transparent, fully testable, and reproduc-
ible earthquake source models with comprehensively quantified
uncertainties.

Below, we introduce the SIV initiative, describe the strat-
egy of our work, and report the results achieved so far, which
include newly developed inversion methods and statistical
analysis tools that are a direct outcome of the SIV collaboration.

STRATEGY

The workflow for finite-fault earthquake source inversions re-
quires several steps, including data selection and data process-
ing, choosing and running a proper forward-solver with
adequate input parameterization, and conducting the actual
inversion. Each of these steps influences the resulting rupture
model. The SIV initiative tries to address all aspects of this
workflow and to isolate their effects on the inversion results.
Correspondingly, our strategy is to begin with simple forward-
modeling exercises to test various Green’s function computa-
tion codes and their use. Next, we define a suite of inversion
benchmarks with increasing complexity. Either certain meta-
data are not specified, or only with uncertainty, or noise is
added to the synthetics. Including geometrical variations in the
rupture model for forward simulations adds another layer of

intricacy to the benchmarks. The Southern California Earth-
quake Center (SCEC)/U.S. Geological Survey (USGS) code
verification exercise (Harris et al., 2009) follows a similar strat-
egy through a set of forward-modeling problems with increas-
ing complexity for testing numerical methods for dynamic
earthquake rupture simulations.

To set up the inversion benchmarks, a subgroup of the SIV
team generates input (target) earthquake-rupture models with
varying degrees of source complexity for which forward sim-
ulations are run to compute synthetic datasets. Depending on
the benchmark, these may comprise only near-field seismic
waveforms or also include Global Positioning System (GPS)
displacements and teleseismic synthetics. The synthetic datasets
are disseminated via an online collaboration platform (see Data
and Resources). The input source model used for each bench-
mark is not publicized until the exercise is officially concluded.
Registered participants use the collaboration platform to sub-
mit their rupture-model solutions and predicted datasets in
specific data formats. The platform provides quantitative analy-
sis tools to compare inversion solutions and predicted data be-
tween different participants or with respect to the known
input model (released after the particular benchmark is con-
cluded). All benchmark exercises and related data remain acces-
sible such that interested scientists can use these for follow-up
research even after the official closure date.

In the long term, we envision an automated testing center,
inspired by the Collaboratory for the Study of Earthquake Pre-
dictability (e.g., Zechar et al., 2010). The goal is to establish a
computational platform on which numerous source inversion
codes are applied to a large number of benchmark exercises in a
transparent manner. In such a testing center, user-driven deci-
sions are replaced by algorithmically derived parameter selec-
tions to generate testable and reproducible source inversions

▴ Figure 1. Selected finite-source rupture models for the 1999 Mw 7.6 İzmit earthquake (Turkey), obtained using different inversion

strategies and different datasets. Black stars mark the hypocenter. Colors indicate fault slip (in meters). Note the pronounced dissimi-

larities of the slip distributions for this event. The inversion results are from (a) Bouchon et al. (2002), (b) Sekiguchi and Iwata (2002),

(c) Delouis et al. (2002), and (d) Yagi and Kikuchi (2000).
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with proper uncertainty quantification (e.g., Mesirov, 2010;
Eddy et al., 2012; Lees, 2012).

Next, we describe the forward-modeling exercises and in-
version benchmarks of the SIVproject (summarized in Table 1).
We then introduce the statistical comparison tools that the SIV
platform provides and discuss their use to assess the solution
quality and to develop a ranking scheme. Based on the results
obtained so far, we provide a summary and set of recommen-
dations for earthquake-source inversion studies and the con-
tinuation of the SIV project.

FORWARD-MODELING EXERCISES

To test numerical methods for Green’s function calculations in
source inversion studies, we conduct two sets of forward-mod-
eling exercises for the near-fault region. We first examine
point-source synthetics for near-field seismic waves, and then
we test the methods with respect to precisely specified finite-
fault rupture models.

Near-Source Green’s Function Computation
We consider two point-source cases: a purely left-lateral strike-
slip event on a vertical fault and a reverse-faulting event on a 40°
dipping fault. The rupture is parameterized as a 1 km × 1 km
uniform-slip area over which a boxcar slip-rate function of
duration τr � 0:2 s acts. The shear modulus at the source depth
of Z � 10 km yields a moment magnitude Mw 5.0
(M0 � 3:5 × 1016 N·m). Synthetic seismograms are computed
in the 0–5 Hz frequency range. Ⓔ Figure S1 (available in the
electronic supplement to this article) displays the 1D plane-
layered velocity–density structure and the source–receiver
configuration.

Figure 2 depicts three-component synthetic seismograms
at selected locations, computed by eight different research
teams using four different codes. AX refers to the Axitra code

(Bouchon, 1981; Coutant, 1989), CS stands for the COMP-
SYN package (Olson et al., 1984; Spudich and Xu, 2002), and
ZR denotes the Zhu and Rivera (2002) method. These meth-
ods compute complete near-source seismic waves using a wave-
number-integration approach. DG represents a high-order
discontinous Galerkin method for seismic-wavefield simula-
tions (Käser and Dumbser, 2006; Käser et al., 2007). To facili-
tate misfit quantification, we arbitrarily choose AX1 as the
reference case.

The waveform comparison reveals that noticeable
differences occur even for the point-source Green’s function
test. Visual inspection of Figure 2 suggests good agreement be-
tween most waveforms (aside from the CS3 case, in which the
computations were carried out with improper input parameter
choices). However, we observe amplitude variations (quantified
by the scale factor [SF] used for amplitude normalization),
most likely due to incorrect seismic-moment specification or
code-internal rescaling factors. Cross-correlation values (XC,
given as the maximum cross-correlation value, not accounting
for phase differences) are typically above ∼0:95 for both rup-
ture styles, although lower values occur for some reverse-fault-
ing calculations (Fig. 2b). In addition, small arrival-time
differences of the P wave and also later phases are recognizable.
In the reverse-faulting case, the Y -component seismograms
(Fig. 2b, center) exhibit large differences in secondary phases
arriving after the dominant S-wave pulse. These phase
differences lead to variations in the corresponding L2 norms,
computed after normalizing each waveform with its corre-
sponding SF with respect to the reference waveforms AX1.

This near-field Green’s function validation shows that the
tested methods overall provide consistent results under the
premise that the codes are used correctly (i.e., the required in-
put parameters are properly specified for the given problem).
However, variations in amplitude and phase-arrival times are
present. We attribute the amplitude variations to incorrect

Table 1
List of Source Inversion Validation (SIV) Benchmark Exercises (Status October 2015)

Benchmark

(SIV label)

Type of

Problem Source

Faulting

Style Earth Structure Data M
w

ssp0 Forward Point
source

Strike-slip 1D layered Near source 5.0

dsp0 Forward Point
source

Reverse 1D layered Near source 5.0

ssef0 Forward Finite fault Strike slip 1D layered Near source 6.11

dsef0 Forward Finite fault Reverse 1D layered Near source 6.14

inv1 Inversion Finite fault Strike slip 1D layered Near source 6.6

inv2a Inversion Finite fault Normal 1D layered Near source 7.0

inv2b Inversion Finite fault Normal 1D layered + 3D randomness Near source + GPS* 7.0

inv3 Inversion Finite fault Strike slip 3D for near source; 1D radial
for teleseismic with station-

dependent
local 1D structure

Near source +
teleseismic

7.8

*GPS, Global Positioning System.
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▴ Figure 2. (a) Three-component waveform comparison at site 10 (Ⓔ Fig. S1b) for the strike-slip point-source forward-modeling case.

(b) Same as (a) for the dip-slip case at site 2 (Ⓔ Fig. S1c). Wave amplitudes are normalized by the indicated scale factor (SF) before computing

the L2 norm (L2). Cross-correlation values (XC), scale factor, and L2 norm are calculated with respect to the selected reference (AX1; peak

amplitude [in m=s] given in top left). Waveforms are aligned to hypocentral time, t � 0. We observe an overall good visual agreement, with

small time shifts but occasionally large-amplitude variations. Calculation CS3 used an incorrect input parameterization for the forward solver.
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code parameterization or incorrect use of units, whereas phase-
arrival differences of a few samples are due to the particular
implementation of the source time function. When filtering
these synthetics to the frequency range typically used in source
inversions (0–1 Hz), these timing issues become insignificant.

Near-Source Extended-Fault Calculations
Next, we consider two forward-modeling exercises for extended-
fault ruptures that are specified in terms of 2D arrays of slip, rise
time, and rupture-onset time over a planar fault surface. The
strike-slip rupture occurs on a 12-km-long by 11-km-wide ver-
tical fault, with seismic moment M0 � 1:66 × 1018 N·m
(Mw � 6:11) and hypocentral depth Z � 14 km. Slip and rise
time are heterogeneous over the fault, the rupture-onset times at
each point reflect variable rupture speed. The slip-rate function
on each point of the fault is a boxcar. The thrust-faulting case is
similar in dimension (12 km × 12 km fault plane) and magni-
tude (M0 � 1:82 × 1018 N·m, Mw � 6:14) and in kinematic
rupture characteristics, but dips at an angle of 40°. Figure 3 dis-
plays the geometry and final slip on the fault for both cases.
Station geometry and velocity–density structure are chosen
identical to the point-source exercise (Ⓔ Fig. S1).

Similar to the point-source forward-modeling exercise, we
observe differences in the provided solutions (Fig. 4), related
mostly to variations in amplitude and frequency content. For
the strike-slip case, waveforms agree well with each other, with
cross-correlation coefficients typically above 0.88 (Fig. 4c). Pro-
nounced differences in phase-arrival times are detectable in the
dip-slip case for solution 5 (Fig. 4d), but for the other solutions
amplitude variations of different wave packets result in cross-
correlation coefficients typically above 0.9 that increase to val-
ues ∼0:95 after low-pass filtering (Fig. 4e). The flexible and fast
online calculation and display of the root mean square (rms)
misfit and cross-correlation-coefficient matrices (Fig. 4b–e)

help to visually and quantitatively appreciate the differences
between the individual solutions.

Lessons Learned From Extended-Fault Forward-Modeling
Tests
The SIV forward-modeling exercises for near-source seismo-
grams due to point-source and extended-fault ruptures reveal
that the tested codes provide overall consistent results. How-
ever, we detect small phase-arrival time variations (for the point
source) and significant amplitude differences (for both cases).
Interestingly, in each case one forward-modeling solution is ob-
viously incorrect, most likely due to a false input parameter-
ization for the particular code used in that simulation.

Subtle variations in amplitude and phase-arrival times for
the generally consistent solutions highlight the necessity that
source inversion scientists be intimately familiar with the for-
ward-modeling codes. Often, several code versions of the same
method are available but may lead to slightly different results.
Also, computer programs may have internal tuning parameters
and/or require carefully chosen case-dependent parameter val-
ues. If these are not adequately specified, inaccurate results are
expected. In addition, forward-modeling codes may not be
comprehensively documented and/or researchers use them
in an error-prone black-box mode. We therefore strongly ad-
vise source inversion researchers to conduct careful forward-
modeling tests and calibrations prior to the actual source in-
version study. The SIV project provides appropriate forward-
modeling exercises, as well as an online platform for analyzing
the results.

INVERSION BENCHMARKS

Three SIV inversion benchmarks have been defined so far: two
for which only near-field seismograms are disseminated and

▴ Figure 3. Fault–receiver geometry and final slip on the fault for the extended-fault forward-modeling exercises: (left) strike-slip case,

and (right) reverse-faulting case. Red lines mark the surface projection of the fault, black dots indicate locations on which the kinematic

source parameters are specified, and green triangles mark the receiver locations (see also Ⓔ Fig. S1b,c).
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one for which teleseismic or GPS synthetics are also provided.
A fourth benchmark is under development. All benchmarks
have different characteristics and are summarized below.

The corresponding results and detailed statistical evaluation
of the inversion solutions are described in the Statistical Analy-
sis section.

▴ Figure 4. Three-component waveform comparisons for the extended-fault forward-modeling exercises at selected stations (Ⓔ

Fig. S1b). (a) Strike-slip case (slip model show in Fig. 3a) with six different modeling solutions at three sites. (b) Example for the root

mean square (rms) misfit matrix for three-component waveforms at a single station. (c) Example for the cross-correlation coefficient

matrix for three waveform components. (d) Dip-slip case (slip model shown in Fig. 3b) with horizontal waveforms at three locations

and corresponding cross-correlation matrices. Notice the time shifts and high-frequency oscillations in solution 5. (e) Same as (d) after

removing solution 5 from the analysis and low-pass filtering at 1 Hz. (Continued)
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Benchmark inv1: A Strike-Slip Rupture on an 80°
Dipping Fault
The first inversion benchmark, inv1, is based on a spontaneous
dynamic rupture simulation for a strike-slip fault on an 80° dip-
ping fault plane. The initial stress conditions were chosen using
heterogeneous initial shear stress, depth-dependent normal
stress, and a slip-weakening length scale of Dc � 0:4 m that
increased at the fault edges to a larger value (Dc � 2:0 m) to

ensure smooth rupture termination. The velocity–density struc-
ture is identical to the one used in the forward-modeling exer-
cises (Ⓔ Fig. S1). Near-fault seismograms (f max ∼ 2:5 Hz) were
computed at 56 sites, but data were distributed for only 40 sites.
The modeling teams had to blind-predict the seismograms at the
remaining 16 locations. Figure 5 displays the fault–receiver
geometry and final peak slip-rate and final slip distributions.
The seismic moment of the event is M0 � 1:06 × 1019 N·m

Figure 4. Continued.

Seismological Research Letters Volume 87, Number 3 May/June 2016 697



(Mw � 6:6), occurring on an ∼30-km-long and ∼15-km-
wide fault.

The problem description for this first benchmark exactly
specifies all metadata (velocity structure, magnitude, hypocen-
ter location, and fault geometry). These are unknown in real
applications. Thus, the inv1 benchmark, without noise on the
synthetics or metadata uncertainties, represents an idealized
case. However, the dynamic rupture calculation returned
Yoffe-type local slip-rate functions (Ⓔ Fig. S2; e.g., Tinti et al.,
2005) that are difficult to resolve using a simple parametric
(e.g., boxcar or triangular) slip-rate representation. This could
be approximated using a more flexible source time function
representation (e.g., multiple time windows or an asymmetric
cosine-type function).

Benchmark inv2: Normal-Faulting Ruptures on Shallow-
Dipping Faults
In this benchmark, we include two different rupture scenarios
with identical source–receiver geometry and background veloc-
ity structure (Ⓔ Fig. S1). However, inv2a and inv2b are differ-
ent, because synthetic seismograms for inv2b are computed in a
3D heterogenous velocity model with correlated–random
wavespeed variations overlain over the 1D background model.
The resulting seismic scattering leads to amplitude changes,
waveform distortions, and phase-arrival time differences com-
pared with the background structure of inv2a (Imperatori and
Mai, 2013).

Ⓔ Figure S4 illustrates the source–receiver geometry and
input finite-fault rupture model used to compute near-source
synthetic seismograms (f max ∼ 3 Hz). The normal-faulting
scenario earthquake (Mw � 7:0) occurs on a 45°� 5° dipping
fault with 90° strike, hypocentral depth Z � 10� 1 km, and
slip direction (rake) of 240°� 10°. Thus, these scenarios are
characterized by uncertain metadata. This allows assessment
of how the different teams capture imprecise parameter spec-
ifications that emulate uncertainties for real earthquakes. The
rupture plane is about 40 km × 20 km, and the rupture proc-
ess is prescribed with heterogeneous slip, variable rise times that
correlate with the slip pattern, and varying rupture speed (Ⓔ
Fig. S4, adapted after Imperatori and Mai, 2012).

Benchmark inv3: A Large Hypothetical Earthquake in
Southern California
The kinematic rupture model represents a large hypothetical
strike-slip earthquake in southern California, with spatial vari-
ability in slip, rise time, and rupture speed, and some geomet-
rical fault complexity. Results for inv3 are not yet available
because the synthetic datasets have just been released. In
particular, far-field (teleseismic) synthetics are provided at 52
azimuthally well-distributed locations at a distance range of
30°–90°, computed within the 1D radial-symmetric Earth model
AK135.We generate ray-theory P- and SH-wave seismograms of
140 s duration, as typically used in teleseismic source inversion
studies. For comparison and further work, we also compute
complete far-field seismograms using two alternative approaches

▴ Figure 5. (a) Source–receiver geometry for SIV benchmark inv1. Red lines mark the surface projection of the fault, and the star in-

dicates the epicenter. Green symbols denote sites for which synthetic data are distributed, blue symbols indicate sites for which blind-

predicted waveforms are requested. (b) Rupture model for the inv1 benchmark, resulting from a spontaneous dynamic rupture calculation

with heterogeneous initial stress. The top panel shows the final peak slip-rate (in m/s), and the bottom panel shows the final slip (in m). The

black contour lines mark the rupture progression in 1 s intervals. For the marked gray points, labeled 1–8, the resulting dynamic slip-rate

functions are displayed in Ⓔ Figure S2, indicating a Yoffe-type functional form.
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(Kikuchi and Kanamori, 1991; Friederich and Dalkolmo, 1995;
Nissen-Meyer et al., 2014; van Driel et al., 2015). Figure 6 shows
example waveforms and the station distribution for the inv3-
teleseismic synthetic data.

Near-source strong-motion synthetics are computed in a
3D Earth model of southern California (SCEC CVM4;

Kohler et al., 2003) with a generalized finite-difference method
(Ely et al., 2008). The near-surface velocity structure is trun-
cated to a minimum shear wavespeed of 620 m=s, therefore
f max ∼ 1 Hz. Near-field synthetics are provided for a dense sta-
tion network with an interstation spacing on the order of
20 km. Figure 7 depicts the near-source receiver geometry

▴ Figure 6. Example of teleseismic waveforms for inversion benchmark inv3 at four stations. The red star marks the epicenter. SH

waveforms are shown on the left and P-wavetrains are on the right. Synthetics are computed using the direct Green’s function method

(DGFunc; Friederich and Dalkolmo, 1995), an axisymmetric spectral-element method (AXIsem; Nissen-Meyer et al., 2014; van Driel et al.,

2015), and two implementations of a global ray-theory approach (RayThe1 and RayThe2; Kikuchi and Kanamori, 1991). The first two

methods provide the complete seismic wavefield for a spherically layered isotropic Earth.
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for the inv3 benchmarks and shows example near-field syn-
thetics at selected stations. In this benchmark, source inversion
teams may adopt the specified 3D Earth structure in their inver-
sion or use an appropriately simplified velocity–density structure.
The later analysis of inversion solutions and data predictions will
illustrate the effects of the assumed velocity–density structure on
source-model uncertainties (e.g., Razafindrakoto and Mai, 2014;
Gallovic et al., 2015).

Forthcoming Benchmarks
Forthcoming source inversion benchmarks are built on the expe-
rience gleaned from the inv1–inv3 exercises. They will include ad-
ditional intricacy, in particular in terms of 3D Earth structure
(including topography) and geometrical rupture complexity. Com-
puting the synthetic datasets at the required resolution such that
they contain relevant information about the space–time rupture
evolution will require substantial computational resources, modern

high-performance computing (HPC)-architecture, and advanced
numerical forward solvers.

We also plan to provide additional datasets that help to es-
timate earthquake source processes. Recently, backprojection im-
aging has been successfully applied to track the rupture evolution
in space and time (e.g., Ishii et al., 2005; Krüger and Ohrnberger,
2005; Koper et al., 2011; Meng et al., 2011, 2012; Kiser and Ishii,
2012; Fan and Shearer, 2015). However, it is still unclear how
exactly the backprojected image relates to kinematic rupture
properties (e.g., fault slip), because it utilizes primarily the
high-frequency seismic wavefield (typically f ∼ 1 Hz). Recent
work attempts to generalize the backprojection technique and
to incorporate it into linear inversions (Zhang et al., 2014). Dedi-
cated benchmark exercises may help relate backprojection to fi-
nite-fault inversions to more comprehensively characterize the
underlying rupture process. For future SIV benchmarks of large
subduction-earthquake scenarios, we may also provide synthetic
tsunami waveform data, which are used to constrain slip on the

▴ Figure 7. Map view of rupture geometry and near-fault receivers for inversion benchmark inv3. The star marks the epicenter, and the color

coding reflects the shear-wavespeed at the Earth’s surface. Three-component synthetic seismograms at selected stations reveal effects of

directivity and 3D Earth structure. In each seismogram panel, we plot (from top to bottom) north–south, east–west, and the vertical component

velocity seismogram, normalized with respect to peak absolute amplitude of all three components at that location (shown in cm=s).
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fault (e.g., Satake et al., 2013). In addition, synthetic Interfero-
metric Synthetic Aperture Radar (InSAR) data may be included,
because these help to constrain fault geometry, fault slip, and seis-
mic moment (e.g., Jónsson et al., 2002). By providing multiple
datasets for a single SIV benchmark, we will test how different
data-weighting schemes affect the inversion solutions.

STATISTICAL ANALYSIS

Our goal is to statistically evaluate how well the SIV solutions
reproduce the synthetic data and the input rupture model. We
use common waveform misfit measures (L1 norm, L2 norm,
variance reduction, cross-correlation coefficient), as well as
time–frequency envelope misfits and time-frequency phase
misfits (Kristekova et al., 2009). Quantitatively comparing
2D fields of rupture parameters (e.g., slip, rupture time, rise
time) requires defining adequate misfit measures. Mai et al.
(2007) used the 2D cross-correlation coefficient and the
power-spectral decay of slip. For the SIV inversion solutions,
we apply the spatial-prediction comparison test to the slip
models (Zhang et al., 2015) and the multidimensional scaling
(MDS) approach of Razafindrakoto et al. (2015). These meth-
ods implement dissimilarity quantification between two physi-
cal fields (e.g., slip models) and allow for ranking these fields
with respect to a chosen reference. If the true model is known,
one can define metrics to discriminate between “excellent” sol-
utions and “good,” “fair,” or “poor” solutions (Razafindrakoto
et al., 2015). For further details, we refer the reader to the cor-
responding publications. Below, we describe inversion results
and their statistical analysis for benchmark exercise inv1 and
briefly summarize the outcome of benchmark inv2a.

Statistic for Benchmark Exercise inv1
Figure 8 displays a graphical comparison of four rupture-model
solutions (Fig. 8b–e), showing slip, rupture-onset time, and rise
time, with respect to the known target model (Fig. 8a). The slip
maps in Figure 8b and 8c look similar to the input model
(Fig. 8a), whereas the slip maps in Figure 8d and 8e reveal dif-
ferent spatial patterns. The same applies to rupture-onset time
and rise time. Remarkably, all three-component waveforms are
very similar (Ⓔ Fig. S3a), with acceptable rms misfit values (Ⓔ
Fig. S3b) and high cross-correlation coefficients (typically
above∼0:85;Ⓔ Fig. S3c). This illustrates that waveform misfit
measures are not necessarily diagnostic of model error.

To further examine rupture-model similarities, the SIV
platform provides a summary table of scalar source-parameter
metrics (Ⓔ Table S1) that list seismic moment, maximum slip,
different source-dimension measures, and the slip centroid.
Note that consistency in the macroscopic scalar source param-
eters between the various models does not imply an agreement
in the corresponding spatial distribution of slip. A first-order
qualitative appraisal for rupture-model similarity can be
gleaned from contour plots of rupture area, slip, rupture-onset
time, and rise time (Fig. 9). For benchmark inv1, the rupture-
onset times agree quite well for about the first 3 s of the rupture
but start deviating subsequently.

Ranking rupture-model solutions with respect to each
other, or with respect to a known solution, requires statistically
robust misfit measures. Zhang et al. (2015) developed and
tested several misfit measures for earthquake slip models using
the spatial-prediction comparison test (SPCT, Hering and
Genton, 2011), in which a chosen loss function quantifies
the error between two 2D fields. Zhang et al. (2015) calibrated
the SPCTapproach by testing various loss functions (squared-
error loss [SE], absolute-error loss [AE], and correlation skill
[CK]) that are sensitive to different spatial correlation lengths
or different heterogeneity levels of slip. Their analysis shows
that the SPCT method provides an effective tool to quantita-
tively rank slip models. Razafindrakoto et al. (2015) applied
the above loss functions to anMDS approach to further compare
and rank rupture models. Their work shows the ability of the
SPCT and MDS methods to classify slip models even if a true
reference solution does not exist. Applying theMDS approach to
20 published rupture models for the 2011 Tohoku earthquake
demonstrates quantitatively how different data types affect the
final slip distribution (Razafindrakoto et al., 2015).

The outcome of the MDS approach for inv1 benchmark is
shown graphically (Fig. 10) and in tabulated format (ⒺTable S2)
for dissimilarity values computed using the normalized SE. Based
on calibrated test results, Razafindrakoto et al. (2015) propose
that a normalized dissimilarity value <5 indicates an “excel-
lent” agreement between two slip models. A “good” agreement
is found if this value falls in the 5–20 interval, the 20–40 range
indicates a “fair” agreement, and beyond the agreement is
“poor.” Applying these definitions to solutions of benchmark
inv1 and choosing the known target solution as the reference, we
find that solution fsg is best, obtained using a new frequency-
domain inversion approach (Fan et al., 2014), resulting in
the smallest dissimilarity value (Ⓔ Table S2). Solution gallovic2
ranks second best. These two solutions are shown in Figure 8b,c
for a visual comparison of the slip patterns.

Many proposed solutions fall in the category “good,” indi-
cating consistency between the inferred and known slip distri-
bution (Fig. 10). In this example, the “best model” is determined
using the selected MDS metric (SE). Choosing the AE or CK
may return a different ranking. Note that this ranking does not
account for other rupture properties (rise time; rupture-onset
time) or waveform misfit.

Statistic for Benchmark Exercise inv2a
We encourage the reader to apply the online comparison tools
of the SIV platform to benchmark exercise inv2a. Examples are
given in Ⓔ Figures S5 and S6, which show rupture-model sol-
utions, scalar source-model parameters, and a selection of seismic
waveforms. For inv1, variations are observed in seismic moment
by a factor ∼1:5 and in maximum slip by a factor ∼7. Solutions
for inv2a appear to be more similar (factor ∼1:4 in seismic mo-
ment, factor ∼4 in maximum slip). Ranking the solutions is not
possible based on these macroscopic source parameters or using
the apparent waveform similarity (Ⓔ Fig. S6b). As for the inv1
case, the inv2a benchmark demonstrates that good waveform
fitting can be achieved despite remarkably different rupture
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models. Applying the MDS approach outlined above to these
solutions, we find that only four models fall in the “good” cat-
egory (Ⓔ Fig. S6c,d), but it is clear that two solutions, asano and
gallovic1, clearly outperform the other solutions. An alternative
approach to compare the complete spatial–temporal rupture
propagation by exploiting the eigenstructure of the inverse prob-
lem is proposed by Gallovič and Ampuero (2015).

SUMMARY, RECOMMENDATIONS, AND FUTURE
GOALS

The SIV collaboration continues its activities, gathering insight
on how to optimally conduct earthquake source inversions and
to properly test and quantify their resolving power. The SIV

tests reveal that even the computation of synthetic seismograms

▴ Figure 8. Slip-inversion results for benchmark inv1. The input model is given in (a), inversion solutions are shown in (b)–(e) in terms of

final slip (top), rupture time (bottom left), and rise time (bottom right). The color scale for each source parameter, shown in (a), is identical

for the five rupture models. The white star marks the hypocenter. Note that the actual fault-plane dimensions may not be identical

because these had to be chosen by the modeling teams.

702 Seismological Research Letters Volume 87, Number 3 May/June 2016



for a point source or precisely specified finite-fault rupture is
error prone. Although validated computer programs generally
generate consistent results, inadvertently choosing slightly in-
correct input parameters for a given code may jeopardize the
forward simulations. Many codes are poorly documented (if at
all), and/or hidden parameters in the code require tuning for a
given problem. However, users are often not the code authors
and may treat them as “black boxes,” without knowing about
the inner workings of the forward-modeling engine and its po-
tential problems. Therefore, we recommend that any source-
modeler verifies and tests the chosen forward-modeling code
with respect to published solutions. The SIV effort provides
such benchmark tests. We also recommend testing new slip
inversion methods using the SIV benchmarks.

The inversion results for benchmarks inv1 and inv2a
document that an excellent waveform fit (quantified by small
rms misfit values) does not guarantee a good recovery of the
“true” rupture model. Significantly different kinematic source
models may explain the data equally well. At this point, we have
not investigated the potential influence of a chosen misfit func-
tion for a particular inversion method. However, we find that
the inversion methods proposed by Gallovic et al. (2015) and
Fan and Shearer (2015) perform particularly well. Common to
both methods is that these regularized linear inversions are un-

constrained in the temporal rupture evolution. The functional
form of the local on-fault slip-rate function is not prescribed,
and there is no assumption on rupture speed. Instead, the rup-
ture is allowed to develop in space and time as preferred by the
data, with adequately dense temporal sampling to recover the
local slip-rate function. Given our current test results, these
types of methods appear as being best suited to estimate the
spatiotemporal rupture evolution from near-fault data such
that subsequent inferences can be made on the dynamic rup-
ture process. However, further tests are needed to confirm this
conjecture, including, for instance, benchmarks with complex
rupture geometry in 3D Earth structure. Furthermore, includ-
ing backprojecting imaging into the linear inversion (Zhang
et al., 2014) may provide a promising path forward. In future
benchmarks, we plan to supply additional synthetic datasets
(GPS; InSAR, tsunami data for a subduction-zone benchmark)
to also test joint inversion strategies and corresponding data-
weighting schemes.

We describe an approach to quantify the goodness of fit of
inverted rupture models with respect to an input model, based
on statistical analyses using the SPCT (Hering and Genton,
2011; Zhang et al., 2015). This approach is extended to rank
the solutions using MDS (Razafindrakoto et al., 2015). Alter-
native methods for statistical quantification of rupture-model

▴ Figure 9. Graphical overlay comparison of rupture-model solutions for inv1 shown in Figure 8. The true model is 1. The overlay contour

plots show (a) the occupied fault area, (b) slip contours, (c) rupture-time contours, and (d) rise-time contours, using a common spatial

sampling of 3 km × 3 km subfault size. These contour plots are generated using the visualization tool available on the SIV platform (see

Data and Resources).
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(dis)similarities are given by Barrall and Harris (2015) or Gal-
lovic and Ampuero (2015). Inspired by the SIV benchmark
results, the latter study proposes to exploit the eigenstructure
of the inverse problem. In the end, a combination of various
approaches may best quantify similarities and differences in
rupture models such that we can conclusively extract the
strength and limitations of the underlying method, data, or
chosen parameterization for the source inversion problem.

It is also important to note that agreed-upon standards for
documenting finite-fault earthquake rupture models are needed
to facilitate statistical analysis and seismological research using
source inversion results. Mai et al. (2016) propose a common
rupture-model format and describe the required level of detail
for documenting the inversion method, the data used, the pa-
rameterization, and metadata. If such standards are adhered to,
transparency and reproducibility of finite-fault inversions is en-
sured, lending further credibility to earthquake source inversion
studies. For the SIV benchmarks, a more compact rupture-model
format has been adopted for simplicity, but the long-term SIV

goal is to develop avenues for reproducible, testable, perhaps
even (semi)automated finite-fault inversions. As such, we envi-

sion a prospective testing center in which various earthquake-
source inversion codes run side by side on a range of test prob-
lems first and then on real data, with minimal user intervention,
to generate finite-fault rupture models with properly quantified
uncertainties. The SIV efforts described in this article are a first
step in this direction.

DATA AND RESOURCES

The earthquake rupture models shown in Figure 1 are taken
from the online finite-fault earthquake source models
(SRCMOD), available at http://equake‑rc.info/srcmod (last ac-
cessed November 2015). All Source Inversion Validation (SIV)
benchmarks and related problem descriptions, data, and meta-
data, as well as plotting and analysis routines, can be accessed
via the SIV database (http://equake-rc.info/SIV/, last accessed De-
cember 2015). The contour plots in Figure 9 are generated using
the visualization tool available on the SIV platform (http://
equake-rc.info/SIV/sivtools/list_solutions_for_benchmark/inv1/).
Slip-heterogeneity characterizations are based on source models
of past earthquakes, including an unpublished manuscript by
K. K. S. Thingbaijam and P. M. Mai, “Evidence for truncated
exponential distribution of earthquake slip.”
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