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The EcoCyc model-organism database collects and summarizes experimental data for 

Escherichia coli K-12. EcoCyc is regularly updated by the manual curation of individual 

database entries, such as genes, proteins, and metabolic pathways, and by the 

programmatic addition of results from select high-throughput analyses. Updates to the 

Pathway Tools software that supports EcoCyc and to the web interface that enables user 

access have continuously improved its usability and expanded its functionality. This article 

highlights recent improvements to the curated data in the areas of metabolism, transport, 

DNA repair, and regulation of gene expression. New and revised data analysis and 

visualization tools include an interactive metabolic network explorer, a circular genome 

viewer, and various improvements to the speed and usability of existing tools.

Keywords: Escherichia coli, EcoCyc, model-organism database, drug ef�ux transporters, metabolism, gene 

regulation

INTRODUCTION

Escherichia coli is the most well-studied bacterial model organism. �e scienti�c literature 
reports on more than a century of research on E. coli, including paradigm-shi�ing research 
on enzyme function, gene regulation and genetic engineering. Knowledge gained about the 
biology of E. coli is o�en the basis for assigning gene product functions in less studied 
organisms, and scientists turn to the body of E. coli research to begin to understand these 
functions in the context of their organism of interest. However, despite the long history of 
research, the functions of a surprising number of E. coli gene products remain unknown 
(Ghatak et  al., 2019). Knowledge gaps remain even in areas that have been studied for decades, 
and the genes of unknown function that are essential for growth in rich media exist.

�e EcoCyc database has been manually curated by PhD-level scientists for nearly three 
decades (Karp and Riley, 1993; Keseler et  al., 2017), and its coverage has been expanded from 
metabolism to the entire genome. Extensive literature searches enable curators to capture both 
established knowledge and new insights. Perhaps equally important, the curation process can 
capture a lack of knowledge via the assignment of detailed evidence codes. For example, the 
participation of an enzyme in a metabolic pathway is o�en established by assaying its biochemical 
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function in vitro, resulting in an IDA (inferred from direct 
assay) evidence code. Occasionally, an enzyme’s function within 
a metabolic pathway is known only by its mutant phenotype, 
resulting in an IMP (inferred from mutant phenotype) evidence 
code. �erefore, EcoCyc provides an overview of current knowledge 
and serves as a resource for the identi�cation of knowledge gaps.

EcoCyc collects research conducted with the laboratory 
workhorse K-12 strains projected on the genome sequence of 
the �rst sequenced E. coli K-12 strain, MG1655. Many other 
E. coli strains have been sequenced since that �rst genome 
sequence. To leverage the EcoCyc curation e�ort and enhance 
the quality and usability of all E. coli databases within the 
BioCyc database collection (of which EcoCyc is a member 
database), curated gene and protein data have also been 
propagated from EcoCyc to orthologs in databases for 480 
other E. coli strains via a new automated method (Paley et  al., 
2021). In this article, we  highlight and summarize additions 
to the data content and improvements to search, data-analysis, 
and visualization tools since our last publication reporting on 
updates to EcoCyc (Keseler et  al., 2017).

RESULTS

Curated Data in EcoCyc
An overview of many of the data types captured in EcoCyc 
version 24.5, released on January 7, 2021, is shown in Table 1. 
�is section highlights some notable updates since release 
version 21.1 (Keseler et  al., 2017).

Metabolism
EcoCyc integrates historical data with the most recent insights 
from the published literature. For example, the enzymes involved 

in the biosynthesis of ubiquinol-8 were genetically identi�ed 
decades ago. �e current representation of this pathway in EcoCyc 
can be seen by following this link: https://ecocyc.org/ECOLI/NEW-
IMAGE?type=PATHWAY&object=PWY-6708&detail-level=2.

For most of the enzymes, curators were unable to �nd the 
published reports of biochemical assays of the activities of 
ubiquinol-8 biosynthesis enzymes, which is likely due to the 
general di�culty of, lack of interest in, and/or obstacles to 
publishing negative data. �e unavailability of this information 
highlights the importance of recording the lack of speci�c 
types of data, as is being done in EcoCyc: the evidence codes 
associated with many of the individual enzymatic reactions in 
this pathway remain at the “inferred by mutant phenotype” level.

�is lack of biochemical data seemed surprising, because 
most of the enzymes in ubiquinol-8 biosynthesis, like those in 
menaquinol-8 biosynthesis,1 are located in the cytoplasm. However, 
unlike menaquinol-8 biosynthesis, where the hydrophobic 
octaprenyl tail is added late in the pathway by the inner membrane-
localized enzyme MenA, mutant phenotype data showed that 
the octaprenyl tail of ubiquinol-8 is added early in the pathway. 
Also, two accessory factors with no predicted biochemical function, 
UbiJ and UbiK, were identi�ed only by their mutant phenotypes 
(Aussel et  al., 2014; Agrawal et  al., 2017; Loiseau et  al., 2017). 
�e puzzle pieces fell into place in 2019, when Hajj Chehade 
et al. discovered that most of the ubiquinol-8 biosynthetic enzymes 
and the two accessory factors form a soluble complex (metabolon) 
in the cytoplasm. �is complex is able to perform the biochemical 
transformations while shielding the octaprenyl tail from the 
aqueous environment (Hajj Chehade et al., 2019). However, other 
questions remain. �e UbiB protein is involved in ubiquinol-8 
biosynthesis based on a mutant phenotype. It was originally 
thought to provide a catalytic activity within the pathway (Cox 
et  al., 1969), but is now proposed to function as a regulator 
(Poon et  al., 2000; Hajj Chehade et  al., 2013). Each of these 
pieces of data can be  accessed in multiple ways, for example, 
by hovering over enzyme names to show the evidence codes 
associated with their functions and by reading the free-text 
summaries for the pathway and each enzyme.

Transmembrane Transport
Newly characterized transporters reported in the literature 
remain a focus for curation. Recent highlights include the 
curation of the pyruvate:proton symporters BtsT (Kristo�cova 
et  al., 2018) and CstA (Hwang et  al., 2018; Gasperotti et  al., 
2020), the Zn2+:proton symporter ZntA (Gati et  al., 2017), and 
a guanidinium:proton antiporter Gdx (Kermani et  al., 2018). 
�e latter transporter is regulated by a guanidine-II riboswitch 
predicted to act as a translation “on” switch (Huang et  al., 
2017; Sherlock et  al., 2017). As part of the curation process, 
the gene names and free-text summaries for these proteins 
were updated, and transport reactions (Figure 1A) and regulatory 
information (Figure  1B) were added.

�e guanidinium:proton antiporter Gdx is a member of the 
small multidrug resistance (SMR) family of proton-dependent 

1 https://ecocyc.org/ECOLI/NEW-IMAGE?type=PATHWAY&object
=PWY-5838&detail-level=2

TABLE 1 | Select EcoCyc content and Escherichia coli gene product functions 

in release 24.5.

Data type Number of database objects

Genes 4,518

 Gene products covered by a mini-review 4,087

 Gene products with GO terms with EXP 

evidence

3,494

Enzymes 1,682

 Metabolic reactions 2,151

Compounds 3,023

Transporters 288

 Transport reactions 527

 Transported substrates 375

Transcription factors 213

 Transcription factor binding sites 4,076

Regulatory interactions 8,631

 Transcription initiation 5,505

 Transcription attenuation 24

 Regulation of translation 318

 Enzyme modulation 2,763

DNA Sites

 Transposons 50

 REP elements 697

 Cryptic prophages 12

Literature citations 39,865
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drug e�ux transporters. EcoCyc currently represents 25 known 
energy-dependent drug e�ux transporters, including 
representatives from �ve of the seven major families of e�ux 
transporters (Chitsaz and Brown, 2017). We  have reviewed and 
updated the curation of all the drug e�ux transporters in 
EcoCyc and improved our representation of the speci�c substrates, 
both physiological and non-physiological, that are exported by 
these proteins. Many new reactions and compounds have been 
added to the database as a result of this update. Readers 
interested in this area can view a freely available SmartTable 
of all drug e�ux transporters and their reactions at the following 
link: https://ecocyc.org/group?id=biocyc14-4655-3823813233.

DNA Repair
Signi�cant improvements have been made to the curation of 
DNA repair enzymes, with a particular focus on the addition 
of reactions that accurately re�ect the catalytic activities of 
these important proteins. Eleven new reactions were created 
as part of this process, including those for two newly described 
enzymes: the genome maintenance protein encoded by yedK 
(Mohni et  al., 2019; �ompson et  al., 2019; Wang et  al., 2019) 

and an interstrand DNA crosslink repair glycosylase encoded 
by ycaQ (Bradley et al., 2020). Figure 2 shows the new reactions 
assigned to YedK and YcaQ.

Lysine Acetylation Sites
Protein Nε-lysine acetylation is a common post-translational 
modi�cation, resulting from transfer of an acetyl group (CH3CO) 
to the ε-amino group (N-ε) of lysine residues within a protein. 
Acetylation increases the side-chain size and neutralizes the 
positive charge of the lysine residue, potentially altering protein 
activity (Christensen et  al., 2019). Some proteins regulated by 
Nε-lysine acetylation include the central metabolic enzymes 
acetyl-CoA synthetase (Starai and Escalante-Semerena, 2004), 
enolase (Nakayasu et  al., 2017), and malate dehydrogenase 
(Venkat et  al., 2017), as well as the transcription factors PhoP 
(Ren et  al., 2019) and CRP (Davis et  al., 2018). Nε-lysine 
acetylation can be catalyzed by lysine acetyltransferases (KATs) 
using acetyl-CoA as the acetyl donor. �e best studied KAT 
in E. coli is Y�Q (also known as Pat, PatZ, and Pka). Recently, 
four novel KATs – YjaB, YiaC, RimI, and PhnO – were revealed 
(Christensen et  al., 2018). Nε-lysine acetylation can also occur 

A

B

FIGURE 1 | Curation of Gdx in EcoCyc. (A) The guanidinium:proton antiport reaction mediated by Gdx. (B) Gdx regulation by a guanidine II riboswitch.
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TABLE 2 | Summary of curation of the regulation of gene expression in EcoCyc 

between releases 21.1 and 24.5.

Object type in EcoCyc New objects Modi�ed objects

Regulatory interaction (TF binding site) 1,331 640

DNA binding sites 1,161 568

Transcription units 188 679

Promoters 197 228

Proteins 13 402

Reactions 8 0

Terminators 64 74

Allosteric regulation of RNAP (ppGpp 

and DksA)

140 140

without the help of a dedicated enzyme; in this case, the 
acetyl donor is acetyl phosphate, a high energy central metabolic 
intermediate that accumulates when carbon is in excess 
(Weinert et al., 2013; Kuhn et al., 2014; Christensen et al., 2017).

We greatly expanded the coverage of lysine acetylation in 
EcoCyc by importing �ve acetylome datasets that identify speci�c 
lysine positions in proteins that have been subject to acetylation 
(Kuhn et  al., 2014; Schilling et  al., 2015; Christensen et  al., 
2018). �e lysine acetylation sites are recorded and displayed 
as protein features. When visiting a protein page, clicking on 
the tab “Protein Features” will show the amino acid sequence 
and a table of annotations that indicate speci�c sites or regions 
with evidence for a variety of functional properties including 
known acetylation sites. Two examples can be found by following 
these links for proteins AceF and LipA, respectively: https://
ecocyc.org/gene?orgid=ECOLI&id=EG10025#tab=FTRS and 
https://ecocyc.org/gene?orgid=ECOLI&id=EG11306#tab=FTRS.

In summary, 914 proteins were updated by data showing 
at least one lysine that can be  acetylated. Acetylation data 
were added to 2,065 distinct lysine residues in the proteome.

�e preceding protein pages for AceF and LipA illustrate 
the ability of EcoCyc to capture the functions of substitution 
mutants in the Protein Features tab. For example, the page 
for AceF captures the fact that an H to C substitution at 
position 603 abolishes the catalytic activity of the protein (see 
the �rst feature table). A total of 6,792 such “mutagenesis 
variant” protein features are present in EcoCyc, although there 
must be  additional such information in the experimental 
literature. EcoCyc contains 40,051 protein features in total 
(including the preceding 6,792), including, for example, enzyme 
active sites and metal ion binding sites.

Regulation of Gene Expression
Since 2017, a signi�cant amount of new data related to speci�c 
promoters, regulatory interactions (RIs) and transcription units in 
E. coli K-12 has been published. �is increase is re�ected in new 
database objects and in modi�cations to existing objects as shown 
in Table  2. �e largest number of modi�cations comes from 
enriching summaries and adding new evidence to existing objects.

We have continued expanding the description of 
transcriptional regulation by including the binding of regulatory 
molecules directly to RNA polymerase. Examples are the allosteric 
regulation of RNA polymerase by ppGpp and DksA.

Regulatory Interactions Extracted From High-�roughput 

Experiments
As a result of the increasing E. coli K-12 literature 
involving the use of high-throughput technologies (HTs;  
Santos-Zavaleta et  al., 2018), we  have increased the number 

A B

FIGURE 2 | Reactions assigned to recently characterized DNA repair proteins in EcoCyc. (A) Genome maintenance protein YedK. (B) Interstrand DNA crosslink 

repair glycosylase YcaQ.

https://www.frontiersin.org/journals/microbiology
www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles
https://ecocyc.org/gene?orgid=ECOLI&id=EG10025%23tab=FTRS
https://ecocyc.org/gene?orgid=ECOLI&id=EG10025%23tab=FTRS
https://ecocyc.org/gene?orgid=ECOLI&id=EG11306#tab=FTRS


Keseler et al. The EcoCyc Database in 2021

Frontiers in Microbiology | www.frontiersin.org 5 July 2021 | Volume 12 | Article 711077

of DNA binding sites and their associated RIs (Table  2). Of 
the total number of new RIs, over 1,000 come from HT 
experiments with seven transcription factors. �ese RIs were 
identi�ed by the authors through the combination of genome 
binding and expression pro�ling experiments, such as variants 
of chromatin immunoprecipitation (ChIP) and RNA-seq and 
microarray analyses, respectively (Table  3).

Redefinition of Basic Concepts in Gene Regulation
�e conceptual data model used in EcoCyc to organize the 
knowledge about transcriptional regulation derives from the 

initial model by Jacob and Monod of the operon concept 
(Jacob and Monod, 1961). A�er 60  years of research with 
many technological advances before and a�er the explosion 
of HT methodologies in genomics, it was the time to revise 
the classic de�nitions to update them with our current knowledge 
on the regulation of transcription initiation in bacteria. Based 
on the consensus view of a group of experts (Mejía-Almonte 
et  al., 2020), we  have modi�ed some aspects of modeling this 
knowledge in EcoCyc. For instance, a single promoter object 
was previously used to represent transcription start sites (TSSs) 
for RNA polymerase holoenzymes containing di�erent sigma 
factors. Now, each of those TSSs belongs to a di�erent promoter 
because each may be  subject to di�erent regulation even if 
the TSS is at exactly the same genome location (Mejía-Almonte 
et  al., 2020). Conversely, given the known �exibility of RNA 
polymerase, one promoter may have more than one TSS within 
a region of �ve base pairs (Liu and Turnbough, 1994; Walker 
and Osuna, 2002; Winkelman et  al., 2016). �is limit is now 
being used in EcoCyc to add newly identi�ed TSSs to known 
promoters. In particular, this is the case with experiments 
identifying TSSs and their associated transcription units from 
HT experiments (Yan et  al., 2018; Ju et  al., 2019).

The Escherichia coli K-12 MG1655 
GenBank File, U00096.3
EcoCyc has worked together with the original submitter, Dr. 
Guy Plunkett III, and sta� from UniProt and NCBI to update 
the E. coli GenBank entry U00096.3, with the last update 

TABLE 3 | Transcription factors and their regulatory interactions (RIs) extracted 

from high-throughput experiments.

Transcription 

factors

Number of 

curated RIs

Experimental strategy References

ArcA 141 ChIP-chip and 

microarrays

Federowicz et al., 

2014

ArgR 44 ChIP-exo Cho et al., 2015

Microarrays Caldara et al., 2006

OmpR 12 gSELEX and microarrays Shimada et al., 2015

CsiR 112 ChIP-seq and RNA-seq Aquino et al., 2017

FNR 47 ChIP-chip and 

microarrays

Federowicz et al., 

2014

Lrp 63 ChIP-chip and 

microarrays

Cho et al., 2008

316 ChiP-seq and RNA-seq Kroner et al., 2019

Nac 516 ChIP-seq and RNA-seq Aquino et al., 2017

FIGURE 3 | Example display of the Metabolic Network Explorer to explore Escherichia coli metabolism starting from the metabolite D-glyceraldehyde 3-phosphate.
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FIGURE 4 | An example Circular Genome Viewer display, with tracks that showcase a variety of feature types, �ltering and highlighting options, listed in order from 

the outermost circle inwards.

deposited on September 23, 2020. All genome annotation data 
within this entry, such as gene symbols, gene positions, and 
updated function names, are drawn directly from EcoCyc. Gene 
names are updated from the originally assigned “y-names” if 
a new name was assigned in the experimental literature. 
We  encourage renaming “y-genes” with Demerec-style gene 
names (Demerec et al., 1966) once a function has been discovered. 
A brief summary on the history of the sequenced genome and 
guidelines for new gene names can be accessed on the following 
website: https://www.genome.wisc.edu/sequencing/k12.htm.

New Tools in EcoCyc
Metabolic Network Explorer
�e Metabolic Network Explorer (see website command Tools 
→ Metabolism → Metabolic Network Explorer) is a new tool 
for interactively exploring the E. coli metabolic network around 
a metabolite of interest, as shown in Figure 3. �e user speci�es 
a starting metabolite, and the so�ware displays that metabolite 
along with a full list of potential precursor and successor metabolites 
derived from the complete reaction network in EcoCyc. �e 
tooltip for each potential precursor or successor metabolite lists 
all the reactions and enzymes that carry out the transformation 

and any pathways they belong to. A�er the user selects a precursor 
or successor metabolite to add it and its connecting reaction 
to a central path, that metabolite’s potential precursor and successor 
metabolites are added to the display. �e user can continue to 
expand the central path in either or both directions by selecting 
metabolites at the start or end or the user can change the central 
path by selecting metabolites connected to internal metabolites. 
A list of paths previously generated in the current session is 
maintained to allow the user to quickly switch among them. 
�e display includes several customization options such as whether 
to show metabolite structures or pathway names.

Circular Genome Viewer
A new circular genome viewer (Tools → Genome → Circular 
Genome Viewer) provides a global view of the organization of 
the chromosome as a set of concentric circles (tracks) containing 
features (genes, promoters, binding-sites, and other extragenic 
sites) of interest. A given track can be  �ltered at the outset to 
only show features that match certain criteria (the available 
selection criteria depend on the feature type) or it can include 
a larger set of features; various selection criteria can be  applied 
a�er the fact to highlight subsets of features. Possible feature 
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types that can be displayed include genes, pseudogenes, promoters, 
transcription factor binding sites, REP elements, and others. 
�e set of �ltering and highlighting criteria for genes include 
product type (e.g., RNAs, enzymes, and transporters), name 
substrings, pathway classes, regulons, GO terms, and gene 
identi�ers from an uploaded �le. Figure  4 shows an example 
display with a variety of feature types and highlights. �e circular 
genome viewer can also combine tracks from multiple strains 
or related species and highlight the orthologs between them.

Revised Tools in EcoCyc
EcoCyc contains extensive web search options including a new 
command for searching for pseudogenes and di�erent types 
of RNAs (website command Tools → Search → Genes, Proteins, 
or Tools → Search → RNAs → Search/Filter by type/subunits). 
We  have also added a web-based search tool for searching 
for DNA and RNA sites of various types such as attenuators, 
riboswitches, phage attachment sites, and transposons (website 
command Tools → Search → Search DNA or mRNA sites).

We have upgraded the multiple-sequence alignment tools 
available for EcoCyc to use Clustal Omega (Sievers and Higgins, 
2021) to compute alignments and MSA Viewer (Yachdav et al., 
2016) to display the alignments (website command Analysis 
→ Multiple Sequence Alignment).

�e Genome Overview diagram depicts the entire E. coli 
gene in a single screen (Figure  5 and website command Tools 

→ Genome → Genome Overview). Each gene is shown as a 
single arrow with an arrowhead style distinguishing protein-
coding genes from RNA-coding genes, and arrow direction 
indicating transcription direction. Adjacent genes drawn in 
the same color are within the same operon. We recently added 
the ability to search the diagram for genes by name or by 
substring (e.g., �nd all the genes whose name contains “arg”) 
and to highlight the search results on the diagram.

�e Regulatory Overview diagram depicts the E. coli regulatory 
network, more speci�cally, transcriptional regulation (including 
transcription factors and sigma factors), and translational 
regulation (including small RNAs). �e diagram (Figure  6 and 
website command Tools → Genome → Regulatory Overview) 
is organized into three concentric ellipses; the inner ellipse 
depicts global regulatory genes, the middle ellipse depicts other 
regulatory genes, and the outer ring depicts genes that are not 
regulators. �e diagram supports a variety of operations, including 
searching for genes by names and highlighting the regulators 
or regulatory targets of a given gene. A new command enables 
the user to output either the entire regulatory network or a 
subnetwork starting at a given gene to an ASCII �le whose 
indentation describes the hierarchy of regulatory relationships.

�e Cellular Overview diagram depicts the full E. coli 
metabolic and transport network (see website command Tools 
→ Metabolism → Cellular Overview). All EcoCyc pathways 
are included, grouped by class, along with a section for reactions 

FIGURE 5 | The Genome Overview diagram captures an entire genome with each arrow representing a single gene; neighboring genes that are part of the same 

operon are displayed in the same color. Arrow sizes are not to scale.
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that have not been assigned to pathways. Transporters and 
other membrane proteins are shown on a schematic of the 
double membrane, with periplasmic reactions and proteins 
between the membranes. �e diagram supports highlighting 
operations for genes, proteins, metabolites, reactions, and 
pathways using a variety of criteria. �is diagram is also used 
by the Omics Viewer, in which omics data, such as transcriptomics 
or metabolomics data, are overlaid on the cellular overview 
to illustrate experimental results in a metabolic context. �e 
Omics Viewer has also been substantially revamped to give 
the user extensive interactive control over the mapping of 
omics data values to colors, including the ability to selectively 
hide or show speci�ed data ranges.

All three of the overview diagrams have been re-engineered 
to use modern, high-quality graphics that draw more rapidly 
and to provide real-time semantic zooming capabilities.

DISCUSSION

�e EcoCyc database is unique in its extensive coverage of E. 
coli biology captured from a century of research. Ongoing 
manual curation enables the addition of new gene product 
functions and other important new research results, while the 
incorporation of new high-throughput datasets expands the 
types of data stored in the database. EcoCyc also welcomes 
user input. �e “Provide Feedback” button on each data page 
can be  used to submit information on new publications, to 
point out errors or omissions, and to suggest other improvements.

Future directions for EcoCyc include integrating EcoCyc 
with the E. coli whole cell model developed by the laboratory 

of Prof. M. Covert (Macklin et  al., 2020) and improving the 
EcoCyc search and visualization tools.
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