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The East Greenland Polar Front in Autumn

Robert G. Paquette, Robert H. Bourke, John F. Newton, 1 and William F. Perdue 2

Naval Postgraduate School, Monterey, California

Closely spaced salinity and temperature measurements in the region of the East Greenland Polar

Front from 75"N to 79' N in October-November 1981 are presented. The Return Atlantic Current (RAC),
having a core of relatively warm and saline Atlantic Intermediate Water (AIW) (7" = 0.5° to 3.0°C,

S = 34.9 to 35.0), was found everywhere along a steep front separating it from the colder, fresher Polar

Water. A narrow frontal jet was found to have velocities greater than 0.80 m/s where the station density

was great enough to resolve its concentrated character. Notable fine structure was present, especially in

the warm AIW just east of the front. A cold, saline water, forming a knee in the temperature-salinity

correlation, was present in the upper margins of the RAC. The knee is formed primarily by warm AIW
or Atlantic water flowing under the upper layers of water flowing from the Arctic Ocean. Calculations

are presented to show that an initially isothermal underflow could be modified to a thick thermocline by

double diffusion. Calculations of the rate of cooling of fine-structure elements by double diffusion

indicate that the fine structure would have a limited lifetime (about 12 days) if its waters were not

continually replenished.

Introduction

A marked temperature front, seen also in the salinity and

density, exists along the boundary between the Polar Water

(PW), flowing southward as part of the East Greenland Cur-

rent (EGC) along the Greenland coast, and the Atlantic Inter-

mediate Water (AIW) and Atlantic water (AW) present toward

the east (see Figure 1). These water masses will be precisely

defined later in this section. We shall call this front the East

Greenland Polar Front (EGPF), after Wadhams et al. [1979],

as a name more descriptive than the older "Polar Front." In

summer the front extends generally from the southern tip of

Greenland to latitudes greater than 80°N and may be seen

approximately in this length in the diagrams of Dietrich

[1969] that are based on the cruises during the International

Geophysical Year of 1958.

The present paper is concerned with the portion of the front

north of 74°N and will present the results of a cruise by

USCGC Northwind to the marginal sea ice zone (MIZ) of the

EGC in October-November 1981 wherein most of the

measurements are within the ice-covered portion of the East

Greenland Current. A preliminary analysis of the cruise data,

concentrating mainly on the frontal characteristics as interpre-

ted from several transects across the EGPF, was conducted by

Perdue [1982]. These and the results of Westwind 1979

[Newton and Piper, 1981] in August-September 1979 are the

only measurements from the frontal zone with relatively high

resolution both in the vertical and horizontal. They are based

on modern conductivity-temperature-depth (CTD) recorders

and on station spacings as small as 5-30 km. The MIZEX
expedition operated in the northern part of this area in

summer 1983, but its results are not yet available.

The Nansen bottle data that are close to or cross the front

above 74°N and thus are suitable for comparison are the

August-September 1962 data of Atka [Gladfelter, 1964], which
barely cross the front; Edisto 1964 [Codispoti, 1968]; and
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Edisto 1965 (unpublished data, 1965). Some information about

the effects of autumn are obtainable from the cruises of Ais-

berg in late October 1959 near 74'30'N and Polyarnik in the

same area in early October 1958. Two stations from Polyarnik

in mid-October 1963 on 78 N reach west only to 1°E and are

useful mainly for estimating autumn temperatures east of the

front at that latitude.

During the discussion of previous knowledge about the

northern Greenland Sea, reference again will be made to

Figure 1, which is a composite of representations of the circu-

lation of the North Atlantic Ocean that is derived from several

sources and somewhat simplified. From Dietrich [1969] and

Kiilerich [1945] is derived the general form of the circulation

in the EGC, the Norwegian Current, and the West Spitzber-

gen Current (WSC); Kiilerich shows considerable detail in the

Greenland shelf area and particularly the turning westward of

the EGC near 76 N. The westward turning vectors north of

76°N are derived from the present work. From Gladfelter

[1964] are derived the forms of the recirculation paths for

water turning southward from the north-going WSC into the

EGC. Considerable definition is added to the location of the

EGPF and the frontal jet by the present work and, farther

north, by the work of Newton and Piper [1981]. The extension

of the jet to the south of 74°N is inferred from Dietrich's maps

but also can be verified in three crossings, reaching south to

70°30'N, from the data of Edisto 1965 (unpublished data,

1965) as well as other cruises. It is interesting that the front

and the jet follow the continental slope closely as far north as

77°N. From this latitude northward the front veers away

toward the east into deeper water.

Some of the features of the frontal zone that will be elabo-

rated here have been known in less detailed form for many
years. Aagaard and Coachman [1968a] outlined the early his-

tory of investigations in the Greenland Sea; a summary of

pertinent aspects of their discussion follows. The existence of

the EGC and the associated ice stream was known well before

the turn of the century. That there was a front along the

eastern side of the EGC was known, but there was little em-

phasis upon it at those times. It was presumed that the warm,

saline water to the east of the ice must originate in the Atlan-

tic Water (AW) of the West Spitzbergen Current. The exis-

tence of a more rapid flow of ice southward near the eastern

boundary of the EGC also was known. During the early part

of the present century, more became known about the circu-
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Fig. 1. Bathymetry and currents in the Greenland-Norwegian Sea derived from a variety of sources (see text). Depth
labels are in hundreds of meters. The 5600-m depression on 79 N, called the Molloy Deep, is a possible cause of a

persistent eddy. The Greenland to Spitzbergen strait is now being called Fram Strait.

lation of the Greenland Sea and the warm AIW concentrated

along the eastern side of the front. The latter was seen as

arising in a reversal of the flow of part of the north-going

WSC occurring between 75 N and an undefined latitude north

of 80 N. For this flow the term "Return Atlantic Current" has

gained some acceptance [see Jakhelln, 1936; Gladfelter, 1964;

Codispoti, 1968].

In the present work the Return Atlantic Current (RAC) is

found to be a notable feature and requires more emphasis

than that given in previous work. The current gains its identi-

ty from being a core of warm, high-salinity water, often

broken into differing filaments, most of it being above 0"C and
near the high end of the salinity range for AIW, even overlap-

ping into AW. Property limits for these waters are described

later in this paper. The RAC has a width of 100 km or less and

lies along the EGPF at depths roughly between 50 and 300 m,

commonly at least partly under the PW. The reader may wish

to look ahead to Figures 4, 5, 6, and 7 for illustration. Its

center has a temperature maximum both in the vertical and
east-west directions. The temperature maximum in the vertical

disappears toward the east; toward the west the maximum

decreases in temperature and, before it disappears, is found at

the bottom, well up on the shelf. The center has a salinity

maximum in the vertical, usually coincident with the temper-

ature maximum, or nearly so. Toward the west, the salinity

decreases. Toward the east, the change in the salinity at the

maximum is small, and it is presently not obvious whether it

increases or decreases.

Aagaard and Coachman [1968a] deduced that the flow of

the EGC in winter approximated 35 x 10
6 m 3

/s. Most of this

would have to be AIW because, according to Aagaard and

Greisman [1975], the outflow of PW from the Arctic Ocean

approximates 1.8 x 10
6 m 3

/s. In our view all or nearly all of

the AIW associated with the EGC is RAC; hence this large

transport was chiefly due to the RAC. Aagaard and Coach-

man deduced their large transport from current measurements

made from the ice island Arlis II as it drifted during the late

winter from 77°45'N, 9 36'W on the East Greenland shelf to

69
C
N, 20°25'W in 1400 m of water, now well down the conti-

nental slope. They construed this diagonal drift as equivalent

to a transverse section normal to the current for purposes of

transport calculation. The applicability of these results to con-
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ditions in autumn is questionable because Aagaard and

Coachman present limited evidence that the transport de-

creases by a factor of perhaps 10 in summer.

More recent direct measurements of current have been

made by Vinje [1977a, 1978, 1979] using satellite-tracked

large ice floes and ice-mounted buoys. These will be discussed

later.

The warm water on the eastern side of the EGPF is appro-

priately called AIW after Aagaard and Coachman [1968a],

who put the lower salinity and temperature limits for this

water at about 34 and 0°C, respectively. By implication their

upper limits for salinity and temperature were set at the lower

limits for AW, i.e., salinity 35.0 and temperature 3°C. They

described colder and more dilute water as PW and further

suggested that AIW is formed by mixing PW with AW. How-
ever, as will be seen later, additional cooling sometimes must

be involved. AW was defined by Swift and Aagaard [1981]

and Carmack and Aagaard [1973] as having a temperature

greater than 3.0°C and a salinity greater than 34.9, a relax-

ation of the salinity limit from the traditional 35.0. Swift and

Aagaard defined an upper and a lower Arctic Intermediate

Water (UAIW and LAIW), the lower division corresponding

to the more recent definitions of Atlantic Intermediate Water

above. Their UAIW is a warm (>2°C) water with a salinity of

34.7-34.9. This UAIW is associated with a temperature mini-

mum that exists when warmer, slightly diluted AW overlies

LAIW. Their temperature minimum does not exist in most of

our data because our surficial wters are nearly all cold. In our

data, water having the characteristics of their UAIW is so

closely associated with water they could call LAIW that it is

more appropriate to adhere to the older Carmack and Aagard

definition of Atlantic Intermediate Water that included both

UAIW and LAIW.
For the sake of completeness, Greenland Sea Deep Water

(GSDW) is defined. This water lies beneath the AIW, deeper

than about 800 m, and only its upper fringe appears in our

cross sections. It was described by Carmack and Aagaard

[1973] to have T < 0°C and 34.85 < S < 34.95. Swift and Aa-

gaard [1981] subdivide this water into Greenland Sea Deep
Water and Norwegian Sea Deep water, a distinction that can

serve no purpose in the present paper.

In the past an arbitrary boundary for the EGC has been set

for purposes of water classification. Aagaard and Coachman

[1968£>, p. 269] specify the 0°C isotherm or the 34.5 isohaline

at 50 m depth. Presumably, whichever determinant is the far-

ther east controls. Gladfelter [1964] used the 0°C isotherm at

any depth to 75 m. In Gladfelter's data these boundaries coin-

cide fairly well with the most easterly isopleth of dynamic

height, implying continued southward flow. However, it will

be seen later that southerly flow existed in at least one data set

to the east of these limits along 78 N.

The present paper will concentrate on the aspects of the

data that are relatively new:

a description of the front based on a high-resolution

measurements in autumn; a comparison with summer histori-

cal data.

a demonstration of remarkably high baroclinic speeds in a

jet near the ice margin; an indication that such a jet exists to

latitudes as far north as 81'30'N; a notable on-shelf compo-
nent of velocity near 77°N.

a description of fine structure in both the AIW and PW and

some conclusions regarding size of the elements and the dissi-

pation time. This will lead to a conclusion that the heat in the

AIW under the PW is maintained by continual westward ad-

vection of AIW. Some of the fine-structure elements will be

shown to have surprisingly large compensating swings in tem-

perature and salinity while the density increases only slightly

with depth.

a demonstration that AIW, overlaid by PW, contains an

intervening water type colder than can be obtained by linear

mixing between AW and PW. This water can be formed by

double diffusion, it may be a remnent of winter freezing effects

or it may advect from the north.

Methods

The measurements were made with a Neil Brown Instru-

ment Systems Mark III conductivity-temperature-depth re-

corder interfaced with a Hewlett-Packard 9835B desk-top

computer sampling three times per second, approximately

three times per meter of depth. The sensor cage of the instru-

ment was shrouded in 1.25-cm mesh (0.5-in) hardware cloth to

protect the sensors from the ice slush prevalent alongside the

ship. This shroud undoubtedly affected fine-structure measure-

ments to a minor extent but probably at length and temper-

ature scales smaller than those with which we are concerned.

Prior to lowering the instrument it was flushed by hoisting

and lowering over a depth range of 100 m for several minutes

to minimize temperature errors caused by stored heat in the

body of the instrument. At about half of the stations, record-

ings were made both during lowering and hoisting in order to

detect anomalies. No important anomalies were found. Stan-

dardization of the instrument was by means of a reversing

bottle clamped to the line above the instrument. The resulting

samples were analyzed by a deck salinometer referenced to

standard water. The average differences between the instru-

ment and the standards were approximately 0.01 °C in temper-

ature and 0.01 in salinity, not notably greater than the prob-

able error in the thermometers and the deck salinometer

measurements. Hence no correction was applied.

There was minor salinity spiking, which is unimportant for

all purposes except the close inspection of the salinity-

temperature-density relation near station 95. To date, only

these latter stations were despiked, using standard techniques.

Description of the Front and Contiguous Waters

The water properties in Northwind 1981 are presented in

the form of six vertical cross sections (Figures 3-8) crossing

the front along the lines shown in Figure 2. Details pertinent

to each crossing are listed in Table 1. The most northerly

crossing (crossing 6 in Figure 3) did not succeed in crossing

onto the shelf and appears only to have touched the eastern

edge of the warmer filaments of flow along the front; these

filaments can be seen in their entirety in the more southerly

crossings. Station 79 is close to being in the edge of the WSC.
The warm AW here is submerged beneath overlying PW and

ice above to depths greater than 100 m. The salinity of much
of this water is greater than 34.9 and, in fact, exceeds 35.0 in

the center of the core at 200 m. Hence it can be classed as AW
by the Swift and Aagaard [1981] definition. Since station 79 is

so close to the WSC, it is reasonable for AW coming from that

source to be only slightly modified.

The peaking of isotherms near station 81 suggests a cyclonic

eddy, since it mirrors the density structure. A similar eddy

observable in historical data in the same location will be illus-

trated under "Historical Comparisons."

The well-defined RAC may be seen in Figures 4 and 5,

transects along 78°N. In Figure 4 the earlier of the two sec-

tions, the warm core, close against the PW and under PW and

ice is seen to have the characteristics of AW at its center,

diluting and cooling to AIW above and, more slowly, toward
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Fig. 2. Station positions for Northwind 1981. The 400-m isobath is dashed; the 200-m isobath is shown with an

interrupted dash. Filled black dots show stations with fine-structure excursions greater than 0.1 C. Frontal crossings

referenced in the text are labeled with numbers in circles. Station numbers are in italics. The shallow manifestation of the

front is approximately at the point of extrapolation of the frontal isohalines to the surface; the deep end is the point where

isohalines suddenly become markedly less steep at 200-350 m.

the properties of GSDW beneath. In Figure 5 the core be-

comes filamental in structure, and its maximum temperature

drops below 3°C, the temperature limit set by Swift and Aa-

gaard [1981] for AW, and it may appropriately be called

AIW.
It will be noted in Figure 4 that the warm core of AIW east

of the front is separated by a distinct temperature gradient not

only from the PW but also from a warm water layer that

underlies the PW and extends well back onto the continental

shelf. A similar statement may be made with regard to Figures

5-8, except that in these figures the core is not centralized but

is more or less broken down into filaments. This suggests that

the warm AIW core east of the front has a tendency to retain

its identity, even to depths of 300 m or more, as it progresses

southward with the RAC. The layer of water warmer than 0°C

on the shoreward side of the front is a cooler, slightly fresher

variant of the AIW found far back on the Greenland Shelf in

summer by Newton and Piper [1981].

The second crossing on 78°N (Figure 5) was an eastward

traverse over essentially the same line as the first. The center

of the warm core at station 74 was sampled on November 7,

10 days later than the corresponding station 52. Now the

warm core is somewhat cooler, and it has broken up into a

complex fine structure consisting of filaments or lenses of AIW
of contrasting temperatures. This complexity is more common
than are the relatively undisturbed warm cores like the one in

Figure 4. The maxima and minima of those lenses occur over

a narrow density range, and the water column remains stable,

as will be illustrated during the examination of station 95 later

in this discussion.

In many of the crossings that extended onto the shelf there

is, on the western side of the front at depths of 150 to 300 m,

an isolated parcel (or parcels) of AIW; one of these may be

seen centered near station 73 in Figure 5. Other instances of

this phenomenon were seen in the crossings of Northwind in

1979 [Newton and Piper, 1981].

The two southerly crossings extending to the sill at the

entrance to Belgica Dyb (Figures 6 and 7) are not greatly

different in character from those just discussed. As later quan-

titative calculations will show, one would expect a moderate
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TABLE 1. Ice Margin Transect Data

Duration, Ice Edge Approximate
Transects Stations Dates hours Position Latitude

1 9-21 October 18-21 64 XBT station 23 NW, 76-76.8°N

2 24-32 October 24-25 24 Between stations 29

and 30

76.5°N

4 50-62 October 28-30 39 2 km west of station 50 78°N
5 63-78 November 3-8 132 Between stations 77

and 78

78°N

6 79-85 November 8-10 26 2 km west of station 79 79°N
7 93-102 November 11-12 29 1.5 km west of station 93 77°N

ED 64 9-12,45^49 September 2-13 272 79°N
ED 65 21-29 August 31 to

September 2

50 NW, near 75°N

ED 65 30-39 September 5-7 50 78.3°N

ED 65 43-47 September 11-12 14 SE, 77°-76°N
AK 62 27, 26, 38 August 19-25 124 78°N

Numerals refer to Northwind 1981, ED to Edisto, AK to Atka.

decrease in temperature of the warm core by double diffusion

during flow of the core southward. However, the observed

decrease is no larger than the temporal change already ob-

served in a few days on the two northerly crossings. Further, a

temporal bias exists in that water at more southerly latitudes

along the front left the northerly regions at a warmer season.

Hence decreases in temperature that might have occurred

otherwise tend to be obscured.

The most notable feature of Figure 6, which is the more

southerly crossing, is the presence well up on the shelf of an

STA NO.
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W 6020 30
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Fig. 3. Transect 6 on about 79 N. The warmest part of the Return Atlantic Current is just visible on the left. The

peaking of isotherms near station 81 corresponds to a cyclonic eddy found also in other data. In this figure and in all other

transects the temperatures are shown as solid lines and the salinities as dotted lines.
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6. Transect 1, 76 N-76 48'N. The leftmost edge of this transect reaches the sill at the mouth of Belgica Dyb. Note
the parcel of AIW close to the sill, essentially of the same properties as the warmest AIW 90 km to the east.

120

isolated parcel of AIW with a center as warm and nearly as

saline as water 60 km and more to the east, in the region of

the well-defined front. A similarly large parcel is separated

from the main portion of the warm core, seemingly poised to

follow a similar route. An "isentropic" path between the two

parcels exists close to the 34.9 isohaline. This rather notable

tendency to move parcels of warm water onto the shelf in this

area probably is associated with the baroclinic circulation,

which may be seen to take a sharp turn toward the coast in

the dynamic topographies to be discussed in the section "Ve-

locities and Transports."

Another notable feature is the change in the near-surface

frontal slope between the two crossings. The later crossing in

Figure 7 shows the surface PW having spread eastward some
30 km relative to its position 7 days earlier. This could easily

happen under the influence of a westerly wind blowing the ice

into warm water with resultant cooling and dilution.

A cross section from the central part of the area studied is

shown in Figure 8. Here the ship did not penetrate to the

500-m depth contour, but the warm core is above bottom

depths of 1100 to 2000 m, over the central part of the conti-

nental slope. Notable in this crossing is the extreme com-
plexity of interleaving and fine structure. This has prompted
an investigation to demonstrate that the density increases

monotonically downward; this investigation will be presented

under "Fine Structure." Stations 95 and 96 also have been

made the subject of an analysis of double-diffusive rates by

Bourkeetal. [1983].

Historical Comparisons

It is of interest to compare the front in autumn with con-

ditions in summer. Five historical summer transects in the

region of the present survey are mapped in Figure 9. Of these,

two are reasonably coincident with 1981 transects: the north-

ernmost line, from Edisto 1964, and stations 30-39 from

Edisto 1965. The other two from Edisto 1965, while they show

no notable disagreements from the present results, are either

too short or too distant from any of the present transects to be

satisfying. The fifth transect, from USS Atka in 1962, will be

used in the discussion of the transport of the EGC.
The Edisto 1965 data are to be compared with Figures 4

and 5; they are shown in Figure 10 with the positions of the

corresponding stations of Figure 5 marked. Even though there

is less ice in summer, as can be seen from the above-freezing

surface temperatures, the edge of the PW is approximately in

the same location summer and fall, i.e., over the continental

slope. A lobe of AIW extends downward and westward be-

neath the PW in the Edisto data. This corresponds to the

RAC in the present results, but the maximum temperature of

the lobe is only 1.6°C near the 235-km graduation. However,

it should be noted that higher temperatures might have been

found if the measurements had been carried out with closer

station spacings. The distribution of isohalines is remarkably

similar to that of autumn 1981.

The highest temperatures in the Edisto 1965 section are all

present near surface and at the most easterly station, which is
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Fig. 7. Transect 2 on about 7630'N. Little degeneration in temperature and salinity of the warm core is to be seen as

compared to transect 4, 280 km to the north.

45 km east of the end of our line. The high temperatures are

associated with salinities between 33.0 and 34.8, generally less

saline than in the warm under-ice core in the present data.

The Edisto 1964 section is presented similarly in Figure 11

and is to be compared with Figure 3. The Northwind 1981

data are just to the east of the frontal slope and seem to have

touched the core of the RAC on the west, judging from the

presence of the 3°C isotherm. Except for the not surprising

covering of the surface by ice in 1981, the two sections corre-

spond well. Most interesting is the peaking of isohalines at the

280-km point in 1964 (which also corresponds to a peaking of

isopycnals), occurring in the same location as the peaking of

isotherms in 1981. Both correspond to cyclonic eddies. The

eddy at the 350-km mark was pointed out in this data set by

Aagaard and Coachman [19686], who suggested general

causes for it. An eddy in this general location also was noted

in satellite imagery of the ice margin by Vinje [19776] and by

Wadhams and Squire [1983]. The latter authors noted a possi-

ble correlation with the nearby Molloy Deep, the 5570-m de-

pression to be seen near 79°N in Figure 1. However, they

favored baroclinic instability as the generating mechanism.

Recently, Smith et al. [1984] proposed that the eddy is topo-

graphically generated by the Molloy Deep, supporting their

conclusion with a numerical model. Interestingly, the western-

most eddy in 1964 is not the classical cold-core type because,

in this case, salinity is more important than temperature in

controlling the density.

In its external characteristics the EGPF in Northwind 1981

has a slope in its steeper parts varying from 4 to 14 m/km
when measured by isohalines and from 4 to 21 m/km when

measured by isotherms. These numbers are similar to the

slope of the western face of the Gulf Stream north of Cape

Hatteras. In the historical early September data of Figure

10-11 the slopes of isohalines also are comparable to those in

1981. However, in September the isotherms near the surface

were vertical and even reversed slope. The figures show that

there is a body of warm dilute water next to the PW near

surface that is of uncertain origin and causes this difference

between isotherm and isohaline slopes.

Velocities and Transports

Previous information about water speeds in the EGC come

from a variety of sources, most of them representing summer

data. Nearly all indicate that the EGC increases in velocity

near the eastern edge of the ice. Kiilerich [1945], on the basis

of a composite of hydrographic measurements between 75°N

and 80 N, found a narrow jet with surface speeds up to 0.3

m/s. Farther to the west the speeds were considerably slower.

Baroclinic velocity vectors derived from Edisto 1964 and

1965 data are shown by Aagaard and Coachman [19686] to

have the highest speeds in the region between the EGPF and

just west of the 1000-m isobath. The highest speed computed

was 0.23 m/s near 77°N, 7°W. To the west of the high-speed

region the speeds decreased to 0.08-0.10 m/s, with some small

values in between. The shallow reference level of 200 dbar

(necessitated by the shallow water) leaves open the possibility

that the speeds could be substantially higher. For example,

Edisto 1964 [Codispoti, 1968] shows the highest surface

speeds at 79'N, 2 W, just seaward of the shelf but not in the

high-speed core, to be approximately twice as great when the
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Fig. 8. Transect 7 on 77 N. Contains the most notable fine structure found during the cruise.

1000-dbar reference surface rather than the 200-dbar surface is

used.

Quasi-Lagrangian measurements of velocity include the

barotropic component of flow but suffer from time and space

averaging so that localized high velocities seldom are revealed.

Some such measurements are summarized below. In Septem-

ber 1965, Edisto was located just inside the ice edge near

78°N, 8°W [Aagaard and Coachman, 1968a] and drifted SSW
with the ice at an estimated speed of 0.75 ± 0.25 m/s. Earth-

referenced ice drift measurements reported by Aagaard and

Coachman [1968a] were made from the drifting ice island

Arlis II, located about 120 km west of the EGPF over the

mid-shelf area near 77 N in February 1965. These indicate

urface speeds of about 0.10 m/s. Nearer the frontal boundary,

i o° o°

Fig. 9. Positions of historical stations referenced in the preceding

gures and in the text: (asterisk) Atka 1962; (filled circle) Edisto 1964;

llled square) Edisto 1965.

but far to the south, drift speeds were found to average about

0.24 m/s.

More recently. Vinje [1977a, 1978, 1979], tracking buoys

and large ice floes by satellite, found average southward drift

speeds of about 0.15-0.20 m/s, generally between 75° and

80 N in late winter to midsummer. Those drifters close to the

east Greenland coast approximated 0.10 m/s in speed. The

highest reported speed [Scientific Committee on Ocean Re-

search, 1979] was 0.30 m/s near the eastern edge of the ice
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Fig. 10. Historical transect, Edisto 1965 on 78 20'N. To be com-
pared with transects 4 and 5, Figures 4 and 5. Station positions for

transect 5 and longitudes are shown. The temperatures in the warm
core are colder than in autumn 1981; the temperature front extends

vertically to the surface.
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Fig. 11. Historical transect, Edisto 1964 on 79 N, to be compared with transect 6. The peaking in isotherms observed

in transect 6 is echoed here in the same location by a peaking of isohalines and, in contrast, a warm core at the surface. A
plot of sigma-t shows isopycnals peaking much like the isohalines, thus corresponding to a cyclonic eddy.

stream. Moderate meanderings were the rule, but there was

strong wind coupling, resulting in northerly and westerly drifts

at times.

The dynamic heights obtained during Northwind 1981 are

shown in Figures 12 and 13, the first for the surface and the

second for the 150-dbar level, both referred to 500 dbar.

Where the water was shallower than 500 m the water columns

beneath their greatest depths were extended to 500 dbar, using

the water properties of the nearest deep-water column. This

6 —4 2

Fig. 12. Dynamic heights of the sea surface, referred to 500 dbar,

in dynamic centimeters (multiply by 0.1 to obtain Joules per kilo-

gram). The closer spacings of isopleths indicate a narrow frontal jet

with baroclinic speeds exceeding 0.8 m/s.

technique is preferable to plotting the whole field of dynamic

heights relative to the 200-dbar surface. Although it gives

identical velocities for the extrapolated depths, the present

method makes maximum utilization of the density infor-

mation in deep-water columns to give more accurate dynamic

heights there. Forty-one of the more westerly of the 122 sta-

tions required this approximation, i.e., they had bottom

10 8 —6~ ~~~7T~ ' 2

Fig. 13. Dynamic heights of the 150-dbar surface, referred to 500

dbar, in dynamic centimeters (multiply by 0.1 to obtain Joules per

kilogram). Note the change to 1 dyn cm spacing of isopleths. The

patterns are similar to those at the surface, except that the speeds are

generally 1/3 to 1/10 as great. Near latitude 77° the westward-going

isopleths indicate speeds greater than at the surface.
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depths between 180 and 450 m. Fortunately, the regions of

greatest velocity are over deep water and not subject to uncer-

tainty from this procedure.

The dynamic heights at the surface agree in general with

historical results. They indicate a high-speed frontal jet and

velocities on the western edge of the survey area of about 0.05

m/s, about half the drift speed of Arlis II when it was a short

distance to the west of the line on 78°N in winter and about

half the speeds computed by earlier investigators from the few

observations well up on the shelf.

One of the more striking features of the field of dynamic

heights is the high speed of the frontal jet, which reaches 0.96

m/s just inside the ice edge near latitude 77^25'N and shows

speeds exceeding 0.80 m/s at two locations farther south. It

will be noted that the highest speeds are found when the sta-

tion density is highest, which leads to the suggestion that the

jet would be seen in high velocity all along the front if the

station densities were high enough everywhere to resolve it.

The high speeds of the jet are absent in historical dynamic

topography precisely because of this lack of close station spac-

ing, generally 2 to 3 times as great as the spacings in 1981.

Some idea of the concentration of the frontal jet may be seen

in the cross section of baroclinic speed components normal to

the section seen in Figure 14 for the northerly line along 78 N.

This section shows only moderate speeds, slightly over 0.40

m/s. There is much variability in the lower speeds to the west

of the jet, probably indicative of eddy structures.

Another interesting feature in Figure 12 is the turning of

isopleths westward between 76"30'N and 77 N, a phenomenon

previously shown near 76°N by Kiilerich [1945]. Since bathy-

metric steering evidently guides the frontal jet, one suspects

bathymetry as the cause of this general turning. Three notable

bathymetric features occur near the point of turning. The east-
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Fig. 14. A section showing baroclinic north-south components of

peed along 78 10'N in transect 5, Figure 5. Speeds are in centimeters

>er second (multiply by 0.01 to obtain meters per second), positive

oward the south. This is a transect with only a moderate speed in the

rontal jet. The narrowness of the frontal jet is notable. The variability

n speeds is interesting, although perhaps not yet interpretable.

ern end of Belgica Dyb, a cross-shelf trough, lies at 77°N,

7 W; the ridge separating the northern and southern basins of

the Greenland Sea extends southeast from the continental

slope at about 77 N, 5°W at a depth of 2000-2500 m, and

near the landward end of this ridge the continental slope

begins to veer toward the southwest. Note that the 400-m
isobath provides only a generalized outline of the break and

shows only one (Belgica Dyb) of a series of cross-shelf troughs.

Recently acquired bathymetric data (R. H. Bourke et al., un-

published manuscript, 1985) also shows that the indicated sill

at the mouth of Belgica Dyb is minor or nonexistent; hence

the sidewalls of this trough extend their influence past the

shelf break. That warm water moves toward and into Belgica

Dyb is indicated by two observations. Newton and Piper

[1981] suggested this cross-shelf flow earlier, on the basis of

temperatures and salinities measured along the axis of Belgica

Dyb during the cruise of USCGC Westwind in 1979. Also, it is

likely that the warm, salty parcel of AIW observed 40 km
from the mouth of the trough, as seen in Figure 6, is associ-

ated with the same process.

The 150-dbar surface was chosen to demonstrate subsurface

flow features because it is approximately at the dividing depth

between PW and AIW over the eastern part of the EGPF. A
contour interval of 1 dyn cm was necessary to show the major

features, a scaling that admittedly gives results somewhat sen-

sitive to noise and low station density. The geopotential iso-

pleths are surprisingly similar to those at the surface, one

important difference being the intensification of the flow west-

ward toward Belgica Dyb as compared with the surface.

Otherwise the speeds are generally 3 to 10 times less than at

the surface. This is typical of baroclinic shears calculated from

historical data. There is little basis for comparison with the

measurements from Arlis II [Aayaard and Coachman, 1968a],

which found relatively small decreases of velocity with depth,

because of the presumed large winter-to-summer difference

cited by those authors.

Some baroclinic transports have been calculated. For the

line along 78°N, a volume flow of 1.2 x 10
6 m 3

/s was com-

puted between the surface and the 500-m level or bottom,

whichever was shallower. Assuming that the velocity decreases

linearly to near zero at the coast suggests the addition of

about 0.8 x 10
6 m 3

/s, summing to a total baroclinic transport

of about 2 x 10
6 m 3

/s from the ice edge to land. There are toe

many uncertainties to estimate an actual transport. The 500-

dbar reference level undoubtedly is too shallow, and it is by

no means certain that 1000 dbar would be adequately deep.

There is the likelihood of a significant barotropic component,

according to the results of Aagaard and Coachman [1968a].

An illustration of the effects of changing reference level may
be had by computing transports for the stations of Atka 1962

along 78
UN (Figure 9). Their stations 27, 26, and 38 extend

just west of the eastern end of our line on 78°N to 5°E lon-

gitude \G\adfe\ler, 1964]. When 500 dbar was used as the

reference pressure, the southward transport was 0.5 x 10
6

m 3
/s. When 2500 dbar was the reference pressure, not only did

the velocities in the upper 500 m increase, which would lead to

more than doubling of the transport in the upper 500 m, but

also the increased thickness of the transporting water column

resulted in a transport of 3.4 x 10
6 m 3

/s.

It is interesting that at this latitude the Atka 1962 results

show that part of the southward flowing water is east of any

manifestation of PW and thus, nominally, is not part of the

EGC. Evidently, association of the edge of the EGC with the

0°C isotherm is somewhat arbitrary.
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Fig. 15. Temperature-salinity correlations for selected stations

along the length of transect 4. Symbols on the curves are every 40 m,

beginning at 40 m. The water labeled PW approximates the compo-
sition of the locally available PW of lowest salinity. The composition

of the AW source is estimated for this season by a small extrapolation

from the warmest and most saline water observed during the cruise.

The deep knee in the curves near — 1.2°C and salinity 34.1 cannot

have been formed by mixing of PW and AW. Arctic Ocean water at

83 30.8'N, 13°41'W is indicated by solid circles.

Temperature-Salinity Relations

The temperature-salinity diagram of Figure 15 illustrates

the water masses present at three stations spanning the more

southerly cross section along 78°N (Figure 4). The symbols on

the curves mark 40-m depth intervals, beginning at 40 m and

extending to beyond 480 m in two of the three stations. The

narrow peak of warm AW or AIW is connected by a deep dip

or knee in the curve with a sequence of waters within the PW
definition. These ultimately connect with water having a salin-

ity of about 30.5 and a temperature near — 1.5°C that may be

regarded as the effective low-salinity source for mixing. This is

the water labeled PW on the curve. Similar T-S relations were

shown by nearly all the stations in the cruise. The exceptions

are those stations that did not have PW in the upper layers,

principally the first nine stations. Figure 15 exemplifies the

fact that a maximum in salinity in each lowering is closely

associated with the deepest temperature maximum or is at a

slightly deeper depth, as may be seen most easily in Figure 16.
r

Considering all the stations in the cruise that exhibit a knee,!

the temperatures at the knee are coldest at the most westerly 1

stations. Only one station was so far west that no warming of

the bottom water above 0°C occurred.

It is evident from the deep knee in the curves between the.

AIW beneath and the PW above that the waters between are

not the product of simple mixing between these two waters:

they are too cold. The primary mechanism for formation of

the knee is undoubtedly the advection of AIW from the east

under the outflowing upper layers of Arctic Ocean water. At;

least some of the Arctic Ocean water is like that of the more

westerly stations of 1981, e.g., station 50. This may be seen in

Figure 15, where the solid circles trace the properties of sta-

tion 268 of Arlis II [Tripp and Kusunoki, 1967] at 83°30.8'N,

13 41'W, about 400 km NNW of Fram Strait in December
1964. The temperature maximum is rather broad and is lo-

cated between 290 and 440 m depth. The knee is at 118 m
depth. Obviously, the Arctic Ocean water has not been simply

underrun by AIW with properties like those of stations 50 and

52; there has been a modification, and there is not enough

information available to determine how this modification

takes place.

One modifying process likely to go on at the upper interface

of the warm RAC with PW is double diffusion. We have

followed the methods of earlier authors [e.g., Home, 1978] in

computing the heat loss from the warm layer, recognizing that

the equations used are an extrapolation from laboratory scale

that has not been well verified on oceanic scales. The rate of

exchange of heat and salt across the "diffusive" interface sep-

arating the two water masses was calculated. For the heat flux

rate H, Home's equation reduces to

H = 250.2 AT4 ' 3 R, W m -

where the temperature difference AT was taken to be 4°C

(from 2.5°C to - 1.5°C). The density ratio R
p
= P AS/a AT

was computed to be 2.86, using a salinity difference AS of 1.0
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Fig. 16. Temperature and salinity profiles, station 95. Both down and up traverses are shown. This station shows the

most notable fine structure in the cruise. The total elapsed time for both profiles is 28 min. A new fine structure element

has appeared in the up-going temperature profile during a period of about 17 min.
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over the depth interval from 75 to 175 m. These are average

conditions for the warmer parts of the RAC. A density ratio of

2.86 implies a relatively stable interface [Turner, 1965], lead-

ing to a small salt flux rate but a moderate heat flux rate. A
heat flux rate of 194.2 W m" 2

(4.69 x l(T
5cC m s" 1

) was

calculated. The salt flux rate was approximately 4.8 x 10" 7 kg

m" 2
s ' (4.7 x 10" 7%oms _1

).

In comparison, Cartnack and Aagaard [1973] computed a

flux rate of 3.6 x lfr 3
cal cm' 2

s
_1

(151 W irT
2

, 3.64

x 10" 5oC m s" 1

) between the AIW and overlying PW in the

central Greenland Sea in winter in a water column with lower

stability than ours but a compensating smaller temperature

gradient. As a result their number is similar to ours. Carmack
and Aagaard regarded this flux as large enough to produce

Greenland Sea Bottom Water from the AW.
To reduce the heat flux rate calculated above to more easily

understandable terms, a hypothetical model is proposed that

has only a limited relation to reality. Suppose that a 100-m-

thick block of 2.5°C AIW flows under PW, which maintains

its lower surface at constant depth and at a constant temper-

ature of — 1.5°C by whatever process maintains the temper-

ature structure of the PW (more about this assumption later).

Heat then diffuses upward from the AIW at the rate calculated

for the finally developed thermocline above. This is a conser-

vative calculation because the temperature gradients during

the entire process would be larger than the final value for

which the above heat rate was calculated. The heat loss from

the AIW layer during the production of the linear temperature

ramp would then be 8.4 x 10
8

J m~ 2
. In this calculation we

give no insight into the detailed mechanisms that cause the

resulting ramp to form. This process would require 50 days at

the computed rate of heat transfer. The AIW could have been

in contact with the PW for this rather long period of time if

the original underflow occurred perhaps 150-km upstream

and the AIW moved southward to the present latitude, with

its mean velocity of about 0.03 m s '. This would put the

original underflow at about 81°N, which is reasonable, indi-

cating that to some fraction of an order of magnitude double

diffusion can be an important element in the heat transfer.

An objection to this calculation is the assumption that the

PW layer maintains its temperature structure as well as a

strong salinity and density gradient; it does not appear to be

warmed by the rising heat, and there appears to be no rapid

mechanism to bring the heat into contact with melting ice.

However, the PW travels southward much more rapidly than

the AIW, as was shown in the last section, and the PW modifi-

cations would eventually accumulate many kilometers down-

stream. This cannot be demonstrated conclusively in the pres-

ent data because of the coupling of seasonal effects with the

spatially changing properties as the waters move downstream.

Fine Structure

Along the EGPF, as at most water mass boundaries, not-

ible temperature inversions having thicknesses within the fine-

itructure range are formed by the interleaving of dissimilar

vater masses. The temperature profile from station 95 (Figure

16) is an example of one of the more striking cases. This and
)ther stations along the EGPF demonstrate lenses of alter-

lately cool and warm water with peak-to-peak excursions of

>.5°C to 1.0°C embedded in the profile and most strikingly

:vident in the AIW at depths just below the temperature max-
mum. The stations having notable structure in the AIW are

hown in Figure 2 as solid circles. They are generally present

ilong the EGPF associated with the warm core of the RAC.

The temperature and salinity cross sections show that most of

the fine structure is located in the AIW between 75 and 300 m
depth, being shallower toward the seaward edge of the front.

The transect along 77°N (Figure 8), for example, illustrates

that near the eastern edge of the front the fine structure is

centered between 100 and 200 m depth and slowly deepens

westward, along nearly constant salinity surfaces, which are

also nearly isopycnals. These sections also indicate that the

fine-structure elements are not long in the cross-frontal direc-

tion but are either lenses or north-south oriented filaments of

anomalously warmer or cooler water embedded in the sur-

rounding water. In the ensuing discussion the term lenses will

be used for convenience, with a recognition thai what is seen

as a lens in an east-west section may be elongated north-

south.

There also is fine structure in the positive-going temper-

ature ramp of the main thermocline, which also includes much
of the PW. This structure appears to have causes not greatly

different from those that cause fine structure in the AIW.
The sources of the contrasting interleaving waters in the

warm core probably ultimately are parcels of AIW from east

of the EGPF that have descended from near or at the surface

along the isopycnal surfaces of the sloping front, as seen in

Figures 4-8. Various combinations of slight dilution of AW by

PW and surficial cooling by the atmosphere are possible in

this source region, producing waters of different temperatures

but equal densities. The fine structure observed in the main

thermocline, both in the PW and the AIW, also has connec-

ting isopycnal surfaces to waters of varying properties near or

at the surface.

In Figure 17 is shown an expanded T-S plot of the fine-

structure region of station 95. The depth zone from 70 to 400

m is plotted with asterisks indicating depth increments of ap-

proximately 1 1 m, beginning at 70 m. The salinities have been

3 4.8

SALINITY x I0 3

34.9 35.0

Fig. 17. Expanded temperature-salinity diagram for station 95.

Only the portion between 70 and 390 m, which contains most of the

major fine structure, is plotted. The asterisks along the curve indicate

depth increments of about 1 1 m, beginning at 70 m. The salinity has

been despiked amd smoothed with a five-point running mean. It is

remarkable that the density increases relatively monotonically at this

high resolution in a region so disturbed. The density inversions near

the T-S extrema are predictable (see text).
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despiked and smoothed with a five-point running mean. The
alternating warm and cold lenses are seen to increase in

sigma-t nearly monotonically throughout the depth range as a

result of compensating temperature and salinity excursions.

The unstable loops near several of the temperature-salinity

extrema are similar to those described as being due to double-

diffusive mixing by Posmentier and Houghton [1978]. How-
ever, these may be due to imperfect despiking.

The fine-structure lenses can be expected to tend to dissi-

pate by double-diffusive processes. Each lens has on one sur-

face a salt-finger interface and on the other a diffusive inter-

face. Using the laboratory-derived data of Turner [1965,

1967], as formulated by Huppert [1971] for salt-finger inter-

faces and by Home [1978] for diffusive interfaces, vertical heat

and salt flux rates were calculated from the fine-structure pro-

files of six stations in the frontal area. These six stations were

representative of the more energetic interleaving situations. A
total of 21 salt-finger and 21 diffusive interfaces were present

in these profiles. The mean density ratio associated with each

type of interface was 1.09 and 1.59, respectively, indicating

that both types of interface were inherently unstable and were

candidate boundaries for double-diffusive convective mixing.

The mean heat fluxes across the salt-finger and diffusive inter-

faces were 38.5 W/m 2 and 58.2 W/m 2
, respectively. These

numbers may be divided by 4.138 x 106 to obtain units of

degrees Centigrade per meter per second. The mean salt flux

rates were very small.

Common practice in computing dissipation times for fine-

structure elements is to assume that the heat flux is constant

and to compute the time until no temperature signal remains.

This must yield a time that is too short because the rate

actually must decrease as the temperature difference decreases.

A closer estimate may be obtained by computing the time as

though the temperature difference could be replaced by the

temperature gradient and by applying a diffusion equation.

This is likely to be a reasonable assumption over large dis-

tances compared to the laboratory scale from which the heat

flux equations are derived. Under these conditions, heat is

exchanged very slowly as the temperature difference becomes

small, and complete dissipation is never attained.

In the salt-finger case, where the rate is proportional to the

temperature difference, the Fickian diffusion law then applies.

In the diffusive case the rate is proportional to the 10/3 power

of the temperature difference, and a modified diffusion equa-

tion applies. The diffusive interface is found to degenerate very

slowly, after an initial rapid change, and the salt-finger inter-

face causes most of the degeneration. The mechanism by

which a fine-structure element dissipates, then, is one in which

the temperature maximum drives heat downward to fill the

trough between itself and the next maximum beneath with a

little help from the diffusive interface beneath driving heat

upward.

It was found possible to solve simple cases of the 10/3-

power law numerically. The simple case of a temperature

ramp in salt-finger diffusion degenerating by redistribution of

heat within the original space can be solved easily by means of

the classical diffusion equation applied to a thermally insula-

ted rod [Pipes, 1958, p. 496]. However, the case of heat diffus-

ing upward by the 10/3-power law in part of the fine-structure

element and downward by a first-power law in the remainder

of the element, although solvable, is unjustifiably complicated.

After some experimentation it was concluded that a reason-

able approximation to the more complex process might be

had by modeling the fine structure as shown in Figure 18,

where two temperature peaks of the same amplitude, one

0.51

TEMPERATURE

Fig. 18. A practical modeling of the average fine-structure ele-

ment described in the text. Heat diffuses downward by a first-power

diffusion law to convert the initial idealized peak into the illustrated

result, 63% dissipation in 3 days.

above the other, are assumed to degenerate only by Fickian

diffusion acting in one direction, from — 1/4A to +3/4/1, where

/. is the distance between the peaks.

For the mean salt-finger case, AT = 1.02°C, / = 22 m, and

the diffusion constant is 0.99 gcal cm -1
s
_1

°C
_1

. By the

method just discussed, degeneration occurred by 70% in 4

days and by 90% in 9.5 days. By the Pipes solution for an

11-m-long temperature ramp the respective times are 5.7 and

12 days. The assumption of constant rate, redistributing heat

in the 1/2/ space between peak and trough, gives 7 days for

complete dissipation. While we believe the first method to be

philosophically more pleasing, the present limited state of!

knowledge about diffusion rates at oceanic-length scales

makes the relatively small differences between the methods

seem unimportant.

Such short lifetimes would result in the disappearance of the

fine structure if it were not continually regenerated. Our ob-

servations indicate that the fine structure continues to exist all

along the front for time periods at least as long as the 6-week

sampling period of the cruise. In another sense, if the fine

structure advected from a northern source, it would have to

traverse several hundred kilometers at the drift rate of the

AIW, of the order of 2-3 km/d. Thus there must be a continu-

al resupply of contrasting water types from the east.

On several casts a fine-structure lens present during lower-

ing was absent during hoisting, usually some 20-30 min later.

The reverse situation was also observed. An example of the

latter can be seen in Figure 16, where a large intrusion cen-

tered near 275 m is present in the upward traverse of station

95 but is totally absent in the downward traverse. It is appar-

ent that the ship drifted into the path of this lens in the short

interval between lowering and hoisting. Station 96 (Figure 8),

taken 2.5 hours later and 7 km farther westward, shows a

similar situation, except that here the intrusive features ob-
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500

Fig. 19. Temperature profiles, stations 52, 75, and 106. The temperature graduations are correct for station 106; the

other two are offset to the right 1.5°C and 3.0 C, respectively. These are the only profiles showing notable staircase fine

structure.

served on the lowering are absent on the upward CTD trav-

erse. This appearance of disappearance of a notable fine-

structure element is not common; it occurs in roughly 3% of

slements with peak-to-peak amplitudes greater than 0.3°C,

5ven in regions where the vertical velocity shear was several

tenths of a meter per second. Assuming that on the average

:he ship drifted 0.4 m/s, relative to the fine structure, for 1020 s

17 min) between up and down traverses, the lengths of the

enses of water in the direction of the current shear must be at

east 0.4 x 1020 = 408 m. If it is assumed that all the elements

ire of equal length, that the probability of starting an observa-

ion anywhere along the length is the same, and that disap-

jearances are equal in number to appearances, then observing

he disappearance of a terminus in 1.5% of the cases suggests

hat the minimum length estimate should be multiplied by

/0.015, yielding an average length estimate of 27 km. Inspec-

ion of Figure 8 indicates that the larger elements (those not

tbscured by the contouring process) have a comparable length

n the east-west direction.

Marked staircase temperature structure was present in the

lycnocline of three profiles. Stations 52, 75, and 106 demon-
trate these diffusive interfaces near the end of the large tem-

ierature ramp connecting cold PW with warm AIW (Figure

9). Station 75 exhibits three diffusive interfaces separated by

early isothermal layers; two such interfaces are observed in

le temperature profiles of stations 52 and 106. Many stair-

ase structures in the temperature-step range of 0.02-0.1°C are

) be found in other stations. These smaller steps are similar

) those observed in the positive-gradient portions of temper-

iure profiles from the central Arctic basin [Neshyba et al.,

971] and from the Weddell Sea [Middleton and Foster,

980]. Structures such as these are likely to have been formed

om double-diffusive convective processes [Turner, 1973].

Summary

A number of closely spaced salinity and temperature

easurements were made crossing the EGPF in a number of

aces between 76°N and 79°N in October-November of 1981.

he measurements revealed a rich fine structure in a warm
>re of water consisting mostly of AIW east of and under the

W. Comparison with historical data shows this core, termed

e Return Atlantic Current, to be substantially warmer in

autumn 1981 than in earlier summers. In summer the temper-

ature front was vertical and even reversing slope near the

surface, whereas the salinity front was similar in slope winter

and summer and about the same slope as the autumn temper-

ature front: 4-14 m/km.

The Return Atlantic Current had a core of AW on 78°N,

but at more southerly positions was AIW, slightly cooler and

more dilute than AW. Between it and the PW above was a

layer of cooled but only slightly diluted water showing evi-

dence of a double-diffusive interchange with the PW. This

layer also exists widely in historical water columns in the area

that have supernatant PW.
A near-surface frontal jet, with velocities greater than 0.80

m/s in some places, was concentrated within a narrow strip

with thicknesses less than 150 m. The highest velocities were

associated with the highest station densities, suggesting that

high velocities might be found all along the front if the station

density were high enough. This also explains the failure to find

such high velocities in historical, low-resolution data. Except

for the jet itself, baroclinic surface velocities were comparable

in magnitude to earlier Lagrangian measurements. The dy-

namic topographies at depth did not support the maintenance

of speed with depth found by Aagaard and Coachman [19686]

in winter by direct measurement from the ice island Arlis II.

A sharp turning of the baroclinic circulation westward

toward the coast of Greenland near 77
CN has some historical

support and is believed to be due to an influence of the on-

shelf depression called the Belgica Dyb. The turning is seen to

be stronger at the 150-dbar level than at the surface. The

propagation of AIW westward in this same location may be

seen in the property cross sections.

When AIW underlies PW, a knee is formed in the

temperature-salinity diagram as a result of the presence of a

cold, saline water, colder than could be formed by linear

mixing of PW and AW. Advection from the Arctic Ocean,

formation in winter, or loss of heat by double diffusion are

possible explanations for its formation.

Pronounced temperature fine structure was present in the

frontal area, most notably in the AIW underneath the temper-

ature maximum of the Return Atlantic Current. This is a

depth zone with a small vertical density gradient; nevertheless

the density increased monotonically with depth, with minor
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exceptions. Fine structure also was present above the temper-

ature maximum in the main thermocline and extended past

the OC boundary into PW. Three profiles with relatively large

staircase fine structure were found in this depth zone. The

steep rise of isopycnals into the near-surface zone to the east

suggests that the source of warm and cold components of the

fine structure, both above and below the temperature maxi-

mum, is in this zone. Some such continual source is required

because otherwise the rates of double diffusion are great

enough to have caused the effective dissipation of the fine

structure in 4-12 days.
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