

Open access • Journal Article • DOI:10.1111/1462-2920.14092

The ecological genetics of Pseudomonas syringae from kiwifruit leaves — Source link

Christina Straub, Elena Colombi, Li Li, Hongwen Huang ...+5 more authors Institutions: Massey University, Chinese Academy of Sciences, ParisTech, Max Planck Society Published on: 01 Jun 2018 - Environmental Microbiology (Blackwell Science) Topics: Pseudomonas syringae

Related papers:

- Origin and Evolution of the Kiwifruit Canker Pandemic.
- Bioinformatics Analysis of the Complete Genome Sequence of the Mango Tree Pathogen Pseudomonas syringae pv. syringae UMAF0158 Reveals Traits Relevant to Virulence and Epiphytic Lifestyle.
- Pseudomonas syringae: enterprising epiphyte and stealthy parasite.
- Predictive Modeling of Pseudomonas syringae Virulence on Bean using Gradient Boosted Decision Trees
- Population-genomic insights into emergence, crop adaptation and dissemination of Pseudomonas syringae pathogens.

1 The ecological genetics of *Pseudomonas syringae* from kiwifruit leaves

- 2 Christina Straub¹, Elena Colombi¹, Li Li², Hongwen Huang^{2,3}, Matthew D. Templeton⁴,
- 3 Honour C. McCann^{1*}, Paul B. Rainey^{1, 5, 6*}
- ⁴ ¹New Zealand Institute for Advanced Study, Massey University, Auckland, New
- 5 Zealand. ² Key Laboratory of Plant Germplasm Enhancement and Specialty
- 6 Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.
- ³Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South
- 8 China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China. ⁴Plant and
- 9 Food Research, Auckland, New Zealand. ⁵Max Planck Institute for Evolutionary
- 10 Biology, Department of Microbial Population Biology, Plön, Germany. ⁶École
- 11 Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris
- 12 Tech), Laboratoire de Génétique de l'Evolution, Paris, France. * Joint senior authors
- 13 **CORRESPONDENCE:** Christina Straub, New Zealand Institute for Advanced Study,
- 14 Massey University, Private Bag 102 904, Auckland 0745, New Zealand. Telephone:
- 15 +64 9 4140800 ext 43811. e-mail: c.straub@massey.ac.nz

16 **RUNNING TITLE (50 CHARACTERS)**

17 Ecological genetics of *Pseudomonas syringae*

18 ORIGINALITY-SIGNIFICANT STATEMENT

- 19 Bacterial pathogen populations are often studied with little consideration of co-
- 20 occurring microbes and yet interactions between pathogens and commensals can

21	affect both population structure and disease progression. A fine-scale sampling of
22	commensals present on kiwifruit leaves during an outbreak of bleeding canker
23	disease caused by <i>P. syringae</i> pv. <i>actinidiae</i> reveals a clonal population structure. A
24	new clade of non-pathogenic <i>P. syringae</i> (PG3a) appears to be associated with
25	kiwifruit on a global scale. The presence of PG3a on kiwifruit has significant effects
26	on the outcome of infection by <i>P. syringae</i> pv. <i>actinidiae</i> . This emphasises the value
27	of studying the effect of co-occurring bacteria on pathogen-plant interactions.

28 SUMMARY

29	Interactions between commensal microbes and invading pathogens are
30	understudied, despite their likely effects on pathogen population structure and
31	infection processes. We describe the population structure and genetic diversity of a
32	broad range of co-occurring Pseudomonas syringae isolated from infected and
33	uninfected kiwifruit during an outbreak of bleeding canker disease caused by P.
34	<i>syringae</i> pv. <i>actinidiae</i> (<i>Psa</i>) in New Zealand. Overall population structure was clonal
35	and affected by ecological factors including infection status and cultivar. Most
36	isolates are members of a new clade in phylogroup 3 (PG3a), also present on
37	kiwifruit leaves in China and Japan. Stability of the polymorphism between
38	pathogenic <i>Psa</i> and commensal <i>P. syringae</i> PG3a isolated from the same leaf was
39	tested using reciprocal invasion from rare assays in vitro and in planta. P. syringae
40	G33C (PG3a) inhibited <i>Psa</i> NZ54, while the presence of <i>Psa</i> NZ54 enhanced the
41	growth of <i>P. syringae</i> G33C. This effect could not be attributed to virulence activity
42	encoded by the Type 3 secretion system of <i>Psa</i> . Together our data contribute toward

- 43 the development of an ecological perspective on the genetic structure of pathogen
- 44 populations.

45 INTRODUCTION

46	Kiwifruit (Actinidia spp.) cultivation is challenged by outbreaks of the
47	bacterial pathogen <i>Pseudomonas syringae</i> pv. <i>actinidiae (Psa)</i> – the causative agent
48	of bleeding canker disease. The latest outbreak was first reported in Italy in 2008
49	(Balestra et al., 2008) before spreading rapidly through most kiwifruit growing
50	regions of the world (Abelleira <i>et al.</i> , 2011; Everett <i>et al.</i> , 2011; Koh <i>et al.</i> , 2012;
51	Zhao <i>et al.</i> , 2013; Sawada, 2015), arriving in New Zealand in 2010 (Everett <i>et al.</i> ,
52	2011).

53	As a pathogen, <i>Psa</i> faces the challenge of colonising diverse environments
54	before proliferating in the apoplast and vascular tissues. Colonisation of leaf surfaces
55	prior to invasion is a key infection stage (Wilson and Lindow, 1994; Wilson et al.,
56	1999; Monier and Lindow, 2003; Pfeilmeier <i>et al.</i> , 2016). On the leaf surface <i>Psa</i> is
57	likely to encounter and interact with a diverse range of plant-colonising bacteria
58	(Hirano and Upper, 2000; Lindow and Brandl, 2003). Physical proximity increases the
59	likelihood of competitive interactions affecting disease outcomes (Lindow and
60	Brandl, 2003; Hibbing et al., 2010) and increases the probability of horizontal gene
61	transfer (Sawada <i>et al.</i> , 1999; Polz <i>et al.</i> , 2013; Colombi <i>et al.</i> , 2017).
62	The local context and the scale of sampling bacterial populations is particularly
63	important, as it can have an impact on genetic structure (Istock et al., 1992; Souza et
64	al., 1992; Haubold and Rainey, 1996; Spratt and Maiden, 1999). A study by Istock et

65	al. (1992) made a particularly persuasive case by showing that sampling Bacillus
66	subtilis at the local level (instead of pooled collections) contradicted the common
67	view of its clonal population structure. Similar lessons regarding the scale of
68	sampling have come from studying <i>P. syringae</i> populations with a range of structures
69	reported depending upon whether or not environmental isolates are included
70	(Sarkar and Guttman, 2004; Monteil <i>et al.</i> , 2013).
71	Bacterial interactions are context-dependent, ranging from synergistic to
72	antagonistic, and may have both local and global effects on the plant host
73	(Stubbendieck et al., 2016). Antagonistic or competitive interactions between
74	microbes may be direct or indirect, resulting in the inhibition of growth or even
75	killing (Lindow, 1986; Völksch and May, 2001; Berlec, 2012; Hockett <i>et al.,</i> 2015;
76	Nakahara et al., 2016). Synergistic interactions occur when multiple types cooperate
77	to cause disease (Singer, 2010; Lamichhane and Venturi, 2015). For example, P.
78	savastanoi pv. savastanoi, causative agent of olive knot disease, interacts with non-
79	pathogenic endophytes Erwinia sp. and Pantoea sp. in cankers, enhancing the
80	severity of disease (Marchi <i>et al.,</i> 2006; Moretti <i>et al.,</i> 2011; Buonaurio <i>et al.,</i> 2015).
81	Synergistic interactions can also be exploitative: bacteria lacking virulence factors
82	can reap benefits from co-existing pathogenic isolates (Young, 1974; Hirano et al.,
83	1999; Macho <i>et al.,</i> 2007; Rufián <i>et al.,</i> 2017).
84	<i>P. syringae</i> is a common member of the phyllosphere (defined as the aerial

85 part of a plant (Vorholt, 2012)) and engages in both commensal and pathogenic

86 interactions with plants (Hirano and Upper, 2000; Mohr *et al.*, 2008). The diversity

87 and population structure of *P. syringae* has been investigated using both multilocus

88	sequence typing (MLST) and genome sequence analysis of pathogenic isolates
89	collected from diseased plants (Sarkar and Guttman, 2004; Hwang et al., 2005;
90	Baltrus <i>et al.</i> , 2011; McCann <i>et al.</i> , 2013, 2017; Fujikawa and Sawada, 2016; Nowell
91	et al., 2016). Studies have also explored the structure of P. syringae populations
92	from environmental reservoirs beyond standard host plants (Morris <i>et al.,</i> 2008;
93	Monteil et al., 2013, 2014, 2016). However, the genetic structure of specific
94	pathovar populations from the phyllosphere of specific host plants have rarely been
95	studied in the context of co-occurring <i>P. syringae</i> types.
96	Here we describe the population structure of the <i>P. syringae</i> species complex
97	inhabiting the kiwifruit phyllosphere during an outbreak of bleeding canker disease
98	in New Zealand. Using an MLST scheme, we reveal a largely clonal population
99	structure, but show that genetic diversity is significantly affected by ecological
100	factors such as infection status and cultivar. We identified members of four <i>P</i> .
101	syringae phylogroups (PG1, PG2, PG3 and PG5) and recovered a new monophyletic
102	clade within PG3 (PG3a) that is associated with kiwifruit in different kiwifruit-
103	growing regions of the world. Investigations into the ecological interactions between
104	a representative of this new clade and <i>Psa</i> show that PG3a restricts <i>Psa</i> proliferation,
105	while <i>Psa</i> facilitates growth of PG3a.

106 **RESULTS**

107 Phyllosphere diversity of *Pseudomonas syringae*

Four housekeeping genes (gapA, gyrB, gltA, rpoD) were sequenced for each
of 148 *P. syringae* isolated from two varieties of kiwifruit ('Hayward' and 'Hort16A')

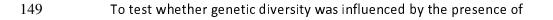
110 in both uninfected and *Psa*-infected orchards. Rarefaction analysis indicates

- saturation of the sampling effort (Figure S1). The infected 'Hayward' orchard
- 112 displayed the highest α -diversity (D=0.904), while the uninfected 'Hort16A' orchard
- 113 displayed the least α -diversity (D=0.737). There was low evenness (ED) among all
- sampling sites (0.136 to 0.290). Similarly, the four different sampling sites shared
- 115 few species (Sørensen's index of dissimilarity = 0.847).

116 Multilocus sequence typing

117	45 unique sequence types (ST) were discovered among the 148 sequenced
118	strains. All STs were novel, except for ST904 (<i>Psa</i>), and not described in the Plant
119	Associated and Environmental Microbes Database (PAMDB). For a more global
120	analysis, <i>P. syringae</i> allelic profiles were sourced from PAMDB and NCBI (accessions
121	listed in Table S2), along with <i>P. syringae</i> isolated from kiwifruit in Japan (NCBI) , NZ
122	and the US (Visnovsky et al. 2016).

123	Infected orchards (both 'Hayward' and 'Hort16A') harboured the highest
124	number of unique STs, sharing only three STs between them (Figure S2). No STs were
125	present in all four orchards, but two STs were found in three orchards (ST1 and ST3).
126	From the perspective of clonal complexes (CC), the predominant ST (predicted
127	founder) was present along with several SLVs (single locus variants). Two clonal
128	complexes (CC) (21 strains), 5 doubletons (32 strains) and 28 singletons (95 strains)
129	were identified (Figure S3). CC1 and CC2 are comprised of 11 and 10 strains,
130	respectively. ST904 (<i>Psa</i> , 15/148) and ST1 (PG3, 24/148) made up 25% of the sample
131	(Figure S3). Strikingly, ST3 (PG3a) was isolated from three out of four orchards and
132	was also sampled from uninfected gold (A. chinensis var. chinensis) and green (A.


133	chinensis var. deliciosa)	kiwifruit in NZ	(2010) (Visnovsky	et al., 2016) and Japan

- 134 (2015), respectively (Figure 1). ST16 was also recovered from uninfected kiwifruit
- 135 leaves in NZ in both 1991 and 2013. Other Japanese kiwifruit STs group closely with
- 136 *P. syringae* originating from kiwifruit in NZ.

137 Sequence diversity

138	The total concatenated alignment length was 2010 bp with no insertions or
139	deletions detected for either of the four loci. The number of alleles ranged from 25
140	(gapA) to 35 (rpoD) (Table 1). There were a total of 412 polymorphic sites, ranging
141	from 80 (16.81%, gapA) to 145 (28.6%, gyrB). The nucleotide diversity index π and
142	Watterson's $ heta$ were highly consistent among loci, varying from 0.040 to 0.055 and
143	0.024 to 0.041 respectively. The average GC content of 57.99% is similar to that
144	found in other <i>P. syringae</i> studies (59- 61%). The pairwise genetic difference within
145	phylogroups (PGs) was not greater than 2.7%, whereas among PGs the variability
146	ranged from 6-11% (Table 2), consistent with previous accounts of genetic variability
147	for <i>P. syringae</i> (Sarkar and Guttman, 2004; Morris <i>et al.</i> , 2010; Berge <i>et al.</i> , 2014).

148 Genetic diversity varies by host cultivar and infection status

150 ecological structure, multivariate analyses (PERMANOVA) were performed. A highly

- 151 significant difference in genetic diversity was observed among sampled orchards
- 152 (Pseudo-F = 5.99, P < 0.0001); with pairwise Permanova tests revealing that the
- uninfected green orchard differed significantly from every other orchard (*P*<0.003).
- 154 The cultivar ('Hayward' vs. 'Hort16A') (Pseudo-F = 5.62, P<0.001) and infection status

155 of	an orchard	(Pseudo-F =	11.72, P	<0.001)	also had	a significant	effect on	genetic
--------	------------	-------------	----------	---------	----------	---------------	-----------	---------

- diversity, whereas no temporal effect was found (Pseudo-F = 1.10, P > 0.34). When
- 157 testing the nested effect of all three factors, only the infection status (Pseudo-F =
- 158 6.42, *P* <0.01) had a significant impact on genetic diversity (Table S3).
- 159 Recombination among *P. syringae*
- Intragenic recombination rates (ρ) ranged from 0.012 (*rpoD*) to 0.038 (*gyrB*)
 and 0.006 for the concatenated dataset. The ratio ε (recombination rate/mutation
 rate) ranged from 0.187 (concatenated) to 0.931 (*gyrB*) suggesting that any single
 nucleotide polymorphism is up to five times more likely to have arisen from a
 mutation than recombination (Table 3).
- 165 Clustering sequences by PG revealed no evidence of recombination within
- $166\,$ $\,$ PG1 and PG5 (p=0), however for these phylogroups the sample size was low. There $\,$
- 167 was evidence of recombination in PG3, more specifically for gltA (ϵ =1.18) and rpoD

168 (ϵ =4.07), whereas in PG2 recombination was evident in *rpoD* (ϵ =1.734) alone.

169 Recombination was neither affected by the host cultivar or infection status (Table

- 170 S4). The analysis was repeated with the inclusion of non-redundant global strains.
- 171 Overall, intergenic recombination rates were low among PGs, ranging from 0.005 to
- 172 0.012 for the concatenated dataset (Table S5). In order to pinpoint any effects of
- 173 recombination on phylogenetic reconstruction, single gene trees were constructed
- 174 and compared. Tree topologies were significantly different from each other and
- 175 from the concatenated dataset (SH test, P<0.05) (Figure S4).

176 A kiwifruit-associated clade of *P. syringae*

177	Maximum likelihood trees built using the concatenated alignment of unique
178	STs revealed that nearly all NZ P. syringae kiwifruit isolates fell within four PGs: PG1
179	(13%), PG2 (29%) and PG3 (56%), with only a few isolates falling into PG5 (2%, Figure
180	2). Surprisingly, within PG3 all NZ kiwifruit-associated isolates grouped within a new
181	clade of PG3, hereafter referred to as PG3a. The uninfected orchards showed a
182	higher number of PG3a isolates compared to infected orchards, although no
183	influence of infection status was reflected in the number of unique sequence types
184	(Table S1). We also found that two strains isolated from kiwifruit in NZ in 2010 and
185	2011 (Visnovsky et al., 2016) belong to this subclade.
186	This discovery led us to question whether the PG3a subclade might be prevalent on
187	kiwifruit vines in other countries. To this end we interrogated an unpublished set of
188	gltA sequences from <i>P. syringae</i> strains collected from kiwifruit leaves in China
189	(sampling as described in McCann <i>et al.</i> (2017), GenBank accession numbers:
190	MG674624 – MG674645). A phylogenetic tree based on gltA for NZ, Japanese and
191	Chinese kiwifruit isolates revealed that isolates obtained from Chinese kiwifruit also
192	clustered within PG3a (Figure 3). Interestingly, included in this group is isolate 47L9,
193	which was collected from tea leaves (<i>Camellia</i> sp.) growing in a former kiwifruit
194	orchard in China. No other <i>P. syringae</i> strain from the PAMDB database grouped
195	with PG3a, suggesting PG3a is persistently associated with kiwifruit on a global scale.

196 Ecological interactions between PG3a and PG1

To assess whether kiwifruit-associated PG3a strains are stably maintained with *Psa* (PG1), co-inoculation experiments were performed *in vitro* and *in planta*. Two isolates sampled from the same leaf were chosen for these experiments: *P*. *syringae* G33C (ST1, PG3a) and *Psa* NZ54 (ST904, PG1).

201 In vitro dynamics

202 Psa NZ54 and P. syringae G33C showed similar growth dynamics when grown 203 individually in vitro (Figure 4). However, when co-inoculated in liquid King's B (KB) 204 media at an equal starting ratio, *Psa* NZ54 growth was significantly reduced (up to 205 100-fold) at 24 h (P < 0.001, paired t-tests). This effect was amplified in shaken liquid 206 minimal M9 medium, which better approximates nutrient poor conditions in the leaf 207 compared to KB medium (Hernández-Morales et al., 2009): Psa NZ54 population 208 density collapsed by 20 h in shaken M9 media (relative fitness -12.1 ±0.09, Figure 4). 209 In order to establish whether the instability of the interaction was influenced 210 by the ratio of founder cells, we investigated whether *P. syringae* G33C could invade 211 from rare initial frequency. A strain is able to invade from rare when it increases 212 relative to its founding density. P. syringae G33C successfully invaded from rare after 213 only 24 h in both rich KB and minimal M9 media (10:1 *Psa NZ54* : *P. syringae* G33C) 214 and reached a similar population size as when cultured on its own in M9 (Figure 5A). 215 Conversely, *Psa* NZ54 also invaded *P. syringae* G33C from rare (1:10 Psa NZ54 : P. 216 syringae G33C), though it established a 100-fold reduced population size of $10^5 - 10^6$ 217 cfu ml⁻¹ compared to growth alone. The population collapse of *Psa* NZ54 in shaken

M9, as observed for the 1:1 competition experiments, was once again observed
(Figure 5B). The striking suppression of *Psa* NZ54 by *P. syringae* G33C was
unambiguously repeated across three experiments. *P. syringae* G33C outcompetes *Psa* NZ54, though both isolates can invade from rare *in vitro* (with the exception of *Psa* NZ54 in shaken M9), which suggests that in a controlled environment the
polymorphism is stable.

1224 In planta *dynamics*

225	In planta experiments were performed on two gold cultivars, 'Hort16A' and
226	'SunGold', to determine whether <i>Psa</i> NZ54 and <i>P. syringae</i> G33C also form a stable
227	polymorphism on kiwifruit leaves. <i>P. syringae</i> G33C established an epiphytic and
228	endophytic population size in both cultivars (Figure 6) and did not produce any
229	visible symptoms in 'Hort16A' and 'SunGold' (Figure S5, Figure S6). <i>Psa</i> NZ54
230	attained a population size at least 10,000-fold greater than <i>P. syringae</i> G33C in both
231	hosts. However, endophytic and epiphytic growth were reduced 10-fold in 'SunGold'
232	compared to 'Hort16A' (<i>P</i> <0.05, Mann-Whitney U test). Plants inoculated with <i>Psa</i>
233	NZ54 developed the first leaf spots at 4 dpi and exhibited severe symptoms at 7 dpi
234	in the more susceptible 'Hort16A', whereas in 'SunGold' leaves displayed only minor
235	symptoms at 7 dpi.

In 1:1 competition experiments non-pathogenic *P. syringae* G33C maintained
a stable population size. The presence of *Psa* NZ54 had a highly significant positive
effect on the growth of *P. syringae* G33C in both plant hosts (Figure 6A&B). *P. syringae* G33C established up to 1000-fold higher epiphytic population densities in
'Hort16A' (*P* <0.01, paired *t*-tests) and 10-fold higher epiphytic and endophytic

241	population densities in 'SunGold' plants (<i>P</i> <0.05, paired <i>t</i> -test) compared to its
242	individual growth. Co-inoculated <i>Psa</i> NZ54 exhibited a significant reduction (<i>P</i> <0.05,
243	paired <i>t</i> -test) in epiphytic and endophytic growth on 'Hort16A' in the presence of <i>P</i> .
244	syringae G33C, but only in the early stages of the experiment. On 'SunGold' the
245	diminished growth of <i>Psa</i> NZ54 was more pronounced, with a 100-fold decrease for
246	the endophytic population at 7 dpi ($P < 0.05$, paired <i>t</i> -test, Figure 6B). Co-inoculated
247	'Hort16A' plants exhibited a notable delay in symptom onset compared to singly
248	inoculated plants (Figure S5), whereas there was no difference for 'SunGold' (Figure
249	S6). The increased fitness of <i>Psa</i> NZ54 relative to <i>P. syringae</i> G33C in 'Hort16A'
250	competition experiments was reflected in the relative fitness parameters (0.7 \pm 0.1 *
251	for epiphytic and 4.9± 0.8* for endophytic, <i>*P</i> <0.05, <i>t-</i> test), whereas in 'SunGold'
252	plants <i>P. syringae</i> G33C performed better in the epiphytic environment (-1.6 \pm 0.2;
253	$4.7 \pm 0.1^*$ for endophytic growth).
254	To assess whether the heightened growth of <i>P. syringae</i> G33C in the

255 presence of *Psa* NZ54 was due to the virulence activity of the pathogen elicited by 256 the Type 3 Secretion System (T3SS), the competition experiment was performed 257 using a T3SS deficient mutant (*Psa* NZ13 Δ *hrcC*). Epiphytic growth of *P. syringae* 258 G33C on 'SunGold' remained elevated when co-inoculated with *Psa* NZ13 Δ *hrcC*, 259 indicating the virulence activity encoded by the T3SS was not responsible for the 260 advantage conferred to the non-pathogenic strain (*P* <0.05, paired *t*-test, Figure 6C). 261 A rarity threshold for *P. syringae* G33C determines the ability to establish a stable

262 population *in planta*. Upon co-inoculation in a 100:1 (*Psa* NZ54 : *P. syringae* G33C)

ratio on 'Hort16A', *P. syringae* G33C was able to invade from rare over the first 4

days, but was then excluded by *Psa* NZ54 (Figure 7B). An initial increase in growth of *P. syringae* G33C from 0 dpi to 4 dpi was followed by a population collapse at 7 dpi
with no endophytic growth detected and minimal epiphytic growth in environments
dominated by *Psa* NZ54. Conversely, *Psa* NZ54 grew to the same population size in
the presence of *P. syringae* G33C, as when inoculated individually (*P* >0.1, paired *t*tests).

270 In the reciprocal experiment (1:100 Psa NZ54 : P. syringae G33C), Psa NZ54 successfully invaded from rare in both the endophytic and epiphytic environment, 271 272 although the rate of invasion was reduced on the leaf surface. However, both epi-273 and endophytic population sizes were significantly reduced compared to single 274 inoculations (P < 0.01, paired t-tests) (Figure 7). Despite the growing population of 275 Psa NZ54, P. syringae G33C maintained the same epiphytic population size as when 276 inoculated individually (P > 0.2, paired t-tests). The endophytic population size of P. 277 syringae G33C increased (P < 0.01, 7dpi, paired t-test), which mirrored the results 278 from the 1:1 competition experiments, where the presence of *Psa* NZ54 also had a 279 positive effect on growth of *P. syringae* G33C.

In order to establish whether there was an advantage to being an early
colonist, a time-stagger experiment was performed to see whether immigration
history influences the interaction (Fukami *et al.*, 2007). 'Hort16A' plants were preinoculated with either of the two strains and followed by a subsequent inoculation
of the other strain after three days. Early colonization provided no advantage to *Psa*NZ54 (Figure 8A), as *P. syringae* G33C maintained and established a stable
population by 7 dpi and exhibited no significant difference in growth compared to

287	individual growth (<i>P</i> >0.3, paired <i>t</i> -tests). Reducing the secondary inoculation density				
288	resulted in a reduced initial population size at 3 and 7 dpi for <i>P. syringae</i> G33C (<i>P</i>				
289	<0.05, paired <i>t</i> -tests), but by 10 dpi the level was the same as when the two strains				
290	were grown individually (Figure S7C).				
291	When <i>P. syringae</i> G33C was the first colonist (Figure 8B) <i>Psa</i> NZ54 grew to				
271	when r. synnyde dooe was the mist colonist (Figure ob) r sa web grew to				
292	the same population size by 7 dpi as compared to individually inoculated plants (P				
293	>0.5, paired <i>t</i> -tests). The growth of <i>Psa</i> NZ54 was initially lower compared to				
294	individual growth when inoculated at a lower density (<i>P</i> <0.05, paired <i>t</i> -tests), but				
295	this difference was no longer evident for the epiphytic population by 10 dpi (Figure				
296	S7B).				

DISCUSSION

298	Studies of pathogen populations rarely take into consideration co-occurring
299	commensal types and yet such types are likely to be important contributors to
300	population structure and infection progress (Lindow and Brandl, 2003; Demba Diallo
301	<i>et al.,</i> 2012; Bartoli <i>et al.,</i> 2015; Buonaurio <i>et al.,</i> 2015; Rufián <i>et al.,</i> 2017). Here,
302	with focus on <i>P. syringae</i> , we have combined traditional population genetic
303	approaches with experiments designed to investigate interactions among members
304	of an ecologically cohesive population. The most significant findings include (i) a
305	clonal population structure for commensal kiwifruit <i>P. syringae</i> (ii) strong association
306	of genetic diversity with ecological factors, (iii) discovery of a new clade of kiwifruit-
307	associated kiwifruit <i>P. syringae</i> within PG3 (PG3a) (Figure 2, Figure 3), (iv) complex

308	interactions between the pathogenic <i>Psa</i> isolate and PG3a with evidence of a stable
309	polymorphism under some <i>in vitro</i> conditions, but not <i>in planta</i> (Figure 4, Figure 6).
310	Overall, we found that <i>P. syringae</i> from kiwifruit display a clonal population
311	structure, comprised of two clonal complexes and a small number of abundant STs.
312	This is in accordance with earlier reports of clonal population structure for <i>P</i> .
313	syringae, despite focus on pathogenic isolates which tend to undergo clonal
314	expansion upon host specialisation (Sarkar and Guttman, 2004). Homologous
315	recombination events are few and limited to within phylogroups for <i>P. syringae</i> ,
316	which is also supported by well-defined phylogenetic clades (Baltrus et al., 2011; Bull
317	et al., 2011; Berge et al., 2014; Nowell et al., 2016). A more fine-scale analysis of a
318	collection of <i>Pseudomonas viridiflava</i> (now <i>P. syringae</i> PG7 and PG8 (Bartoli <i>et al.,</i>
319	2014; Berge et al., 2014)) isolated from Arabidopsis thaliana suggests that
320	recombination at the phylogroup level is primarily within-clade rather than between
321	clade (Goss <i>et al.</i> , 2005). Apart from the occurrence of recombination at the local
322	scale, evidence of recombination has also been shown between crop strains and
323	environmental isolates (Monteil <i>et al.,</i> 2013).
324	Genetic diversity varied according to ecological factors, most strikingly for P.
325	syringae collected from infected orchards, where genetic diversity was highest. This
326	may reflect effects of <i>Psa</i> on the kiwifruit immune response, which may facilitate
327	migration of leaf colonists into the apoplast and vascular tissues and thus allow
328	access to water and nutrients. Such effects have been reported for infection of

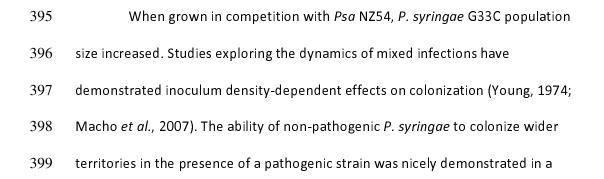
329 potatoes by *Pectobacterium atrosepticum* (Kõiv *et al.*, 2015) and herbivore-damaged

bitter cress leaves (*Cardamine cordifolia*) (Humphrey *et al.*, 2014), where in both

instances *Pseudomonas* population densities and diversity increased following plantdamage.

333	We observed differences in <i>P. syringae</i> genetic diversity that appear to be
334	attributable to differences in plant genotypes. Host species and cultivar identity is
335	known to significantly affect the composition of phyllosphere bacterial communities
336	(Adams and Kloepper, 2002; Van Overbeek and Van Elsas, 2008; Whipps <i>et al.</i> , 2008;
337	Bodenhausen <i>et al.</i> , 2014; Laforest-Lapointe <i>et al.</i> , 2016; Wagner <i>et al.</i> , 2016).
338	Differences in phyllosphere <i>P. syringae</i> diversity may also be influenced by
339	environmental factors (such as humidity, nutrient availability or UV radiation) and
340	orchard management practices. Different fertilizer and spray regimes (copper,
341	antibiotics, Actigard $^{ extsf{TM}}$ and biological agents) are employed by growers to prevent or
342	manage <i>Psa</i> infection throughout the growing season
343	(http://www.kvh.org.nz/vdb/document/99346). These practices may have selected
344	for copper and streptomycin resistance in <i>Psa</i> and kiwifruit epiphytes in NZ and
345	elsewhere (Han <i>et al.</i> , 2003; Colombi <i>et al.</i> , 2017; Petriccione <i>et al.</i> , 2017).
346	Strains grouping with four major phylogroups (PG1, PG2, PG3, PG5) were
347	recovered. This level of diversity in a cultivated environment is not surprising (Goss
348	<i>et al.,</i> 2005; Bull <i>et al.,</i> 2011; Kniskern <i>et al.,</i> 2011; Beiki <i>et al.,</i> 2016; Hall <i>et al.,</i>
349	2016). Two clades of endophytic <i>P. syringae</i> pv. <i>syringae</i> were recovered from
350	symptomatic grapevines in Australia with pathogenic and non-pathogenic isolates
351	clustering together (Hall et al., 2016). Samples obtained from citrus orchards
352	suffering from citrus blast caused by <i>P. syringae</i> pv. syringae revealed isolates
353	associated with PG2, PG7 and an unknown clade (Beiki et al., 2016). Two distinct and

354 highly divergent subclades of *Pseudomonas viridiflava* (*P. syringae* PG7) were


355 recovered from a global sampling of wild *A. thaliana* (Goss *et al.*, 2005).

356	The newly recognised PG3a subclade of <i>P. syringae</i> appear to colonise
357	kiwifruit leaves not only in NZ (dating back to 2010 (Visnovsky <i>et al.,</i> 2016)), but also
358	in other kiwifruit growing regions of the world, including Japan and China. Data from
359	leaf samples indicate that PG3a is not displaced by <i>Psa</i> , but the total number of
360	PG3a isolates collected is reduced in infected orchards. Interestingly the diversity of
361	PG3a does not seem to be affected by infection status. Strains clustering with PG3a
362	formed the majority (>50%) of kiwifruit isolates, and these have not yet been
363	isolated from any other plant hosts recorded in PAMDB, with the exception of isolate
364	47L9, collected from tea leaves (<i>Camellia</i> sp.) growing in a former kiwifruit orchard.
365	This indicates that PG3a forms a persistent association with kiwifruit plants – an
366	observation that is further supported by the repeated isolation of PG3a from
367	kiwifruit across large geographic distances, suggests that PG3a may have been
368	coevolving with its host for some time. PG3a is thus also likely to be disseminated
369	with the exchange of plant material (such as pollen or plant cuttings) between
370	kiwifruit growing countries. The prevalence of PG3a in other kiwifruit growing
371	countries (e.g. Korea, France or Italy) is at present unknown. The preferential
372	occurrence of PG3 with woody hosts (Bartoli <i>et al.</i> , 2015; Nowell <i>et al.</i> , 2016) could
373	explain the particular grouping of the kiwifruit resident clade within PG3. A similarly
374	intriguing signal of host association was found in a collection of <i>P. syringae</i> isolates
375	from <i>A. thaliana</i> , where PG2 representatives dominated (Kniskern <i>et al.</i> , 2011;
376	Karasov et al., 2017). Distinct lineages of non-pathogenic isolates have also been

377 described for other plant pathogens such as Xanthomonas arboricola, where non-

- 378 pathogenic strains are distant relatives of pathogenic lineages, despite being isolated
- 379 from the same host (Essakhi *et al.*, 2015; Triplett *et al.*, 2015).
- The kiwifruit commensal *P. syringae* G33C (representative of the PG3a subclade) successfully colonized the leaf surface and apoplast of kiwifruit without production of visible disease symptoms. This is reflected in the population size, which was reduced by 4-logs compared to pathogenic population size of *Psa* at 3 dpi. Similar population sizes have been reported for *P. syringae* pv. *phaseolicola*, which
- 385 grows to a four-log higher population size on its host plant *Phaseolus vulgaris*
- 386 compared to a non-pathogenic isolate; a 4-log reduction was also observed in
- resistant vs susceptible hosts (Omer and Wood, 1969; Young, 1974). Similar
- 388 observations have been made for other plant pathogens, for example non-
- pathogenic Xanthomonas sp. displays a 4-log reduced growth compared to the
- disease-causing X. oryzae pv. oryzae (Triplett et al., 2015). Bacterial population
- density appears to be directly related to the production of disease symptoms, as was
- 392 demonstrated for environmental *P. syringae* strains inoculated in kiwifruit, which
- 393 grew to near pathogen population size levels, but induced symptoms of disease

394 (Bartoli *et al.*, 2015).

400	confocal microscopy study (Rufián <i>et al.,</i> 2017). It is possible that <i>P. syringae</i> G33C
401	benefits from the virulence activity of <i>Psa</i> NZ54. T3SS-dependent hitch-hiking effects
402	have been observed for <i>P. syringae</i> pv. <i>syringae</i> (Hirano <i>et al.</i> , 1999), however the
403	increase in P. syringae G33C growth persists even in the absence of a functional T3SS
404	in the pathogenic <i>Psa</i> strain. Virulence activities not encoded by the T3SS, such as
405	phytotoxin production, may be responsible for this outcome.

406	Epiphytic and <i>in vitro</i> growth of <i>Psa</i> NZ54 was significantly reduced when
407	co-inoculated with <i>P. syringae</i> G33C. Similarly, <i>Psa</i> growth may be suppressed by co-
408	inoculation with environmental isolates of <i>P. syringae</i> (Bartoli <i>et al.,</i> 2015). Epiphytes
409	may suppress pathogen growth either as direct antagonists or indirectly via resource
410	competition (Wilson and Lindow, 1994). The specific mechanism by which P.
411	syringae G33C suppresses Psa remains undetermined. The Psa NZ54 population
412	collapse in shaken M9 was delayed at 10:1 inoculation ratios, which suggests that
413	this effect was most likely due to the accumulation of antimicrobial compounds
414	produced by <i>P. syringae</i> G33C. Phytotoxin production is widespread among
415	fluorescent pseudomonads with some toxins having antimicrobial activity that can
416	be induced dependent on culture conditions (still vs. shaken) <i>in vitro</i> (Durbin, 1982;
417	Bender <i>et al.</i> , 1999). Contact-dependant growth inhibition (CDI) via Type 5 and 6
418	secretion systems or bacteriocins may also mediate <i>P. syringae</i> interactions (Hayes
419	<i>et al.</i> , 2010; Haapalainen <i>et al.</i> , 2012; Ruhe <i>et al.</i> , 2013; Hockett <i>et al.</i> , 2015).
420	Our in-depth localised sampling has revealed a global association of PG3a
421	with kiwifruit. Additionally, we have shown that this clade of non-pathogenic <i>P</i> .

422 syringae engage in complex interactions with pathogenic Psa. This highlights the

- 423 value of understanding genotypic diversity and ecological interactions among
- 424 pathogens and non-pathogens in field settings. Clarifying how commensals persist in
- 425 association with specific hosts over long periods without causing disease and the
- 426 mechanism by which they modulate pathogen invasion and proliferation will
- 427 contribute to a fuller understanding of plant-microbe interactions.

428 **EXPERIMENTAL PROCEDURES**

429 Plant tissue collection and bacterial isolation

430 The sampling scheme was designed to obtain strains from *Psa* infected and

431 uninfected hosts, irrespective of disease stage (symptom development) or

- 432 pathogenicity potential of the isolate. *P. syringae* was isolated from the leaf surfaces
- 433 of two different cultivars of Actinidia chinensis: A. chinensis var. chinensis Hort16A
- 434 (gold) and A. chinensis var. deliciosa Hayward (green), which vary in their
- 435 susceptibility to *Psa*: 'Hort16A' is more susceptible than the green 'Hayward'

436 (Ferrante and Scortichini, 2010; Cameron and Sarojini, 2014). One infected and one

- 437 uninfected orchard of each variety was sampled by collecting three leaves from six
- 438 separate vines along a diagonal path of ~400m (Table S1). Sampling occurred at
- 439 three intervals during the growing season: spring (after bud break), summer and
- 440 autumn (prior to harvest). Vine trunks and canes (secondary branches) were tagged
- to ensure resampling of the same spot. Some 'Hort16A' canes were removed during
- 442 routine disease management; neighbouring canes on the same vine were then
- 443 sampled and tagged. All uninfected Hayward vines were cut down prior to the last

sampling day so the adjoining block of Hayward was sampled instead. The location ofeach sampled orchard is listed in Table S2.

446	Leaves were individually placed in 50 mL conical centrifuge tubes and washed
447	with 40 mL 10mM MgSO4 buffer supplemented with 0.2 % Tween (Invitrogen, US) by
448	alternately shaking and vortexing at slow speed for 3 min. After removing the leaf,
449	the leaf wash was centrifuged at 4600 rpm for 10 min. The supernatant was
450	removed and the pellet was resuspended in 200 μL 10mM MgSO4. 100 μL of the
451	resuspension was stored at -80°C and 100 μL was plated on <code>Pseudomonas</code> agar base
452	(Oxoid, UK) supplemented with 10 mg/L cetrimide, 10 mg/L fucidin and 50 mg/L
453	cephalosporin (CFC supplement, Oxoid, UK). For each leaf two isolates exhibiting P.
454	syringae colony morphology (round, creamy white) were selected randomly from
455	the plate and restreaked, then used to inoculate liquid overnight cultures for storage
456	at -80°C. Isolates were tested for the absence of cytochrome C oxidase using
457	Bactident Oxidase strips (Merck KgaA, Germany), characteristic of P. syringae. A total
458	of 148 <i>P. syringae</i> isolates were obtained from the four orchards (Table S1).

459 **PCR amplification & sequencing**

A lysate was prepared for each isolate by resuspending a colony in 100 μL ddH₂0 and
lysing the cells at 96°C for 10 min. Strains were sequenced using the Hwang *et al.*(2005) MLST scheme for four housekeeping genes *gapA*, *gyrB*, *gltA* (*=cts*) and *rpoD*(reverse). Due to amplification problems, the forward primer for *rpoD* from Sarkar
and Guttman (2004) was used. PCR amplification was performed with a BIO-RAD
T100 Thermal Cycler following an adapted protocol of Hwang et al. (2005): a total
reaction volume of 50 µl with a final concentration of 1x PCR buffer (Invitrogen, US),

467	1 μM for each	primer, 0.2 mM	dNTP's (Bioline	, UK), 1 U Tac	q Polymerase	(Invitrogen,
-----	---------------	----------------	-----------------	----------------	--------------	--------------

- 468 US), 1 μl lysed bacterial cells, 2% DMSO (Sigma-Aldrich, US) and 1.5 mM MgCl₂. Initial
- 469 denaturation was at 94°C for 2 min, followed by 30 cycles of amplification with
- 470 denaturation at 94°C for 30 s, annealing at 63°C for 30 s and elongation at 72°C for
- 471 1 min. Final elongation was for 3 min at 72°C. Samples were purified using the Exo-
- 472 CIP method and sequenced by Macrogen Inc (South Korea). Sequence analysis was
- 473 performed with Geneious v7.1.7 (Kearse *et al.*, 2012). Sequences were trimmed to
- 474 the same length (476 bp *gap1*, 507 bp *gyrB*, 529 bp *gltA*, 498 bp *rpoD*) and
- 475 concatenated (2010 bp) (GenBank accession numbers: gapA MG642149 -
- 476 MG642296; gyrB MG642297 MG642444; gltA MG642445 MG642592; rpoD
- 477 MG642593 MG642740).

478 **Population genetics**

479 Sequence diversity indices

480 A rarefaction analysis was performed using MOTHUR v	v.1.34.4 by subsampling
---	-------------------------

481 using 1,000 iterations (Schloss *et al.*, 2009). Pairwise genetic distances between

- 482 isolates were calculated and sequences assigned to Operational Taxonomic Units
- 483 (OTUs) based on the corresponding average pairwise genetic distance of each group.
- 484 Simpson's index of diversity (D) and evenness (ED) (α -diversity) and
- 485 Sørensen's index of dissimilarity (β-diversity) were calculated using the *vegan*
- 486 package (Oksanen et al., 2016) in R v3.3.1 (R.Core.Team, 2016). Simpson's D was
- 487 converted to the effective number of species (D_c) in order to account for the non-
- 488 linear properties of Simpson's index of diversity (Jost, 2006).

489 Multilocus Sequence Typing

490	Sequence types (STs) sharing three out of four alleles (SLV, single locus
491	variants) were grouped using eBURST v3 (bootstrapped with 1,000,000 resamplings)
492	(Feil et al., 2004; Spratt et al., 2004). A Minimum Spanning Tree providing an
493	overview of triple locus variants was constructed using Phyloviz v2.0 (Francisco et al.,
494	2012).
405	105 men and underst CT and files of D. surfaces staring surged desceled discus
495	165 non-redundant ST profiles of <i>P. syringae</i> strains were downloaded from
496	the Plant Associated and Environmental Microbes Database (PAMDB,
497	http://genome.ppws.vt.edu/cgi-bin/MLST/home.pl) (Almeida et al., 2010). P.
498	syringae sequences isolated recently from kiwifruit and air in Japan (NCBI) and
499	kiwifruit isolates from NZ, France and the United States (Visnovsky et al., 2016) were
500	also included. A reduced set of 37 <i>P. syringae</i> isolates representing the different
501	monophyletic groups of <i>P. syringae</i> , as well as the Japanese kiwifruit strains and the
502	US, France and NZ kiwifruit isolates from previous years were used to provide better
503	resolution in the phylogenies displayed in Figure 2, Figure 3 and Figure S4.
504	Sequence diversity and recombination

505 START2 (v0.9.0 beta) was employed to calculate parameters of genetic

506 diversity, number of alleles and polymorphic sites, GC content and the ratio of non-

507 synonymous to synonymous substitutions (d_N/d_s ratio) (Jolley *et al.*, 2001). The

508 number of mutations and amino acid changes and nucleotide diversity parameter π

509 were calculated with DnaSP v. 5.10.1 (Rozas and Rozas, 1995). Jmodeltest 2.1.7

510 (Guindon and Gascuel, 2003; Darriba *et al.*, 2012) was used with default parameter

511	settings to find the	best-fitting evolutionary	/ model. Pairwise a	zenetic variability

- 512 among and between phylogroups was calculated using MEGA7 (Kumar *et al.*, 2016).
- 513 To test whether genetic diversity varied by sampling location, time of sampling,
- 514 orchard infection status and/or cultivar, a permutational multivariate analysis of
- 515 variance (PERMANOVA) (Anderson, 2001; McArdle and Anderson, 2001) was
- 516 performed using PRIMER v 6.1.12 (PRIMER-E Ltd., Plymouth, UK, PERMANOVA+ add-
- 517 on v. 1.0.2.). Pairwise distances among unique STs were used as input and tests were
- 518 run with 9999 permutations. Any effects due to unequal sample size were taken into
- 519 account using the Type III SS (sum of squares) option.
- 520 LDHAT v2.2a (Auton and McVean, 2007) was used to estimate the rate of
- 521 mutation (Watterson's θ) and recombination (ρ) using the composite likelihood
- 522 method of Hudson (Hudson, 2001) with an adaption to finite-site models. Only
- 523 polymorphic sites with two alleles were included and the frequency cut-off for
- 524 missing data was set to 0.2.
- 525 Phylogenetic reconstruction
- 526 Trees were built using single representatives of each unique ST from this 527 study to improve readability of the tree. MrBayes v.3.2 (Ronquist et al., 2012) was 528 used to construct Bayesian trees, using the best-fitting evolutionary model 529 (jModeltest) for individual genes and the concatenated alignment. Single gene trees 530 (Figure S4) were constructed with TREEPUZZLE (Schmidt et al., 2002) and Dnaml 531 (PHYLIP v3.695, Felsenstein 1989) was used to test for congruence between single 532 trees (SH-test) using default parameters, providing Maximum Likelihood trees as 533 input and a random number seed of 333.

534 Strains and culture conditions

535	A list of all bacterial strains used in this study can be found in Table S2.
536	<i>Pseudomonas</i> strains were cultured in King's B or minimal M9 media at 28°C and <i>E</i> .
537	<i>coli</i> was cultured in Luria Bertani medium at 37°C. Liquid overnight cultures were
538	inoculated from single colonies and shaken at 250 rpm for 16 hrs. The antibiotics
539	kanamycin (kan) and nitrofurantoin (nf) were used at a concentration of 50 μ g/ml.
540	Kanamycin resistant <i>Psa</i> NZ54 and <i>Psa</i> NZ13 Δ <i>hrcC</i> were employed in all <i>in vitro</i> and
541	in planta experiments. Both Psa strains belong to the same pandemic clade of Psa
542	(biovar 3), and differ in three SNPs across the core genome as defined in McCann <i>et</i>
543	al. (2017).

544 Mutant development

545 *Psa* NZ13 Δ *hrcC* was constructed by in-frame deletion of *hrcC* via marker 546 exchange mutagenesis. Knockout construct was generated by overlap extension PCR 547 (Ho et al., 1989) using the primers listed in Table S6. DNA was amplified from Psa 548 NZ13 with Phusion[®] High-Fidelity DNA polymerase. The deletion construct was 549 inserted into pK18mobsacB (Schäfer et al., 1994). The recombinant vector was 550 transferred into *Psa* NZ13 via triparental mating, using as helper *E. coli* DH5α strain 551 containing pRK2013. Mutants were selected by plating on KB kanamycin (50 μ g/mL) 552 and subsequently on KB containing 5% sucrose. Mutants were screened by PCR using 553 external primers (Table S6) and the deletion was then confirmed by sequencing.

Triparental matings were performed to introduce a kanamycin resistant Tn5
 transposon into *Psa* NZ54 and *Psa* NZ13 Δ*hrcC*. *E. coli* S17-1 Tn5hah Sqid1 (donor)

556	(Zhang et al.,	2015), E. c	oli pRK2013 :	(helper)	(Ditta <i>et al.,</i>	1980) and	<i>Psa</i> NZ54 o	r Psa
-----	----------------	-------------	---------------	----------	-----------------------	-----------	-------------------	-------

- 557 NZ13 $\Delta hrcC$ (recipient) were grown in shaken liquid media overnight. 200 µl of donor
- and helper and 2mL of recipient were individually washed, pelleted and combined in
- $30 \,\mu\text{l}\,10 \,\text{mM}\,\text{MgCl}_2$. The mixture was plated on a pre-warmed LB agar plate and
- 560 incubated at 28°C for 24 hrs. The cells were scraped off and resuspended in 1 mL 10
- 561 mM MgCl₂ and plated on KB plates supplemented with kanamycin and
- 562 nitrofurantoin. Bacterial growth was compared to the wild type recipient in both KB
- and M9 media to ensure marker introduction did not result in a loss of fitness.

564 **Competition assays**

565 The two isolates (*P. syringae* G33C and *Psa* NZ54) used for competition assays were

isolated from the same leaf in a *Psa* infected orchard, reflecting co-occurrence of thestrains in nature.

568 In vitro competition assays

569 Competition experiments were performed *in vitro* using rich (King's B) and 570 minimal (M9) media in a shaken and static environment. Competition experiments 571 were performed in 1:1, 1:10 and 10:1 ratios for each of the four assay conditions. 572 Liquid overnight cultures of each strain in KB were established from single colony 573 inoculations. 30 mL vials with 4 mL of the appropriate media were inoculated with each strain, adjusted to a founding density of either 5×10^{6} cfu m⁻¹ (OD₆₀₀ 0.006) or 574 4×10^4 cfu ml⁻¹ (OD₆₀₀ 0.0004). Control vials were inoculated with a single strain, 575 576 adjusted to 5×10^{6} cfu ml⁻¹. Cultures were incubated at 28°C and grown over a period 577 of 72 hrs, either still or shaken at 250rpm. Bacterial density was calculated at 0, 24,

- 578 48 and 72 hrs by plating dilutions on KB kan and M9 agar plates to distinguish
- 579 between competing strains. The experiment was performed using three replicates
- 580 and repeated three times.
- 581 In planta competition and pathogenicity assays

582	Epiphytic and endophytic growth of <i>Psa</i> NZ54, <i>Psa</i> NZ13 Δ <i>hrcC</i> and <i>P</i> .
583	syringae G33C was evaluated on 4-week old kiwifruit plantlets using single and
584	mixed-culture inoculation. Clonally propagated A. chinensis var. chinensis 'Hort16A'
585	and 'SunGold' were grown for a minimum of one month in a Conviron CMP6010
586	growth cabinet at 21°C with a 14/10 hr light/dark cycle and 70% humidity. Bacterial
587	strains were incubated for two days at 28°C on KB plates, after which they were
588	resuspended in 10 mM MgSO4 buffer. Mixed inoculum (1:1, 1:100 and 100:1) was
589	prepared in 50 mL 10 mM MgSO4 buffer and 0.002% Silwet-70 (surfactant), with
590	strains adjusted to 8×10^7 cfu ml ⁻¹ (OD ₆₀₀ 0.1) or 8×10^5 cfu ml ⁻¹ (OD ₆₀₀ 0.001). Single
591	strain plant inoculations were also performed using an initial $8 imes 10^7$ cfu ml $^{-1}$ (OD $_{600}$
592	0.1).

593Plants were inoculated by submerging leaves in the inoculum for 5 s and594allowing to air-dry. Plants were returned to the growth cabinet and watered every595second day. Bacterial density was assessed at either 0, 2, 4, 7 and 10 days post596inoculation (dpi) or 0, 3, and 7 dpi ($\Delta hrcC$ competition experiments). Epiphytic597growth was assessed by placing inoculated leaves in separate sterile plastic bags598with 35 mL 10 mM MgSO₄ buffer and shaking manually for 3 minutes. The leaf wash599was centrifuged at 4600 rpm for 3 min and the supernatant discarded. Bacteria were

600 resuspended in 200 μl buffer and serial dilutions plated on M9 and KB+ka	an agar
--	---------

601 plates.

602	Endophytic growth was assessed by removing one 1cm ² leaf disk per plant
603	(including the midrib), surface sterilizing in 70% EtOH for 30 sec, drying and
604	homogenising for 1 minute in a 1.5 mL Eppendorf tube containing 200 μl buffer and
605	two metal beads with the TissueLyser II (QIAGEN). The plant homogenate was
606	serially diluted and plated on M9 and KB+kan agar plates. All experiments were
607	performed in duplicate, with at least 4 replicates per experiment.
608	Statistical analysis
609	A Student's <i>t</i> -test was used to verify the statistical difference where

- 610 applicable. For non-normally distributed data with unequal variance, the Mann
- 611 Whitney U test was performed.
- 612 The fitness of each strain in the competition experiments is expressed as the
- 613 Malthusian parameter (Lenski *et al.*, 1991). The Malthusian parameter was
- 614 calculated as $M = (ln(N1_{f1}/N1_i))/(ln(N2_f/N2_i))$, where $N1_i$ is initial number of
- 615 cfu of strain 1 at 0h and *N1_f* cfu after 24 hrs (*in vitro*) or 2/3 dpi (*in planta*,
- 616 'Hort16A'/'SunGold').

617 **BIOSECURITY AND APPROVAL**

- 618 All worked was performed in approved facilities and in accord with APP201675,
- 619 APP201730, APP202231.

620 ACKNOWLEDGEMENTS

- 621 We want to particularly thank kiwifruit growers David French, Rex Reed and Bruce
- 622 and Fiona Aitken for granting access to their orchards. The work conducted was
- 623 supported by the New Zealand Ministry for Business, Innovation and Employment
- 624 (C11X1205). Christina Straub was supported through a PhD scholarship from the
- 625 New Zealand Institute for Advanced Studies (NZIAS) and Plant & Food Research.

626 **REFERENCES**

627 Abelleira, A., López, M.M., Peñalver, J., Aguín, O., Mansilla, J.P., Picoaga, A., and 628 García, M.J. (2011) First report of bacterial canker of kiwifruit Caused by 629 Pseudomonas syringae pv. actinidiae in Spain. Plant Dis. 95: 1583. 630 Adams, P.D. and Kloepper, J.W. (2002) Effect of host genotype on indigenous 631 bacterial endophytes of cotton (Gossypium hirsutum L.). Plant Soil 240: 181-632 189. 633 Almeida, N.F., Yan, S., Cai, R., Clarke, C.R., Morris, C.E., Schaad, N.W., et al. (2010) 634 PAMDB, a multilocus sequence typing and analysis database and website for 635 plant-associated microbes. Phytopathology 100: 208-215. 636 Anderson, M.J. (2001) A new method for non parametric multivariate analysis of 637 variance. Austral Ecol. 26: 32-46. 638 Auton, A. and McVean, G. (2007) Recombination rate estimation in the presence of 639 hotspots. Genome Res. 17: 1219-1227. 640 Balestra, G.M., Mazzaglia, A., Spinelli, R., Graziani, S., Quattrucci, A., and Rossetti, A. 641 (2008) Cancro batterico su Actinidia chinensis. L'informatore Agrar. 38: 75-76. 642 Baltrus, D.A., Nishimura, M.T., Romanchuk, A., Chang, J.H., Mukhtar, M.S., Cherkis, 643 K., et al. (2011) Dynamic evolution of pathogenicity revealed by sequencing and 644 comparative genomics of 19 Pseudomonas syringae isolates. *PLoS Pathog.* 7: 645 e1002132. 646 Bartoli, C., Berge, O., Monteil, C.L., Guilbaud, C., Balestra, G.M., Varvaro, L., et al. 647 (2014) The Pseudomonas viridiflava phylogroups in the P. syringae species 648 complex are characterized by genetic variability and phenotypic plasticity of 649 pathogenicity-related traits. Environ. Microbiol. 16: 2301-2315. 650 Bartoli, C., Lamichhane, J.R., Berge, O., Guilbaud, C., Varvaro, L., Balestra, G.M., et al. 651 (2015) A framework to gauge the epidemic potential of plant pathogens in 652 environmental reservoirs: the example of kiwifruit canker. Mol. Plant Pathol. 653 16: 137-49. 654 Beiki, F., Busquets, A., Gomila, M., Rahimian, H., Lalucat, J., and García-Valdés, E. 655 (2016) New Pseudomonas spp. are pathogenic to citrus. PLoS One 11: 656 e0148796.

657 Bender, C.L., Alarcon-Chaidez, F., Gross, D.C., Alarcón-Chaidez, F., and Gross, D.C. 658 (1999) Pseudomonas syringae phytotoxins: Mode of action, regulation, and 659 biosynthesis by peptide and polyketide synthetases. Microbiol. Mol. Biol. Rev. 660 **63**: 266-292. 661 Berge, O., Monteil, C.L., Bartoli, C., Chandeysson, C., Guilbaud, C., Sands, D.C., and 662 Morris, C.E. (2014) A user's guide to a data base of the diversity of 663 Pseudomonas syringae and its application to classifying strains in this 664 phylogenetic complex. *PLoS One* **9**: e105547. 665 Berlec, A. (2012) Novel techniques and findings in the study of plant microbiota: 666 Search for plant probiotics. *Plant Sci.* **193–194**: 96–102. 667 Bodenhausen, N., Bortfeld-Miller, M., Ackermann, M., and Vorholt, J.A. (2014) A 668 Synthetic Community Approach Reveals Plant Genotypes Affecting the 669 Phyllosphere Microbiota. *PLoS Genet.* **10**: e1004283. 670 Bull, C.T., Clarke, C.R., Cai, R., Vinatzer, B.A., Jardini, T.M., and Koike, S.T. (2011) Multilocus sequence typing of Pseudomonas syringae sensu lato confirms 671 672 previously described genomospecies and permits rapid identification of P. 673 syringae pv. coriandricola and P. syringae pv. apii causing bacterial leaf spot on 674 parsley. Phytopathology 101: 847-858. 675 Buonaurio, R., Moretti, C., da Silva, D.P., Cortese, C., Ramos, C., and Venturi, V. 676 (2015) The olive knot disease as a model to study the role of interspecies 677 bacterial communities in plant disease. Front. Plant Sci. 6: 1-12. 678 Cameron, A. and Sarojini, V. (2014) Pseudomonas syringae pv. actinidiae: chemical 679 control, resistance mechanisms and possible alternatives. Plant Pathol. 63:. 680 Colombi, E., Straub, C., Künzel, S., Templeton, M.D., McCann, H.C., and Rainey, P.B. 681 (2017) Evolution of copper resistance in the kiwifruit pathogen Pseudomonas 682 syringae pv. actinidiae through acquisition of integrative conjugative elements 683 and plasmids. Environ. Microbiol. 19: 819–832. 684 Darriba, D., Taboada, G.L., Doallo, R., and Posada, D. (2012) jModelTest 2: more 685 models, new heuristics and parallel computing. Nat. Methods 9: 772-772. 686 Demba Diallo, M., Monteil, C.L., Vinatzer, B.A., Clarke, C.R., Glaux, C., Guilbaud, C., et 687 al. (2012) Pseudomonas syringae naturally lacking the canonical type III 688 secretion system are ubiquitous in nonagricultural habitats, are phylogenetically 689 diverse and can be pathogenic. *ISME J.* **6**: 1325–1335. 690 Ditta, G., Stanfield, S., Corbin, D., and Helinski, D.R. (1980) Broad host range DNA 691 cloning system for gram-negative bacteria: construction of a gene bank of 692 Rhizobium meliloti. Proc. Natl. Acad. Sci. 77: 7347-7351. 693 Durbin, R.D. (1982) Toxins and Pathogenesis. In, Mount, M.S. and Lacy, G.H. (eds), 694 Phytopathogenic Prokaryotes Vol 1. Academic Press, pp. 423–439. 695 Essakhi, S., Cesbron, S., Fischer-Le Saux, M., Bonneau, S., Jacques, M.A., and 696 Manceau, C. (2015) Phylogenetic and variable-number tandem-repeat analyses 697 identify nonpathogenic Xanthomonas arboricola lineages lacking the canonical 698 type III secretion system. Appl. Environ. Microbiol. 81: 5395-5410. 699 Everett, K.R., Taylor, R.K., Romberg, M.K., Rees-George, J., Fullerton, R.A., Vanneste, 700 J.L., and Manning, M.A. (2011) First report of Pseudomonas syringae pv. 701 actinidiae causing kiwifruit bacterial canker in New Zealand. Australas. Plant 702 Dis. Notes 6: 67-71. 703 Feil, E.J., Li, B.C., Aanensen, D.M., Hanage, W.P., and Spratt, B.G. (2004) eBURST:

704	
704	inferring patterns of evolutionary descent among clusters of related bacterial
705	genotypes from Multilocus Sequence Typing Data. J. Bacteriol. 186: 1518–1530.
706	Felsenstein, J. (1989) Phylip: phylogeny inference package (version 3.2). <i>Cladistics</i> 5 :
707	164–166.
708	Ferrante, P. and Scortichini, M. (2010) Molecular and phenotypic features of
709	Pseudomonas syringae pv. actinidiae isolated during recent epidemics of
710	bacterial canker on yellow kiwifruit (Actinidia chinensis) in central Italy. <i>Plant</i>
711	Pathol. 59 : 954–962.
712	Francisco, A.P., Vaz, C., Monteiro, P.T., Melo-Cristino, J., Ramirez, M., and Carriço,
713	J.A. (2012) PHYLOViZ: phylogenetic inference and data visualization for
714	sequence based typing methods. BMC Bioinformatics 13: 87.
715	Fujikawa, T. and Sawada, H. (2016) Genome analysis of the kiwifruit canker pathogen
716	Pseudomonas syringae pv. actinidiae biovar 5. <i>Sci. Rep.</i> 6 :.
717	Fukami, T., Beaumont, H.J.E., Zhang, XX., and Rainey, P.B. (2007) Immigration
718	history controls diversification in experimental adaptive radiation. Nature 446:
719	436–439.
720	Goss, E.M., Kreitman, M., and Bergelson, J. (2005) Genetic diversity, recombination
721	and cryptic clades in Pseudomonas viridiflava infecting natural populations of
722	Arabidopsis thaliana. <i>Genetics</i> 169 : 21–35.
723	Guindon, S. and Gascuel, O. (2003) A simple, fast, and accurate algorithm to estimate
724	large phylogenies by maximum likelihood. <i>Syst. Biol.</i> 52 : 696–704.
725	Haapalainen, M., Mosorin, H., Dorati, F., Wu, R.F., Roine, E., Taira, S., et al. (2012)
726	Hcp2, a secreted protein of the phytopathogen Pseudomonas syringae pv.
727	tomato DC3000, is required for fitness for competition against bacteria and
728	yeasts. J. Bacteriol. 194 : 4810–4822.
729	Hall, S.J., Dry, I.B., Blanchard, C.L., and Whitelaw-Weckert, M.A. (2016) Phylogenetic
730	relationships of Pseudomonas syringae pv. syringae isolates associated with
731	bacterial iInflorescence rot in grapevine. <i>Plant Dis.</i> 100 : 607–616.
732	Han, H.S., Nam, H.Y., Koh, Y.J., Hur, JS., and Jung, J.S. (2003) Molecular bases of
733	high-level streptomycin resistance in Pseudomonas marginalis and
734	Pseudomonas syringae pv. actinidiae. J. Microbiol. 41: 16–21.
735	Haubold, B. and Rainey, P.B. (1996) Genetic and ecotypic structure of a fluorescent
736	Pseudomonas population. <i>Mol. Ecol.</i> 5 : 747–761.
737	Hayes, C.S., Aoki, S.K., and Low, D.A. (2010) Bacterial contact-dependent delivery
738	systems. Annu. Rev. Genet. 44: 71–90.
739	Hernández-Morales, A., De la Torre-Zavala, S., Ibarra-Laclette, E., Hernández-Flores,
740	J., Jofre-Garfias, A., Martínez-Antonio, A., and Álvarez-Morales, A. (2009)
740 741	Transcriptional profile of Pseudomonas syringae pv. phaseolicola NPS3121 in
741	
	response to tissue extracts from a susceptible Phaseolus vulgaris L. cultivar.
743	BMC Microbiol. 9: 257.
744 745	Hibbing, M.E., Fuqua, C., Parsek, M.R., and Peterson, S.B. (2010) Bacterial
745 746	competition: surviving and thriving in the microbial jungle. <i>Nat. Rev. Microbiol.</i>
746	8 : 15–25.
747	Hirano, S.S., Charkowski, A.O., Collmer, A., Willis, D.K., and Upper, C.D. (1999) Role of
748	the Hrp type III protein secretion system in growth of Pseudomonas syringae
749	pv. syringae B728a on host plants in the field. <i>Proc. Natl. Acad. Sci.</i> 96 : 9851–
750	9856.

751 Hirano, S.S. and Upper, C.D. (2000) Bacteria in the leaf ecosystem with emphasis on 752 Pseudomonas syringae - a pathogen, ice nucleus, and epiphyte. Microbiol. Mol. 753 Biol. Rev. 64: 624-653. 754 Ho, S.N., Hunt, H.D., Horton, R.M., Pullen, J.K., and Pease, L.R. (1989) Site-directed 755 mutagenesis by overlap extension using the polymerase chain reaction. Gene 756 **77**: 51–59. 757 Hockett, K.L., Renner, T., and Baltrus, D.A. (2015) Independent co-option of a tailed 758 bacteriophage into a killing complex in Pseudomonas. *MBio* 6: 1–11. 759 Hudson, R.R. (2001) Two-locus sampling distributions and their application. Genetics 760 **159**: 1805–1817. 761 Humphrey, P.T., Nguyen, T.T., Villalobos, M.M., and Whiteman, N.K. (2014) Diversity 762 and abundance of phyllosphere bacteria are linked to insect herbivory. Mol. 763 *Ecol.* **23**: 1497–1515. 764 Hwang, M.S.H., Morgan, R.L., Sarkar, S.F., Wang, P.W., and Guttman, D.S. (2005) 765 Phylogenetic characterization of virulence and resistance phenotypes of 766 Pseudomonas syringae. Appl. Environ. Microbiol. 71: 5182–5191. 767 Istock, C.A., Duncan, K.E., Ferguson, N., and Zhou, X. (1992) Sexuality in a natural 768 population of bacteria - Bacillus subtilis challenges the clonal paradigm. Mol. 769 *Ecol.* **1**: 95–103. 770 Jolley, K.A., Feil, E.J., Chan, M.S., and Maiden, M.C. (2001) Sequence type analysis 771 and recombinational tests (START). *Bioinformatics* **17**: 1230–1231. 772 Jost. L. (2006) Entropy and diversity. *Oikos* **113**: 363–375. 773 Karasov, T.L., Barrett, L., Hershberg, R., and Bergelson, J. (2017) Similar levels of gene 774 content variation observed for Pseudomonas syringae populations extracted 775 from single and multiple host species. PLoS One 12: 1-18. 776 Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., et al. 777 (2012) Geneious Basic: An integrated and extendable desktop software 778 platform for the organization and analysis of sequence data. *Bioinformatics* 28: 779 1647-1649. 780 Kniskern, J.M., Barrett, L.G., and Bergelson, J. (2011) Maladaptation in wild 781 populations of the generalist plant pathogen Pseudomonas syringae. Evolution 782 (N. Y). 65: 818–830. 783 Koh, Y.J., Kim, G.H., Koh, H.S., Lee, Y.S., Kim, S.C., and Jung, J.S. (2012) Occurrence of 784 a new type of Pseudomonas syringae pv. actinidiae strain of bacterial canker on 785 kiwifruit in Korea. Plant Pathol. 28: 423-427. 786 Kõiv, V., Roosaare, M., Vedler, E., Ann Kivistik, P., Toppi, K., Schryer, D.W., et al. (2015) Microbial population dynamics in response to Pectobacterium 787 788 atrosepticum infection in potato tubers. Sci. Rep. 5: 11106. 789 Kumar, S., Stecher, G., and Tamura, K. (2016) MEGA7: Molecular Evolutionary 790 Genetics Analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33: 1870–1874. 791 Laforest-Lapointe, I., Messier, C., Kembel, S.W., Lindow, S., Brandl, M., Herre, E., et 792 al. (2016) Host species identity, site and time drive temperate tree phyllosphere 793 bacterial community structure. Microbiome 4: 27. 794 Lamichhane, J.R. and Venturi, V. (2015) Synergisms between microbial pathogens in 795 plant disease complexes: a growing trend. Front. Plant Sci. 6: 385. 796 Lenski, R.E., Rose, M.R., Simpson, S.C., and Tadler, S.C. (1991) Long-term 797 experimental evolution in Escherichia coli . I . Adaptation and divergence during

700	
798	2,000 generations. <i>Am. Nat.</i> 138 : 1315–1341.
799	Lindow, S.E. (1986) Construction of isogenic Ice strains of Pseudomonas syringae for
800	evaluation of specificity of competition on leaf surfaces. <i>Perspect. Microb. Ecol.</i>
801	Slov. Soc. Microbiol. Ljubljana 509–515.
802	Lindow, S.E. and Brandl, M.T. (2003) Microbiology of the phyllosphere. <i>Appl. Environ.</i>
803	Microbiol. 69 : 1875–1883.
804	Macho, A.P., Zumaquero, A., Ortiz-Martín, I., and Beuzón, C.R. (2007) Competitive
805	index in mixed infections: A sensitive and accurate assay for the genetic analysis
806	of Pseudomonas syringae-plant interactions. <i>Mol. Plant Pathol.</i> 8 : 437–450.
807	Marchi, G., Sisto, A., Cimmino, A., Andolfi, A., Cipriani, M.G., Evidente, A., and Surico,
808	G. (2006) Interaction between Pseudomonas savastanoi pv. savastanoi and
809	Pantoea agglomerans in olive knots. <i>Plant Pathol</i> . 55 : 614–624.
810	McArdle, B.H. and Anderson, M.J. (2001) Fitting multivariate models to community
811	data: a comment on distance-based redundancy analysis. <i>Ecology</i> 82 : 290–297.
812	McCann, H.C., Li, L.L., Liu, Y., Li, D., Pan, H., Zhong, C., et al. (2017) Origin and
813	evolution of the kiwifruit canker pandemic. <i>Genome Biol. Evol.</i> 9 : 932–944.
814	McCann, H.C., Rikkerink, E.H.A., Bertels, F., Fiers, M., Lu, A., Rees-George, J., et al.
815	(2013) Genomic analysis of the kiwifruit pathogen Pseudomonas syringae pv.
816	actinidiae provides insight into the origins of an emergent plant disease. <i>PLoS</i>
817	Pathog. 9 : e1003503.
818	Mohr, T.J., Liu, H., Yan, S., Morris, C.E., Castillo, J.A., Jelenska, J., and Vinatzer, B.A.
819	(2008) Naturally occurring nonpathogenic isolates of the plant pathogen
820	Pseudomonas syringae lack a type III secretion system and effector gene
821	orthologues. J. Bacteriol. 190 : 2858–2870.
822	Monier, JM. and Lindow, S.E. (2003) Differential survival of solitary and aggregated
823	bacterial cells promotes aggregate formation on leaf surfaces. <i>Proc. Natl. Acad.</i>
824	<i>Sci.</i> 100 : 15977–15982.
825	Monteil, C.L., Cai, R., Liu, H., Mechan Llontop, M.E., Leman, S., Studholme, D.J., et al.
826	(2013) Nonagricultural reservoirs contribute to emergence and evolution of
827	Pseudomonas syringae crop pathogens. <i>New Phytol.</i> 199 : 800–811.
828	Monteil, C.L., Lafolie, F., Laurent, J., Clement, JC.C., Simler, R., Travi, Y., and Morris,
829	C.E. (2014) Soil water flow is a source of the plant pathogen Pseudomonas
830	syringae in subalpine headwaters. <i>Environ. Microbiol.</i> 16 : 2038–2052.
831	Monteil, C.L., Yahara, K., Studholme, D.J., Mageiros, L., Méric, G., Swingle, B., et al.
832	(2016) Population-genomic insights into emergence, crop-adaptation, and
833	dissemination of Pseudomonas syringae pathogens. <i>Microb. Genomics</i> 2: 1–16.
834	Moretti, C., Hosni, T., Vandemeulebroecke, K., Brady, C., de Vos, P., Buonaurio, R.,
835	and Cleenwerck, I. (2011) Erwinia oleae sp. nov., isolated from olive knots
835	
	caused by Pseudomonas savastanoi pv. savastanoi. <i>Int. J. Syst. Evol. Microbiol.</i> 61 : 2745–2752.
837	
838	Morris, C.E., Sands, D.C., Vanneste, J.L., Montarry, J., Oakley, B., Guilbaud, C., and
839	Glaux, C. (2010) Inferring the evolutionary history of the plant pathogen
840 841	Pseudomonas syringae from its biogeography in headwaters of rivers in North
841	America, Europe, and New Zealand. <i>MBio</i> 1 : e00107.
842	Morris, C.E., Sands, D.C., Vinatzer, B.A., Glaux, C., Guilbaud, C., Buffière, A., et al.
843	(2008) The life history of the plant pathogen Pseudomonas syringae is linked to
844	the water cycle. <i>ISME J.</i> 2 : 321–334.

845	Nakahara, H., Mori, T., Sadakari, N., Matsusaki, H., and Matsuzoe, N. (2016) Selection
846	of effective non-pathogenic Ralstonia solanacearum as biocontrol agents
847	against bacterial wilt in eggplant. <i>J. Plant Dis. Prot.</i> 123 : 119–124.
848	Nowell, R.W., Laue, B.E., Sharp, P.M., and Green, S. (2016) Comparative genomics
849	reveals genes significantly associated with woody hosts in the plant pathogen
850	Pseudomonas syringae. Mol. Plant Pathol. 17: 1409–1424.
851	Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., Dan McGlinn, Peter
852	R. Minchin, R.B.O., et al. (2016) vegan: Community Ecology Package.
853	Omer, M.E.H. and Wood, R.K.S. (1969) Growth of Pseudomonas phaseolicola in
854	susceptible and in resistant bean plants. Ann. Appl. Biol. 63: 103–116.
855	Van Overbeek, L. and Van Elsas, J.D. (2008) Effects of plant genotype and growth
856	stage on the structure of bacterial communities associated with potato
857	(Solanum tuberosum L.). <i>FEMS Microbiol. Ecol.</i> 64 : 283–296.
858	Petriccione, M., Zampella, L., Mastrobuoni, F., and Scortichini, M. (2017) Occurrence
859	of copper-resistant Pseudomonas syringae pv. syringae strains isolated from
860	rain and kiwifruit orchards also infected by P. s. pv. actinidiae. <i>Eur. J. Plant</i>
861	Pathol. 1–16.
862	Pfeilmeier, S., Caly, D.L., and Malone, J.G. (2016) Bacterial pathogenesis of plants:
863	future challenges from a microbial perspective: Challenges in Bacterial
864	Molecular Plant Pathology. <i>Mol. Plant Pathol.</i> 17 : 1298–1313.
865	Polz, M.F., Alm, E.J., and Hanage, W.P. (2013) Horizontal gene transfer and the
866	evolution of bacterial and archaeal population structure. Trends Genet. 29:
867	170–175.
868	R.Core.Team (2016) R: A language and environment for statistical computing.
869	Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Hohna, S., et al.
870	(2012) MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice
871	across a large model space. <i>Syst. Biol.</i> 61 : 539–542.
872	Rozas, J. and Rozas, R. (1995) DnaSP, DNA sequence polymorphism: an interactive
873	program for estimating population genetics parameters from DNA sequence
874	data. <i>CABIOS</i> 11 : 621–625.
875	Rufián, J.S., Macho, A.P., Corry, D.S., Mansfield, J., Arnold, D., and Beuzón, C.R.
876	(2017) Confocal microscopy reveals in planta dynamic interactions between
877	pathogenic, avirulent and non-pathogenic Pseudomonas syringae strains. <i>Mol</i> .
878	Plant Pathol. DOI: 10.1111/mpp.12539.
879	Ruhe, Z.C., Low, D.A., and Hayes, C.S. (2013) Bacterial contact-dependent growth
880	inhibition. <i>Trends Microbiol.</i> 21 : 230–237.
881	Sarkar, S.F. and Guttman, D.S. (2004) Evolution of the core genome of Pseudomonas
882	syringae, a highly clonal, endemic plant pathogen. Appl. Environ. Microbiol. 70:
883	1999–2012.
884	Sawada, H. (2015) Characterization of biovar 3 strains of Pseudomonas syringae pv.
885	actinidiae isolated in Japan. <i>Japanese J. Phyopathology</i> 81 : 111–126.
886	Sawada, H.H., Suzuki, F.F., Matsuda, I.I., and Saitou, N.N. (1999) Phylogenetic
887	analysis of Pseudomonas syringae pathovars suggests the horizontal gene
888	transfer of argK and the evolutionary stability of hrp gene cluster. J. Mol. Evol.
889	49 : 627–644.
890	Schäfer, A., Tauch, A., Jäger, W., Kalinowski, J., Thierbach, G., and Pühler, A. (1994)
891	Small mobilizable multi-purpose cloning vectors derived from the Escherichia

892	coli plasmids pK18 and pK19: selection of defined deletions in the chromosome
893	of Corynebacterium glutamicum. <i>Gene</i> 145 : 69–73.
894	Schloss, P.D., Westcott, S.L., Ryabin, T., Hall, J.R., Hartmann, M., Hollister, E.B., et al.
895	(2009) Introducing mothur: Open-source, platform-independent, community-
896	supported software for describing and comparing microbial communities. Appl.
897	Environ. Microbiol. 75 : 7537–7541.
898	Schmidt, H.A., Strimmer, K., Vingron, M., and von Haeseler, A. (2002) TREE-PUZZLE:
899	maximum likelihood phylogenetic analysis using quartets and parallel
900	computing. <i>Bioinformatics</i> 18 : 502–504.
901	Singer, M. (2010) Pathogen-pathogen interaction. <i>Virulence</i> 1 : 10–18.
902	Souza, V., Nguyen, T.T., Hudson, R.R., Piñero, D., and Lenski, R.E. (1992) Hierarchical
903	analysis of linkage disequilibrium in Rhizobium populations: evidence for sex?
904	Proc. Natl. Acad. Sci. U. S. A. 89 : 8389–93.
905	Spratt, B.G., Hanage, W.P., Li, B., Aanensen, D.M., and Feil, E.J. (2004) Displaying the
906	relatedness among isolates of bacterial species the eBURST approach. <i>FEMS</i>
907	Microbiol. Lett. 241 : 129–134.
908	Spratt, B.G. and Maiden, M.C.J. (1999) Bacterial population genetics, evolution and
909	epidemiology. Philos. Trans. R. Soc. B Biol. Sci. 354 : 701–710.
910	Stubbendieck, R.M., Vargas-Bautista, C., and Straight, P.D. (2016) Bacterial
911	communities: Interactions to scale. <i>Front. Microbiol.</i> 7 : 1234.
912	Triplett, L.R., Verdier, V., Campillo, T., Van Malderghem, C., Cleenwerck, I., Maes, M.,
913	et al. (2015) Characterization of a novel clade of Xanthomonas isolated from
914	rice leaves in Mali and proposal of Xanthomonas maliensis sp. nov. <i>Antonie van</i>
915	Leeuwenhoek, Int. J. Gen. Mol. Microbiol. 107 : 869–881.
916	Visnovsky, S.B., Fiers, M., Lu, A., Panda, P., Taylor, R., and Pitman, A.R. (2016) Draft
917	genome sequences of 18 strains of Pseudomonas isolated from kiwifruit plants
918	in New Zealand and overseas. <i>Genome Announc.</i> 4 : e00061-16.
919	Völksch, B. and May, R. (2001) Biological Control of Pseudomonas syringae pv.
920	glycinea by Epiphytic Bacteria under Field Conditions. <i>Microb. Ecol.</i> 41 : 132–
921	139.
922	Vorholt, J.A. (2012) Microbial life in the phyllosphere. <i>Nat. Rev. Microbiol.</i> 10 : 828–
923	840.
924	Wagner, M.R., Lundberg, D.S., del Rio, T.G., Tringe, S.G., Dangl, J.L., and Mitchell-
925	Olds, T. (2016) Host genotype and age shape the leaf and root microbiomes of a
926	wild perennial plant. <i>Nat. Commun.</i> 7 : 12151.
927	Whipps, J.M., Hand, P., Pink, D., and Bending, G.D. (2008) Phyllosphere microbiology
928	with special reference to diversity and plant genotype. J. Appl. Microbiol. 105 :
929	1744–1755.
930	Wilson, M., Hirano, S.S., and Lindow, S.E. (1999) Location and survival of leaf-
931	associated bacteria in relation to pathogenicity and potential for growth within
932	the leaf. Appl. Environ. Microbiol. 65: 1435–1443.
933 024	Wilson, M. and Lindow, S.E. (1994) Coexistence among epiphytic bacterial
934 935	Populations mediated through nutritional resource partitioning. <i>Appl. Environ.</i> Microbiol. 60 : 4468–4477.
935 936	
936 937	Young, J.M. (1974) Development of bacterial populations in vivo in relation to plant
937 938	pathogenicity. <i>New Zeal. J. Agric. Res.</i> 17 : 105–113. Zhang, X.X., Gauntlett, J.C., Oldenburg, D.G., Cook, G.M., and Rainey, P.B. (2015) Role
250	Zhang, A.A., Gaundett, J.C., Oldenburg, D.G., COOK, G.Wi., and Kaney, F.B. (2015) NOIE

- 939 of the transporter-like sensor kinase CbrA in histidine uptake and signal
- 940 transduction. J. Bacteriol. **197**: 2867–2878.
- 941 Zhao, Z.B., Gao, X.N., Huang, Q.L., Huang, L.L., Qin, H.Q., and Kang, Z.S. (2013)
- 942 Identification and characerization of the causal agent of bacterial canker of
- 943 kiwifruit in the Shaanxi province of China. J. Plant Pathol. **95**: 155–162.
- 944 945

946 FIGURE AND TABLE CAPTIONS

947	Figure 1. Global Minimum Spanning Tree (MST). Displaying the relationships
948	between STs at the triple-locus-variant level, illustrated using PHYLOViZ (Francisco et
949	al., 2012). The size of the circle correlates with the frequency of the ST. Color-coded
950	accorded to origin: green = this study, black = PAMDB, blue = Visnovsky et al. (2016),
951	purple = Japan.
952	Figure 2. Bayesian tree based on the concatenated alignment (2010 bp) of four
953	housekeeping genes: gapA, gyrB, gltA and rpoD. The Bayesian tree was
954	reconstructed using MrBayes based on the Tamura-Nei + G + I model using
955	30,000,000 MCMC. Single representative sequences for each ST were used to
956	improve readability (corresponding STs and frequency of each ST listed in Table S2).
957	Values indicated at nodes are Bayesian posterior probabilities. The corresponding
958	phylogroups (PG) are indicated, eg. PG1 = phylogroup 1 with clades 1a and 1b. Origin
959	of isolates is illustrated in colour coded boxes, green = this study, black = PAMDB,
960	blue = Visnovsky <i>et al.</i> 2016, purple = Japan.
961	Figure 3. Global Bayesian tree reconstructed from <i>gltA</i> sequences highlighting the
962	particularity of PG3a, which includes kiwifruit isolates from NZ, China, Japan, the
963	US and France. The tree was built on a 529 bp alignment using MrBayes (TN+G+I
964	model; 1,700,000 MCMC), using <i>Pseudomonas fluorescens</i> SBW25 as outgroup.
965	Values indicated at nodes are Bayesian posterior probabilities. The source of each
966	isolate is highlighted in colour-coded boxes, green = this study, red = China, black =
967	PAMDB, purple = Japan, blue = US, NZ and France.

bioRxiv preprint doi: https://doi.org/10.1101/235853; this version posted March 7, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

968 969	Figure 4. Individual growth dynamics of <i>Psa</i> NZ54 and <i>P. syringae</i> G33C compared
970	with co-inoculation (1:1 ratio) in vitro. Competition experiments were performed in
971	a 1:1 ratio (founding ratio 5x10 ⁶ cfu ml ⁻¹ each), with individual inoculations as
972	reference. Solid lines represent individual growth and dashed lines represent growth
973	in competition. The presented mean and standard error were calculated from three
974	replicates. Asterisk indicate significance between individual and co-cultured growth
975	at the 5% level (paired <i>t</i> -test).
976	Figure 5. <i>In vitro</i> growth curves from invasion from rare experiments for <i>Psa</i> NZ54 :
977	<i>P. syringae</i> G33C and vice versa. Vials were inoculated with a (A) 10:1 ratio and (B)
978	1:10 ratio for <i>Psa</i> NZ54 : <i>P. syringae</i> G33C. The presented mean and standard error
979	were calculated from three replicates. Parameters of relative fitness of <i>Psa</i> NZ54
980	relative to <i>P. syringae</i> G33C calculated as In difference <i>Psa</i> NZ54 – <i>P. syringae</i> G33C
981	using the Malthusian parameters at 24hrs were -2.1 * ±0.02 (KB shaken), -1.9 * ±0.05
982	(KB static), -12.1 $^{*}\pm$ 0.09 (M9 shaken) and -3.9 $^{*}\pm$ 0.00 (M9 static). Asterisks indicate
983	significance at the 1% level (Students <i>t-</i> test).
984	Figure 6. 1:1 competition growth assays of <i>Psa</i> NZ54 vs. <i>P. syringae</i> G33C in planta.
985	'Hort16A' plantlets (A) and 'SunGold' plantlets (B) were inoculated with a 1:1 mix of
986	<i>P. syringae</i> G33C : <i>Psa</i> NZ54 (founding density 8x10 ⁷ cfu ml ⁻¹). (C) 'SunGold' plants
987	were inoculated with 1:1 mix of <i>P. syringae</i> G33C : <i>Psa</i> NZ13 Δ <i>hrcC</i> (founding density
988	8x10 ⁷ cfu ml ⁻¹). Solid lines represent individual growth and dashed lines represent
989	growth in competition. The presented mean and standard error were calculated

990 from the mean of four ('Hort16A') and five ('SunGold') individual measurements.

991 Asterisk indicate significance between individual and co-cultured growth at the 5%

992 level (paired *t*-test).

993	Figure 7. Invasion from rare experiments for <i>Psa</i> NZ54 : <i>P. syringae</i> G33C in planta.
994	'Hort16A' plantlets were inoculated with different ratios of strains <i>Psa</i> NZ54 : <i>P</i> .
995	<i>syringae</i> G33C. A) Individual growth. B) Invasion from rare 100:1 and C) invasion
996	from rare 1:100. Solid lines represent individual growth and dashed lines represent
997	growth in competition. The presented mean and standard error were calculated
998	from the mean of four individual measurements. Asterisks indicate significance
999	between individual and co-cultured growth at the 5% level (paired <i>t</i> -test).
1000	Figure 8. <i>In planta</i> priority effect of <i>Psa</i> NZ54 or <i>P. syingae</i> G33C with subsequent
1000	ingure of in planta priority effect of i su ties to i i symgae cooe then subsequent
1001	inoculation of the respective second strain with the same founding density. (A) In
1001 1002	inoculation of the respective second strain with the same founding density. (A) In planta growth assay of <i>P. syringae</i> G33C using 'Hort16A' plantlets pre-inoculated for
1002	planta growth assay of <i>P. syringae</i> G33C using 'Hort16A' plantlets pre-inoculated for
1002 1003	<i>planta</i> growth assay of <i>P. syringae</i> G33C using 'Hort16A' plantlets pre-inoculated for three days with <i>Psa</i> NZ54 (8x10 ⁷ cfu ml ⁻¹). (B) <i>in planta</i> growth assay of <i>Psa</i> NZ54
1002 1003 1004	<i>planta</i> growth assay of <i>P. syringae</i> G33C using 'Hort16A' plantlets pre-inoculated for three days with <i>Psa</i> NZ54 (8x10 ⁷ cfu ml ⁻¹). (B) <i>in planta</i> growth assay of <i>Psa</i> NZ54 using 'Hort16A' plantlets pre-inoculated for three days with <i>P. syringae</i> G33C (8x10 ⁷
1002 1003 1004 1005	<i>planta</i> growth assay of <i>P. syringae</i> G33C using 'Hort16A' plantlets pre-inoculated for three days with <i>Psa</i> NZ54 (8x10 ⁷ cfu ml ⁻¹). (B) <i>in planta</i> growth assay of <i>Psa</i> NZ54 using 'Hort16A' plantlets pre-inoculated for three days with <i>P. syringae</i> G33C (8x10 ⁷ cfu ml ⁻¹). Solid lines represent individual growth and dashed lines represent growth

1009 **TABLES**

1010 Table 1: Nucleotide and amino acid diversity. L = length in bp, AA = amino acid, GC =
1011 average GC content in %, N_A = number of alleles, P = number of polymorphic sites,

- 1012 d_N/d_s ration, mut = mutations, π = nucleotide diversity indices, θ = Watterson's
- 1013 theta.

1014 Table 2: Average pairwise genetic diversity between and among phylogroups.

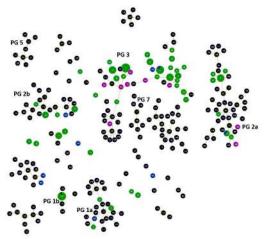
- 1015 Analyses were conducted on the concatenated alignment (2006 bp, gaps removed)
- 1016 using the Maximum Composite Likelihood model with a gamma distribution of 1. N=
- 1017 number of strains.
- 1018 **Table 3: LDhat recombination analysis.** Showing the length of the alignment in bp, N
- 1019 = number of sequences, mutation rate θ (=2Ne μ) per site, recombination rate ρ
- 1020 (=2Ner) per site, ratio $\varepsilon = \rho/\theta$ and Tajima's D.

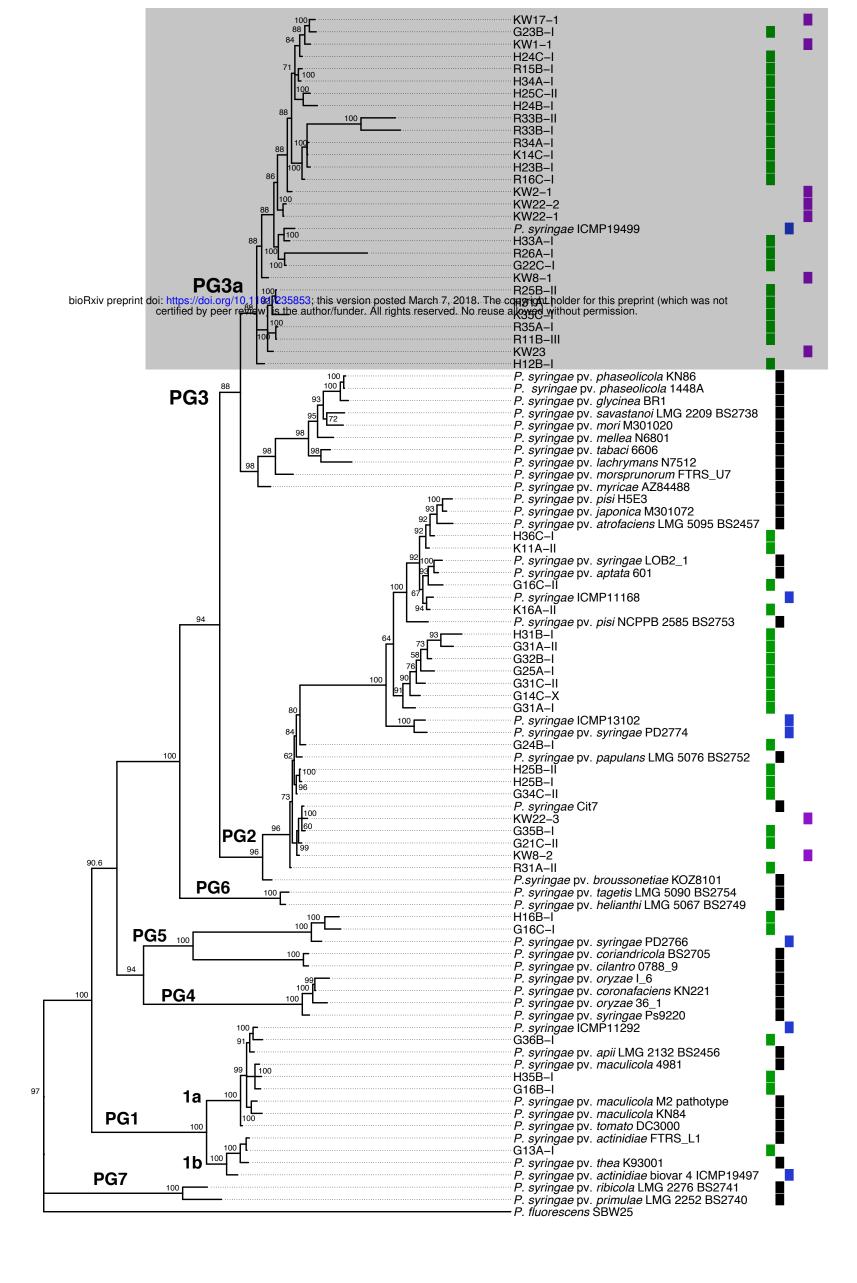
1021 SUPPORTING INFORMATION

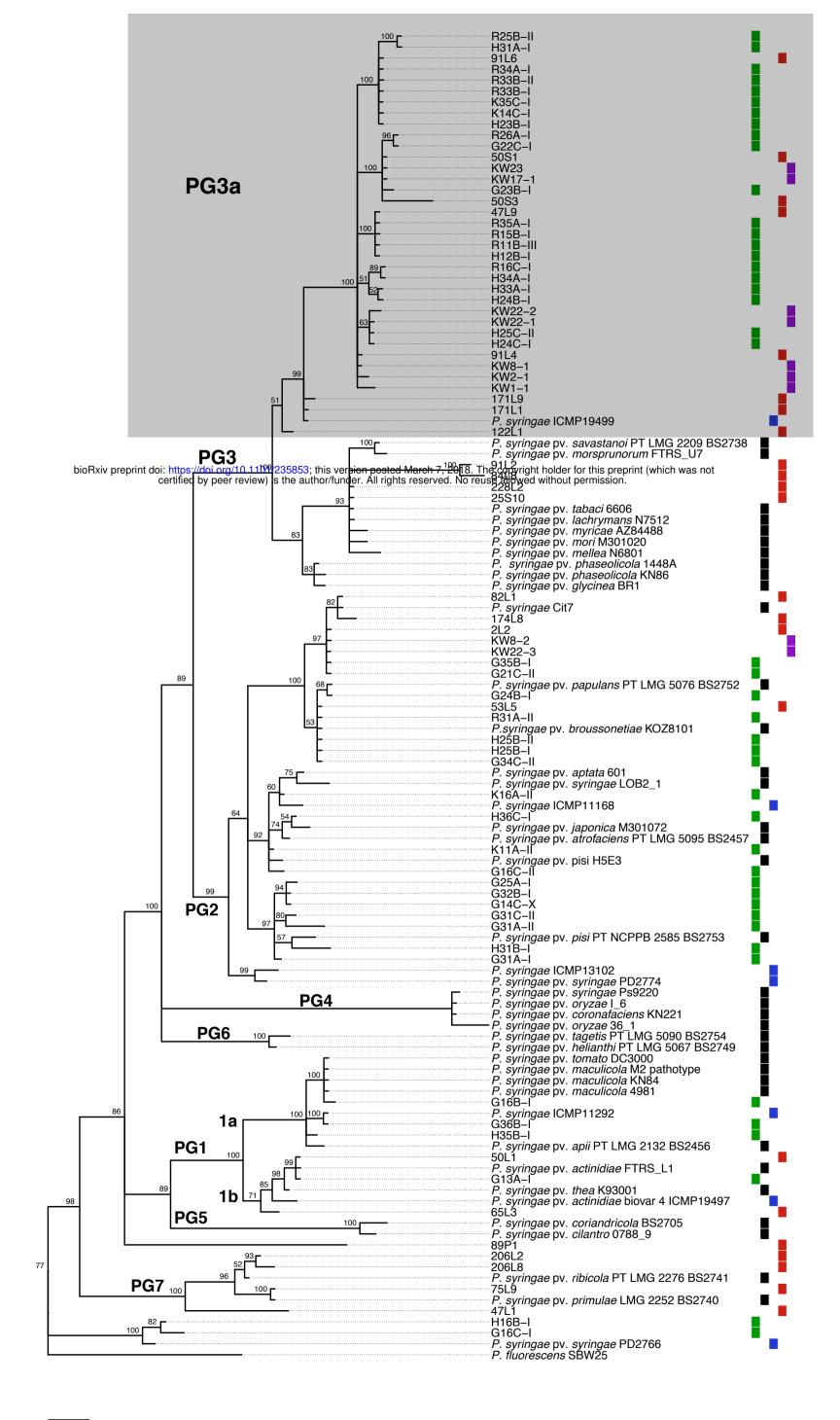
1022 Table S1. Geographic location of orchards, strain summaries and diversity indices

- 1023 per orchard. Specification of cultivar and infection status at the time according to
- 1024 KVH (Kiwifruit Vine Health), orchard ID, GPS coordinates, location and month of
- sampling, N = number of collected *P. syringae* strains, N PG3a = number of PG3a
- 1026 strains in total sample, N STs = number of unique STs, N STs PG3a = number of
- 1027 unique STs grouping with PG3a, D = Simpsons index of diversity, D_c = converted to
- 1028 effective number of species, ED = Simpsons evenness.
- 1029 **Table S2. List of all strains.** Strain information and assigned sequence type of strains
- 1030 used for MLST study (all) and strains used for phylogenetic analysis (highlighted in
- 1031 grey). Phylogroup association only provided for isolates used for phylogenetic
- 1032 analysis. Alias provides the name used for competition experiments.

1033 Table S3. PERMANOVA results of 3-factor nested analysis for differences in genetic

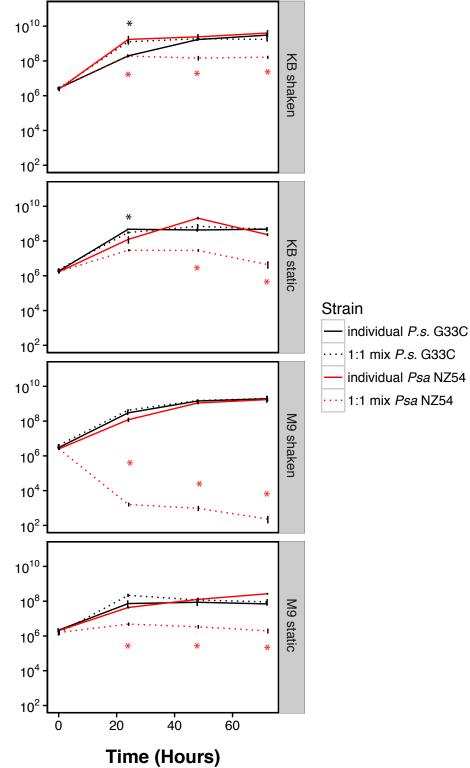

- 1034 diversity.
- 1035 **Table S4. LDhat recombination analysis for host and disease status.** Length of
- 1036 alignment in bp, number of sequences, number of segregating sites, mutation rate θ ,
- 1037 recombination rate ρ and ratio ε (ρ / θ).
- 1038 Table S5. LDhat recombination analysis for global data sorted according to
- 1039 **phylogroup (PG).** Length of alignment in bp, N = number of sequences, number of
- 1040 segregating sites, mutation rate θ , recombination rate ρ and ratio ϵ (ρ/θ).
- 1041 Table S6. List of primers used for construction of the deletion mutant *Psa* NZ13
- 1042 Δ*hrcC*.
- 1043 Figure S1. Rarefaction curves based on the concatenated sequences. Two curves
- 1044 each are shown for *P. syringae* (n=148) and the sequences grouped according to
- 1045 phylogroups (PG): solid lines represent grouping based on unique STs and dashed
- 1046 lines according to a cut-off equal to the average pairwise genetic distance of the
- 1047 group: PG1, PG2 & PG3 = 0.02 cut-off, Psyr all = 0.05 cut-off.
- 1048 Figure S2. Shared and unique STs among orchards. Gold I = infected 'Hort16A'; Gold
- 1049 NI= uninfected 'Hort16A'; Green NI = uninfected 'Hayward'; Green I = infected
- 1050 'Hayward' orchard; n= number of STs found in orchard.
- 1051 Figure S3. eBurst snapshot of STs at the single locus variant level. The size of the
- 1052 circles correlates with the frequency of the respective ST found in the dataset.
- 1053 Colours correspond to the different orchards, orange = infected 'Hort16A', yellow =

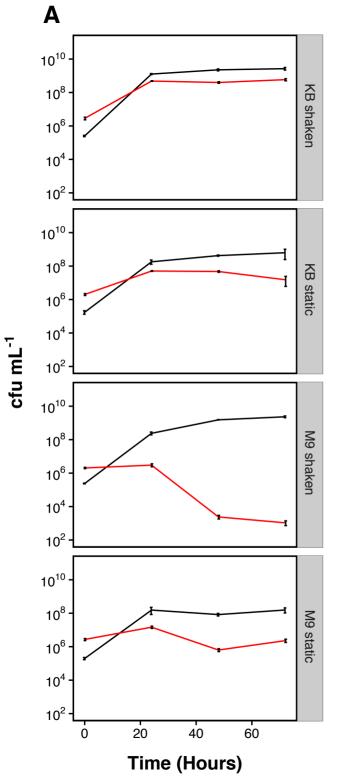

- 1054 uninfected 'Hort16A, dark green = infected 'Hayward', light green = uninfected
- 1055 'Hayward'. CC = clonal complex.

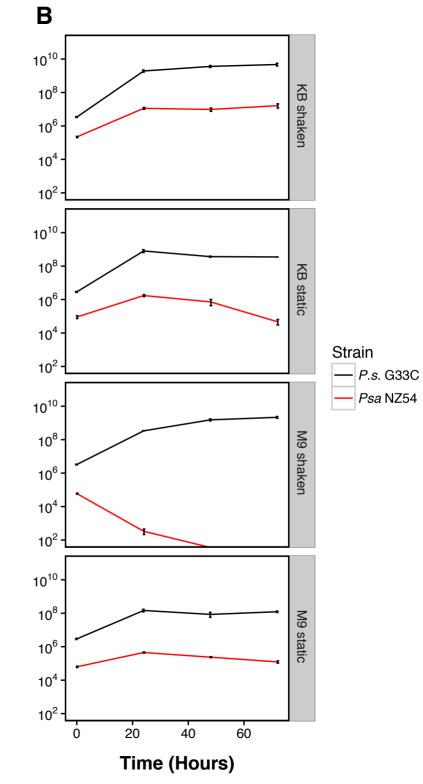

1056	Figure S4. Maximum Likelihood trees based on single genes. Each Maximum
1057	Likelihood tree is rooted on <i>Pseudomonas fluorescens</i> SBW 25 and was
1058	reconstructed using TREEPUZZLE based on the Tamura-Nei model using 100,000
1059	puzzling steps. Trees were built using single representatives of each unique ST to
1060	improve readability of the tree. Values indicated at nodes are bootstrap values. The
1061	corresponding phylogroup distinctions based on the concatenated ML tree are
1062	indicated with the coloured squares.
1063	Figure S5. Leaves of 'Hort16A' plants inoculated with <i>Psa</i> NZ54, <i>P. syringae</i> G33C
1064	and a 1:1 mix of <i>Psa</i> NZ54 : <i>P. syringae</i> G33C at 2, 4, and 7 days post inoculation.
1065	Figure S6. Leaves of 'SunGold' plants inoculated with <i>Psa</i> NZ54, <i>P. syringae</i> G33C,
1066	<i>Psa</i> NZ13 ΔhrcC and 1:1 mix of the respective strain combinations at 3 and 7 days
1067	post inoculation. For leaves showing minor leaf spots, the lower side of the leaf is
1068	also shown for easier detection of symptoms.
1069	Figure S7. In planta priority effect of Psa NZ54 or P. syringae G33C with subsequent
1070	inoculation of the second strain with 100-fold lower concentration. In planta
1071	growth assay using 'Hort16A' plantlets pre-inoculated (8x10 ⁷ cfu ml ⁻¹) with one strain
1072	followed by inoculation of the second strain at $(8x10^5 \text{ cfu ml}^{-1})$. The two panels
1073	display growth curves for endo- and epiphytic growth respectively. A) Individual
1074	growth, B) inoculation of <i>Psa</i> NZ 54 at day 3 and C) inoculation of <i>P. syringae</i> G33C at

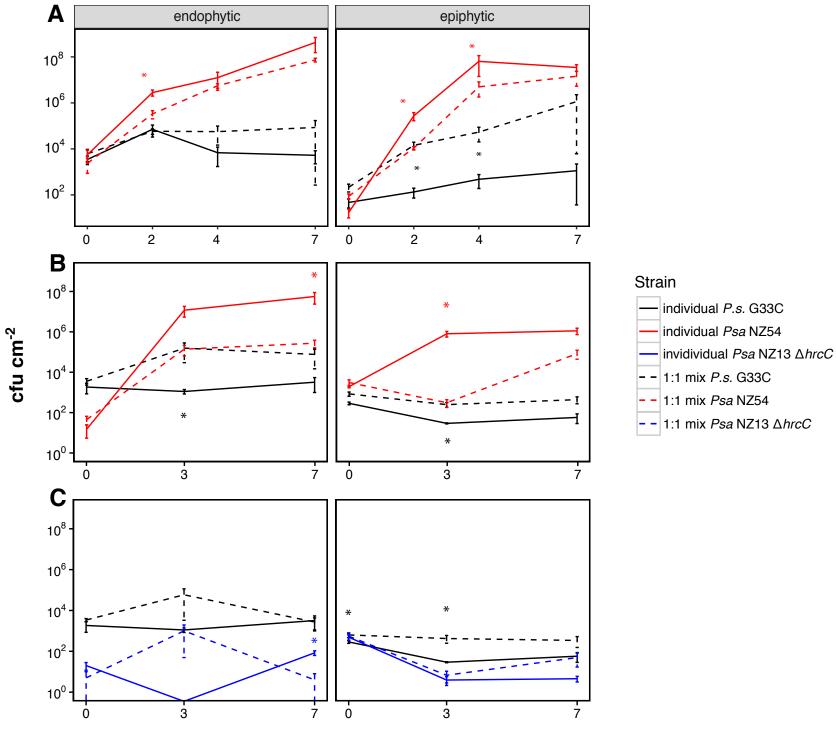
bioRxiv preprint doi: https://doi.org/10.1101/235853; this version posted March 7, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

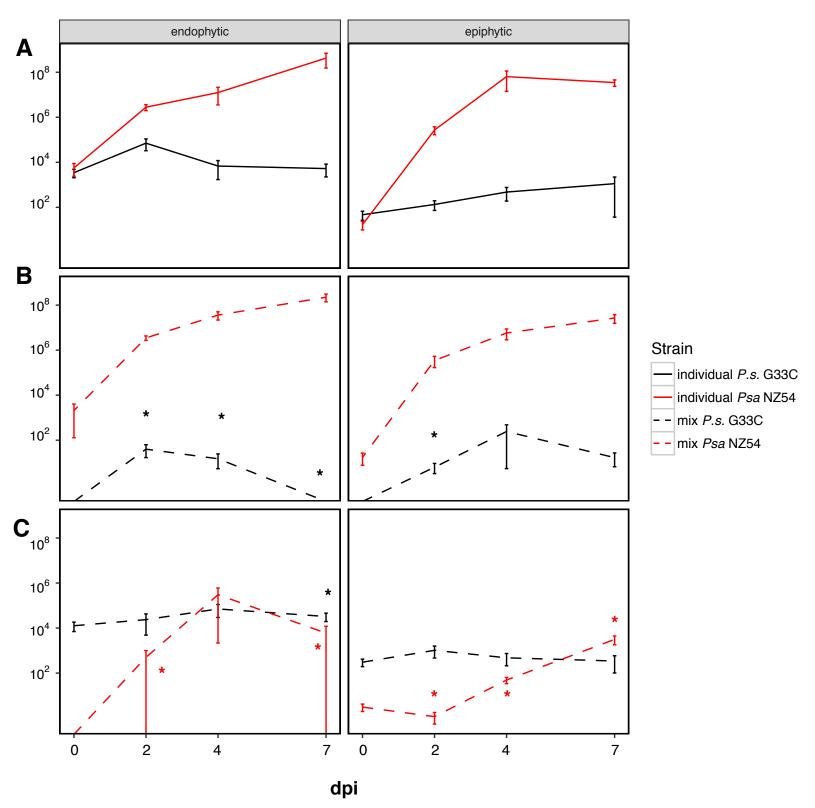
- 1076 competition. The presented mean and standard error were calculated from the
- 1077 mean of five individual measurements. Asterisks indicate significance between
- 1078 individual and co-cultured growth at the 5% level (paired *t*-test).

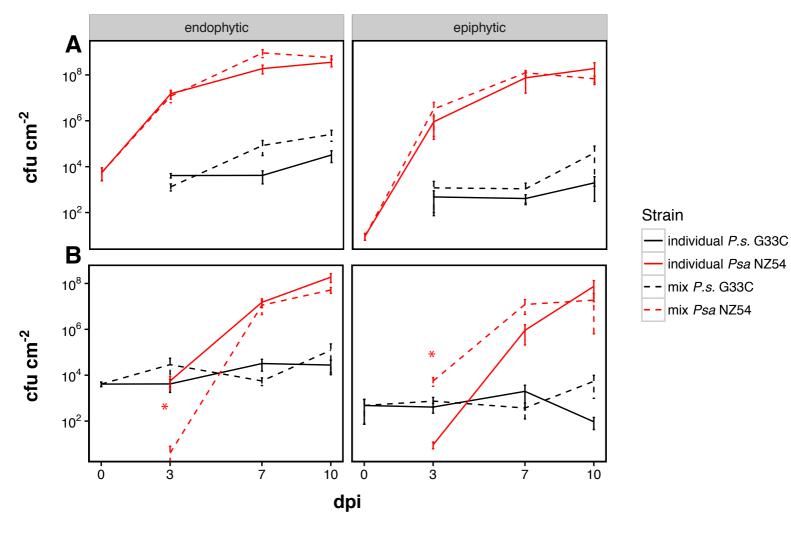







0.008


cfu mL⁻¹



dpi

bioRxiv preprint doi: https://doi.org/10.1101/235853; this version posted March 7, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Table 1. Nucleotide and amino acid diversity. L = length in bp, AA = amino acid, GC =

average GC content in %, N_A = number of alleles, P = number of polymorphic sites, d_N/d_S

	L	AA	<u> </u>		D *	a (a		_	0
Locus	(bp)	length	GC	NA	P*	d _N /ds	mut	π	θ
gapA	476	158	60.81	25	80 (16.81)	3.365	97	0.055	0.024
gyrB	507	169	53.15	28	145 (28.60)	0.018	184	0.054	0.041
gltA	529	176	58.45	27	88 (16.64)	0.011	102	0.040	0.025
rpoD	495	166	59.56	35	99 (20)	2.022	118	0.042	0.030
Mean	502	167	57.99	29	105 (20.51)	1.354	125	0.048	0.030

ration, mut = mutations, π = nucleotide diversity indices, θ = Watterson's theta.

Table 2. Average pairwise genetic diversity between and among phylogroups. Analyses

were conducted on the concatenated alignment (2006 bp, gaps removed) using the

Maximum Composite Likelihood model with a gamma distribution of 1. N= number of

strains.

Ν	Phylogroup	1	2	5	3
19	1	0.010			
43	2	0.098	0.027		
3	5	0.111	0.106	0.008	
83	3	0.099	0.063	0.107	0.014

Table 3. LDhat recombination analysis. Showing the length of the alignment in bp, N =

number of sequences, mutation rate θ (=2Ne μ) per site, recombination rate ρ (=2Ner) per

site, ratio $\varepsilon = \rho / \theta$ and Tajima's D.

Gene	Length (bp)	Ν	Segregating sites	θ	ρ	ε = ρ/θ	Tajima's D
All P. syringae:							
concatenated	2010	148	335	0.030	0.006	0.187	0.513
gapA	476	148	63	0.024	0.021	0.902	2.204
gyrB	507	148	116	0.041	0.038	0.931	-0.204
gltA	529	148	74	0.025	0.012	0.461	0.678
r po D	498	148	82	0.030	0.012	0.416	0.03
Phylogroup 1							
con cat	2010	19	66	0.009	0.000	0.000	0.207
gapA	476	19	8	0.005	0.000	0.000	0.407
gyrB	507	19	20	0.011	0.000	0.000	0.611
gltA	529	19	19	0.010	0.000	0.000	0.026
r po D	498	19	19	0.011	0.000	0.000	-0.188
Phylogroup 2							
con cat	2010	43	147	0.017	0.002	0.120	1.754
gapA	476	43	29	0.014	0.006	0.457	2.307
gyrB	507	43	63	0.029	0.000	0.000	2.131
gltA	529	43	27	0.012	0.008	0.654	0.993
r po D	498	43	28	0.013	0.023	1.734	0.621
Phylogroup 3							
con cat	2010	83	163	0.016	0.015	0.937	-0.746
gapA	476	83	34	0.014	0.013	0.898	2.096
gyrB	507	83	96	0.038	0.024	0.636	-2.434
gltA	529	83	13	0.005	0.006	1.175	1.991
r po D	498	83	20	0.008	0.033	4.073	0.3
Phylogroup 5							
con cat	2010	3	23	0.008	0.000	0.000	-
gapA	476	3	-	-	-	-	-
gyrB	507	3	13	0.017	0.000	0.000	-
gltA	529	3	3	0.004	0.000	0.000	-
r po D	498	3	7	0.009	0.000	0.000	-