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Significance  

Effective planning and control of malaria requires an understanding of the underlying mosquito population 

dynamics that determine the temporal profile of malaria risk. Here, we collate a database of monthly mosquito 

catch data spanning 40 years and 117 unique locations across India to explore the factors shaping these dynamics. 

Our analyses reveal pronounced heterogeneity in mosquito population dynamics, both within (across different 

locations) and across (in the same location) species complexes: this heterogeneity is driven by an interplay 

between species complex-specific factors and the ecological structure of the local environment. Despite this 

variation, the temporal patterns of mosquito abundance across these different locations can be categorised into a 

small number of clusters, each characterised by distinct temporal properties and each of which is influenced by a 

largely unique set of environmental factors. Based on these results, we create a tool to predict mosquito population 

seasonality in a given location, to inform the planning and timing of control efforts.  

Abstract 

Understanding the temporal dynamics (including the start, duration and end) of malaria transmission is key to 

optimising various control strategies, enabling interventions to be deployed at times when they can have the most 

impact. This temporal profile of malaria risk is intimately related to the dynamics of the mosquito populations 

underlying transmission. However, many outstanding questions remain surrounding these dynamics, including 

the specific drivers and their dependence on the ecological structure of a setting. Here we collate mosquito time-

series catch data from across India in order to better understand these dynamics and the factors shaping them. Our 

analyses reveal pronounced heterogeneity in mosquito population dynamics, both within (across different 

locations) and between (in the same location) species complexes. Despite this variation, we show that these time-

series can be clustered into a small number of categories characterised by distinct temporal properties and driven 

by a largely unique set of environmental factors. Exploration of these categories highlights that an interplay of 

species complex-specific factors and the ecological structure of the local environment together shape the temporal 

dynamics (including timing and extent of seasonality) of mosquito populations. The results of these analyses are 

then integrated with spatial predictions of species presence/absence in order to generate predictive maps of 

mosquito population seasonality across India, to inform the planning and timing of malaria control efforts. 
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Background 

With an estimated 200 million cases and over 600,000 deaths in 20171, malaria represents one of the 

most serious infectious diseases globally2. Nineteen countries in sub-Saharan Africa along with India 

account for almost 85% of the global burden3, with Plasmodium falciparum most prevalent in African 

settings, and India alone accounting for almost 50% of the global Plasmodium vivax burden4. 

Transmission occurs via mosquito vectors belonging to the Anopheles genus – these vectors are 

heterogeneously distributed across the globe5,6, a feature that results in marked differences in the 

transmission dynamics of malaria across different ecological contexts. 

Much work has focussed on characterising the global spatial distribution (presence/absence) of these 

malaria vectors7,8. This work represents a vital input to surveillance and control programmes aimed at 

mitigating the impacts of vector borne diseases worldwide. By contrast, less attention has been paid to 

understanding the temporal patterns of vector abundance, and how these dynamics are shaped by the 

local environment. Mosquito populations are highly temporally dynamic, exhibiting substantial annual 

fluctuations in size9,10 that drive the temporal profile of malaria risk. Understanding the determinants of 

these dynamics is important given that the efficacy of many malaria control interventions (such as 

seasonal malaria chemoprevention11,12 and indoor-residual spraying13,14) depends on the timing of their 

delivery in relation to seasonal peaks in malaria risk. Effective utilisation of these interventions will be 

vital for achieving the goals of the World Health Organisation’s “High Burden, High Impact” strategy, 

which aims to substantially reduce/eliminate malaria in India and the ten African nations with the 

highest global burden15.  

Despite their importance, many questions remain surrounding the drivers of mosquito population 

dynamics. Rainfall is frequently considered a key determinant of mosquito temporal dynamics due to 

the requirement of an aquatic habitat for the early life cycle stages, with many species displaying a 

preference for transient, rain-fed pools of water in which to breed16. However, whilst a close relationship 

has been observed between rainfall occurrence, peaks in mosquito populations and malaria cases17 (e.g. 

Anopheles gambiae s.l.18–20 for African settings and Anopheles dirus s.l. across India and south-East 

Asia21), Anopheles funestus s.l. and Anopheles annularis s.l. populations frequently lack marked 

seasonal fluctuations in population abundance22,23 10,24,25. This brings into question how generalisable 

relationships between rainfall and mosquito population dynamics are. The influence of other factors 

such as temperature (which has a marked influence on many mosquito traits including larval 

development26, biting rates and mortality rates27) remains similarly unclear. Recent field-based work 

has suggested that considerations of both rainfall and temperature are necessary to understand seasonal 

patterns of malaria incidence28. However, these analyses have been restricted to a small number of 

settings across sub-Saharan Africa; leaving the influence of temperature regimen on mosquito 

population dynamics largely unexplored in other ecological settings.  
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These results highlight a number of outstanding questions surrounding the drivers of mosquito 

population dynamics. Using India as a case study, we collate a dataset of temporally disaggregated 

mosquito catch data from across the country to better understand variation in mosquito population 

dynamics and the factors underlying this variation. We use these data to characterise the temporal 

patterns displayed by different mosquito species complexes and identify pronounced heterogeneity in 

the extent and nature of seasonal dynamics, both between species complexes and across different 

locations. Exploring the drivers of these dynamics highlights the critical importance of both abiotic and 

species complex-specific factors in shaping temporal patterns of mosquito abundance. It also 

underscores the importance of considering both species composition and ecological structure when 

implementing malaria control interventions. 
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Results 

Substantial Diversity in Mosquito Population Dynamics Within and Between Species: A total of 

272 time-series from 117 locations across India were identified through the systematic review, spanning 

7 species complexes that together represent the dominant malaria vectors in the country (Fig.1A). These 

time-series were then smoothed using a Negative Binomial Gaussian Process based framework 

(Fig.1B). Substantial variation in temporal dynamics was observed between different species 

complexes – Anopheles dirus s.l. populations tended to peak during the monsoon period (typically June 

to September), whilst many Anopheles fluviatilis s.l. populations peaked between November and 

February (the dry season across most of India), reaching their lowest density during the monsoon. By 

contrast, a number of time-series belonging to Anopheles annularis s.l. demonstrated perennial patterns 

of abundance. In addition to this variation between species complexes, we also observed extensive 

variation in temporal dynamics within a species complex. Across the 85 time-series collated for 

Anopheles culicifacies s.l., populations varied substantially in both the extent and timing of their 

seasonal peaks; this ranged from sharp peaks in the monsoon season to perennial characteristics more 

similar to those observed for Anopheles annularis s.l.. A range of dynamics were also observed for 

time-series belonging to Anopheles stephensi s.l., from peaks coincident with the monsoon season to 

bimodal dynamics displaying peaks both during and outside the rainy season.  

Statistical Characterisation of Mosquito Catch Time-Series Properties Reveals Distinct Temporal 

Patterns: An array of summary statistics were calculated for each time series in order to characterise 

their temporal properties (see Supplementary Methods and Supp Fig.2 for more information). This 

was followed by k-means clustering of the results, to assess whether the observed variation could be 

delineated into discrete groups, each characterised by distinct temporal patterns. We identified 4 groups 

(Fig.2A) – these included time-series peaking during the monsoon season (Cluster 1), displaying 

bimodal characteristics (Cluster 2), peaking in the dry season (Cluster 3) or displaying perennial 

patterns of abundance (Cluster 4) (Fig.2B). Cluster assignment was robust to the choice of prior used 

in the time-series fitting and smoothing (Supp Fig.3). The distinct patterns displayed by each group 

were not due to differences in the timing and extent of rainfall across India – we observed a high positive 

cross-correlation product between rainfall and mosquito density for Cluster 1 (r=0.52), but a negative 

correlation for Cluster 3 (r=-0.41) and low correlation for Clusters 2 and 4 (r=-0.08 and 0.03 

respectively, Supp Fig.4). This suggests that the observed patterns represent genuine differences 

between species and across locations in how mosquito populations respond to rainfall.  

For some species complexes, the majority of their time-series belonged to a single cluster (Fig.2C) –

Anopheles dirus s.l time-series were restricted primarily to Cluster 1 (monsoon season peaking) whilst 

Anopheles fluviatilis s.l. time-series were almost exclusively found in Cluster 3 (dry season peaking). 

This is suggestive of strong species complex-specific associations with particular temporal dynamics. 
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By contrast, time series belonging to Anopheles culicifacies s.l. appeared across all four clusters – 

indicating that different sibling species within the complex display distinct temporal dynamics or that 

mosquito populations belonging to the species complex are able to adopt a diverse array of temporal 

dynamics depending on the particular ecological setting. 

Mosquito Population Dynamics are Determined by a Complex Interplay of Abiotic and Biotic 

Factors: Using binary indicators for species complex (7 total, indicating which species complex a 

particular time-series belongs to) and a suite of ecological variables (25 total) as predictors, we fitted a 

multinomial logistic regression model to the cluster labels (i.e. which cluster each time-series had been 

assigned to) to explore potential factors underlying the observed variation in temporal dynamics. This 

framework produces one coefficient estimate for each cluster and predictor (a total of 4 coefficients per 

cluster and predictor), with that coefficient defining the strength of the association between a predictor 

and a particular cluster.  

Across the species complex coefficients, Anopheles culicifacies sl. and Anopheles subpictus s.l. 

demonstrated large and positive associations with Cluster 1 (monsoon peaking dynamics), whereas for 

Anopheles fluviatilis s.l., this relationship was strongly negative (the species-complex associated with 

Cluster 3 instead). To explore this variation more systematically, we employed a hierarchical clustering 

approach to examine the coefficient values across all species-complexes simultaneously and identified 

significant structuring (Fig.3A). In contrast to Anopheles culicifacies s.l. and Anopheles subpictus s.l. 

(which clustered together and showed a strong positive association with Cluster 1 and a strong negative 

association with Cluster 3), the binary indicator variable for Anopheles minimus s.l. and Anopheles dirus 

s.l. displayed weak associations with all clusters, suggesting either (a) the absence of a strong species 

complex-specific tendency to adopt a particular temporal pattern and (b) that broader ecological 

structure of the environment (as represented by the environmental covariates) instead of the species-

complex might be the primary driver of the observed dynamics.  

A number of environmental covariates also demonstrated cluster-specific associations (Fig.3B). Both 

temperature seasonality and total annual rainfall strongly associated with Cluster 1 (which possessed 

the dynamics most strongly correlated with rainfall, Supp Fig.4). By contrast, perennial dynamics 

(Cluster 4) strongly associated with the continuous presence of water bodies and negatively associated 

with both temperature seasonality and rain seasonality. Strong associations with landcover were 

observed for Cluster 2 (strongly negative for urbanicity) and Cluster 3 (strongly positive for woody 

savannas). In order to examine the broader patterns of association, we ranked the coefficients for each 

environmental variable within each cluster according to their magnitude, and selected the 15 with the 

strongest association in each cluster (positive or negative). The top 15 variables for each cluster were 

then compared to assess the extent of overlap, revealing that each cluster tended to associate with a 

unique set of ecological factors (Fig.3C). These mutually exclusive and cluster-specific patterns of 
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association with environmental covariates were similarly borne out across an analysis of the correlation 

of all coefficients between clusters, which revealed them to be highly negatively correlated (Supp 

Fig.5).  

Predictive Mapping Highlights the Extensive Variation in Mosquito Dynamics Across India: We 

next integrated these results with spatial predictions of mosquito species complex presence/absence to 

produce predictive maps of mosquito population dynamics across India; specifically, to generate 

estimates of the probability that a given location contains ≥1 mosquito species complex displaying a 

particular temporal pattern (Fig.4). Our results predict that monsoon peaking dynamics (Cluster 1) are 

most likely in the North and Northeast (Fig.4A). This contrasts with the predicted spatial distribution 

of bimodal dynamics (Cluster 2), which are predicted to be more likely across central India and less 

likely in the Northeast. Dynamics involving peaks during the dry season tracks the predicted spatial 

distribution of Anopheles fluviatilis s.l. closely and are predicted to be most probable across central 

India (Fig.4C) – a similar pattern was observed for spatial predictions of perennial dynamics (Fig.4D). 

Together these results suggest that spatial variability in both species complex occurrence and 

environmental factors together generate the complex patterns of mosquito temporal dynamics observed 

across India.  
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Figure 1: Exploring Species Complex-Specific Patterns of Mosquito Population Dynamics. 

Negative Binomial Gaussian Processes incorporating a periodic kernel were fitted to each of the 272 

time-series collected from 118 locations across India collated as part of the systematic review. These 

fitted time-series (representing monthly catches over the course of a year) were then normalised and the 

results plotted here, disaggregated by species complex. (A) Map of India showing the different locations 

for which time-series data was available. Points represent a single collected time-series, coloured 

according to the species complex. (B) Normalised, Gaussian Process fitted time-series disaggregated 

by species complex. In all instances, pale lines represent a single time-series for that particular species 

complex, and the brighter line is the mean of all of the time-series belonging to that species complex, 

evaluated at that particular timepoint.  
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Figure 2: Characterisation and Clustering of Time-Series with Similar Temporal Properties. 

Statistical characterisation of the properties of each time series was followed by Principal Components 

Analysis and the results clustered using the k-means algorithm. (A) Results of the k-means clustering 

algorithm for 4 clusters, with a Principal Components Analysis applied for visualisation purposes. 

Colour of the points refers to cluster membership, coloured ellipsoids demarcate the 75th quantile of the 

density associated with each cluster. First 3 principal components are plotted, explaining 53%, 15% and 

14% of the overall variation, respectively. (B) The time-series belonging to each cluster. Pale lines 

represent individual time-series, brighter line represents the mean of all the time-series belonging to 

that cluster, evaluated at each timepoint. Characterisation and clustering in this way revealed distinct 

groups of time-series that share similar temporal properties. (C) The proportion of time-series for each 

species complex belonging to each cluster - different coloured bars indicate different species complexes 

(see legend) and y axis corresponds to the proportion of time-series (for a given species complex) 

belonging to that cluster.  
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Figure 3: Exploring Drivers of Mosquito Population Dynamics Using Multinomial Logistic 

Regression. A multinomial logistic regression-based approach using both species complex and a suite 
of environmental variables was used to explore the factors associated with different mosquito 
population dynamics. The output of this regression is a single coefficient describing the strength of 
the association per variable and cluster. (A) Hierarchical clustering of the regression results for each 
species complex, as defined by the set of coefficient values describing the strength of the association 
between that species complex and the particular cluster. (B) The strength of the association between 
each of the 25 environmental covariates used and the relevant temporal cluster. (C) Upset plot 
summarising the environmental variable coefficients. For each cluster, the 15 environmental 
covariates with the strongest association were selected and the extent of overlap in this top 15 
covariates compared across clusters; x-axis indicates the specific pairwise cluster comparison, y axis 
the number of shared top 15 covariates between the two clusters.   
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Figure 4: Predictive Maps of Mosquito Population Seasonality Across India. The results of the 

multinomial logistic regression were integrated with recently generated maps describing the probability 

of presence/absence for different Anopheline species complexes. Together, these were used to generate 

estimates of a given area possessing at least one mosquito species complex with a particular temporal 

profile (as defined by the previously described clusters). (A) Results of this analysis for Cluster 1 (the 

“monsoon peak” cluster) – red dots describe the locations in which a mosquito species complex with a 

temporal profile assigned to Cluster 1 were found. (B) As for A, but for the “bimodal” cluster. (C) As 

for A, but for the “peak in dry season” cluster. (D) As for A, but for the “perennial” cluster. In all cases, 

the map colour describes the probability of a given area containing one or more mosquito species 

complex displaying that pattern of temporal dynamics. The coloured points indicate locations where a 

mosquito species complex displaying temporal dynamics belonging to that cluster were empirically 

observed.    
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Discussion 

Understanding the temporal dynamics of malaria transmission represents an important input to effective 

deployment of control interventions, yet many outstanding questions remain surrounding the drivers of 

these dynamics. Here we leverage a collection of temporally disaggregated mosquito time-series catch 

data from across India to explore these dynamics and the comparative role of abiotic and species 

complex-specific factors in shaping them. Our results reveal material variation in mosquito population 

dynamics between species complexes and across locations, ranging from highly seasonal and rainfall-

concordant dynamics through to perennial and even rainfall-discordant dynamics. Analysis of this 

variation has revealed a complex interplay between biotic (species complex-specific drivers) and abiotic 

(the broader ecological structure of the environment) factors in shaping these dynamics. Importantly, 

the comparative importance of these factors depends intimately on the setting and mosquito species 

complex being considered.  

In a manner largely independent of the ecological setting, Anopheles fluviatilis s.l. populations typically 

peaked during the dry season. Whilst previous work has identified these dynamics29,30, our work 

highlights the consistency of this observation across locations, showing that these dynamics are largely 

restricted to Anopheles fluviatilis s.l.. These results also align with previous work that has indicated 

streams and surrounding stagnant water to be a preferred breeding site for members of the species 

complex31. Such breeding sites are typically unsuitable during the monsoon season when flooding 

occurs but become increasingly suitable as the dry season ensues. By contrast, Anopheles culicifacies 

s.l. displayed a wide array of temporal dynamics depending on the sampling site. These ranged from 

peaking during the monsoon to bimodal and even perennial behaviour – a finding consistent with 

documented variation in the species complex’s breeding habits, which include a wide range of both 

fresh-water32,33 and brackish34 sources (although the latter has been observed more rarely). However, 

variation in breeding habitats have also been documented between sibling species belonging to the 

complex. For example, species B and A have been shown to differentially associate with man-made 

sites (such as domestic wells) and naturally-occurring water bodies respectively for breeding35. Due to 

our inability to disaggregate time-series according to sibling species (a product of the fact that many of 

these sibling-species are morphologically identical and therefore not disaggregated in much 

entomological data), the drivers of the observed variation in temporal dynamics across Anopheles 

culicifacies s.l. time series therefore remain unclear – specifically, whether this diversity is driven by 

sibling species displaying distinct temporal dynamics (irrespective of broader environmental factors) or 

because Anopheles culicifacies s.l. temporal dynamics are more plastic and responsive to environmental 

factors than Anopheles fluviatilis s.l. (where the same dynamics were observed irrespective of the 

broader ecological structure of the surrounding environment).  
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Although the exact importance of biotic (sibling species-specific breeding habitat preferences) and 

abiotic (wider environmental variables) factors in driving variation in Anopheles culicifacies s.l. 

temporal dynamics remains unclear, our results do support a significant role for the environment in 

shaping mosquito population dynamics more generally. Both total annual rainfall and temperature 

seasonality was strongly positively associated with monsoon peaking seasonal dynamics (Cluster 1) but 

negatively associated with all other temporal profiles. Rainfall is frequently considered a key driver of 

mosquito population dynamics but the role of temperature (which has a significant influence on many 

individual mosquito life-history traits26,36) in shaping mosquito population dynamics is increasingly 

being recognised39. Our results support this contention and specifically highlight the importance of 

seasonal fluctuations in temperature, not just rainfall, in contributing to the generation of marked 

seasonal dynamics like those observed for mosquito populations belonging to Cluster 1. 

In contrast to the seasonal dynamics of Cluster 1, the perennial patterns of abundance observed for 

Cluster 4 were most strongly associated with flow accumulation and water area occurrence (acting as 

proxies for proximity to rivers and static bodies of water respectively). These factors were negatively 

associated with all other temporal profiles. This is consistent with reports indicating that static water 

sources may provide sites available for oviposition and mosquito breeding year round37,38 and highlights 

the importance of the local hydrological environment (in conjunction with species-specific breeding 

preferences) in shaping mosquito populations and their annual dynamics. Interestingly, both 

temperature seasonality and rainfall seasonality were negatively associated with Cluster 4 dynamics, a 

finding in-keeping with the results for Cluster 1, and again suggesting the role of both dynamical 

temperature and rainfall regimen (rather than rainfall alone) in shaping annual patterns of mosquito 

abundance.   

As well as these hydrological and climatic associations, we also observed a significant influence of 

landcover patterns on temporal dynamics. Urbanicity (measured by the two covariates Landcover and 

Distance to City) was consistently and positively associated with rainfall concordant, monsoon peaking 

dynamics (Cluster 1) and negatively associated with other temporal profiles. This is possibly due to the 

diverse array of physical features present in cities (ranging from tyres to wells and overhead tanks) that 

are able to hold water following rainfall, and which have previously been characterised as breeding sites 

for a range of mosquito species39,40. However, reports of perennial patterns of abundance in other urban 

centres suggests that city-specific approaches to management of water containers may also shape 

mosquito population dynamics40. Overall however, these results demonstrate clear structuring of the 

environmental factors shaping mosquito population dynamics and highlight that unique sets of 

ecological factors drive different temporal profiles. 

It is important to note that factors other than mosquito dynamics are also involved in defining the 

temporal profile of malaria risk. Whilst an association between the size of mosquito populations and 
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case numbers is well established41,42, the nature of this relationship remains less clear. Interactions 

between malaria endemicity43, mosquito abundance44 and vector competence28 can lead to non-linear 

dynamics that can be further modified by human behavioural factors such as migration or occupational 

practices45. Due to heterogeneity in mosquito sampling methods and limitations on the extent of 

entomological data describing relevant malaria metrics such as sporozoite positivity, we were unable to 

explore many of these factors. Similarly, the lack of disaggregation according to sibling species (which 

vary markedly in malaria vectorial efficiency) and accompanying epidemiological information (on 

malaria prevalence or incidence) precludes us from better resolving the comparative contributions of 

different mosquito species to transmission. This limits our ability to translate temporal patterns of 

mosquito populations into relevant metrics such as the Entomological Inoculation Rate (EIR). Whilst 

we mitigate this limitation somewhat by focussing our analyses specifically on dominant vector species-

complexes previously established as relevant to malaria transmission in India46, it is not necessarily the 

case that each mosquito species analysed here is equally relevant to malaria transmission. Future work 

integrating these analyses with those exploring seasonality of case incidence (c.f. Nguyen et al.47) would 

therefore likely prove instructive.  

Overall, our work highlights that temporal variation in mosquito populations is driven by a complex 

interplay of biotic and abiotic factors, with the comparative importance of these depending intimately 

on the species complex and ecological setting being considered. In doing so, this work underscores the 

crucial importance of integrating both species composition and ecological structure into our 

understanding of the temporal profile of malaria risk – a crucial and operationally relevant input for 

optimising the delivery of malaria control interventions.  
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Methods  

Systematic Review of Indian Entomological Literature  

Web of Science and PubMed databases were searched on 17th October 2017 using the keywords “India” 

AND “Anophel*” to identify references with temporally disaggregated entomological data. We 

identified 1945 records with 1556 remaining after removing duplicates. Following Title and Abstract 

screening 281 records were retained for full text evaluation. We included records containing temporally 

disaggregated adult mosquito catch data with monthly (or finer) temporal resolution spanning at least 

12 months that had not been conducted as part of vector control intervention trials, and where sufficient 

information to geolocate the catch site was provided. 78 references were retained that yielded 117 

geolocatable areas across India. These references contained 272 time-series spanning the malaria 

vectors Anopheles annularis s.l., culicifacies s.l., dirus s.l., fluviatlis s.l., minimus s.l., stephensi s.l. and 

subpictus s.l.. See Supplementary Information for further details.  

Time-Series Fitting and Interpolation  

To smooth the noise in the mosquito catch data we fitted a Gaussian Process model to each of the 

extracted time-series, using a Negative Binomial likelihood to account for overdispersion in the data:  𝜃, 𝜎 ~ 𝜋(𝜃, 𝜎) 𝒇~ 𝐺𝑃(0, 𝐾𝜃(𝑥)) 𝑦𝑖  ~ 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑒𝑓(𝑥𝑖), 𝜎) ∀𝑖 ∈ {1, … , 𝑁} 

where 𝒇 is a distribution of functions from a zero-mean Gaussian Process with covariance function 𝐾𝜃, 𝑓(x) are function evaluations at times 𝑥 , 𝑦 are the observed mosquito counts indexed by timepoint 𝑖, and 𝜎 and 𝜃 represent a vector of hyperparameters involved in defining the overdispersion of the 

Negative Binomial distribution and the functional form of the covariance function respectively. Given 

that mosquito population dynamics are typically characterised by repeating patterns occurring either 

seasonally or annually, a periodic kernel function was used to define the covariance between pairs of 

points, defined as: 

𝑘(𝑥, 𝑥′) = 𝛼2exp (− 2𝑙2 𝑠𝑖𝑛2 (𝜋|𝑥 − 𝑥′|𝑝 )) 

where 𝑝 represents the period over which we would expect points to show similar dynamics (i.e. a 

period of twelve would imply we expect points separated by 12 months to be most similar), 𝛼 specifies 

the magnitude of the covariance, and 𝑙 represents a lengthscale parameter further constraining the extent 

to which two values separated by a given time can co-vary. Weakly informative priors were used 
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although the results were not sensitive to the choice of prior (see Supp. Fig.4). Fitting was undertaken 

with the probabilistic programming language STAN48.  

Time-Series Characterisation and Clustering by Features  

Motivated by previous work providing a framework to statistically characterise the empirical structure 

of time-series data49 and work characterising the seasonality of malaria case incidence47, we calculated 

several summary statistics for each smoothed time-series to characterise their temporal properties. 

These include the Kullback-Liebler divergence (measuring the divergence of the time-series from a 

uniform distribution), the median of the period (𝑝) from the Negative Binomial Gaussian Process fitting 

(informing the dominant temporal modality present in the data), the proportion of points greater than 

1.65x the mean (measuring how peaked the time-series is), the distance of the first peak from January, 

and then 3 features arising from fitting 1 and 2 component Von-Mises distributions to the smoothed 

time-series: specifically, the mean of the 1 component Von-Mises distribution, the number of peaks 

(determined by comparing the quality of fit for 1 and 2 component Von-Mises distributions), and the 

weight (𝜔), specifying the comparative contributions of each component in the two-component fitting. 

See Supplementary Information for further details. From this we obtain a series of 7 real numbers 

describing the temporal properties of each time-series. We then applied a Principal Components 

Analysis to these results to identify a lower-dimensional representation of the structure present in the 

data amenable to visualisation and implemented k-means clustering to identify clusters of time-series 

with similar temporal features – i.e. this clustering assigns each smoothed time-series to one cluster. 

Statistical Modelling and Prediction of Seasonal Modality  

For each of the 117 study locations we extracted a suite of environmental variables derived from satellite 

data that together describe the location’s ecological structure. These include the BioClimatic variables 

(a suite of biological relevant covariates defined from monthly rainfall and temperature satellite data50), 

various measures of aridity51,52, a number of covariates describing the seasonality and extent of water 

bodies53, landcover54 and a number of other variables previously used in defining the global distribution 

of Anopheline vectors55. A complete list of the covariates used is in Supplementary Table 2. These 

covariates (25 in total) and a covariate for Anopheline species (1 for each time-series indicating which 

species it belonged to) were used as covariates in a penalised (L2) multinomial logistic regression model 

predicting the cluster (of time-series with similar temporal properties, assigned based on the results of 

the k-means clustering) a particular time-series belonged to. Fitting this model yielded regression 

coefficients describing the strength of association between a species complex/environmental variable 

and membership of a particular cluster – specifically, 1 coefficient per cluster and predictor, i.e. a total 

of k coefficients per predictor where k is the number of clusters. The results of these analyses were then 

integrated with recently produced maps of vector presence/absence (as part of work conducted with the 

Humbug Project (http://humbug.ac.uk/), funded through a Google Impact Challenge grant) to generate 
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of predictive maps of mosquito population dynamics across India (see Supplementary Information 

for further detail).  

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 12, 2021. ; https://doi.org/10.1101/2021.01.09.21249456doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.09.21249456
http://creativecommons.org/licenses/by-nc-nd/4.0/


C. Whittaker et al.  Mosquito Population Dynamics  17 

 

References 

1. Weiss, D. J. et al. Mapping the global prevalence, incidence, and mortality of Plasmodium falciparum, 2000–17: a 
spatial and temporal modelling study. Lancet 394, 322–331 (2019). 

2. Roth, G. A. et al. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries 
and territories, 1980–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 392, 1736–
1788 (2018). 

3. World malaria report 2019. Available at: https://www.who.int/news-room/feature-stories/detail/world-malaria-
report-2019. (Accessed: 24th December 2019) 

4. Battle, K. E. et al. Mapping the global endemicity and clinical burden of Plasmodium vivax, 2000–17: a spatial and 
temporal modelling study. Lancet 394, 332–343 (2019). 

5. Warrell, D. A. & Gilles, H. M. Essential Malariology. (CRC Press, 2002). 
6. Hay, S. I. et al. Developing Global Maps of the Dominant Anopheles Vectors of Human Malaria. PLoS Med. 7, 

e1000209 (2010). 
7. Sinka, M. E. Global Distribution of the Dominant Vector Species of Malaria. in Anopheles mosquitoes - New 

insights into malaria vectors (InTech, 2013). doi:10.5772/54163 
8. Sinka, M. E. et al. A global map of dominant malaria vectors. Parasit. Vectors 5, 69 (2012). 
9. Koenraadt, C. J. ., Githeko, A. . & Takken, W. The effects of rainfall and evapotranspiration on the temporal 

dynamics of Anopheles gambiae s.s. and Anopheles arabiensis in a Kenyan village. Acta Trop. 90, 141–153 (2004). 
10. Das, M. K. et al. Malaria epidemiology in an area of stable transmission in tribal population of Jharkhand, India. 

Malar. J. 16, 181 (2017). 
11. Wilson, A. L. & IPTc Taskforce. A Systematic Review and Meta-Analysis of the Efficacy and Safety of 

Intermittent Preventive Treatment of Malaria in Children (IPTc). PLoS One 6, e16976 (2011). 
12. Ross, A., Maire, N., Sicuri, E., Smith, T. & Conteh, L. Determinants of the cost-effectiveness of intermittent 

preventive treatment for malaria in infants and children. PLoS One 6, (2011). 
13. Pluess, B., Tanser, F. C., Lengeler, C. & Sharp, B. L. Indoor residual spraying for preventing malaria. Cochrane 

Database Syst. Rev. (2010). doi:10.1002/14651858.CD006657.pub2 
14. Health Organization, W. AN OPERATIONAL MANUAL FOR INDOOR RESIDUAL SPRAYING (IRS) FOR 

MALARIA TRANSMISSION CONTROL AND ELIMINATION SECOND EDITION INDOOR RESIDUAL 

SPRAYING. 
15. WHO | High burden to high impact: a targeted malaria response. WHO (2019). 
16. Gimnig, J. E., Ombok, M., Kamau, L. & Hawley, W. A. Characteristics of larval anopheline (Diptera: Culicidae) 

habitats in Western Kenya. J. Med. Entomol. 38, 282–8 (2001). 
17. Cairns, M. et al. Estimating the potential public health impact of seasonal malaria chemoprevention in African 

children. Nat. Commun. 3, 881 (2012). 
18. Appawu, M. et al. Malaria transmission dynamics at a site in northern Ghana proposed for testing malaria vaccines. 

Trop. Med. Int. Heal. 9, 164–170 (2004). 
19. Okello, P. E. et al. Variation in malaria transmission intensity in seven sites throughout Uganda. Am. J. Trop. Med. 

Hyg. 75, 219–225 (2006). 
20. White, M. T. et al. Modelling the impact of vector control interventions on Anopheles gambiae population 

dynamics. Parasit. Vectors 4, 153 (2011). 
21. Obsomer, V., Defourny, P. & Coosemans, M. The Anopheles dirus complex: spatial distribution and environmental 

drivers. Malar. J. 6, 26 (2007). 
22. Cohuet, A. et al.  High Malaria Transmission Intensity Due to Anopheles funestus (Diptera: Culicidae) in a Village 

of Savannah–Forest Transition Area in Cameroon . J. Med. Entomol. 41, 901–905 (2004). 
23. Mendis, C. et al. Anopheles arabiensis and An. funestus are equally important vectors of malaria in Matola coastal 

suburb of Maputo, southern Mozambique. Med. Vet. Entomol. 14, 171–180 (2000). 
24. Singh, R. K., Haq, S., Kumar, G. & Dhiman, R. C. U Bionomics and vectorial capacity of Anopheles annularis with 

special reference to India: a review. J. Commun. Dis. 45, 1–16 (2013). 
25. Das, N. G., Gopalakrishnan, R., Talukdar, P. K. & Baruah, I. Diversity and seasonal densities of vector anophelines 

in relation to forest fringe malaria in district Sonitpur, Assam (India). J. Parasit. Dis. 35, 123–128 (2011). 
26. Bayoh, M. N. & Lindsay, S. W.  Effect of temperature on the development of the aquatic stages of Anopheles 

gambiae sensu stricto (Diptera: Culicidae) . Bull. Entomol. Res. 93, 375–381 (2003). 
27. Shapiro, L. L. M., Whitehead, S. A. & Thomas, M. B. Quantifying the effects of temperature on mosquito and 

parasite traits that determine the transmission potential of human malaria. PLOS Biol. 15, e2003489 (2017). 
28. Beck-Johnson, L. M. et al. The importance of temperature fluctuations in understanding mosquito population 

dynamics and malaria risk. R. Soc. Open Sci. 4, (2017). 
29. Gunasekaran, K., Jambulingam, P., Sadanandane, C., Sahu, S. S. & Das, P. K. D Reliability of light trap sampling 

for Anopheles fluviatilis, a vector of malaria. Acta Trop. 58, 1–11 (1994). 
30. Sahu, S. S. et al. Bionomics of Anopheles fluviatilis and Anopheles culicifacies (Diptera: Culicidae) in Relation to 

Malaria Transmission in East-Central India. J. Med. Entomol. 54, 821–830 (2017). 
31. Dash, S. et al. Preferential breeding habitats of sibling species complexes of Anopheles fluviatilis in east-central 

India. ~ 91 ~ Int. J. Mosq. Res. 5, 91–95 (2018). 
32. Surendran, S. N. & Ramasamy, R. Some characteristics of the larval breeding sites of Anopheles culicifacies 

species B and E in Sri Lanka. J. Vector Borne Dis. 42, 39–44 (2005). 
33. Barik, T. K., Sahu, B. & Swain, V. A review on Anopheles culicifacies: From bionomics to control with special 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 12, 2021. ; https://doi.org/10.1101/2021.01.09.21249456doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.09.21249456
http://creativecommons.org/licenses/by-nc-nd/4.0/


C. Whittaker et al.  Mosquito Population Dynamics  18 

 

reference to Indian subcontinent. Acta Tropica 109, 87–97 (2009). 
34. Jude, P. J., Dharshini, S., Vinobaba, M., Surendran, S. N. & Ramasamy, R. Anopheles culicifacies breeding in 

brackish waters in Sri Lanka and implications for malaria control. Malar. J. 9, (2010). 
35. Barik, T. K., Sahu, B. & Swain, V. A review on Anopheles culicifacies: From bionomics to control with special 

reference to Indian subcontinent. Acta Tropica 109, 87–97 (2009). 
36. Shapiro, L. L. M., Whitehead, S. A. & Thomas, M. B. Quantifying the effects of temperature on mosquito and 

parasite traits that determine the transmission potential of human malaria. PLoS Biol. 15, (2017). 
37. Minakawa, N., Dida, G. O., Sonye, G. O., Futami, K. & Njenga, S. M. Malaria vectors in Lake Victoria and 

adjacent habitats in Western Kenya. PLoS One 7, (2012). 
38. Kumar, A. et al. Anopheles subpictus carry human malaria parasites in an urban area of Western India and may 

facilitate perennial malaria transmission. Malar. J. 15, (2016). 
39. Lin, C.-H., Schiøler, K. L., Ekstrøm, C. T. & Konradsen, F. Location, seasonal, and functional characteristics of 

water holding containers with juvenile and pupal Aedes aegypti in Southern Taiwan: A cross-sectional study using 
hurdle model analyses. PLoS Negl. Trop. Dis. 12, e0006882 (2018). 

40. Thomas, S. et al. Overhead tank is the potential breeding habitat of Anopheles stephensi in an urban transmission 
setting of Chennai, India. Malar. J. 15, (2016). 

41. Bashar, K. & Tuno, N. Seasonal abundance of Anopheles mosquitoes and their association with meteorological 
factors and malaria incidence in Bangladesh. Parasit. Vectors 7, 442 (2014). 

42. GALARDO, A. K. R. et al. Seasonal abundance of anopheline mosquitoes and their association with rainfall and 
malaria along the Matapí River, Amapí, Brazil. Med. Vet. Entomol. 23, 335–349 (2009). 

43. Churcher, T. S., Trape, J. F. & Cohuet, A. Human-to-mosquito transmission efficiency increases as malaria is 
controlled. Nat. Commun. 6, (2015). 

44. Romeo-Aznar, V., Paul, R., Telle, O. & Pascual, M. Mosquito-borne transmission in urban landscapes: The missing 
link between vector abundance and human density. Proc. R. Soc. B Biol. Sci. 285, (2018). 

45. Cohen, J. M. et al. Rapid case-based mapping of seasonal malaria transmission risk for strategic elimination 
planning in Swaziland. Malar. J. 12, (2013). 

46. Dev, V. & Sharma, V. P. The Dominant Mosquito Vectors of Human Malaria in India. in Anopheles mosquitoes - 

New insights into malaria vectors (InTech, 2013). doi:10.5772/55215 
47. Nguyen, M. et al. Mapping malaria seasonality: a case study from Madagascar. (2019). 
48. Carpenter, B. et al. Stan: A Probabilistic Programming Language. J. Stat. Softw. 76, (2017). 
49. Fulcher, B. D., Little, M. A. & Jones, N. S. Highly comparative time-series analysis: The empirical structure of time 

series and their methods. J. R. Soc. Interface 10, (2013). 
50. Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. 

Climatol. 37, 4302–4315 (2017). 
51. Zomer, R. J., Trabucco, A., Bossio, D. A. & Verchot, L. V. Climate change mitigation: A spatial analysis of global 

land suitability for clean development mechanism afforestation and reforestation. Agric. Ecosyst. Environ. 126, 67–
80 (2008). 

52. Zomer, R., Bossio, D., Trabucco, A. & Yuanjie, L. Trees and water: smallholder agroforestry on irrigated lands in 

Northern India. (2007). 
53. Lehner, B. & Döll, P. Development and validation of a global database of lakes, reservoirs and wetlands. J. Hydrol. 

296, 1–22 (2004). 
54. Friedl, M. A. et al. MODIS Collection 5 global land cover: Algorithm refinements and characterization of new 

datasets. Remote Sens. Environ. 114, 168–182 (2010). 
55. Sinka, M. E. et al. The dominant Anopheles vectors of human malaria in the Asia-Pacific region: occurrence data, 

distribution maps and bionomic précis. Parasit. Vectors 4, 89 (2011). 
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 12, 2021. ; https://doi.org/10.1101/2021.01.09.21249456doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.09.21249456
http://creativecommons.org/licenses/by-nc-nd/4.0/



