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Abstract

Spatially resolved structures in protoplanetary disks hint at unseen planets. Previous imaging observations of the
transitional disk around MWC 758 revealed an inner cavity, a ring-like outer disk, emission clumps, and spiral
arms, all possibly generated by companions. We present ALMA dust continuum observations of MWC 758 at 0.87
mm wavelength with 43×39 mas angular resolution (6.9×6.2 au) and 20 μJy beam−1 rms. The central
submillimeter emission cavity is revealed to be eccentric; once deprojected, its outer edge can be well fitted by an
ellipse with an eccentricity of 0.1 and one focus on the star. The broad ring-like outer disk is resolved into three
narrow rings with two gaps in between. The outer two rings tentatively show the same eccentricity and orientation
as the innermost ring bounding the inner cavity. The two previously known dust emission clumps are resolved in
both the radial and azimuthal directions, with radial widths equal to ∼4×the local scale height. Only one of the
two spiral arms previously imaged in near-infrared (NIR) scattered light is revealed in ALMA dust emission, at a
slightly larger stellocentric distance owing to projection effects. We also submit evidence of disk truncation at
∼100 au based on comparing NIR imaging observations with models. The spirals, the north clump, and the
truncated disk edge are all broadly consistent with the presence of one companion exterior to the spirals at roughly
100 au.

Key words: planet–disk interactions – planets and satellites: formation – protoplanetary disks – stars: individual
(MWC 758) – stars: variables: T Tauri, Herbig Ae/Be

Supporting material: tar.gz file

1. Introduction

Planets form in protoplanetary disks surrounding newborn

stars typically 1 to a few million yr old. Forming planets

perturb the disks via gravitational interactions and may produce

large-scale structures such as spiral density waves and gaps

(e.g., Goldreich & Tremaine 1980; Lin & Papaloizou 1993;

Bryden et al. 1999). Such structures may have been detected in

optical to near-infrared (NIR) scattered-light imaging (e.g.,

spirals: Muto et al. 2012; Stolker et al. 2017; Uyama

et al. 2018; Canovas et al. 2018; gaps: Debes et al. 2013;

Pinilla et al. 2015; Pohl et al. 2017) and (sub)millimeter to

centimeter interferometric observations of disks (e.g., spirals:

Pérez et al. 2016; gaps: Canovas et al. 2015; Isella et al. 2016;

Dong et al. 2017b; Dipierro et al. 2018). Disk gaps, spiral arms,

and other structures may help infer the presence of (unseen)

planets forming in disks and constrain fundamental parameters

of these planets, such as mass, location, and orbit.
Here we target a young star+disk system, MWC 758, with

previously imaged structures suggestive of carving by

planetary-mass companions. MWC 758 is a 3.5±2Myr

(Meeus et al. 2012) Herbig Ae star located at a distance of

160±2 pc (Gaia Collaboration et al. 2018). It is surrounded

by a protoplanetary disk in Keplerian rotation (Isella et al.

2010). The disk has a large cavity of ∼50 au in radius in

submillimeter continuum emission (Andrews et al. 2011). It

also has a set of near-symmetric two-arm spirals at ∼30–75 au

in NIR scattered light (Grady et al. 2013; Benisty et al. 2015)

and two emission clumps at tens of au in submillimeter to

centimeter continuum emission (Marino et al. 2015; Casassus

et al. 2018). Boehler et al. (2018) presented ALMA Cycle 3

observations of MWC 758 in both 0.88 mm continuum

emission and 13CO/C18O J=3–2 emission with 0 1–0 2

angular resolution. The known ∼millimeter dust ring was
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resolved into a double ring, and a compact emission source
centered on the star was identified. The spiral arms were seen in
13CO emission.

Generally speaking, cavities, spiral arms, and emission
clumps may reflect gaps, density waves, and vortices
dynamically induced by disk-embedded planets (e.g., Zhu
et al. 2011; Lyra & Lin 2013; Zhu & Stone 2014; Bae
et al. 2016; Hammer et al. 2017). Specifically, Dong et al.
(2015b) showed that the MWC 758 disk’s two arms can be
quantitatively explained as the primary and secondary spiral
shocks driven by one multi-MJ mass companion exterior to the
arms. Very recently, Ren et al. (2018) measured the pattern
speed of the arms using multi-epoch scattered-light observa-
tions and concluded that the best-fit pattern speed corresponds
to the Keplerian speed at r∼90 au from the star. This is
consistent with the hypothesis that they are excited by a
companion at that radius.

In this paper, we present ALMA Cycle 5 continuum
emission observations of the MWC 758 disk at 0.87 mm with
an angular resolution of 43×39 mas (6.8×6.2 au), compar-
able to the angular resolution in NIR direct imaging (0 04 at
the H band) and roughly four times better than the highest
angular resolution achieved in previous ∼millimeter observa-
tions of this target. Nearly all major known disk features
are confirmed and further resolved. The main new discoveries
include the ellipticity of the central cavity, a triple-ring
structure most noticeable toward the west, and the submilli-
meter continuum emission counterpart of the southern spiral
arm imaged in scattered light. In addition, both emission
clumps are now resolved in the radial direction for the
first time.

2. ALMA Observations and Calibration

Our observations, including three execution blocks (EBs)
toward MWC 758, were carried out in Cycle 5 by ALMA
under project 2017.1.00492.S. The first EB was conducted on
2017 November 12 with 48 antennas in the array configuration
C43-8. The other two EBs were conducted on 2017 November
25 with 48 and 49 antennas in the same C43-8 array
configuration. The combined data set has baselines ranging
between 92m and 11.84km, which correspond to angular
scales between ∼1 8 and 0 009. The total integration time on
source is about 125 minutes. Typical precipitable water vapor
during the on-source period ranges between 0.55and 0.8mm.

Four spectral windows centered at 336.495, 338.432,
348.495, and 350.495 GHz, each with an effective bandwidth
of 1.78125 GHz and 128 spectral channels under the time
division mode (TDM), were employed to maximize the
continuum sensitivity. During all three executions, J0510
+1800 served as the pointing, bandpass, amplitude, and check
calibrator, while J0521+2112 was used as the phase calibrator.
The flux scale was calibrated against J0510+1800, which has a
spectral index of −0.375 and fluxes set as 1.331, 1.445, and
1.445 Jy at 348.495 GHz for the three EBs, respectively.

Data were first processed and calibrated through the ALMA
pipeline calibration procedures under the Common Astronomy
Software Applications (McMullin et al. 2007). Imaging of the
continuum emission is subsequently achieved by using all four
TDM spectral windows with potential spectral contamination
inspected. We used the Briggs weighting scheme with a robust
parameter of 0.5 and an additional uv tapering (uvtaper
parameter=[80000kλ, 4500kλ, −1°] in the tclean task) for

forming a relatively circular beam and improving the signal-to-
noise ratio. This results in a synthesized beam size of 43×39mas
(6.8×6.2 au) at PA=−4°.3 and an rms noise level of
20μJy beam−1. The continuum emission is detected with a peak
signal-to-noise ratio (S/N) of 80. The reduced data cube is available
as online supplemental material. Another version of the image
synthesized using the natural weighting scheme (not shown in the
paper) can also be found in the online supplemental material.

3. Main Features

Figure 1 shows the synthesized image of the continuum
emission from MWC 758 at 343.5 GHz (0.87 mm). The disk is
detected at �3σ out to ∼0 64 (102 au; see the 3σcontour in
panel (b)). This high-resolution map reveals rich features,
including a central cavity, a broad outer disk composed of three
narrow rings (inner, middle, and outer ring) and two narrow
gaps in between, a north clump at the outer edge of the disk, a
south clump at the outer edge of the cavity, a central point
source, and a spiral arm in the south. Table 1 lists the location,
size, and flux measurements of some of the features. The total
flux density integrated over a circle of a diameter of 1 3 in size
encompassing the disk extent is 180 mJy, comparable to the
values of 180 mJy at 340 GHz measured with the Submilli-
meter Array by Andrews et al. (2011) and 205 mJy at 337 GHz
with ALMA by Marino et al. (2015). The differences at the
∼10% level may arise from flux calibration uncertainties or
missing short uv sampling. In the latter case, the missing flux
would correspond to a smooth and low surface brightness
structure roughly ∼30 μJy beam−1 or 1.5σ in brightness. The
resulting effects in the measurements of amplitude peaks and
contrasts are small.

3.1. The Central Point Source and the Nondetection of
Circumplanetary Disks

The central point source (inset, Figure 1(b)) is detected at the
9σ level with a peak flux of 0.17 mJy beam−1. The resolution
constrains the point-source size to be <3 au in radius. Given
the incomplete short spacing coverage, there is a residual
negative bowl within the central cavity at a 0.04 mJy beam−1

level (∼2σ). When fitted with a circular Gaussian with noises
and the negative floor inside the cavity factored in, the actual
integrated flux density of the central source is around 0.18 mJy.
As in Boehler et al. (2018), in which the point source was also
detected around the location of the star, we assume it originates
from a small circumstellar structure previously detected in
infrared interferometric observations (Eisner et al. 2004). A 2
yr baseline established by the Boehler et al. (2018) observa-
tions and our observations rules out the source being a
background (nonmoving) object based on MWC 758ʼs proper
motion (27 mas yr−1; Gaia Collaboration et al. 2018).
Combining with the total flux density of the central source
measured at ν=33 GHz by the VLA (F(33 GHz)=67
μJy; Marino et al. 2015), we derive a spectral index
a n n= (( ( ) ( ))F Flog 1 2 / n n =( )log 1 2 0.4 between 343.5
and 33 GHz, consistent with the α derived between 33 and
15 GHz (0.36; Marino et al. 2015). This value is significantly
flatter than α=2, expected if the source is optically thick, or
α=2+β, where β is the dust opacity index (usually a positive
number; Draine 2006), expected if the source is optically thin.
Such a low value indicates the contribution (or dominance) of
free–free emission from ionized gas (e.g., the disk wind) very
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close to the star (e.g., Liu et al. 2017). Alternatively, it may

indicate self-absorbed dust emission in the dense ∼au-scale

circumstellar region (Li et al. 2017).

We note that the fitted Gaussian position of this source is

offset by ∼7 mas to the south-southeast from the Gaia

Collaboration et al. (2018; the proper motion of the star has

Figure 1. Panels (a) and (b): ALMA 0.87mm continuum emission from MWC 758 with a beam size 43×39 mas (6.9×6.2 au; labeled at the lower left corner). North
is up and east is to the left. In panel (b), the structures are labeled: the green dotted contours are at the 3σnoise level; the two green solid contours are at half-peak intensity
at each clump; the solid, dotted, and dashed white arcs trace the inner, middle, and outer rings, respectively; and the inset is a 0 2 zoom of the central region (stellar
location marked by the green plus). Panel (c) shows an r2-scaled SPHERE Y-band (1 μm) polarized scattered-light image (Benisty et al. 2015; normalized unit). The
contours in panel (b) are overlaid, and the two green dashed lines trace the locus of the two spiral arms (labeled as Arm 1 and Arm 2; the two green curves are overlaid in
panel (d) as well). The astrometrical alignment between the SPHERE and ALMA images is done by aligning the location of the central star. The absolute stellar position in
the SPHERE image may be accurate to half the SPHERE pixel size (6 mas). Panel (d) shows the emission map with an aggressive color stretch to highlight ALMAArm1.
The red dashed curve is the locus of SPHERE Arm2 shifted away from the star by 0 05. The south part of SPHERE Arm1 is revealed at a slightly larger stellocentric
distance by ALMA. Arm2 cannot be clearly identified in the continuum emission. The FITs file for panel (a) is available as online supplemental material.
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been accounted for) stellar location (same as the phase center).
This may be due to astrometry errors in phase referencing or
position uncertainties from phase noise. The astrometry error
based on the check source J0510+1800 is, on average, 2mas.
The position uncertainty due to phase noise is at a level of
2mas, given the signal-to-noise ratio and the beam size (i.e.,
0.45×beam size/(S/N); Reid et al. 1988; Wright et al. 1990).
There remains the possibility of a true sub-au-scale asymmetry
in the inner disk to be examined in the future.

Other than the central source, we do not detect any compact
point source at the 3σlevel that may be associated with
circumplanetary disks (CPDs) around forming planets. Hydro
simulations have shown that the radius of a circum-companion
disk is ∼1/3 of the companion’s Hill radius (Martin &
Lubow 2011). At r�100 au, the diameter of such a disk is
smaller than 10 au, or twice the beam size of our ALMA
observation, for any object with M M13p J. Considering that
submillimeter continuum emission from such a disk is probably
centrally peaked and compact (e.g., Wu et al. 2017), we do not
expect to significantly resolve such a disk at r�100 au if
detected (see also simulated ALMA images of CPDs in Szulágyi
et al. 2017). Inside the cavity and outside the 3σcontour at
r∼0 64 in Figure 1(b), where the emission reaches the noise
floor, the 3σupper limit on the flux density of unresolved point
sources is 60 μJy. Within the broad outer disk, the detection limit
is higher due to background disk emission.

3.2. The Cavity and the Outer Disk

The cavity and the narrow inner ring at the cavity edge in
Figure 1(a) appear to be noncircular and off-center. This is not
a projection effect. Figure 2 shows the deprojected view of the
disk in Cartesian and polar (radial-azimuthal) coordinates
assuming an inclination i=21° and position angle PA=62°
(Isella et al. 2010; Boehler et al. 2018); the origin of the polar
coordinate system is set to be at the expected Gaia stellar
location. We note that the inclination and PA correspond to the
outer disk outside the cavity. The system may have a mildly
warped (misaligned) inner gas disk inside ∼0 1, with an
inclination in the range of 30°–40° (Eisner et al. 2004; Isella
et al. 2008; Boehler et al. 2018). Since ∼millimeter-sized dust

traced by ALMA continuum emission is expected to settle to a
thin layer at the disk midplane (e.g., Dullemond &
Dominik 2004), deprojection roughly recovers the face-on
view of the disk. The noncircular and off-center cavity is
clearly evident in deprojected maps—circles centered on the
star would be horizontal straight lines under the polar view.
The deprojected inner ring is well approximated by an ellipse
with one focus on the star (note that the central point source
roughly coincides with the Gaia stellar location, which is set to
be the phase center), semimajor axis a=0 319±0.002,
eccentricity e=0.10±0.01, and major axis PA=95° ± 10°.
Our conclusion that the cavity is not a circle is derived primarily

from the inferred offset of the center of the ring from the stellar
position. The deprojected inner ring may also be approximated by
a circle with a radius r=0 320±0 003. However, its center is
at (δR.A., δdecl.)=(33± 2 mas, −5± 3 mas) from the expected
(Gaia) stellar position. This difference is ∼one order of magnitude
larger than the expected ALMA astrometry uncertainty
(Section 3.1 and Section A.9.5 in the ALMA Cycle 6 Proposal
Guide). It is therefore very unlikely for the expected stellar location
to offset from its actual location by ∼30 mas. In addition, the
detection of the central submillimeter point source at roughly the
expected stellar location suggests that it is within a few mas from
the actual stellar location, as the point source is likely a small
circumstellar disk. We also find no good physical motivation and
consider it very unlikely for the cavity to be a true circle but
significantly off-centered. Future simultaneous high-resolution
observations of both the gas and the dust emission may provide
more definitive evidence on the eccentric cavity.
Two depressions on the inner ring can be identified around

PA∼0° and 135°, between which are two bright arcs on the
west and east sides. The “Ring East” and “Ring West” regions
defined in Figure 2(c) are relatively free from “contaminations”
from other features. We use them to study the radial structures
(rings and gaps) in the outer disk at r∼0 25–0 60.
Figure 3(a) plots the azimuthally averaged radial profiles in

these two regions. The Ring East region shows a global peak
corresponding to the inner ring and a second peak at 0 45. The
Ring West region shows the same inner ring at a smaller radius
due to its eccentric nature and two peaks in the outer disk at

Table 1

Feature Properties and Their 1σ Uncertainties Measured in the Deprojected ALMA 0.87 mm Continuum Emission Map (Figure 2)

Feature Radius PA FWHM FWHM Ipeak TB,peak I Ipeak trough

Radial Azimuthal mJy beam−1 K

(1) (2) (3) (4) (5) (6) (7) (8)

Arm1 0 453±0 006 175°±1° ... ... 0.51±0.02 9.0±0.2 3.6±0.5
South clump 0 306±0 003 206°±2° 0 075±0 001 56°±1° 1.60±0.02 16.8±0.1 4.4±0.3

North clump 0 533±0 006 335°±1° 0 160±0 003 54°±1° 1.28±0.02 14.7±0.1 10±1

Inner ring 0 319±0 002 ... 0 085±0 005 ... 0.70±0.02 10.5±0.2 ...

Middle ring ∼0 43 ... ... ... 0.32±0.02 7.4±0.2 ...

Outer ring ∼0 54 ... ... ... 0.29±0.02 7.1±0.2 ...

Note.Only quantities that can be robustly measured are listed. Column (1): name of the feature (labeled in Figure 1(b)). Column (2): stellocentric radius at the peak.

For the inner ring, it is the semimajor axis in the ellipse fit in Section 3.2 (see also Figure 2(c)); for the middle and outer rings, it is the semimajor axis in the tentative

ellipse fits (these two rings are very incomplete). Column (3): position angle at the peak. Column (4): full width at half maximum in the radial direction. For the two

clumps, the measurement is done at the peak PA listed in column (3). For the inner ring, it is the average FWHM measured in the “ring west” (0 08) and “ring east”

regions (0 09) in Figure 2(c). The middle and outer rings do not permit such a measurement. Column (5): full width at half maximum in the azimuthal direction for

the two clumps measured at the peak radius listed in column (2). Column (6): peak intensity (surface brightness). For the inner ring, it is the peak intensity on the east

side, as the west side may contain contributions from the south clump. For the middle and outer rings, it is the peak azimuthally averaged intensity in the “ring west”

region in Figure 2(c). Column (7): brightness temperature corresponding to the peak intensity in column (6), converted using the Planck function. Column (8):

azimuthal peak-to-trough intensity ratio. For the north clump and the spiral, the trough intensity is taken as the minimum intensity along the circle at the radius listed in

column (2). For the south clump, the trough intensity is taken as the minimum intensity along the elliptical inner ring.
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0 40 and 0 51. We cannot trace the 2π extent of these outer
rings, as the emission is segmented into a west and an east part
by the north clump and the region around Arm1. Nevertheless,
we tentatively associate the 0 45 peak on the Ring East and the
0 40 peak on the Ring West profile with a common faint
middle ring (labeled in Figures 3(a) and 1(b)). The dotted curve
in Figure 2(c) is an ellipse with the same orientation and

eccentricity but 1.35×the size of the ellipse fit to the inner
ring. It roughly traces and connects the east (PA∼220°–310°)
and west (PA∼10°–120°) segments of the middle ring
(we suggest viewing this panel together with the annotation-
free version of the polar map and also viewing the ring in
Figure 1(d) with a more dramatic color stretch). Similarly, the
dashed curve is an ellipse 1.7×bigger; on the west side, it

Figure 2. Deprojected image of MWC 758 assuming i=21° and PA=62° in Cartesian and polar (radial-azimuthal) coordinates. The top and bottom rows are
identical, apart from the annotations. In panel (c), the three curves are three ellipses, 1×, 1.35×, and 1.7×the size of the ellipse fit to the inner ring at the cavity edge
(a=0 32, e=0.1, and one focus on the star), and the four shaded regions are the selected azimuthal directions (their radial profiles are plotted in Figures 3(a) and
(c)). In panel (d), the three curves are the three ellipses in panel (c) (line types are consistent). They roughly trace (inside to outside) the inner ring and the visible
portion of the middle and outer rings marked in Figure 1(b). The cavity is off-center and noncircular. See Sections 3.2 and 4.1 for discussion.
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roughly traces the faint outer ring (labeled in Figures 3(a) and
1(b)), while on the east side, it passes through a region with a
S/N too low to enable robust structure identifications. These
two rings merge into the north clump in the north end and touch
the spiral region in the south. Both are unresolved in the radial
direction; thus, their physical widths are smaller than the beam
size (∼6.5 au). The “outer ring” in the “double-ring” structure
detected in a previous ALMA data set (Boehler et al. 2018)
with 0 1–0 2 angular resolution may contain both the middle
and outer rings in this data set. All three rings (inner, middle,
and outer) may share similar eccentricities and orientations,
although this needs to be confirmed by future observations.

3.3. The Spirals

MWC 758 has two prominent spiral arms in NIR scattered light
(Arm 1 on the east and Arm 2 on the west, labeled in Figure 1(c)).
Figure 1(d) shows the map with an aggressive color stretch to
highlight the spiral arms. Arm1 is clearly detected at
r∼0 4–0 5 and PA∼120°–210°. It is resolved in the
azimuthal but not the radial direction, setting an upper limit on
the physical radial-width–to–radius ratio to be 10%. The east end
of the arm starts at the inner ring. The arm weakens and merges
into the background at the west end. The peak surface brightness
on the arm is 0.51mJy beam−1 (S/N=25), reached at ∼72 au
(deprojected; 0 45), corresponding to a brightness temperature
TB=9.0 K. The azimuthal peak-to-trough contrast of the spiral in
the deprojected image measured along the r=0 45 circle (no
radial or azimuthal averaging) is 3.6. Figure 3(b) shows the
azimuthal profile of the deprojected surface brightness averaged
over a ring with a radius of 0 45 and width of 0 03. Arm2 is not

clearly detected. However, it is possible that part of that arm is
present and spatially overlapping with other features (see
Section 4.2.2).

3.4. The Double Emission Clumps

The two emission clumps are resolved in both the azimuthal
and the radial directions (see the beam size and half-peak
contours around the clumps in Figure 1(b)). Figure 3(c) shows
the radial profiles across the two clumps. The radial full widths
at half maximum (FWHMs) of the south and north clumps in
the deprojected image are ∼1.8 and ∼3.9 times the beam size,
respectively, and the azimuthal FWHM of both clumps is ∼1/6
of a circle. We estimate their intrinsic (deconvolved) radial

FWHM (FWHMintrinsic≈ -FWHM FWHM2
beam
2 ) to be

0 063 and 0 155 for the south and north clumps, respectively.
Figure 3(d) shows the azimuthal profiles of the clumps in the
deprojected map. The azimuthal peak-to-trough contrasts of the
south and north clumps are 4.4 and 10 at the radii of their
peaks, respectively. The peak surface brightnesses in the south
and north clumps are 1.60 and 1.28 mJy beam−1, corresp-
onding to TB=16.8 and 14.7 K, respectively.
We generate representative disk models using the radiative

transfer code HOCHUNK3D (Whitney et al. 2013) to obtain
crude estimates of the dust temperature Tdust at these radii. The
models largely follow the radiative transfer model for MWC 758
presented in Grady et al. (2013). They assume a full disk with
surface density Σ∝1/r, as the μm-sized dust probed by scattered
light is present inside the cavity (Benisty et al. 2015; the starlight
is mainly absorbed and scattered by the small dust). The central
star is assumed to have T

å
=7580 K and L

å
=9.7 Le after

Figure 3. Azimuthally averaged radial profiles in four selected regions (panels (a) and (c)) and radially averaged azimuthal profiles in three circular rings (panels
(b) and (d); the radial widths of the rings are 0 03 (Arm 1), 0 04 (north clump), and 0 13 (south clump)) in the deprojected ALMA image (Figure 2). The four
regions in panels (a) and (c) are defined as the shaded regions in Figure 2(c), and the three rings in panels (b) and (d) are centered on the peak radii of Arm1 and the
two clumps. See Sections 3.2 and 4.1 for discussions.
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scaling the stellar luminosity in Andrews et al. (2011) by the new

Gaia distance. With a variety of disk scale heights (h=5–20 au
at r=100 au) and disk flaring angles ( µh r r0.05 to

µh r r0.25), we obtain Tdust=20–32 K at the location of the

south clump (deprojected r=0 31=50 au) and 17–27 K at

the location of the north clump (deprojected r=0 53=85 au).
The two clumps may be marginally optically thin (vertical optical

depth of order unity). The same models also yield Tdust=18–27
at the location of Arm1 (r∼70 au after deprojection),

significantly higher than the TB (9.0 K).

4. Discussion

4.1. The Eccentric Cavity and Rings

Rings with eccentricities e0.1 have been found or

inferred in debris disks (Kalas et al. 2005; Lee & Chiang 2016).

To our knowledge, MWC 758 as revealed in our ALMA data

set provides the first known example of an intrinsically

eccentric protoplanetary disk.
One hypothesis for the origin of transitional disks is that their

cavities are opened by (multiple) companions, possibly planets.

Simulations have shown that the outer edge of a gap opened by a

companion on a circular orbit may become eccentric (e.g., Kley &

Dirksen 2006; Dunhill et al. 2013; Farris et al. 2014; Teyssandier

& Ogilvie 2017). The gap edge eccentricity is excited by

interactions between the companion and the disk at the outer 1:3

Lindblad resonance (LR; the eccentric instability, Lubow 1991a,

1991b) and damped by the 1:2 LR and the co-orbital resonance;

therefore, a gap wide enough to extend past the outer 1:2 but not

the 1:3 LR may develop a nonzero eccentricity (Kley &

Dirksen 2006). A higher companion mass, lower disk viscosity,

and lower disk temperature facilitate the opening of deep and wide

gaps (Fung et al. 2014), and thus the growth of e. In this scenario,

the outermost planet inside the cavity should be located between

0.48 and 0.63 of the cavity outer edge in the gas, or 25–32 au,

assuming that = =  =r r 0. 32 51 augas,cavity dust,cavity . Since the

cavity size in the gas is expected to be smaller than it is in dust

emission due to gas–dust coupling at the gas cavity edge (Pinilla

et al. 2012; Zhu et al. 2012), the planet may be at a smaller

stellocentric radius.
The eccentric cavity and outer disk precess at a frequency

much lower than the local Keplerian frequency ΩK (e.g.,

Teyssandier & Ogilvie 2017). Hsieh & Gu (2012) showed that

in this case, the eccentric outer disk does not trap ∼millimeter-

sized particles in the azimuthal direction. Thus, we do not

expect the two observed emission clumps to be global dust

traps produced by the eccentric disk. Instead, they may be

generated by other mechanisms, such as dust trapping by

vortices (see Section 4.3). An eccentric gap may coexist with

vortices in disk–planet interaction models (Ataiee et al. 2013).
Eccentric cavities and rings can alternatively be opened by

companions on eccentric orbits. We note that giant planets with

masses of several MJ interacting with a gaseous disk may grow

their eccentricities to ∼0.1, comparable to the eccentricity

observed here (Dunhill et al. 2013; Duffell & Chiang 2015;

Ragusa et al. 2017). In this scenario, the orbits of the cavity-

opening and gap-opening planet(s) in MWC 758 may share

similar eccentricities and orientations. Future studies are

needed to investigate this hypothesis.

4.2. The Spiral Arms

Among the new features, perhaps the most exciting one is the
discovery of the submillimeter continuum counterpart to the
NIR spiral on the south. Spiral arms in protoplanetary disks
have been detected in NIR scattered light (e.g., Fukagawa et al.
2006; Hashimoto et al. 2011; Muto et al. 2012; Canovas et al.
2013, 2018; Garufi et al. 2013; Currie et al. 2014; Wagner
et al. 2015; Akiyama et al. 2016b; Liu et al. 2016; Stolker et al.
2016a; Avenhaus et al. 2017; Benisty et al. 2017; Follette et al.
2017; Long et al. 2017; Maire et al. 2017; Langlois et al. 2018)
and in ∼millimeter gas (e.g., Corder et al. 2005; Christiaens
et al. 2014; Tang et al. 2017) and dust emission (e.g., Pérez et al.
2016; Tobin et al. 2016). A few mechanisms have been explored
to explain their origin, including companion–disk interaction
(e.g., Dong et al. 2015b; Zhu et al. 2015; Bae et al. 2016),
gravitational instability (GI; e.g., Dipierro et al. 2015; Dong
et al. 2015a, 2016b; Hall et al. 2016, 2018; Meru et al. 2017;
Tomida et al. 2017), a combination of GI+ planet (Pohl et al.
2015), finite light travel time (e.g., Kama et al. 2016), and
moving shadows (e.g., Montesinos et al. 2016; Montesinos &
Cuello 2018). For planet-induced spiral arms, their morphology
and brightness can be used to constrain the mass of the perturber
(Fung & Dong 2015; Dong & Fung 2017).
Except in rare cases (e.g., HD 100453, in which the spiral

arms are driven by a visible stellar-mass companion bound to
the system; Dong et al. 2016c; Wagner et al. 2018), the true
origin of the observed spiral arms, in particular whether they
are planet-induced, is under debate. For MWC 758, the low
disk mass (Mdisk) estimated from submillimeter continuum
emission (Mdisk∼1%M

å
; Andrews et al. 2011) disfavors the

GI scenario, which usually requires Mdisk10%M
å
under

typical conditions (Kratter & Lodato 2016). Spatially resolved
observations of spirals revealing their shapes, contrasts, and
locations at multiwavelengths are crucial to a thorough
understanding of their origins.
Companion-induced spiral arms are pressure waves. They

only directly manifest in a pressure-supported medium: the gas.
Whether they are present in submillimeter continuum emission
depends on whether they can trap ∼millimeter-sized dust
particles. Such spirals, corotating with their drivers, have a
nonzero relative angular velocity with respect to the local disk,
different from GI-induced spirals. While the latter are capable
of trapping particles of certain sizes (e.g., Rice et al. 2004;
Dipierro et al. 2015), whether and how companion-induced
spiral arms can trap dust is uncertain. Further, while the
primary arm (the one directly pointing to the companion) has
been thoroughly studied (e.g., Goldreich & Tremaine 1979;
Goodman & Rafikov 2001; Ogilvie & Lubow 2002;
Rafikov 2002), the excitation, properties, and propagation of
the secondary (and additional) arm driven by a single
companion is still ongoing research (e.g., Juhász et al. 2015;
Lee 2016; Arzamasskiy & Rafikov 2018; Bae &
Zhu 2018a, 2018b; Hord et al. 2017; Juhász & Rosotti 2018).
With the nature of the two arms still uncertain, the large

azimuthal peak-to-trough contrast of Arm 1 in the deprojected
submillimeter continuum emission suggests that it is mainly a
density (emission optical depth) feature. The spiral is unlikely to be
a shadow or temperature feature, as no evidence of the shadow is
seen in NIR scattered light. If the dust is optically thin and the
structure is spatially resolved, the submillimeter emission intensity
Iν at a frequency ν is proportional to Σdust×κν,dust×Bν(Tdust),
where Σdust and κν,dust are the surface density and opacity of the
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submillimeter continuum-emitting dust, and Bν(Tdust) is the Planck
function at the dust temperature Tdust. Note that Arm 1 is not
resolved radially in our ALMA observations, and the measured
azimuthal contrast is only the lower limit of the “intrinsic”
azimuthal contrast in Iν with infinite angular resolution. If Arm 1 is
caused by variations in Tdust, as in the shadow scenario
(Montesinos et al. 2016; Montesinos & Cuello 2018), at least
order unity variation in Tdust in the azimuthal direction across the
arm is needed, which seems physically unlikely. Instead, the arm is
most likely introduced by variations mainly in Σdust×κν,dust, with
a possible minor contribution from Tdust (e.g., from spiral shock
heating; Rafikov 2016).

4.2.1. Why ALMA Arm 1 Is Offset from NIR Arm 1

At PA∼120°–180°, Arm 1 in the ALMA continuum
emission map is at a slightly larger stellocentric distance than
in NIR scattered light (Figure 1(d); maximum radial offset
∼0 03, or 8% of the radius). The ALMA arm crosses the NIR
arm at PA∼180°, and the two roughly overlap at PA∼180°–
210°. This is most likely caused by the difference between a
midplane feature and a surface feature in a projected view, as
illustrated in the schematic in Figure 4 (see also Stolker et al.
2016b). When viewed at a finite inclination i, midplane
structures probed by ALMA continuum observations are
simply compressed by i1 cos along the direction of the minor
axis. Such images are “deprojectable.” On the other hand,
scattered light comes from a cone-shaped disk surface. Dong
et al. (2016a) showed that surface features at a finite inclination
can be dramatically distorted from their morphology at face-on,
and such distortions cannot be recovered by simple deprojec-
tion. When viewed at nonzero i, “NIR/surface spiral” and
“ALMA/midplane spiral” are projected to different locations
on the plane of the sky. An additional complication is that
spiral arms are curved in the vertical direction—they bend over
toward the star (Figure 1, Zhu et al. 2015; Figure 2, Lyra
et al. 2016; dotted curves in the schematic). In the schematic,

the surface (NIR) East Arm is further from the star than the
midplane (ALMA) East Arm on the plane of the sky, while for
the West Arm, it is the opposite.
We present a toy model in Figure 5 to visualize the effect.

Synthetic ALMA submillimeter continuum and NIR polarized
scattered-light images for one disk model are simulated at three
viewing angles using 3D hydrodynamics and radiative transfer
simulations. The disk model is taken from Model M3 J in Dong

et al. (2016a), which has a planet with = ´ -M M3 10p
3 on a

circular orbit at r= 100 au, driving two main spiral arms
interior to its orbit. The outer disk at r>100 au is removed in
postprocessing to highlight the spiral arms. In simulating
the ALMA images, continuum-emitting dust is assumed to
be millimeter in size. While millimeter-sized dust is not
included in the gas-only hydro simulation, its surface density is
assumed to be linearly proportional to the gas. The total
millimeter-sized dust mass is normalized such that the disk is
optically thin at submillimeter wavelengths. In the vertical
direction, the density distribution of millimeter-sized dust is
assumed to be Gaussian, with the aspect ratio h/r, taken to be
10% of the gas, less than 1% everywhere. We emphasize that
proper dust–gas coupling (i.e., realistic trapping of ∼milli-
meter-sized dust by the spiral arms) is not taken into account,
and the toy model is only meant to visualize the ALMA–NIR
(equivalently, midplane–surface) arm location offset effect.
At i= 0 (panel (b)), both the primary and secondary arms are

located roughly at the same locations in the ALMA and NIR
images.15 When inclined, on the near side of the disk, the

Figure 4. Schematic of ALMA and NIR imaging observations of a disk with two planet-induced spiral arms viewed from the side. The observer is to the northwest.
The same spiral arm can be projected to different locations on the plane of the sky in NIR scattered light (probing surface features) and ∼millimeter continuum
emission (probing midplane features). The East Arm in NIR scattered light is at a larger distance from the star than it is in ALMA continuum emission, while it is the
opposite for the West Arm. This is caused by both the curved vertical structure of the spiral arms (illustrated by the dotted curves) and the inclination of the disk. See
Section 4.2 for discussion.

15
In principle, even at face-on, we may still expect a small difference, as the

arms tend to bend over toward the star in the vertical direction (see the
schematic). In practice, this difference may be small. Usually, the disk aspect
ratio h/r is smaller than 0.1 at tens of au. Assuming the disk surface is at three
scale heights, the opening angle of the surface from the midplane

q ´ = ( )arcsin 3 0.1 17surface , and  =cos 17 0.96. If, in the vertical
direction, the arms bend to maintain a constant distance to the star, we expect
a 4% midplane–surface arm location difference at i = 0, or ∼0 01 at 60 au at
140 pc.
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surface feature moves toward the star faster than the

corresponding midplane feature; thus, the NIR arms are found

at shorter stellocentric distances than the ALMA arms (the

primary in panel (c), the east side of the secondary in panel (c),

and the west side of the secondary in panel (a)). On the far side,

the NIR arms stay roughly at the same locations, while the

ALMA arms approach the star, thus displacing the two (the

primary in panel (a), the east side of the secondary in panel (a),

and the west side of secondary in panel (c)). Also note that in

the NIR images, a weak third arm right outside the secondary is

present. This arm is mainly a surface feature caused by varying

scale height, not a surface density feature, and is therefore not

visible in the ALMA images.
The difference in the arm locations in the NIR and ALMA

images (δ in the schematic) depends on (1) i, (2) PA, (3) the

opening angle of the scattered-light surface θsurface, and (4) the

arm structure in the vertical direction. Once item (4) is

thoroughly understood, an accurate measurement of δ

combined with a known disk inclination may constrain
θsurface. If multiwavelength scattered-light images (e.g., from
the optical to L band) are available, the arms may move slightly
across wavelengths as θsurface drops with increasing wave-
length. Finally, we note that Boehler et al. (2018) detected
Arm 1 in ALMA 13CO emission with a coarse beam (∼0 2)
and concluded that it coincides with the NIR Arm 1. Future gas
observations with higher angular resolution are needed to more
accurately determine the location of the arm in the gas.
Tentatively, we regard the Boehler et al. (2018) result as
evidence for 13CO emission originating from a layer close to
the disk surface.

4.2.2. Where Is Arm 2 in Submillimeter Emission

Arm 2 is not clearly revealed in our ALMA data. This may
be due to less effective trapping of ∼millimeter-sized dust by
Arm 2 compared to Arm 1. Specifically, if the two arms are
produced by one planet on the outside (the hypothesis raised

Figure 5. Synthetic ALMA 0.87 mm continuum emission and NIR (H-band) polarized scattered-light images (central part artificially masked) of a toy disk model with

two spiral arms excited by a planet ( = ´ -M M3 10 ;p
3 located at r=100 au and PA=0) at three viewing angles (inclination i labeled on the left and PA=0 in all

cases; i.e., the major axis is along north–south), produced using the M3 J model in Dong et al. (2016a). The disk is assumed to be at 151 pc, and images at both
wavelengths are convolved to have an angular resolution of 0 04. Color stretch is linear, and units are arbitrary. The H-band images have been scaled by r2, and
ALMA images have been scaled by r (deprojected r) to highlight the arms. The right half is identical to the left half but with (1) the locus of the two arms in the
ALMA image at each viewing angle marked marked by the dots in both the ALMA and NIR images (the green and red dots are the same), (2) the far side of the disk
marked in the top and bottom rows, and (3) the primary and secondary arms labeled in panel (b). The submillimeter continuum-emitting big dust (∼millimeter-sized)
is assumed to have a surface density linearly scaled with the gas and settled to the disk midplane. The locations of the arms in the ALMA continuum observations
(midplane features) may differ from where they are in the NIR observations (surface features). See Section 4.2 for discussion.
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by Dong et al. 2015b; see the discussion in Section 4.4), they
are expected to have different amplitudes in gas surface
density (Figure 5, Fung & Dong 2015; Figure 1, Zhu
et al. 2015; Figure 2, Dong et al. 2016a; see also Juhász
et al. 2015). This effect probably leads to different dust-
trapping capacities, resulting in different arm contrasts,
locations, and morphologies in submillimeter continuum
emission between the two arms.

Another possibility is that Arm 2 is present but coincides
with other features. As shown in Figure 1(d), the south clump
and the west part of the inner ring at PA∼220°–320° are
located just outside the NIR Arm 2, and the north clump
contributes emission at the location of the NIR Arm 2 at
PA∼320°–360°. Perhaps some of the emission along a track
∼0 05 outside the NIR Arm 2 (the red dashed line) comes
from an underlying arm structure that cannot be separately
identified. Future disk modeling that decomposes the emission
in this region to the relevant components are needed to
elucidate the situation.

If (1) the MWC 758 disk’s two arms are different in
submillimeter continuum emission (e.g., one is present while the
other is not) despite their relative symmetry in NIR scattered light
and (2) the planet-induced primary and secondary arms do trap
dust differently, then a careful comparison between the ALMA
observations and the gas+dust simulations of disk–planet
interactions may reveal which arm is the primary arm pointing
to the hypothetical arm-driving planet. Previous simulations have
shown that for multi-MJ planets, the two arms driven by a single
planet are nearly equally prominent in scattered light (Dong et al.
2015b, 2016a), making it difficult to break the degeneracy (unless
the two arms are found in a near–face-on disk and are not
symmetric; Fung & Dong 2015).

Similar to the second interpretation above, the east side of
the inner ring at PA∼30°–120°, being slightly outside the
NIR Arm 1, may also contain contributions from a north
segment of ALMA Arm 1 as the two coincide. In this scenario,
the “intrinsic” Arm 1 in submillimeter continuum emission
would start all the way north at PA∼30°, covering a full
∼180° in the azimuthal direction similar to the NIR Arm 1. The
azimuthal asymmetry of the inner ring might be partially
induced by the “extra” contributions from the underlying
spiral arms.

4.3. Dust Distributions in the Emission Clumps

As both clumps are spatially resolved and marginally
optically thin, dust particles contributing to 0.87 mm con-
tinuum emission at each clump are distributed in an extended
region, with their surface density roughly traced by the surface
brightness of the emission. Hydro simulations of dust trapping
by m=1 azimuthally asymmetric structures in the gas (e.g.,
Mittal & Chiang 2015; Baruteau & Zhu 2016; Miranda
et al. 2017) generally show effective trapping, resulting in
compact dust concentrations if given enough evolution time.
Particles of sizes in a finite range, all contributing to
submillimeter continuum emission at a single wavelength,
can be collected at different azimuthal locations inside one
clump, resulting in extended emission over a large azimuthal
angle, consistent with our observations (e.g., Mittal &
Chiang 2015). In the radial direction, however, particles tend
to drift into arcs narrower than the disk scale height, which is
usually around 10% of the radius or less. The radial drift
timescale depends on the particle size. It is shortest—shorter

than system ages—for particles whose dimensionless stopping
times (Stokes numbers St) are on the order of unity.
At the two clumps, the average midplane temperature from

the group of representative radiative transfer models introduced
in Section 3.4 (26 and 22 K for the south and north clumps,
respectively) correspond to a local disk aspect ratio h/r=
0.059 (south) and 0.071 (north) (assuming a M1.4 stellar
mass; Boehler et al. 2018). The intrinsic radial FWHMs of both
clumps in the deprojected image (FWHMintrinsic; Section 3.4)
are ∼4 times the local disk scale height h. Probably the
particles traced by the submillimeter emission from the clumps
have St<1, as particles with St∼1 are expected to have
drifted to the center of the clumps at the age of the system
(smaller particles drift slower in both the radial and azimuthal
directions and are more easily diffused by gas turbulence).
Also, dust feedback onto gas tends to prevent particles from
concentrating toward a single point and is expected when the
local dust-to-gas ratio approaches unity (e.g., Fu et al. 2014;
Miranda et al. 2017). We also rule out the presence of multiply
clustered subclumps separated azimuthally by more than the
beam size (6.5 au). Such “multiple clumps” may be produced
by dust trapping in vortices generated at a dead-zone edge due
to viscosity transitions (Miranda et al. 2017, Figures 6 and 7).
Multiple clumps azimuthally separated by less than the beam
size are still possible.
If the submillimeter continuum emission is spatially resolved

and the dust is optically thin, the azimuthal peak-to-trough ratio
at the position of a clump provides an estimate of the
underlying contrast in the surface density of ∼millimeter-sized
dust. However, since both clumps may only be marginally
optically thin at their peaks (Section 3.4), the measured
azimuthal contrasts (4.4 for the south and 10 for the north
clump) only provide a lower limit on the degree of dust
concentration in the clumps.

4.4. The Hypothetical Planets in the MWC 758 Disk

The central cavity of MWC 758 inward of r≈51 au may be
opened by one or more planets inside (e.g., Zhu et al. 2011;
Dong et al. 2015c; Duffell & Dong 2015). This cavity,
however, has not been revealed in NIR scattered light down to
an inner working angle of ∼0 1 (16 au; Reggiani et al. 2018;
cf. Benisty et al. 2015, who reported a slight reduction in
scattered-light intensity inside the millimeter-wave cavity).
Dong et al. (2012) assigned MWC 758 to the group of
transitional disks with “missing cavities.” The data taken
collectively are consistent with the gas inside the cavity having
been depleted by no more than a factor of 10–100; millimeter-
sized particles may be trapped at the overpressured cavity edge,
but smaller micron-sized dust can still leak in with the gas
(Dong et al. 2012). The ellipticity of the cavity edge and the
possibility that the south clump may be a vortex formed at the
cavity edge as triggered by the Rossby wave instability (RWI;
see below) further constrain the properties of the disk and
embedded planets (Section 4.1). Determining the degree of gas
depletion inside the cavity using gas emission observations
(e.g., van der Marel et al. 2015, 2016) will be essential.
The two spirals may be excited by an ∼5–10 MJ planet

exterior to the spirals at ∼100 au, as proposed by Dong et al.
(2015b). A more massive companion even further away may
also be able to drive the arms (e.g., Dong et al. 2016c) but has
been ruled out by observations (Reggiani et al. 2018). Massive,
distant planets like the one predicted around MWC 758 have
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been found around other A-type stars (e.g., HR 8799 b, Marois
et al. 2008; see also Bowler 2016; note that MWC 758 will
probably become a main-sequence A-type star in the future).
The formation of such planets is currently being investigated;
they might be the outcomes of GI and disk fragmentation
at early times (e.g., Rafikov 2005; Kratter et al. 2010). The
new ALMA data are consistent with the Dong et al. (2015b)
hypothesis, as the presence of Arm1 in submillimeter
continuum emission suggests that it is mainly an overdensity
rather than a shadow or temperature structure. The fact that
Arm2 is not clearly revealed by ALMA may be caused by
different dust-trapping capacities in the primary and secondary
arms (Section 4.2.2).

A massive (multi-MJ) companion at around 100 au exterior
to the arms is also expected to truncate the disk interior to its
orbit. Disk truncation is seen not just in scattered light but also
in ALMA observations of C18O, revealing an outer gas disk
edge at ∼100 au (Boehler et al. 2018). We note that emission
from 13CO, a more abundant species, is detected out to
∼150 au (Boehler et al. 2018). Future gas emission modeling
work is needed to quantify the spatial distribution of gas
outside the main submillimeter disk ring. Figure 6 shows a
synthetic scattered-light image based on the Dong et al.
(2015b) disk model. It is identical to the original one (see
Figure 4 in that paper), except (1) the disk at r r0.8 p (see,
e.g., Figure 2 of Fung & Chiang 2016) is removed prior to
image synthesizing, and (2) the synthetic image is produced

assuming not the face-on but the actual viewing geometry of
the disk: PA=62°, i=21°, and with the northwest side being
the side nearest the observer (Isella et al. 2010; Boehler
et al. 2018). We note that the 3D hydro simulation has been run
for 20 orbits, which is long enough for the spiral arms to be
fully established and reach steady state but not enough for the
gap around the planet’s orbit to be fully opened. To fully
truncate the disk, simulations would need to be run for a much
longer time, which is prohibitively expensive in this case.
Hence, we truncate the disk manually. Future simulations run
to the system age are needed to examine whether the truncation
of the disk with the right radius and depletion can be naturally
achieved by the planet.
Figure 6 shows that the near-side edge of the bottom half of

the disk in the model image (left panel; indicated by the arrow),
just outside and parallel to the tip of Arm2, is clearly visible
and in good agreement with the location and orientation of the
corresponding structure in the actual SPHERE image (right
panel; indicated by the arrow). Note that while non-planet-
based mechanisms can also produce a sharp outer edge in the
distribution of ∼millimeter-sized dust due to dust radial drift
(e.g., Birnstiel & Andrews 2014), the presence of this NIR
feature requires a truncation and sharp edge in the distribution
of ∼micron-sized small dust, usually well coupled with the gas.
Such a structure has also been seen in the Dong et al. (2016a,
Figure 5) study of spiral arm morphology in inclined disks and
in HD 100453 (Benisty et al. 2017), a disk with a truncated

Figure 6. Left: simulated NIR polarized-light image of a disk perturbed by a planet. Right: Y-band (1 μm) polarized-light image of MWC 758 (Benisty et al. 2015).
Both the model and the observation have been r2-scaled. The simulation is based on Model 6ISO125 in Dong et al. (2015b), in which the planet has

= ´ -M M6 10p
3 (M

å
is the stellar mass) and is located at 100 au. The disk is truncated at 80 au (i.e., roughly at the inner edge of the gap opened by the planet). The

synthetic observation is produced using the geometry of MWC 758 (Isella et al. 2010; Boehler et al. 2018): the southeast side is the far side, inclination i=21°, and
position angle PA=62° (major axis marked by the dashed line). The green dot marks the projected location of the planet. If the outer disk is effectively truncated by
the planet, the feature next to the northern arm in the actual observation (indicated by the arrow) can be explained as the near-side edge of the bottom (obscured) half
of the disk. See Section 4.4 for discussion.
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edge and two spirals. Our model feature is fainter than in the

SPHERE image. This may be due to the specific properties of

submicron-sized dust in MWC 758 responsible for NIR

scattered light (interstellar medium dust is assumed in the

model; Kim et al. 1994).
A few direct-imaging campaigns have been carried out to

look for this companion, with no confirmed detection at the

moment. The achieved detection limit on the planet mass

assuming “hot-start” planet formation models, which predict a

higher luminosity for a planet of a given mass at a given age

than the “warm” or “cold” formation models (Spiegel &

Burrows 2012), is approaching the theoretical prediction

(~ M5 J at r∼100 au; Reggiani et al. 2018). The implication

of such results is far from certain. Possibilities include (1)

planets are not as luminous as the hot-start model predictions

and (2) the system is older than the often-assumed 3.5±2Myr

(Meeus et al. 2012), making the hypothetical planet colder and

less luminous (particularly in hot-start models). Age estimates

for pre-main-sequence stars are usually made by placing the

stars on the H-R diagram and comparing their locations with

theoretical isochrones. Meeus et al. (2012) assumed the old

Hipparcos distance of 279 pc for MWC 758 (van Leeuwen

2007), which is significantly greater than the new Gaia distance

of 160 pc, and therefore overestimated its luminosity by a

factor of 3. Reexamination of the stellar age using the Gaia

distance is needed. Similarly, previous stellar-mass (M
å
)

determinations from isochrone fitting are likely to be

inaccurate. Disk kinematic studies can independently and more

accurately determine M
å

(e.g., Isella et al. 2010; Czekala

et al. 2015) and thereby better calibrate the hydrodynamic and

radiative transfer simulations of planet–disk interactions that all

scale with M
å
.

The nondetection of the CPD in our ALMA observations

also constrains the CPD models. Wu et al. (2017) searched for

but failed to detect millimeter continuum emission from the

CPDs around five known planetary-mass companions at large

distances in other systems using ALMA (see also the

nondetections by Bowler et al. 2015 and MacGregor

et al. 2017). The authors proposed that CPDs may be compact,

having sizes on the order of 100 Jupiter radii or smaller, and

optically thick, under which conditions the ∼millimeter flux

density from such a disk is expected to be on the order of a μJy,
well below our rms noise level. Alternatively, the predicted

companion outside the disk edge in MWC 758 may not have a

CPD—its CPD may have been lost through accretion, and it is

not being replenished by an outer disk beyond the planet’s

orbit.
The two azimuthal clumps in ∼millimeter emission have

also been proposed to be dust-trapping vortices generated by

the RWI at the edges of planet-opened gaps (Lovelace

et al. 1999; Li et al. 2000). The north clump has been shown

to be more compact at longer wavelengths (Marino et al. 2015),

consistent with being an azimuthal dust trap (e.g., Lyra &

Lin 2013; Zhu & Stone 2014). Our new data showed that the

radial extent (FWHM) of the dust distribution inside the clumps

(particularly the north clump) may be ∼4×the local disk scale

height, indicating that the dust back-reaction onto the gas may

be important (Section 4.3). The proposed spiral-arm-driving

planet exterior to the spirals may naturally sharpen the edge of

the disk at ∼100 au, triggering the RWI and, subsequently, the

formation of a vortex as the north clump.

Finally, the triple-ring structure best seen on the west side of
the broad outer disk may also hint at the presence of planets.
Dong et al. (2017a; see also Bae et al. 2017) showed that such a
structure may be produced by a single planet in low-viscosity
gas. The rich dynamical environment in MWC 758 with
possible eccentric-cavity-opening planets inside and a spiral-
driving planet outside makes simple model–data comparison
difficult. The eccentricity of the observed gaps and rings
(e≈0.1) also adds an additional complication. Object-specific
modeling taking into account relevant dynamical processes,
including planet–planet interactions, is needed to comment on
the origin of these narrow gaps.

4.5. New Questions and Future Work

The new data and analysis motivate future theoretical and
observational studies.

1. Gas+dust simulations to study whether and how planet-
induced multiple spiral arms can trap dust particles and
the difference between the primary and secondary arms.

2. Disk modeling to decompose the emission in the broad
ring into components to examine whether unidentified
segments of the two arms, particularly Arm2, are hidden
under other, more prominent structures.

3. Combining the above studies to examine which of the
two arms is the primary (companion-pointing) arm,
should they be excited by a single companion. The
outcome can direct future direct-imaging campaigns to
search for this companion.

4. Continuum emission observations at multiple submilli-
meter to centimeter wavelengths and spectral index
analysis to examine the composition and size distribution
of the dust in the two clumps. Comparing the data with
vortex dust-trapping simulations to understand the effect
of dust feedback onto the gas.

5. Simulations to explore whether a companion at 100 au or
further can excite the two spirals, truncate the disk, and
trigger the formation of the north clump at the truncated
disk edge simultaneously.

5. Summary

We present Cycle 5 ALMA continuum emission observa-
tions of the protoplanetary disk around MWC 758 at 0.87mm
with a beam size of 43×39 mas (6.8×6.2 au) and an rms
noise level of 20 μJy beam−1. This system joins a few other
protoplanetary disks revealed by high-sensitivity ALMA
observations with sub-0 05 resolution (HL Tau, ALMA
Partnership et al. 2015; Akiyama et al. 2016a; TW Hya,
Andrews et al. 2016; Tsukagoshi et al. 2016; Huang
et al. 2018; V883, Cieza et al. 2016; and V1247 Orionis,
Kraus et al. 2017; see also GY 91, Sheehan & Eisner 2018).
The high-resolution submillimeter continuum map (Figure 1)
reveals a central cavity ∼0 32 (51 au) in size, a broad outer
disk extending to ∼0 64 (102 au) that can be decomposed into
three faint rings, a south clump on the outer edge of the cavity,
a north clump on the outer edge of the outer disk, a central
emission point source around the star, and a spiral arm in the
south. The basic measurements of the features are listed in
Table 1. We compare the ALMA data set with observations at
other wavelengths and propose possible interpretations for the
observed disk structures. Our main conclusions are as follows:
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1. One of the two spiral arms imaged in NIR scattered light
(Arm 1 in Figure 1(c)) is revealed in submillimeter
continuum emission. This is the first time the submilli-
meter continuum counterpart of an NIR spiral arm is
spatially resolved. The ALMA arm extends about 90° in
the azimuthal direction, and 2/3 of its extent is located at
a slightly larger (up to 8%) stellocentric distance than its
scattered-light image counterpart. This offset can be
explained as the surface (probed by NIR scattered light)
and the midplane (probed by submillimeter continuum
emission) of the same structure being projected to
different locations on the sky (Figures 4 and 5). The
azimuthal peak-to-trough contrast of the arm, 3.6,
suggests that it is mainly a density (emission optical
depth) feature.

2. Contrary to Arm1, Arm2 (Figure 1(c)) is not clearly
revealed in the ALMA image. We submit two possible
explanations: (A) Arm2 does not trap ∼millimeter-sized
dust as effectively as Arm1 (due to, for example, the
difference between the primary and secondary arms’ gas
perturbation amplitudes, as excited by one planet),
making Arm2 weaker/absent in submillimeter conti-
nuum emission; and (B) Arm2 is present at a slightly
larger stellocentric distance coinciding with the east side
of the inner ring and the clumps, making it difficult to
identify. We favor the former explanation.

3. The cavity (and the inner ring that defines its edge) is not
a circle centered on the star. This is not a projection
effect. Once deprojected, the inner ring can be fit by an
ellipse with eccentricity e≈0.1 and one focus on the star
(Figures 2(c) and (d)). If fit by a circle, its center is at ∼30
mas from the Gaia stellar location, which roughly
coincides with the detected central point source. This
difference is ∼one order of magnitude larger than the
expected ALMA astrometry uncertainty. The middle and
outer rings also tentatively show the same eccentricity
and orientation as the inner ring. Hydro simulations have
shown that companions may open eccentric gaps under
certain conditions (e.g., Kley & Dirksen 2006).

4. Both the north (rdeprojected=0 53=85 au) and the
south clump (rdeprojected=0 31=50 au) are spatially
resolved in the radial and azimuthal directions. Their
radial FWHM-to-radius ratios are ∼21% (south) and 29%
(north), both being ∼4×the local disk aspect ratio h/r.
Azimuthally, their FWHMs are about 1/6 of a circle. The
two clumps may be only marginally optically thin. Their
significant radial widths suggest that emitting particles
have Stokes numbers smaller than unity and/or have
been smeared out by dust-to-gas back-reaction, as
particles with St∼1 are expected to have drifted to the
center of the clumps at the age of the system.

5. The northwest feature parallel to Arm 2 in the NIR
imaging observations of the disk can be explained as the
near-side edge of the bottom half of the disk, if the disk is
truncated at the outer edge of the spiral arms (Figure 6).
The disk truncation, the two spiral arms, and the north
clump all point toward an unseen external companion at
around ∼100 au.
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