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4INESC-ID and Instituto Superior Técnico, Universidade de Lisboa, Taguspark, Porto Salvo, Lisboa 2744-016,
Portugal
5Division of Hematology and Department of Molecular Medicine, Mayo Clinic, 200 First Street SW,
Rochester, MN 55905, USA

The accumulation of somatic mutations, to which the cellular genome is per-
manently exposed, often leads to cancer. Analysis of any tumour shows that,
besides the malignant cells, one finds other ‘supporting’ cells such as fibro-
blasts, immune cells of various types and even blood vessels. Together, these
cells generate the microenvironment that enables the malignant cell popu-
lation to grow and ultimately lead to disease. Therefore, understanding
the dynamics of tumour growth and response to therapy is incomplete
unless the interactions between the malignant cells and normal cells are
investigated in the environment in which they take place. The complex inter-
actions between cells in such an ecosystem result from the exchange of
information in the form of cytokines- and adhesion-dependent interactions.
Such processes impose costs and benefits to the participating cells that may
be conveniently recast in the form of a game pay-off matrix. As a result,
tumour progression and dynamics can be described in terms of evolutionary
game theory (EGT), which provides a convenient framework in which to
capture the frequency-dependent nature of ecosystem dynamics. Here, we
provide a tutorial review of the central aspects of EGT, establishing a relation
with the problem of cancer. Along the way, we also digress on fitness and of
ways to compute it. Subsequently, we show how EGT can be applied to the
study of the various manifestations and dynamics of multiple myeloma bone
disease and its preceding condition known as monoclonal gammopathy of
undetermined significance. We translate the complex biochemical signals
into costs and benefits of different cell types, thus defining a game pay-off
matrix. Then we use the well-known properties of the EGT equations to
reduce the number of core parameters that characterize disease evolution.
Finally, we provide an interpretation of these core parameters in terms of
what their function is in the ecosystem we are describing and generate pre-
dictions on the type and timing of interventions that can alter the natural
history of these two conditions.

1. Introduction
Cancer is the result of the accumulation of somatic mutations, to which the cellu-
lar genome is continuously exposed [1,2]. Serial accumulation of mutations can
produce a cell that ignores the mechanisms which regulate growth control and
in addition may acquire an ability to invade other tissues—i.e. the full cancer
phenotype [2,3]. The human haploid genome is ca 3 ! 109 bp in length, and an
adult human body has approximately 1014 cells. DNA polymerases have an
error rate of around 1 ! 1029/base/replication [4] or approximately 1 ! 1027/
gene/replication [5,6]. These observations alone make it likely that there is at
least one cell harbouring any one possible mutation in our body [7]. Moreover,
the presence of free radicals generated by metabolism and environmental
genotoxic agents such as radiation, chemicals including therapeutic agents
(e.g. alkylating agents and benzene) and viruses (e.g. integrating retroviruses),
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can also damage the genome. Such diverse insults to the
genome also in part explain the great diversity in the mutation
landscape observed in tumours [8]. However, the transformed
cells alone do not constitute the tumour. Indeed, analysis of
any tumour shows that apart from the malignant cells, one
finds many ‘supporting’ cells such as fibroblasts, immune
cells of various types and blood vessels due to activation of
angiogenesis. Together, these cells create a local microenviron-
ment that enables the malignant cell population to grow and
ultimately lead to disease [9]. Therefore, understanding the
dynamics of tumour growth and response to therapy is incom-
plete unless the interactions between the malignant cells and
their environment are taken into consideration. The complex
interplay between the malignant cells and their environment
is due to the exchange of information in the form of cytokines
and adhesion-dependent interactions. Such a complex signal-
ling process imposes costs and benefits to the participant
cells that can be conveniently recast in the form of a game
pay-off matrix, the ensuing dynamics being well described in
terms of evolutionary game theory [10]. In the following, we
provide some basic aspects of evolutionary game theory
(EGT) followed by a concrete example from a well-defined dis-
ease process to illustrate the utility of the application of EGT
to cancer.

2. A quick motivation for evolutionary
game theory

The appearance of mutated cells that may undergo unregu-
lated replication may be conveniently described in terms of a
new species that attempts to invade a resident species (wild-
type) of normal cells. We shall implement such an ecological
approach resorting to the tools of EGT that, in the settings we
shall adopt here, provides a description equivalent to that of
the traditional equations of ecology [10].

The central equation of EGT is the so-called replicator
equation (RE), which makes use of the ubiquitous—yet
hard to define (see below)—concept of fitness. Let us sup-
pose that we have a population A of normal cells of initial
size NA(0), in which all cells replicate each at a rate a,
which we assume to be constant. Assuming infinite
resources, the equation governing the time evolution of the
population is simply

dNA(t)
dt

¼ aNA(t)! NA(t) ¼ NA(0)ea t:

Similarly, denoting by b (also assumed constant) the rate of
replication of mutated cells, the mutant population B evolves
in time according to the equation

dNB(t)
dt

¼ bNB(t)! NB(t) ¼ NB(0)eb t:

In this unrealistic scenario, in which the overall popula-
tion size increases exponentially, all that matters is the ratio
a/b: if a/b . 1, the normal cell population will outnumber
the mutant population, the opposite happening whenever
a/b , 1.

A more realistic scenario is to assume that the available
resources impose that the total population stays (approxi-
mately) constant at a fixed value (carrying capacity). We
can include this constraint by modifying the equations

above in the following way [11]:

dNA(t)
dt

¼ NA(t) (a# v)

and
dNB(t)

dt
¼ NB(t) (b# v):

Imposing the conservation of total population size (NT ;
const. ¼ NA(t) þ NB(t)) leads to NTv ¼ NA(t)a þ NB(t)b. In
other words, v stands as the average reproductive rate of
the population, and now all that matters is how a and b com-
pare with v: the population in which cells replicate at a
higher than average rate will outcompete the other. Conser-
vation of the total size of the population means that we
need only one equation to describe the two-population
dynamics. Choosing the resident population, we may write

dNA(t)
dt

¼ NA(t) (NT #NA(t))(a# b):

Assuming population size is large enough to convert
absolute cell numbers NA into cell frequencies x (our con-
tinuous description implicitly requires this assumption), we
may write

dx(t)
dt
¼ x(t) (1# x(t))(a# b): (2:1)

This nonlinear ordinary differential equation is a particular
case of the RE. It describes the evolutionary dynamics of a
sub-population of cells which (all) replicate at the same con-
stant rate a in the presence of another sub-population of cells,
all of which replicate at a constant rate b, provided the total
population size is constant.

The rate of cell replication provides a convenient (and also
conventional) definition of cell fitness. Indeed, in such a
simple model, the fact that those cells that replicate faster out-
compete the other cells, makes it natural to state that such
cells have a higher fitness than the others, implicitly assum-
ing an equivalence between these two concepts. This,
however, may prove insufficient to identify cell fitness, as
we demonstrate in §3.

Furthermore, in the previous example, the fitness of cells
of each sub-population remains constant in time, regardless
of the total number of cells of a given species. In other
words, it does not matter if there is 1 cell or 1000 cells of the
same type, their replication rate is the same. This is clearly a
crude assumption. There are many examples (and practitioners
in the field know it very well) in which (sub-population) size
matters, and this feature is in no way included in the equation
above. Importantly, this feature also severely constrains the
type of disease progression which one can describe, leaving
out several simple scenarios, such as the one we shall use to
describe the homoeostatic state of disease-free individuals.

EGT provides one possible means to overcome such type
of shortcomings. If size matters, then fitness should be
frequency-dependent. If we replace a in equation (2.1) by
wA(x) and b by wB(x), we may now write the general form
of the RE (replacing, as usual, the time derivative of x by _x),

_x ¼ x (1# x)(wA(x)# wB(x)): (2:2)

In its simplest form, the frequency dependence of the fitness
results, in EGT, from assuming that cells engage in a game in
which every cell interacts with any other cell with the same
likelihood (well-mixed approximation). The well-mixed approxi-
mation, also known as mean-field approximation, is well
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suited to discuss cell populations with high mobility, as one
usually finds in haematopoiesis (and, in multiple myeloma
(MM) bone disease that we will address in detail below). The
approximation is less justifiable in, e.g. solid tumours, where
space and limited (if any) cell motility may play a very impor-
tant role. With this proviso in mind, one may appreciate the
beauty and simplicity of the formalism that unfolds under
this approximation. When two cells interact, the result can be
computed by inspection of the so-called pay-off matrix

A B
A
B

pAA pAB
pBA pBB

! "
,

where pik stands for what a cell of type i gets from interacting
with a cell of type k. Interaction here is used in a very general
sense, to include competition for space and nutrients as well
as exchange of information through cytokines and growth fac-
tors. In fact, one may assume that this is how the fitness of a cell
is (directly or indirectly) modified, when this cell is in the pres-
ence of another cell (which can be of the same type or of
another type). In the well-mixed approximation, it is trivial to
compute the average fitness of a cell of each type. We may write

wA(x) ¼ x pAA þ (1# x) pAB

and wB(x) ¼ x pBA þ (1# x) pBB,

thus explicitly specifying the form of frequency dependence
that results from treating cell competition in a population of
constant size by means of EGT. Naturally, it is trivial to recover
the frequency independent scenario that we started with:
whenever pAA ¼ pAB ¼ a and pBA ¼ pBB ¼ b, we recover
equation (2.1) and the population dynamics no longer exhibits
a frequency-dependent behaviour. This, in turn, makes it clear
the meaning of frequency independence in this framework: it
does not matter with which cell type a focal cell interacts, the
result is always the same.

The generalization of these results for the case of three cell
types—that we shall address in the following—is trivial: we
now have to deal with two REs instead of one, as now the
number of independent frequencies is 2, given that x þ y þ
z ¼ 1 (x, y and z are the frequencies of species 1, 2 and 3,
respectively) and the pay-off matrix will be a 3 ! 3 matrix.
This generalization is carried out in the appendix A, where
some properties that derive from the general behaviour of
EGT are also provided, and which are relevant for the discus-
sion that follows, in which we apply EGT to MM bone
disease. But before, we digress on the concept of fitness.

3. Hierarchical tissue organization and
cell fitness

Given the inescapable appearance of mutations, one would
expect that evolution has selected for a tissue architecture
that minimizes the risk of retention of mutant populations.
Indeed, the probability that a particular mutation occurs in
a given tissue is proportional to the population of cells at
risk, the mutation rate and the average lifetime of cells in
that population [12]. Most tissues (including haematopoiesis
and epithelia) have a tree-like architecture in which the vast
majority of cells have a relatively short lifetime. At the root
of this tree lie (tissue specific) stem cells that are operationally
defined by their ability to self-renew and give rise to progeny
cells that can differentiate and repopulate the entire variety of

lineages and are hence able to generate and maintain a
specific tissue. In general, the stem cell population is but a
tiny fraction of the cells making every tissue, but the defi-
nition of a stem cell does not require this characteristic.
Stem cell division gives rise to more differentiated cells that
often replicate at faster rates but which contribute to tissue
maintenance for shorter periods of time. Mature cells in the
tissue are eliminated, on average, at a constant rate by, for
example, apoptosis in haematopoiesis or by shedding from
the surface of epithelia.

Linking haematopoietic stem cells and mature blood cells
is often a hierarchically organized process where cells divide
and become increasingly differentiated (figure 1). Such a hier-
archical tissue architecture has been shown to minimize the
impact of most mutations that occur in its cells [13], given
the fact that most of them occur in short-lived cell lineages
[7]. To capture the dynamics and architecture of haemato-
poiesis, one needs to consider at least two fundamental
processes: cellular reproduction and differentiation [14]
(figure 1), processes which are stochastic and coupled
[15,16]. Needless to say, this is a minimal model of cell div-
ision. There is ample experimental evidence that cells are
able to undergo asymmetric cell division, a process that is
not explicitly considered in such a minimalistic treatment.
The explicit inclusion of asymmetric cell division [17–19]
requires additional parameters, although the process remains
stochastic in nature.

A hierarchical tissue organization provides an excellent
example to demonstrate that fitness advantage, at the cell
level, may not result exclusively from the rate of division.

stem cells

progenitors

precursors

mature cells

1 – e e

Figure 1. The tree-like structure of haematopoiesis. Haematopoiesis exhibits a
hierarchical architecture so characteristic of general body tissues. At the root of
this tree-like structure, one finds the tissue-specific stem cells, which can self-
renew (reproduction) and differentiate into all other types of haematopoietic
cells. The figure illustrates specifically the most common haematopoietic cell
types, from progenitors to mature cells. Along this path of differentiation, we
also find the so-called precursor cells. In the mathematical model of haemato-
poiesis referred to in the main text, cell reproduction and differentiation
constitutes a coupled stochastic event, occurring with probability 1 2 1 and
1, respectively, as illustrated on the right.
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In haematopoiesis, for instance, the fact that besides repro-
duction, differentiation is also required to account for the
tissue architecture, changes the relation between cell fitness
and cell reproductive rate. As a result, fitness differences
between cell types may arise from mutations that do not
change cell reproductive rates: such is the case in chronic
myeloid leukaemia (CML), where the fitness of cancer cells
relative to that of normal cells can be written in terms of
the differentiation rate 1k of each cell type (figure 1) [7]

wcancer

wnormal
¼ 1# 1cancer

1# 1normal

1normal

1cancer
:

As shown in figure 1, 1k gives the probability that, upon
cell division, symmetric cell differentiation occurs. When com-
bined with a hierarchical, tree-like structure, and the staggering
number of haematopoietic cells in the bone marrow, any
changes in the value of this probability drastically change
the competitive odds of cancer cell populations. In haemato-
poiesis, 1normal ¼ 0.84; fits to disease progression curves, in
turn [20–23], show that for CML cells we have 1cancer ¼ 0.72
which means that wcancer % 2wnormal without any changes
in the rate of cell division, which remains unchanged accord-
ing to the stochastic analysis of ref. [20]. Given that this tissue
architecture is so ubiquitous, we should not only relate fitness
simply to the reproductive cell rate, but also to the pattern of
reproduction (symmetric versus asymmetric) [17,22], and the
structural and spatial organization of cells within the specific
tissue.

How does this translate into the equations of EGT? Given
the form of the REs, all one has to do is to include, on their
right-hand-side, the appropriate fitness of each species,
together with the average fitness of the population. In other
words, one may generally use the central equations of EGT,
even if fitness does not result exclusively from the reproduc-
tive rates of whatever species. In fact, EGT has been widely
applied, recently, to study the dynamics of social systems,
in which case fitness relates to social success [24,25], and
not to reproduction.

4. Application of evolutionary game theory
to the ecology of multiple myeloma
bone disease

We will now illustrate the use of EGT to model and under-
stand a well-known form of cancer. MM is a malignant
plasma cell neoplasm that is characterized by a variable con-
stellation of symptoms, the cardinal of which are bone loss,
anaemia, hypercalcaemia and renal failure (CRAB criteria).
Bone disease is observed in up to 80% of patients with MM
and is an important cause of morbidity due to pain, the
risk of pathological fractures and neurological deficits
(given the risk of spinal cord compression). Bone loss in
MM follows two broad patterns: focal lytic disease [26,27]
or diffuse loss leading to osteoporosis [28]. The generation
of the first MM cell is a multistep process requiring a series
of mutations that transform a normal plasma cell into an
MM cell [29,30]. We shall assume that this (complex) process
has already occurred, i.e. the first MM has already appeared,
and we shall concentrate on investigating its possible clonal
expansion. It appears that malignant plasma cells require
the bone marrow microenvironment for their growth and

survival. In most patients, myeloma is preceded by an
asymptomatic premalignant state called monoclonal gammo-
pathy of undetermined significance (MGUS) in which the
clonal plasma cell burden in the bone marrow is lower than
in myeloma and by definition the CRAB criteria are absent.
Progression to myeloma is generally associated with an
increase in the clonal plasma cell population and the appear-
ance of symptoms as discussed above. This transition from
MGUS to symptomatic myeloma may be relatively abrupt
(often associated with the acquisition of additional genetic
events such as loss of TP53, amplification of a segment of
the short arm of chromosome 1, etc.) or the consequence
of a slow but relentless expansion of the clonal plasma
cell population.

Normal bone remodelling is a consequence of the dynamic
balance between osteoclast-mediated (OC) bone resorption
and bone formation due to osteoblast (OB) activity (see top
of figure 3). The interplay between these two populations is
complex but partly dependent on the receptor activator of
nuclear factor-kB (RANK), RANK ligand (RANKL) and
osteoprotegerin (OPG) axis as well as MIP-1a and interleukin
(IL)-1b [31–33]. This dynamic balance can be captured trivi-
ally in the framework of EGT, but it requires an explicit
frequency dependence to be in place. Indeed, frequency-inde-
pendent population dynamics cannot capture such a simple
process. Let us then assume that we have two cell species
which exhibit a stable balance between them. This can be
obtained by means of what is known in game theory as a coex-
istence game, which can be realized by a pay-off matrix
satisfying pBA . pAA and pAB . pBB, e.g. (e and a are both
positive reals),

OC OB
OC
OB

0 a
e 0

! "
: (4:1)

The designation coexistence game is intuitive, given the ensu-
ing dynamics associated with the pay-off matrix above.
Indeed, we may write

wOC(x) ¼ (1# x) a
and wOB(x) ¼ x e,

where x stands for the fraction of OC cells and (1 2 x) for the
fraction of OB cells. The RE, equation (2.2) now reads

_x ¼ x (1# x)(a(1# x)# ex),

with fixed points (that is, the values of x at which _x ¼ 0) at x* ¼ 0,
x* ¼ 1 and x*¼ a/(a þ e), this last one associated with the con-
dition wOC(x*)¼ wOB(x*). A typical plot of _x—the so-called
gradient of selection—as a function of x has the behaviour
depicted in figure 2. The horizontal arrows in figure 2 show
the direction of selection associated with the sign of _x and
show that both x* ¼ 0 and x*¼ 1 are unstable fixed points, in
the sense that any perturbation deviating the population from
such a state will induce it to move away from the fixed point.
The opposite happens for x*¼ a/(a þ e), in which case any devi-
ation from its position will induce a dynamics that restore it to
that fixed point. Hence, the interior fixed point is stable, thus
reflecting the dynamical balance we wanted to reproduce.

The appearance and expansion of MM cells disrupts this
dynamic equilibrium between OB and OC in favour of OC
[27,31–33], with a disease progression time scale of the
order of a few years [26]. The process can be subdivided
into two components: (i) MM and stromal cells produce a
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variety of cytokines including IL-1b [34], RANKL [35] and
MIP-1a [36] (summarized as ‘osteoclast-activating factors’,
OAFs [31,33,37]) that recruit OC precursors and stimulate
growth of the OC population; and (ii) secretion of Dickkopf-1
(Dkk-1) by myeloma cells directly inhibits Wnt3a-regulated
differentiation of OBs, reduces OPG expression and alters the
OPG-RANKL axis against OB activity [32,37–40]. The bio-
chemical interactions between MM, OC and OB cells
highlight the dependence of MM cells on the bone marrow
microenvironment, at least early in the course of the disease

[30,41]. Here, the microenvironment refers to the different cell
populations within the bone marrow, including OC and OB
cells together with blood vessels that provide the conditions
necessary for myeloma cell growth and survival.

As illustrated in figure 3, IL-6 [42] and osteopontin [43],
produced by OC cells stimulate growth of the MM cell popu-
lation, hence conferring a net benefit to MM cells. On the
other hand, production of OAF by MM cells (i) confers a
net benefit to OC cells. Mechanism (ii) also leads to a poten-
tial disadvantage for OB cells in the presence of MM cells,
while MM cells are unaffected by the presence of OB cells.
Thus, figure 3 provides a convenient means to translate the
complex exchange of chemical signals between different cell
types into net benefits and costs of each cell type. We can
therefore recast the frequency-dependent balance between
these cell populations in terms of an evolutionary game
encompassing three unconditional strategies, or cell types—
OC, OB and MM, with the following (extended with respect
to equation (4.1)) pay-off matrix:

OC OB MM
OC
OB
MM

0 a b
e 0 #d
c 0 0

2

4

3

5: (4:2)

In the matrix above, all parameters a, b, c, d and e are non-
negative, which means that the only pay-off entry that is
negative is that associated with –d. The present formulation
is the mathematical equivalent of an ecosystem where the
interactions between species (MM, OC and OB) are deter-
mined by matrix (4.2). Without loss of generality (see
appendix A), we assume that interactions between cells of
the same type are neutral (with null entries). In the absence
of MM, we recover the 2 ! 2 matrix (4.1) written before.

What happens now when we embed the OB–OC
dynamics above in the more general framework that includes
MM cells? As shown in appendix A, we can make use of some
very general properties that accrue to EGT combined with the
RE, to further reduce the number of parameters in matrix (4.2)
from 5 to 2 (b and d), without changing the nature of the
dynamics entwining MM, OB and OC cells. This is illustrated
in figure 3 by placing the new variables b and d inside circles.
The minimal pay-off matrix, that is, the pay-off matrix with
the smallest number of parameters compatible with the
dynamics involving MM, OB and OC cells now reads

OC OB MM
OC
OB
MM

0 1 b
1 0 #d
b 0 0

2

4

3

5 : (4:3)

5. Results and discussion
Figure 4 provides an overview of the possible scenarios that
emerge from the evolutionary dynamics associated with
pay-off matrix (4.3), which provides a minimal description of
the disease and identifies the core elements that determine
tumour behaviour and dynamics. Unlike the OB–OC dynamics,
which could be analysed along the segment 0 & x & 1, the
OB–OC–MM dynamics proceeds in a two-dimensional space
(called simplex) that can be represented by the equilateral tri-
angles in figure 4. Each vertex of the simplex represents a
monotypic population, that is, with populations in which
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Figure 2. Gradient of selection for the coexistence dynamics among two cell
species: OCs and OBs (a ¼ e ¼ 0.5, see equation (4.1)). In the absence of
MM cells (see below), OB and OC engage in a coexistence game, the internal
equilibrium of which reflects normal physiology. Any disturbance from this
equilibrium will result in an evolutionary dynamics that will restore the orig-
inal state, enabling normal tissue to adapt to changing demands and repair
after injury.

1 1

OC

b

c

OB

a e

–d

MM

MM

OBOC

–d

b

b

Figure 3. Pathological bone turnover. The presence of MM cells alters bone
homoeostasis by cytokine production (e.g. IL-1b, RANKL, MIP-1a) that
recruit and activate OC, increasing bone resorption. OC may also produce
growth factors (IL-6) for MM cells, which may also secrete cytokines that sup-
press OB activity. The synergy between MM and OC confers them an
advantage with respect to OB. The arrows indicate the net effects associated
with pay-off matrix entries in equations (4.2) and (4.3). The invariance of the
evolutionary dynamics under projective transformations (see main text for
details) leads to the definition of the minimal pay-off matrix in equation
(4.3), with parameters depicted inside circles, that accounts for all dynamical
scenarios encompassing the coevolution of these three cell types.
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100% of the cells are of only one type. Edges of the simplex rep-
resent population configurations in which at least one of the cell
types is missing. The interior of the simplex, in turn, corresponds
to population configurations in which all cell types coexist, albeit
with different fractions in different points. The unique feature of
such a simplex representation is that, at every point, the sum of
the fractions of the three cell types is 100%.

It is important to stress that the non-trivial identification
of the key parameters b and d could not be anticipated
from the rationale underlying the model set-up, as illustrated
in figure 3 and out of which matrix (4.2) was derived. Instead,
it results from the properties of EGT and the RE, which dic-
tate that the evolutionary outcome of the disease can be
equivalently analysed in terms of matrix (4.3). Thus, under
the present model assumptions, b and d are sufficient to
characterize myeloma bone disease.

The three strategy game leads to unstable equilibria in the
sense described before whenever the population is mono-
typic: the presence of a single cell of any of the other types
leads to the coexistence of the two strategies, as the pairwise
games OB–OC and OC–MM turn out to be coexistence
games, with the same structure as already discussed in con-
nection with equation (4.1) [44]. The number and nature of
the fixed points in the simplex will naturally depend on the
relative balance between b and d in the pay-off matrix. If
the net benefit that OC cells obtain from MM cells is smaller
than what they get from OB cells (b , 1), the population of
MM cells can go extinct, and OB and OC may again re-estab-
lish the stable dynamic equilibrium (figure 4a). Also,
whenever b , 1 but b þ d . 1 (figure 4b), there appears a
typical saddle point structure in the interior of the simplex
(because the simplex now spans a two-dimensional space),
which still ensures that normal homoeostasis is a possible
‘end-game’ of the coevolutionary process. In this case (see
below), therapies that change b may provide important con-
tributions to overall disease eradication. Unfortunately,
various studies suggest that in general, b . 1 [41,45]. In this
case, the only stable equilibrium is the coexistence of MM
and OC cells (figure 4c). In this extreme situation, a part of
bone is completely devoid of OB and as the bone approaches
this state is at increasing risk of fracture, a common feature
of MM [26,46]. Such a coexistence between MM and OC
(figure 5c) will prevail even if d ¼ 0 (MM and OB are neutral
with respect to each other). However, changes in d may have

a significant impact on the life history of the disease and
associated progression time [47].

Increasing b will lead to more bone destruction, higher
tumour burden and faster tumour progression. This behaviour
is observed clinically: patients with higher MIP-1a levels
(increasing b) tend to have more bone resorption and lytic
bone lesions [48,49] and shorter survival due to a higher
tumour burden [48]. Consequently, therapies which suppress
or reduce b (inhibiting, e.g. MIP-1a secretion or IL-1b [50,51])
should decrease the number of lytic lesions and the speed
of disease progression, prolonging survival [52]. Similarly,
any therapy that decreases d (e.g. Dkk-1) should reduce the
myeloma burden, slow the progression of the disease and
improve bone mass [53]. On the contrary, increasing d for
fixed b—that is, increasing the disadvantage of OB cells in the
presence of MM cells—leads to disease dynamics in which con-
siderable bone loss occurs without a significant increase in the
MM population. This can explain at least two clinical scenarios:
(i) instances of myeloma-induced osteoporosis without a mas-
sive MM cell burden and (ii) loss of cortical bone thickness
and alteration of its microarchitecture in patients with the
premalignant state known as MGUS [54,55]. In the latter scen-
ario, patients with MGUS have been found to have higher
levels of the Wnt pathway inhibitor Dkk-1 that inhibits OB
growth [54]. Similarly, the model would suggest that any
therapy designed to suppress OC growth should indirectly
improve outcomes in patients with myeloma due to its effects
on MM cells. Indeed, this is the case as shown by the UK
MRC Myeloma IX trial where zoledronic acid therapy, directed
at OC cells, improved survival in a large cohort of patients [56].

As stated before, under the present model assumptions, b
and d are sufficient to characterize myeloma bone disease.
However, it is well known that the natural history of the dis-
ease is variable, presumably due to genetic and epigenetic
differences in myeloma cells from different patients [57,58].
Normal physiology also varies from individual to individual.
Such variability is actually taken into consideration in pay-off
matrix (4.2). Any pay-off matrix of the form of matrix (4.2)
will exhibit the core dynamics just described, resulting from
the analysis of matrix (4.3). However, the location of the
stable, saddle and unstable fixed points of the dynamics
will change for different set of values of the pay-off entries
fa,b,c,d,eg, which are expected to be patient specific, reflecting
tumour–host interactions and variability of disease due to

stable
unstable

OB MM

OC

OB MM

OC

OB MM

0.28

speed
0

OC(c)(b)(a)

saddle

b =1/2
d =1/3

b =1/2
d =1

b =2
d =0

Figure 4. Evolutionary dynamics of OC, OB and MM cell types. Vertices mean that cell population is monotypic. Bone homoeostasis occurs in the absence of MM
(OC – OB line), remaining stable in the presence of MM if b , 1 (a) and unstable otherwise (b,c). Whenever b , 1 but b þ d . 1 (b), a saddle point appears
in the interior of the simplex, which maintains normal homoeostasis as a possible outcome of the coevolution of the three cells types. Unfortunately, most of the
existing scenarios suggest that b . 1 is the rule, which means that the scenario depicted in panel (c) applies, even in the limit when d ¼ 0 (see main text
for details).
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differences in the host rather than the malignant cell geno-
type. Thus, while matrix (4.3) describes the core dynamics
that accrues to MM bone disease, its manifestation may
change from patient to patient as a result of a different
pay-off matrix (4.2).

The model reviewed here shows that, under normal con-
ditions (when b . 1) the evolutionary dynamics of MM leads
always to a very negative prognosis, a feature which is very
well known to clinicians. In fact, and whenever possible,
autologous bone marrow transplantation (BMT) is chosen
to ameliorate the patient’s condition by reducing the disease
burden further. However, it is trivial to show that, whenever
b . 1, BMT cannot be curative in MM. This is shown in
figure 5a, where the impact of BMT is depicted in the simplex.
Assuming that the relative proportion of OB and OC cells
does not change under BMT, then BMT corresponds to draw-
ing a straight line joining the MM vertex and the population
configuration at the time of BMT (squares in figure 5, see 5a).
BMT will lead to a significant reduction of the disease burden
(by reducing by several logs the number of MM cells) but, as
shown both in figure 5a and in the time evolution depicted
in figure 5b, the dynamics will inevitably resume to the stan-
dard case already discussed. As a result, BMT will postpone
the ‘end-game’, but relapse is inevitable.

On the other hand, development of a drug treatment that
changes b to values lower than 1 will lead to the appearance
of the saddle point already shown in figure 4b. Then, it all
depends when the drug is provided to the patient, as
shown in figure 5c,d. If the patient is treated well in the begin-
ning of the disease, there is hope that the drug treatment
alone will be curative, as b , 1 will fundamentally change
the dynamics of disease progression (figure 5c). However,
in those cases where patients are diagnosed too late (that is,
in configurations falling in the shaded area, see figure 5d ),
BMT can now be curative, when combined with such a puta-
tive drug treatment. Indeed, BMT is now able to bring
the patient into the area of the simplex where treatment
alone will be curative, as opposed to the initial case, where
treatment alone would be helpless.

We also note that the model can well explain the slow but
inexorable progression of plasma cell expansion and further
bone loss seen in some patients with MGUS as they evolve
into MM. In addition, one can envision a scenario where
the small plasma cell population can acquire additional
mutations that result in changes in b and/or d that can
lead to a rapid change in the dynamics as is sometimes
observed in this disease. Our model would hypothesize
that patients with MGUS who have high MIP-1a or Dkk-1
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Figure 5. Type and timing of MM treatment. (a) Typical scenario of MM disease progression portrayed in the simplex, where at a certain moment, BMT is carried
out, here represented by the straight dashed arrow. This means that the ratio OC/OB remains unaffected while the MM disease burden is significantly reduced
(though not eliminated). This ultimately leads to relapse, as shown in (b) where the explicit time dependence of the different cell types is shown. In (c,d ),
we depict what one would expect via administration of a drug that successfully alters b from the conventional regime (b ¼ 3.0 . 1 and d ¼ 1, panels
(a,b)) to the more favourable regime b , 1 (b ¼ 1/2 and d ¼ 1, panels (c,b)), leading to the appearance of a saddle point structure. If therapy is administered
early on during disease progression, then therapy alone can be curative, as intervention occurs in the non-shaded area of the simplex. However, if therapy is provided
later (shaded area of the simplex, see panel (d )), then it cannot, alone, lead to cure, as disease progression will still proceed towards the MM – OC dire equilibrium.
In this case, however, BMT may bring the patient into the non-shaded area, in which the stable equilibrium will correspond to normal homoeostasis. In other words,
when combined with therapy, BMT may become curative and, in many cases, crucial. Other parameters: fraction of MM cells before transplant equal to 0.2 ( panels
(a – c)) and 0.4 ( panel (d )); MM burden reduction upon BMT is 1024 in all panels; in panel (b), t0 stands for the total progression time for the given parameters.
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levels would be at high risk of progression to myeloma and
perhaps these biomarkers can be used to estimate the risk
of progression of MGUS to myeloma and identify a cohort
of patients that may require more careful observation. It is
possible that therapeutic intervention in these ‘higher risk’
MGUS patients may not only prevent symptomatic bone
loss but also slow or prevent progression to active myeloma
and perhaps cure some of these individuals.

The approach developed here is general and readily
applicable to other diseases. Furthermore, it provides a
novel paradigm for dealing with cancer eradication: to har-
ness the power of evolutionary forces in the multi-species
cell dynamics to eradicate the cancer cells. In this sense, thera-
pies should aim at changing the rules of engagement between
different cell types: in our case, therapies should act to change
parameters b and d. To the extent that such therapies change
the dynamics, enabling normal cells to outcompete the malig-
nant clone, one gets total remission as a result. Last but not
least, the game at stake need not be a simple two-species
game as the one employed here. Situations where the game
involves many cells at once in each interaction are easily
conceivable. Work along these lines is in progress.
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multi-annual funding of CBMA and INESC-ID (under the projects
PEst-OE/BIA/UI4050/2014 and PEst-OE/EEI/LA0021/2013) also
provided by FCT-Portugal.

Appendix A
We employ the RE to describe the frequency-dependent
evolutionary dynamics of a well-mixed populations invol-
ving three cell types [10]. Consequently, we assume that
(i) no new mutations occur during tumour dynamics except
those which initiated the tumour and (ii) deterministic cell
population dynamics. Tumour dynamics is conveniently rep-
resented in the simplex (an equilateral triangle for three
strategies) at every point of which we have the relative

frequencies of OB, OC and MM populations that sum up to
1. Let us denote by xi(t), the relative frequencies of the cell
types: x1(t) (OC cells), x2(t) (OB cells) and x3(t) (MM cells).
The REs read

_xi(t) ¼ xi(t)[wi(x1, x2, x3)# kwl] (i ¼ 1, 2, 3),

where the fitness of each cell type is given in terms of a game
pay-off matrix Aij by

wi(x1, x2, x3) ¼
X3

k¼1

Aikxk,

whereas the average fitness of the population reads

kwl ¼
X3

i¼1

X3

k¼1

xiAikxk:

The benefits and costs resulting from the interacting cell
populations are captured in the initial pay-off matrix (1.2),
here associated with matrix Aij. We may reduce this matrix
to the minimal pay-off matrix (4.3) by taking into account
that the nature of the fixed points of the evolutionary
dynamics (though not their location) remains unaffected
under a projective transformation of the relative cells frequen-
cies [10], leading to [47] b ¼ c/e and d ¼ dc/be. Note further,
that the REs and associated dynamics remain unaffected if we
add an arbitrary constant to each column of the pay-off
matrix. In other words, it is always possible to zero all the
diagonal elements of the game pay-off matrix.

The fixed points (x'1, x'2, x'3) of the evolutionary dynamics
under matrix Bij are readily found. Two vertices of the sim-
plex, (0, 1, 0) and (1, 0, 0) are unstable fixed points, whereas
the third is a saddle point. The fixed point (1/2, 1/2, 0)
associated with normal physiology is unstable whenever
b . 1, being stable otherwise; the fixed point (1/2, 0, 1/2)
is a stable fixed point whenever b . 1 or whenever b , 1
but b þ d . 1; in this last situation, a saddle point arises in
the interior of the simplex [47], located at (h21 ¼ (1 2 b)1 þ
dþ b(d þ b 2 2)) q* ¼ (hd, hb(d þ b 2 1), h(1 2 b)).
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