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Abstract

In many choice environments it seems that risks and rewards or probabilities and payoffs

are tightly coupled such that high payoffs only occur with low probabilities. This structure

may afford an adaptive mind an opportunity to exploit it—for instance, by inferring the

probabilities of different outcomes in the face of uncertainty. However, a mind can only

adapt to and exploit an environmental structure if it is frequent and recurrent. Here, we

show that the ecology of competition makes low probabilities of high payoffs ubiquitous.

They are a consequence of an ecological principle known as the ideal free distribution

where the number of competitors in a resource patch is proportional to the gross total

amount of resources in the patch. This principle implies a predictable inverse relationship

between probabilities and payoffs, the risk–reward structure. Moreover, the ecological

theory identifies important boundary conditions for the structure. For instance,

heterogeneity of resources in a given patch, computational limits among competitors, and

scarcity of resources, systematically distort the risk–reward relationship. Finally, we show

that people’s representations of the risk–reward structure are consistent with these

distortions. Grounding people’s inferences in the competitive ecology theory of the

risk–reward structure makes it possible to predict when adaptive decision makers should

use the risk–reward structure. Such an ability demonstrates that the coupling of a theory

of the mind with a theory of the environment is pivotal for understanding and predicting

the behavior of a system of bounded rationality.

Keywords: risk–reward, uncertainty, ecological rationality, environment, ideal free

distribution
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The ecology of competition: A theory of risk–reward environments in adaptive decision

making

For—believe me—the secret for harvesting from existence the greatest

fruitfulness and the greatest enjoyment is— to live dangerously! Build your

cities on the slopes of Vesuvius! Send your ships into unchartered seas! Live at

war with your peers and yourselves! Be robbers and conquerors as long as you

cannot be rulers and possessors, you seekers of knowledge!

—Friedrich Nietzsche, The Gay Science

People have many tools they can draw on to traverse the uncertainties they face in

the world. One such tool is probability theory. This tool, which Pierre-Simon Laplace

(1814/1902) described as “common sense reduced to calculus” (p. 196-197), provides a

means to quantify and tabulate the uncertainties people face by assigning a probability to

the event thereby turning the uncertainty into a risk (Keynes, 1921; Knight, 1921; Luce &

Raiffa, 1957). Yet,because of the computational limitations of the user or limitations of the

theory itself, probability theory is not a catchall tool. As an alternative people have

available a simple rules to navigate uncertainty. One such rule is the principle of

indifference whereby the possible events under consideration are treated as equally likely to

occur (Keynes, 1921; Laplace, 1902/1814). Another strategy is to use the similarity or

representativeness between a possible event and a large class of events as a proxy for the

likelihood of it occurring (Silver, 2012; Tversky & Kahneman, 1974). Here we examine a

different rule, a rule that draws on the sage advice that great rewards can only be

harvested in the face of great risk. This life lesson is proffered not only by philosophers like

Nietzsche, but also by financial advisers, gamblers, athletes and artists alike. The ubiquity

of this advice suggests that an inverse relationship between risks and rewards, henceforth

the risk–reward structure, may be a useful structure for the human mind to use to navigate

uncertainty.
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Indeed this regularity appears to be enlisted by the mind is in terms of a heuristic

that Pleskac and Hertwig (2014) called the risk–reward heuristic. This cognitive tool helps

the mind to reckon with uncertainty—that is, situations in which the probabilities of an

event occurring are not given or not known (Keynes, 1921; Knight, 1921; Luce & Raiffa,

1957). Consider a monetary gamble that costs e2 to play and offers e100 if a specific

event occurs, but otherwise nothing. The risk–reward heuristic can be used to infer the

unknown probability of winning a payoff p from the ratio of the entry costs of playing the

gamble c to the total amount of possible winnings as p = c/(c+ g) where g is the possible

payoff (e100). Thus, if the gamble costs e2 to play, the probability of winning should be

approximately 2%.

There is some evidence that people use the risk–reward heuristic to infer missing

probabilities (Pleskac & Hertwig, 2014; Leuker et al., 2018a). The heuristic also appears to

help inform people’s prior beliefs as they learn from experience (Hoffart et al., 2018).

Enlisting an environmental structure like the risk–reward structure—be it in a heuristic or

within a larger framework like Bayesian inference(e.g., Chater et al., 2010; Gershman et al.,

2015; Griffiths et al., 2010) or reinforcement learning(e.g., Daw et al., 2005; Niv, 2009)—is

appealing because it makes use of environmental regularities instead of forcing the decision

maker to seek further information on the likelihood of an event time and again. The

challenge, however, is that cognition can adapt to the environment only if the structure in

question has been frequent and recurrent (Barkow et al., 1995). That is, the risk–reward

heuristic or any other cognitive process that enlists the risk–reward structure can only

operate reliably if the environmental regularity is robust. The central questions we tackle

in this paper are is the risk–reward structure a frequent and recurrent structure in choice

environments, and can the emergence of the risk–reward structure be predicted a priori?

The risk–reward structure does seem common in human choice environments. For

instance, Figure 1 illustrates the structure that exists in the game of roulette. It plots, for

each unique possible payoff (relative to a $1 bet), the corresponding probability of winning
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Figure 1 . The risk–reward structure in the game of roulette. The dotted line is the

estimated probability assuming a fair bet.

it. This risk–reward structure takes a precise form—namely, a hyperbolic function—where

the chances of winning are an inverse function of the payoffs. As a result, the probability of

winning gets smaller as payoffs increase. A survey of many everyday choice environments

showed that the same or a similar regularity exists for bets people take at the horse track,

the lottery tickets people buy, the journals scientists submit their article to (trading

acceptance rate for impact factor), and the semen dairy farmers purchase to inseminate

their cows (trading the semen’s conception rate for profitability; Pleskac & Hertwig, 2014).

In these modern environments, the risk–reward structure can be traced back to the

forces of the marketplace. Buyers desire high payoffs with the highest of probabilities at

the lowest cost. Sellers want the opposite. These opposing forces push lotteries toward a

fair bet (see also Samuelson, 1965). Consequently, any increase in a potential payoff would

have to be offset with an increase in cost in order to make the gamble attractive for both

parties (a Pareto-efficient state). More formally, in this state expected gains correspond to
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expected losses such that

p× g = (1− p)× c. (1)

A gamble represents a fair bet if and only if the probability of winning is

p = c

c+ g
. (2)

Thus, the probability of a payoff will be inversely related to its magnitude because the

expected payoffs and costs of gambles are pushed toward their fair price. The dashed line

in Figure 1 plots this fair-bet probability for roulette. In roulette, as they say, the house

always wins. This means that the actual probabilities are systematically lower than those

predicted by the assumption of fair bets (with a mean absolute deviation of .005).

Nevertheless, Figure 1 shows a close correspondence between the actual and fair bet

probabilities.

While this kind of gamble may be common, there seems to be a much larger class of

situations in which people face competition for resources, such as harvesting food,

searching for a mate, or even finding a new home. Even in these situations, which lack a

clear institutionalized market with buyers and sellers, it seems that people face a

risk–reward structure. In this paper we develop a competitive ecology theory of the

risk–reward structure to begin to understand under what conditions a risk–reward

structure is expected in choice environments and by extension how frequent and recurrent

the structure is. We could attempt to arrive at such a framework inductively, as Pleskac

and Hertwig (2014) did, by surveying choice environments and quantifying the frequency of

different risk–reward structures. This inductive form of an ecological analysis can be

productive and is perhaps the most common course for such an analysis (e.g., Anderson &

Schooler, 1991; Brunswik, 1944; Czerlinski et al., 1999; Gibson, 1979; Hertwig et al., 2008;

Şimşek & Buckmann, 2015; Stewart et al., 2006; Todd et al., 2012; Ungemach et al., 2011).

However, such inductive analyses are piecemeal and make it difficult to predict when a

specific environment has a particular structure a priori. These limitations of inductive
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ecological analysis also impact the ecological rationality of strategies—that is, conclusions

about how adaptive choice strategies are in a given choice environment (Marewski &

Schooler, 2011; Rieskamp & Otto, 2006; Todd et al., 2012). For instance, a person must

use the risk–reward heuristic in a suitable structure (i.e., a risk–reward structure) in order

to be acting in an ecologically rational manner. However, without a principled

understanding of when and where a particular environmental structure occurs, there is no

normative benchmark to which to compare a person’s behavior. As a result, conclusions

regarding ecological rationality are in jeopardy of being post hoc rationalizations.

We therefore take a deductive approach in order to identify some basic conditions

that can give rise to a risk–reward structure. We focus on competition over limited

resources—a common dynamic in many choice environments—and ask under what

conditions a risk–reward structure arises. In the classes of situations with which we are

concerned, limited resources are distributed across different patches in a resource

landscape. We examine what conditions cause a coupling of the size of the resource or the

reward with the probability of successfully obtaining it. Moreover, we establish important

boundary conditions for this risk–reward structure. Finally, we show how people’s beliefs

about the risk–reward structure are consistent with some of these theoretically derived

properties, and we develop a computational model that captures them. We conclude by

discussing how a complete theory of adaptive behavior must go beyond merely describing

the environment to which the mind is adapting; it must also contain a principled

theoretical account of that environment. It is on the basis of such theoretical accounts of

the environment and its structure that adaptive behavior can be predicted.

Limited resources and the distribution of competitors

Our starting point is the observation that often, a critical factor in determining the

probability of obtaining a resource is the number of individuals competing for it. The more

competitors there are, the less likely it is that any given individual will obtain that
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resource. It follows that in seeking to understand the risk–reward structure one must first

establish the distribution of competitors an individual will encounter. To do so, we draw on

a well-known principle from behavioral ecology known as the ideal free distribution

principle (Fretwell & Lucas, 1970). According to this principle, competitors distribute

themselves to match the total gross amount of resources within patches (see Davies et al.,

2012, Chapter 5).

To get an intuition of the ideal free distribution, consider fishing vessels heading out

to catch their limit. Each vessel wants to minimize their effort in catching their limit.

There are many locations vessels could search for their fish. It also means vessels have to

identify the location they believe has the best chance of meeting this goal and compete

with other vessels in getting there first. As vessels do this a dynamic equilibrium forms

with effectively the same catch-per-unit effort in each fishing location (Gillis et al., 1993;

van der Lee et al., 2013). This relationship also means that the number of fishing vessels in

each location is proportional to the amount of fish in each location, thereby creating an

ideal free distribution of fishing vessels .

Formally, an ideal free distribution is present when the number of competitors ny

(e.g., vessels) in each patch y (e.g., fishery) is proportional to the amount of resources ry in

each patch (e.g., the gross total amount of fish),

ny ∝ ry. (3)

Animals including mallard ducks foraging for bread crumbs in a pond (Kennedy & Gray,

1993), pike searching for food in natural lakes (Haugen et al., 2006), and bumblebees

seeking nectar among flowers (Dreisig, 1995) have been shown to distribute themselves in a

way that is consistent with ideal free distribution. This relationship between the amount of

resources and the number of competitors also extends to other types of resources including

mates (Parker, 1974), breeding sites (Alatalo et al., 1992), spawning sites (Smith et al.,

2000; Valladares & Lawton, 1991), and nesting sites (Nicolai et al., 2014). An ideal free

distribution also appears to occur when resource patches are organized conceptually (e.g.,
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flower types for bees) rather than spatially (Chittka et al., 1999; Waser, 1986). And, as we

have seen, ideal free distribution also occurs with humans. Besides fishing, people also

distribute themselves in a way consistent with ideal free distribution when they look for

rewards in behavioral studies (Goldstone & Ashpole, 2004; Goldstone et al., 2005;

Sokolowski et al., 1999), and when they apply for jobs (Krueger, 1988; Holzer et al., 1991).

An ideal free distribution of competitors is a group level phenomenon that occurs as

animals or humans seek to maximize their individual resource consumption.1 The ideal free

distribution principle rests on two key assumptions: that individuals are ideal and that

they are free. The first assumption means that individuals can detect the patches of

resources that permit the highest rate of consumption. The second assumption means that

individuals can move between patches with no restrictions or costs. Both assumptions are

idealized descriptions of individuals and the conditions they face, which makes it important

to study how violations of these assumptions impact the predictions of the ideal free

distribution principle (e.g., Kennedy & Gray, 1993; Sutherland et al., 1988; Tregenza,

1995). Before we turn to those violations, we show how an ideal free distribution of

competitors can imply a risk–reward structure.

The ideal free distribution and the risk–reward structure

To determine what the ideal free distribution principle implies about the relationship

between risk and reward we need to establish how the size of the resource sy (i.e., reward)

and the success probability of obtaining the resource p (i.e., risk) covary. To do so, we need

to break down the total amount of resources ry available in a given patch into the number

1 The ideal free distribution principle bears some resemblance to Herrnstein’s (1970; 1974) matching law,

where an individual tends to equate the rate of a response to the rate of reinforcement. The crucial

difference is that the matching law concerns behavior at the individual level, while ideal free distribution

refers to group level behavior (see also Houston & McNamara, 1988).
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of resources my multiplied by the size of the resources,

ry = my × sy. (4)

Thus, formally the ideal free distribution principle can be rewritten, substituting

Equation 4 into 3, as

ny ∝ my × sy. (5)

The success probability py will, holding all else constant, increase with the number of

resources my in the patch. Thus, within a limited time window the success probability in a

patch is proportional to the number of resources in it, py ∝ my. Furthermore, the success

probability will, holding all else constant, decrease with the total number of competitors in

the same patch, py ∝ 1/ny. Taken together, these assumptions imply that the success

probability is proportional to the ratio of the number of resources to competitors in a patch

py ∝
my

ny
. (6)

The link between success probability and resource size is established by substituting

Equation 5 into Equation 6. This reveals that the success probability is inversely

proportional to the size of the resource in a patch,

py ∝
1
sy
. (7)

This means that if there is variation in the size of resources between patches but not within

patches (e.g., because different patches have different sizes of fish), then competitors like

our fishing vessels face a choice between patches that trade resource size for success

probability. Thus, a basic ideal free distribution of competitors predicts that the success

probability is inversely proportional to resource size across a landscape: a risk–reward

structure.

Three points are worth emphasizing. First, the fact that an ideal free distribution can

imply a risk–reward structure is not limited to markets with clear buyers and sellers.
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Rather it is a structure that one can expect to emerge whenever competitors vie for a finite

resource that is spread across a landscape. Second, demonstrating that an ideal free

distribution can imply a risk–reward structure moves beyond merely describing an

environment agents are adapting to—a common stipulation of adaptive theories of

cognition (Simon, 1990). Instead it establishes a set of sufficient conditions that can give

rise to a risk–reward structure and help establish how frequent and recurrent the structure

is. Third, by systematically changing the assumptions, the theory makes it possible to

examine when and how the risk–reward structure will change and even break down as a

result of changes in the ecology.

The Risk–Reward Structure and Changes in the Ecology of Competition

A core aspect of adaptive behavior is that an individual makes use of an ecological

structure only when it is present in the environment. Therefore, in order to predict

adaptive behavior one must first establish the conditions for when the ecological structure

will be present and when it will be weakened or disappear. The competitive ecology theory

helped identify how changing eight different properties of the ecology affect the predicted

risk–reward structure.

Two conditions are relatively straightforward. One relates to the temporal dynamics

of an ideal free distribution. An ideal free distribution of competitors is expected to be

present when the average consumption of resources is equal across patches. If the system

has not yet, or cannot, reach such an equilibrium, then the distribution of competitors

should not conform to an ideal free distribution and a reliable inverse relationship between

the success probability and resource size is not expected (see Table 1, assumption 1).

The second relatively straightforward condition is the availability of resources. An

ideal free distribution of competitors is only expected when resources are limited. With

unlimited resources (e.g., air, sunlight) competitors do not have to maximize their

consumption of resources and no ideal free distribution develops. This also means that a
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risk–reward structure—which is caused by competition over a resource—should not be

expected for unlimited resources. The reason is that for unlimited resources the success

probability will be essentially one for all resource sizes (see Table 1, assumption 2). Both of

these conditions—the system at equilibrium and availability of resources—thus establish

boundary conditions for the emergence of a risk–reward structure. Table 1 lists six

additional boundary conditions. Next, we analyze each of these boundary conditions and

quantify how the risk–reward structure systematically changes.
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Table 1

Boundary conditions of a risk–reward structure in the ecology of competition over limited resources.

Ideal Free Distribution Assumption Violation of the Assumption Does Risk–Reward Structure Still Hold?

(1) System is in equilibrium. Rate of resource consumption is not equal across

patches.

When the system is not in equilibrium, an ideal

free distribution does not hold and no reliable

risk–reward structure is expected.

(2) Limited availability of resources. Resources are unlimited. When resources are unlimited an ideal free distri-

bution does not hold and no risk–reward structure

is expected.

(3) Homogeneous resource sizes within patches. Heterogeneity in resource size within patches. As within-patch variability in resource size in-

creases, the success probability equalizes across

all sizes, reducing the risk–reward structure.

(4) Landscape saturation of competitors and/or

resources.

Competitors and/or resources are sparsely dis-

tributed across the landscape.

As landscape saturation decreases the risk–reward

structure weakens and becomes more disperse at

low resource sizes.

(5) Competitors are ideal. Competitors’ ability to discriminate between the

quality of the patches is limited.

As the ability to discriminate decreases the risk–

reward structure weakens and becomes more dis-

perse at low resource sizes.

(6) Competitors are equally competitive. Competitors have different competitive abilities. The risk–reward structure holds within categories

of abilities, but not across categories.

(7) Competitors do not interfere with each other

in the acquisition of resources.

Interference is possible in obtaining resources. The risk–reward structure holds, but will take

longer to emerge.

(8) Competitors only require a single resource

type.

Competitors require multiple different limited re-

sources.

The more limited and limiting the resource, the

more reliably the risk–reward structure can be ex-

pected to emerge.
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Heterogeneity in resource sizes

Although the assumption that resource sizes are constant within patches is a

plausible approximation in some cases (e.g., fruits and vegetables), there are also situations

where resource sizes can vary within patches. Indeed, Appendix A proves that for

landscapes made up of two resource sizes (large and small), when the patches are more

heterogeneous in terms of resource size the success probability degrades such that at

maximal heterogeneity of resource size there will be no risk–reward structure.

Using simulations, we analyzed how heterogeneity in resource size impacts the

risk–reward structure, using more than two resource sizes. The results of the simulations

are plotted in Figure 2 (for details see Appendix A). At minimal within-patch

heterogeneity of resource size, the success probability is inversely related to resource size

(panel a). At maximal heterogeneity, the success probability is identical for all resource

sizes (panel d). For intermediate levels of heterogeneity, the risk–reward structure falls

within these two extremes (panels b and c). An important observation is that in all of

these cases, even as within-patch heterogeneity increases, an ideal free distribution is still

present. Thus, an ideal free distribution and a risk–reward structure in the wake of

competition over finite resources are not synonymous.

Landscape saturation

Another simplifying assumption of the ideal free distribution principle is that the

landscape is sufficiently saturated in terms of both resources and competitors. If the

number of competitors or the total number of resources is small relative to the number of

patches, there can be patches that attract relatively few or even no competitors. This

change in the saturation of the landscape—via either the number of resources or the

number of competitors—impacts success probabilities. To find out how it impacts the

risk–reward structure, we simulated four different landscapes with different levels of

saturation of competitors and/or resources. The results of the simulation are shown in
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Figure 2 . Success probability as a function of resource size in landscapes with different

levels of resource size heterogeneity within patches. Within-patch heterogeneity of resource

size increases from panels a to d. For details on how the probabilities were estimated see

Appendix A.

Figure 3. In general, the risk–reward structure is robust. Figure 3, however, shows that

there are some quantitative changes to the structure. Comparing the top two panels (with

low-competitor saturation in the landscape: 100 total competitors across 200 patches) to

the bottom two panels (1,000 total competitors across 200 patches), shows that with fewer
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competitors and thus lower saturation the slope of the function is shallower. Moreover, the

variation in the success probability for small resource sizes is higher when either the total

number of competitors is small, or resources are sparse. Thus, in less saturated landscapes,

there is no longer a guarantee that small resources will always be associated with a high

success probability.

The increasing variability in success probability as resource size gets smaller means

resource size becomes increasingly unreliable as a predictor of success probability. Our

simulations show that this problem does not arise to any noteworthy degree with respect to

estimating the success probability for large resources: Even in sparse landscapes, the

variability in success probability is low for large resources (Figure 3). For instance, in the

simulation with low competitor saturation and low resource saturation the range of success

probabilities for the smallest resources is 3.6 times larger than that for the largest

resources. As we see next, a similar regularity emerges when the cognitive constraints of

competitors are taken into account.

Non-ideal individuals

Perhaps ideal free distribution principle’s boldest assumption is that competitors are

ideal—that is, that they are sensitive to and able to move to patches that maximize their

consumption rate. Like the proposed behavior of homo economicus, this optimal behavior

requires a complete representation of the environment and unlimited cognitive resources

(Gigerenzer & Selten, 2002; Simon, 1955). What are the consequences of a more realistic

portrayal of competitors? Abrahams (1986) demonstrated that if competitors have limited

ability to detect differences in the quality of a patch, relative to landscapes with ideal

competitors, real competitors will overuse poor patches and underuse rich patches. This

pattern suggests the following reformulation of the ideal free distribution principle from

Equation 3 to

ny ∝ rαy . (8)
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Figure 3 . Success probability as a function of resource size in an ideal free distribution

model with different levels of landscape saturation. The median success probability (+)

decreases with resource size. The fewer the number of competitors within the landscape,

the shallower the decrease. The dashed lines plot the 2.5% and 97.5% quantiles of success

probabilities, showing that the fewer competitors and resources in the landscape, the

greater the variability in success probabilities—particularly at smaller resource size. In

each simulation there were 200 patches with either 100 (low) or 1,000 (high) competitors

and either 100 (low) or 1,000 (high) resources per size. The results are based on 2,000

simulations per parameter combination. See Appendix B for further details.

The parameter α (0 < α < 1) captures the degree to which competitors, in the aggregate,

mismatch with respect to the resource amount. As sensitivity to patch quality at the
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individual level increases, the distribution of competitors increasingly conforms to an ideal

free distribution, reflected in an increase in α. Kennedy and Gray (1993) found that across

52 animal studies, an estimate of α = 0.66 gave the best account of the data.

Diminished sensitivity to the quality of the patches changes the distribution of

competitors, thereby impacting the risk–reward structure. To see how, recall that the

amount of resources in a patch is ry = my × sy (Equation 4). As a result, the predicted

distribution of competitors will be

ny ∝ (my × sy)α. (9)

Using this more general version of the ideal free distribution principle, we can determine

how nonideal individuals will impact the success probability. This is done by incorporating

Equation 9 into the assumption where py ∝ my/ny (Equation 6). Doing so shows that the

success probability with nonideal individuals is

py ∝
m1−α
y

sαy
. (10)

As Equation 10 shows, once the limited sensitivity of competitors is acknowledged,

success probability py is proportional to both the size of the resource sy and the number of

resources my. If there is no variability in the number of resources across patches, then my

is a constant and thus in terms of proportionality will be factored out of the equation.

Consequently, in landscapes where each patch has the same number of resources but

competitors are nonideal, success probability is less than inversely proportional to resource

size, py ∝ 1/sαy . This means that relative to the risk–reward structure with ideal

competitors, nonideal competitors produce success probabilities that will be less extreme

for small resources and more extreme for large resources. In other words, a landscape with

nonideal competitors produces a flatter risk–reward structure than one with ideal

competitors (Figure 4).
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Figure 4 . Success probability as function of resource size for different levels of sensitivity to

patch quality α (α = 0.3, .6, and .8). As sensitivity to patch quality lessens and

competitors become less ideal (shown above with increasingly lighter lines), success

probabilities become less extreme for small resources and more extreme for large resources.

We can also examine what happens if the number of resources per patch varies

between patches. If the median number of items per patch is similar for patches with

different resource sizes, the median success probability still decreases with resource size sy,

just as before, but it will be shallower than what is predicted for a landscape with ideal

individuals (Equation 10). However, because there is variability in the number of resources

there will be variability in the success probability for a given resource size. To see the

impact of the variability, assume, for example, that the 95% range of number of resource

items per patch ranges from ṁ to m̈. In landscapes with nonideal individuals, Equation 10

implies that the 95% range of the predicted success probabilities will range from values

proportional to ṁ1−α/sαy to m̈1−α/sαy . Figure 5 shows how nonideal individuals in these

landscapes change the range in possible success probabilities as a function of resource size.

The pattern is similar to what we saw in sparse landscapes (Figure 3). The success

probability associated with a small reward item now varies widely, so that in a large

number of cases the success probability will be low. In contrast, the success probability for

a large resource item is less variable and nearly always low.



WHY RISK IS REWARD 20

Figure 5 . Success probability as function of resource size when constraints lead to

competitors undermatching patch resources. The median success probability (+) decreases

with resource size. The 95% ranges of success probabilities at each resource size (dashed

line) depends on the variation in the number of resource per patch (left panel: ṁ = 100 to

m̈ = 1000; right panel: ṁ = 10 to m̈ = 1000).

In sum, limited ability to discriminate between patches of different qualities results in

a risk–reward structure that is less extreme for small resources and more extreme for larger

resources than one that occurs in landscapes with an ideal free distribution. Furthermore,

if there is variability in resource sizes across patches, then these cognitive constraints result

in an asymmetry in the relationship between risks and rewards. In particular, echoing a

similar pattern with low landscape saturation, large resource sizes will reliably have a low
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success probability while small resource sizes will no longer reliably guarantee a high

success probability.

Unequal abilities between competitors

The basic ideal free distribution principle assumes that all individuals are equal in

their ability to obtain a resource. This is obviously a gross simplification; in reality

competitors often differ (Houston & McNamara, 1988; Parker & Sutherland, 1986;

Sutherland et al., 1988). We show in detail in Appendix C that if individuals differ in their

competitive ability, an ideal free distribution of competitors results in a risk–reward

structure within each class of competitors with the same abilities, but not between classes.

The intuition behind this result is that competitors with greater ability are more likely to

obtain a resource, regardless of the resource size. However, within the same class of

competitors the success probability is inversely proportional to number of competitors,

which results in a risk–reward structure. A corollary of this result that the risk–reward

structure will appear weaker in these environments when ignoring or collapsing across

abilities or classes.

Interference between competitors

The basic ideal free distribution principle assumes that competitors do not interfere

with each other’s ability to acquire a resource. However, in many situations individuals do

interfere with each other’s resource acquisition (Sutherland, 1983), including for reasons

other than competition (e.g., predators may frighten off prey). Nevertheless, interference

does not alter the risk–reward structure. For a formal proof see Appendix D. The intuition

behind the result is that interference impacts both the distribution of competitors in a

patch and the success probability of any given competitor. Consequently, interference

between competitors cancels itself out, thus retaining the risk–reward structure.
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Multiple resource types

Finally, what happens to the risk–reward structure when competitors in a landscape

require more than one type of resource (e.g., water, food, mates)? Multiple resource types

may render it impossible to achieve equilibrium across all types of resources

simultaneously. For example, if most of the food is located in specific patches and most of

the mating opportunities are in other patches, then the distribution of competitors between

those patches can reflect either the goal of consuming food or the goal of finding of mates

or some compromise thereof. How does this affect the risk–reward structure? A possible

answer comes from applying what is known as Liebig’s law in behavioral ecology (Bloom et

al., 1985; Danger et al., 2008; Farrior et al., 2013; Gorban et al., 2011; Harpole et al., 2011;

Rosenheim et al., 2010). According to Liebig’s law, growth is not determined by the total

amount of resources, but by the most limiting one. The more limiting (i.e., essential and

scarce) a resource type is, the more likely it is that its distribution dictates the distribution

of competitors. For example, in a drought, water might be a more limiting resource,

whereas in a wet season, mates or food might be more limiting. Consequently, the more

limiting a resource is, the stronger the risk–reward structure for that resource.

In summary, the competitive ecology theory establishes how competition over limited

resources results in the emergence of a risk–reward structure. Building on the concept of

ideal free distribution from behavioral ecology, its first contribution is to establish that an

inverse relationship between the size of a resource and the probability of obtaining it is to

be expected whenever there is competition over finite resources. The second contribution of

our theory is to establish how robust the risk–reward structure is against changes in the

ecology of competition. Specifically, we showed how changes in resources across the

landscape and in competitors systematically affect the risk–reward structure. This

structure proves to be relatively robust: The strength of the relationship weakened, but

never reversed. If the risk–reward structure is weakened, the success probabilities of smaller

rewards are more affected than those of larger rewards. We now examine the extent to
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which people’s beliefs in the risk–reward structure reflect some of the predicted properties.

Do people’s beliefs reflect the ecological properties of a risk-reward structure?

The competitive ecology theory is a theory about an environmental structure. An

adaptive approach to cognition like the one we take suggests that the mind reflects key

properties of the environment. Competition over finite resources is frequent and recurrent,

and so is the risk–reward structure resulting from this competition. Moreover, our theory

establishes that two properties can be commonly expected in the risk–reward structure as a

result of a competitive ecology with realistic assumptions. First, the relationship between

risks and rewards can be expected to be less extreme for small resources and more extreme

for larger resources. As we have shown, this property arises both due to heterogeneity in

resource sizes and when competitors have diminished sensitivity to patch quality. Second,

the resulting risk–reward structure in a landscape will often be one where the variability in

success probabilities increases as resources gets smaller. This heteroscedasticity in

estimates arises as saturation in the number of competitors or number resources decreases,

or when competitors are not perfecting discriminate between resource sizes. We examined

whether these two properties were present in people’s beliefs in an estimation task first

used by Pleskac and Hertwig (2014). There are subtle variations the task, but all the tasks

asks participants to consider a bet like the following:

Imagine you have been asked to play the following lottery. The lottery offers

the opportunity to win e x, but it costs you e 2 to play. If you choose to play

you would pay the e 2 and, without looking, draw a ball from a basket. In the

basket there are 1,000 balls. The balls are either black or red. If the ball is red

you will win e x; otherwise, if the ball is black you will receive nothing. Thus,

the number of red balls in the basket determines the probability that you will

win. You are less likely to win the e 2 the lower the number of red balls in the

basket.
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Figure 6 . Probability estimates by reward magnitudes from the lottery task. The median

observed estimates are denoted by ×. The light gray dots denote individual participant

estimates. The median of the posterior predicted distribution from risk–reward estimation

model is denoted by the large dot and the 95% HDI of the posterior predicted distribution

is denoted by the solid black line. The estimates are shallower than an inverse risk–reward

relationship (dashed line) and the variability in the estimates reduces as the reward

magnitudes increase. Both of these properties are consistent with the properties derived

from our framework.

Different participants saw different total payoffs x (e.g., 2.5, 4, 10, 20), and were asked two

questions: (1) How many balls do you think are in the basket? and (2) Would you pay e 2

to play?

Here we focus on how participants revealed their beliefs in the first question. We

draw on responses across three studies. The first two come from Pleskac and Hertwig

(2014): In the first study, participants (N = 138) could win and lose real money with the

bets (in a behavioral laboratory) and the bets were about an urn with 100 balls. In the

second study participants (N = 196) answered questions about a hypothetical bet (online)
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Table 2

Interquartile range (IQR) of the probability estimates at different payoff levels.

Payoff IQR (estimates)

1.25 .30

2 .35

5 .20

10 .30

25 .29

50 .19

100 .10

250 .10

500 .10

5000 .02

about an urn with 1000 balls. The third study is a new online study where participants

(N = 455) also answered questions about a hypothetical bet with 1000 balls (see

Supplementary Materials for full details on the third study).

Figure 6 plots the estimates collapsed across the three studies. Participants’

estimates (in light gray) reflect an inverse risk–reward structure. Consistent with the

ecological theory’s prediction that the risk–reward structure is flatter with nonideal

competitors, participants’ estimates were flatter than predicted by a perfect inverse

risk–reward structure (dashed line). Moreover, the estimates also became more variable as

the reward size decreased, as indicated by the interquartile range of the probability

estimates listed in Table 2. To formally test the degree to which the properties identified in

our theory are reflected in people’s beliefs, we developed the risk–reward estimation model.
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Risk–reward estimation model

The risk–reward estimation model predicts the estimates participants provide in a

pay-to-play gamble like the scenario described above. The model consists of four core

assumptions: that people use the risk–reward heuristic, that ecological distortion of

probability estimates occurs, that people employ the principle of indifference, and that

estimates vary.

Risk–reward heuristic. The first assumption is that people estimate the

probabilities using the risk–reward heuristic,

p(x) = c/x. (11)

The variable c is the cost of playing (i.e., $1 or e 1) and x is the total payoff (typically

including the cost of the gamble c plus the gain g).

Ecological distortion of probability estimates. Second, as we have established,

the risk–reward structure people experience may not be a perfect inverse relationship. For

instance, as Figure 4 shows when competitors have diminished sensitivity to patch quality

the success probabilities are less extreme for small resources and more extreme for large

resources. To capture these differences in people’s beliefs, the risk–reward estimation model

allows the estimated probabilities from the risk–reward heuristic p(x) to be distorted so

that the distorted estimate p′(x) is

p′(x) = δp(x)α
δp(x)α + [1− p(x)]α . (12)

The α parameter measures the degree to which the risk–reward relationship is flatter than

a perfect inverse risk–reward relationship. As α decreases, the risk–reward relationship

becomes flatter. That is, the probabilities associated with low payoffs are less extreme and

those associated with high payoffs are more extreme. The δ parameter measures an overall

bias in the estimates. A decrease in δ results in an overall downward shift of the



WHY RISK IS REWARD 27

probabilities.2

The principle of indifference. Third, across several studies with the risk–reward

estimation task, we have noted that there is a small but noticeable cluster of estimates at

.5. This is consistent with people using the principle of indifference, whereby if people are

uncertain about the probability of an event they estimate it to be equally likely to occur or

not (Keynes, 1948; Laplace, 1814/1902). There is good evidence that people sometimes

rely on this rule when judging the probability of an event (Fox & Clemen, 2005; Fox &

Levav, 2004; Fox & Rottenstreich, 2003). With this in mind, we equipped the risk–reward

estimation model to capture the rate at which people use the principle of indifference

rather than relying on the risk–reward heuristic.3 According to the model, with probability

0 ≤ λ ≤ 1 people rely on the principle of indifference; otherwise they are assumed to use

the risk–reward heuristic

p′′(x) = λ× .5 + (1− λ)× p′(x). (13)

Variability in estimates. Finally, we sought to capture the variability in people’s

estimates. Across a range of conditions as resource size decreased the variability in the

success probabilities increased (see Figures 3 and 5). To test whether this regularity is also

reflected in people’s estimates, and to account for people’s baseline noise in their estimates

(Erev et al., 1994), we assume that the observed estimates are distributed according to a

beta distribution, with a mean of

µ = p′′(x). (14)

2 Bias has been examined in the context of the ideal free distribution principle, but no systematic bias was

found (Parker & Sutherland, 1986).

3 From an ecological perspective, we might expect an increased rate of the use of the principle of

indifference when the environmental conditions are not expected to create a risk–reward structure (e.g.,

when the system is out of equilibrium or when the resource is unlimited).
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The beta distribution has a second parameter φ called the dispersion parameter.4 It

determines the spread of the distribution or how noisy people are in reporting their

estimates. We parameterized φ so that with increasing reward magnitudes the variability

in estimated probabilities can decrease. Formally, we set

φ = exp(d0 + d1x). (15)

The parameter d0 is a free parameter that captures baseline variability in the estimates.

The parameter d1 captures the degree to which the dispersion or spread of the estimates

changes across payoff levels with d1 = 0 indicating no change in the dispersion across the

payoff levels. When d1 < 0 then there is an decrease in dispersion across payoff levels and

when d1 > 0 there is an increase in dispersion.

Capturing ecological properties with the risk–reward estimation model

We fit the risk–reward estimation model to the data using Bayesian estimation

techniques (see Supplementary Materials for details and the OSF website for code). Briefly,

the estimation model provides a better fit than a standard beta regression model that

models the probability estimates as a linear function of payoffs (see Supplementary

Material for a model comparison).

Risk–reward heuristic. Generally, Figure 6 shows that there is a close

correspondence between the posterior predicted distributions of the model and the

observed estimates: Participants’ estimates are consistent with the use of the risk–reward

heuristic. The posterior predictions also show that the risk the model appears to capture

some of the deviations from the perfect inverse relationship between payoffs and

probabilities. But the parameters are perhaps more revealing in terms of the remaining

predictions of the competitive ecology theory, as we now show.

4 Typically the beta distribution is characterized by the two independent parameters a and b where a = µφ

and b = (1− µ)φ. The variance of the beta distribution is σ2 = µ(1− µ)/[φ+ 1]. Thus, the larger φ is, the

lower the variance.
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Table 3

Estimated parameters for the risk–reward estimation model.

Parameter M HDI

Sensitivity α 0.30 [0.18, 0.44]

Bias δ 0.42 [0.33, 0.52]

Rate of principle of indifference use λ .20 [.06, .33]

Baseline variability d0 0.63 [0.73, 0.54]

Effect of payoff magnitude on variability d1 -0.10 [-0.19, -0.01]

HDI denotes the 95% highest density interval of the distribution. The values

for d0 and d1 are in terms of standardized payoff values.

Distortion in the risk–reward relationship. Table 3 summarizes the posterior

estimates of the risk–reward estimation model. In terms of the distortion prediction, the

parameter estimates for α are below 1, which is consistent with a flatter risk–reward

relationship than a perfect inverse risk–reward relationship (dashed line in Figure 6).5,6

Variability in the risk–reward relationship. The d1 parameter indicates a

small but credible increase in the dispersion of the estimates as the payoff magnitude

decreased (Table 3). According to the model, the dispersion for the highest payoff level

(5,000) (M = 0.92; HDI = [0.34, 1.61]) was on average half as large as the dispersion for the

lowest payoff level (1.25) (M = 1.94; HDI = [1.75, 2.13]) (M = 0.48; HDI = [0.17, 0.84]).

Use of the principle of indifference. The risk–reward estimation model also

reveals that not all participants relied on a risk–reward structure to estimate the

5 A special case of the risk–reward estimation model where α and δ were set to 1 provided a substantially

worse fit to the data (see Supplementary Material).

6 The values for δ also show that the estimates were biased away from the perfect inverse relationship in a

manner consistent with individuals being pessimistic in their estimates. Lacking an a priori prediction for

this result we do not interpret it further.
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probability of winning. An estimated λ parameter of .20 indicates that the principle of

indifference had some weight in the estimates. This weight is notable in Figure 6 where

there is a bump at .5 across the different payoff levels. Given the between-subjects nature

of the studies it is impossible to identify whether this effect is due to differential use of the

principle of indifference or the risk–reward heuristic, or if the effect is more the result of an

integration between the two. Regardless, the model shows that the risk–reward structure

carries substantially higher weight in participants’ estimates.

Summary

In summary, we have shown that not only do people’s beliefs in the probability of

obtaining different payoffs adhere to the risk–reward structure, they also reflect two core

predictions of our ecological theory of the risk–reward structure. First, beliefs about the

risk–reward relationship were, relative to a perfect inverse risk–reward relationship, was

less extreme for low payoffs and more extreme for high payoffs. This property is consistent

with the competitive ecology theory of the risk–reward structure, according to which this

pattern arises in landscapes with heterogeneity in resource sizes or due to nonideal

competitors. Second, participants’ estimates were increasingly variable with decreasing

payoffs. This, according to our theory, is a common property due, for example, to sparsity

of resources or competitors, or to nonideal competitors. We now explore the behavioral

consequences of both of these aspects in the General Discussion.

General Discussion

Herbert Simon’s (1990) principle of bounded rationality states,

Since we can rarely solve our problems exactly, the optimizing strategy

suggested by rational analysis is seldom available. We must find techniques for

solving our problems approximately, and we arrive at different solutions

depending on what approximations we hit upon. Hence, to describe, predict
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and explain the behavior of a system of bounded rationality, we must both

construct a theory of the system’s processes and describe the environments to

which it is adapting.” (p. 7)

Simon’s principle has led to extensive work on how attention, learning, memory, affective

processes, and other factors shape people’s judgments and decisions (Weber & Johnson,

2009). At the same time, the principle has promoted an extensive cataloging of many of

the choice environments in which these judgments and decisions are made (Hertwig et al.,

2013; Hogarth & Karelaia, 2007; Todd et al., 2012). A weakness of this cataloging

approach, however, is that one may end up with a different process for each discernible

environment or environmental structure, resulting in a multitude of descriptions of

environment-by-process associations. In order to avoid such “description inflation,” we

suggest reframing Simon’s goal as follows: In order to describe, predict, and explain the

behavior of a system of bounded rationality, one must construct theories of the system’s

processes as well as theories of the mechanisms behind the environmental structures to

which the system is adapting.

The competitive ecology theory of the risk–reward structure is a step in this

direction. It shows that the ecology of competition is a sufficient condition for linking risks

with rewards, and therefore—because competition for limited resources is a ubiquitous

condition—a widespread and recurrent environmental regularity. Importantly, our theory

also identifies how differences in the ecology, whether in environmental conditions (e.g.,

limitedness of resources) or in the competitors’ abilities, alter the coupling of risk and

reward. For instance, the more limiting a resource is, the more reliably one can expect a

coupling. Furthermore, the relationship is stronger with more competitors and with

competitors who are better able to discriminate between different rewards. The

relationship is also stronger the more clumped the resources or rewards are (i.e., divided

into distinct patches or categories), and the more homogeneous in size the resources are

within a patch relative to between patches. Finally, while in most cases a large reward
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corresponds to a low probability, a smaller reward is not reliably tied to a high probability.

This implies that people should be wary of banking on a large probability when presented

with a small reward.

How an ecological theory can help make sense of human behavior

Identifying the specific forms the risk–reward structure takes and the causes for

variation helps, in turn, to better understand human behavior. Empirically, we found that

people’s representations of the risk–reward structure display properties that are predicted

by the ecological theory. Not only is the reported risk–reward relationship flatter, it also

exhibits greater dispersion in estimated probabilities as the payoff magnitudes decrease (see

Figure 6). This is consistent with the predictions of the ecological theory that suggests

various reasons for the relationship to be flatter than in an ideal world.

How do people come to reflect these ecological properties? We do know that people

are able to learn risk–reward structures incidentally as they make decisions about risky and

uncertain prospects without feedback and when learning is not the central goal (Leuker et

al., 2018a). This may suggest that the mind is ready to learn this relationship and perhaps

even expects it. But learning is only one mechanism through which people adapt to the

risk–reward structure. Social transmission may be another (Canini et al., 2014; Moussaïd

et al., 2015). Indeed, the cross-cultural occurrence of proverbs like “A bird in the hand is

worth two in the bush” is an indicator that the risk–reward structure has entered our

collective mind. The German version of this proverb has it that a sparrow in the fist is

better than a pigeon on the roof, but the gist remains the same: It is better to hold on to

something than to risk losing it by trying to attain something better. Expressed in the

probabilistic terminology of the risk–reward structure: One is better off contenting oneself

with a smaller and safer reward than striving for a larger but less likely reward.

Understanding how people pick up recurrent and stable regularities in their environment

via individual, social, and cultural learning (Henrich & McElreath, 2003; Mesoudi, 2011;
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Richerson & Boyd, 2005) will be important next steps in understanding how the

risk–reward structure and other structures impact human behavior.

The competitive ecology theory can be informative for other uses of the risk–reward

structure as well. For example, since the risk–reward relationship is bidirectional, it can

also be exploited to make inferences from known risks to the magnitude of rewards

(Skylark & Prabhu-Naik, 2018). Like it does for the risk–reward heuristic, the theory

identifies conditions where inferences about rewards based on the risks are impacted by the

ecology. For instance, the systematic change in the variability in success probabilities

affects an individual’s ability to infer a reward from a given risk. In particular, small

probabilities of success do not guarantee a large reward size, but large probabilities of

success will be more likely to be linked to small resources (see Figures 3 and 5). In other

words, an object that is easy to obtain is probably of low value but an objects that is

harder to obtain does not promise high value.

A conjecture of ecological rationality requires an ecological theory

The concept of ecological rationality (Todd & Gigerenzer, 2007) highlights the fit

between a heuristic or, as Hertwig, Pleskac, Pachur, and the Center for Adaptive

Rationality (in press) propose, of any decision-making tool and an environment. To reach a

comprehensive understanding of this fit, however, an ecological theory like the one

presented here is required. Consider the initial work on the risk–reward heuristic (Pleskac

& Hertwig, 2014). Across the different ecologies surveyed, there was a fair amount of

variation in the exact shape of the risk–reward structure. Moreover, when they evaluated

how well people’s beliefs tracked the risk–reward relationship again there was substantial

variation. Although estimates obeyed the predictive qualitative pattern, people’s estimates

did not perfectly map onto the prediction of the risk–reward heuristic. Our ecological

theory, however, helps explain this variability in the world and in people’s estimates. By

drawing on the ideal free distribution framework, we can identify how key properties of the
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ecology (e.g., resource size, limits on the resource) as well as properties of the organisms’

cognitive systems (e.g., discriminatory abilities) shape the risk–reward structure in a

specific environment.

This theoretical approach to understanding choice environments thus offers the

opportunity to predict when the mind is expected to assume and exploit the risk–reward

relationship and when it is not, as well as when it would be maladaptive to do so. For

instance, the competitive ecology predicts the existence of a risk–reward relationship only

when an organisms–environment system has reached its ecological equilibrium. In

environments that have not reached equilibrium, ecologically rational actors facing

uncertainty should not rely on the risk–reward structure. Of course, a person may not

know that the system is newly forming and not yet in a state of equilibrium. Therefore, the

risk–reward structure may still anchor a person’s cognition, for instance via a Bayesian

prior. The question of the extent to which people overgeneralize the risk–reward

relationship to unsuitable environments is an empirical one. Nevertheless, an ecological

theory can be used to map environments in which the risk–reward heuristic is better than

other strategies.

A normative theory about domain-specific cognitive tools

Being able to predict when the mind should and should not expect a risk–reward

structure can also inform normative theories of decision making. The overarching

assumption in normative decision theory is that one should maximize utility when making

decisions (Keeney & Raiffa, 1993; Savage, 1954; von Neumann & Morgenstern, 1947). This

assumption has several consequences. First, it is applicable across environments, resulting

in a domain-general normative theory. Second, it is largely divorced from the properties of

the agent. As Simon (1990) stated, “the economist who wishes to predict behavior studies

the environment in which the behavior takes place, for the rational economic actor will

behave in whatever way is appropriate to maximize utility in that environment” (p. 6). In
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this case, all the agent has to do to act in a rational manner is to act in accordance with

the rules or axioms that permit utility maximization. Human cognition, however, is limited

and conformity to these axioms is not an easy feat (Gigerenzer & Selten, 2002; Simon,

1955; Weber & Johnson, 2009).

In contrast, an adaptive approach to cognition takes a different path and assumes

that decision makers exploit both core psychological capacities and ecological structures to

make decisions (Anderson, 1990; Brunswik, 1943; Simon, 1956; Fiedler, 2000; Kareev, 1995;

Perkovic & Orquin, 2017; Stewart et al., 2006). Following this logic, the human mind is

assumed to be composed of a toolbox of environment-specific decision strategies

(Gigerenzer et al., 1999; Hertwig et al., in press; Payne et al., 1993). A great challenge to

this view is the lack of a theory about the tool that should be selected in a given situation.

Our ecological theory illustrates one way to address this thorny normative issue in the

future. The competitive ecology theory of the risk–reward structure can be understood as

an explicit, normative theory to evaluate where a particular tool—the risk–reward

heuristic—should be applied or not. In addition, we can also record deviations from the

heuristic and evaluate whether they were justified, appropriate, or adaptive, rather than

dismissing them as “irrational.” Taking such an ecological approach to normativity also

means that the theory is not limited to some ideal environment, as is often the case with

utility theory. Instead, it can suggest how ecologically rational actors should decide when

conditions are less than ideal or when ecological anomalies happen like opportunities

arising that are too good to be true (see Kaunitz et al., 2017; Leuker et al., 2018b).

Conclusion

Tversky and Kahneman (1974) famously argued that “people rely on a limited

number of heuristic principles which reduce the complex tasks of assessing probabilities

and predicting values to simpler judgmental operations. In general, these heuristics are

quite useful, but sometimes they lead to severe and systematic errors” (p. 1124). The
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largely neglected issue in their work and the work it has inspired has been the question of

when these heuristic principles are useful. Ecological theories like the one presented here

will help to provide an answer to this question that goes beyond simply cataloging

environments in which heuristics succeed or fail. In the present case, the toolkit of

behavioral ecology has helped to reveal when a risk–reward structure can reliably be

expected. This theoretical grounding predicts when the risk–reward heuristic (or other

cognitive strategies that take advantage of this environmental structure) is appropriate and

when it is not. In sum, this work shows that a system of bounded rationality can only be

understood if a theory of the mind is coupled with a theory of the environment.
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Appendix A

Risk–Reward and Heterogeneous Patches

Here we examine what happens to the predicted risk–reward relationship when we relax

the assumption that resource sizes are constant within patches.

Two resource types

As a first step, we consider a relatively simple environment that has two resource

sizes: small and large, with the constraint that slarge > ssmall = 1. We further assume that

across the landscape there are two types of patches: rich and poor. A rich patch contains

more large resources than small ones, mlarge > msmall. Similarly, a poor patch contains

more small resources than large ones, msmall > mlarge.

It is useful to further specify the relationship between resource sizes in the rich and

poor patches. To do so, we set the number of large resources in the rich patch and the

number of small resources in the poor patch to

m′ = mrich, large = mpoor, small. (A1)

We also set the number of small resources in the rich patch and the number of large

resources in the poor patch to

mrich, large = mpoor, small = m′/µ. (A2)

The parameter µ ≥ 1 determines the similarity of the patches across the landscapes.

As µ→ 1 the rich and poor patches become more and more similar to each other, but also

more heterogeneous in terms of resource size. That is, both rich and poor patches grow to

contain approximately m′ large and small resources and as a result the within-patch

heterogeneity of resources approaches between-patch heterogeneity. Analogously, as µ

increases, rich and poor patches become more dissimilar to each other such that as µ→∞

rich patches will contain only large resources and poor patches only small resources (i.e.,
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patches become homogeneous with respect to resource size). Hence, as µ increases, the

between-patch heterogeneity increases and the within-patch heterogeneity decreases.

Recall that the amount of resources available in a patch is a multiplicative function of

the number and size of the number of resources, r = m× s (Equation 4). Thus, the total

amount of resources r available in rich patches is

rrich = slarge ×m′ + ssmall ×
m′

µ
. (A3)

In poor patches, the total amount of resources is

rpoor = slarge ×
m′

µ
+ ssmall ×m′. (A4)

According to the ideal free distribution principle (Equation 3; and remembering that

ssmall = 1), the number of competitors in the rich patch is

nrich ∝ m′(slarge + 1
µ

). (A5)

The number of competitors in the poor patch is

npoor ∝ m′(slarge
µ

+ 1). (A6)

Generally, the risk–reward relationship is measured in terms of the size of the

resource. To establish how the risk–reward relationship works in heterogeneous patches

with different resource sizes, it is useful to find the average number of competitors per

resource of a specific size. Assuming an equal number of rich and poor patches, the average

number of competitors per large resource across the landscape of a total of Y patches is

n̄large =
∑
y∈Y my, large × ny∑

y∈Y my, large

=
m′ × c×m′(slarge + 1

µ
) + m′

µ
× c×m′( slarge

µ
+ 1)

m′ + m′
µ

(A7)

= cm′(slarge + µ2slarge + 2µ
µ2 + µ

)
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where c is a proportionality constant. Analogously, the average number of competitors per

small resource is

nsmall = cm′(1 + µ2 + 2slargeµ
µ2 + µ

). (A8)

Recall that the success probability p of a patch is inversely proportional to the total

number of competitors per resource, py ∝ my/ny (Equation 6). Thus, from Equation A7

the success probability for a large resource is

plarge = µ2 + µ

m′c(slarge + µ2slarge + 2µ) , (A9)

and for a small resource is

psmall = µ2 + µ

m′c(1 + µ2 + 2slargeµ) . (A10)

With the number of competitors and the success probability established for rich and

poor patches, we can use the parameter µ to establish how the risk–reward relationship

changes as the rich and poor patches become more similar and, as a result, as the

heterogeneity between patches matches the heterogeneity within patches. To do so, we will

examine the ratio of the probability of success for small resources relative to that of large

resources,
psmall
plarge

= slarge + slargeµ
2 + 2µ

1 + µ2 + 2slargeµ
. (A11)

When poor and rich patches are equivalent and there is maximal within-path heterogeneity

(µ = 1), then according to Equation A11 the ratio of success probabilities for small and

large resources will be 1, psmall/plarge = 1. In words, when the number of large and small

resources is equal in both rich and poor patches (maximal within-patch heterogeneity) then

success probability is on average equivalent for small and large resources and there is no

risk–reward relationship.

Now consider what happens when the rich and poor patches in the landscape become

maximally dissimilar and there is minimal within-patch heterogeneity in resource size (i.e.,

rich patches only have large resources and poor patches only have small resources). This
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occurs when µ→∞. In this case, taking the limit of Equation A11 shows that

limµ→∞
slarge+slargeµ2+2µ

1+µ2+2slargeµ
= limµ→∞

2µslarge+2
2µ+2slarge

= slarge. That is, as rich and poor patches

become maximially dissimilar the ratio of success probabilities for small to large resources

(psmall/plarge) approaches slarge and as a result the success probability grows to be inversely

related to resource size (a risk–reward relationship).

To address what happens for intermediate levels of µ we need to establish how

Equation A11 changes as a function µ. To do so, we take the partial derivative of the

function with respect too µ. Doing so shows that

d(slarge + slargeµ
2 + 2µ

1 + µ2 + 2slargeµ
)/dµ ∝ (s2

large − 1)(µ2 − 1) > 0. (A12)

Therefore, for intermediate levels of µ when rich and poor patches are transitioning from

maximally similar to maximally dissimilar, the ratio of success probabilties for small and

large resources lies between 1 and slarge. That is, the success probability is smaller for large

resources than for small resources, but the relationship is shallower than predicted when

patches are maximially dissimilar (i.e., psmall/plarge < slarge). In particular, as rich and

poor patches become more dissimilar (i.e., as µ increases), the relationship between the

success probability and resource size approaches an inverse-proportional relationship and

resource size becomes a more reliable predictor of the success probability.

Multiple resource types

In order to generalize to more complex situations with larger numbers of different

reward sizes, we used numerical simulations. Please see the accompanying website at the

Open Science Framework for the code. In the simulation, we assumed 10 resource sizes

(ranging from s = 1, 2, ..., 10). There were ∑
ms = 1, 000 total resources with ms = 100

resources of each size class s. These resources were distributed among Y = 10 patches

following one of four procedures:

1. Each patch received 100 resources of one size class; different patches received

resources of different sizes (“minimal within-patch heterogeneity”);
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2. Patches were divided into three different classes, each receiving 100 resources as

follows:

• Three “very poor” patches received resources drawn randomly from sizes 1 to 3;

• Three “intermediate” patches received resources drawn randomly from sizes 4 to

6;

• Four “very rich” patches received resources drawn randomly from sizes 7 to 10

(“low within-patch heterogeneity”);

3. Patches were divided into two different classes, each receiving 100 resources as follows:

• Five “poor” patches received resources drawn randomly from sizes 1 to 5;

• Five “rich” patches received resources drawn randomly from sizes 6 to 10 (“high

within-patch heterogeneity”);

4. All patches received 100 resources drawn randomly from sizes 1 to 10 (“maximal

within-patch heterogeneity”).

For each patch, we calculated the total amount of resources using Equation 4. Next,∑
y∈Y ny = 1, 000 competitors were distributed among the patches according to the ideal

free distribution principle so that the number of competitors was inversely proportional to

the total amount of resources in a patch. The relative probability of success for each

resource size was calculated by determining the inverse of the average number of

competitors per resource of this size class across all patches,

ps =
∑
y∈Y ms,y∑

y∈Y ny ·ms,y

. (A13)

Figure 2 plots the average probability of success across 100 iterations of each

landscape. They confirm that the analytical results for two resource sizes generalizes to

multiple resource sizes: As within-patch heterogeneity increases, the relationship between
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probability of success and resource size becomes increasingly shallower. Finally, when

within-patch heterogeneity is maximal, probability of success is the same for all resource

sizes (Figure 2d).
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Appendix B

Landscape Saturation

Assume a landscape in which the number of patches is large, but the number of

competitors is small and resource density is low, so that resources are spread out thinly.

Several patches will contain no competitors, either because these patches contain such

small amounts of resources that they attract no competitors, or because there are simply

not enough competitors for each patch. Do we still expect a negative relationship between

reward size and probability of success in such a non-saturated landscape? We address this

question with simulations. Please see the accompanying website at the Open Science

Framework for the code.

Simulation procedure

We assumed a landscape with Y = 200 patches, and resources of 10 different sizes

ranging from s = 1, 2, ...10. The exact number of patches is of little relevance for the

present purpose, as long as it is large relative to the number of competitors and/or number

of resources. For simplicity, the number of resources of each size was presumed to be equal

(ms = 20). We further assumed that individual patches were homogeneous with respect to

resource size, and that there were equal number of patches with resources of each size class

so that 20 patches contained resources of size s = 1, another 20 patches contained resources

of size s = 2, and so on.

In each simulation, the resources of each size were randomly distributed among the

20 patches with that resource size according to a uniform distribution. Then competitors

were distributed one by one in the landscape according to the maximal per capita

consumption rate at the time. This ensured that competitors were distributed in an

“ideal–free” manner. More specifically, when a new competitor entered the landscape the

amount of resources ry was calculated for each of the 200 patches (Equation 4). Then the

per capita consumption rate uy for each patch which this competitor would encounter at
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that time was calculated such that

uy = ry
ny + 1 . (B1)

The new competitor then joined the patch with the highest per capita consumption rate at

that time. If multiple patches had the same maximum uptake then the competitor was

randomly placed in one of those patches. This procedure continued until all competitors

were distributed.

At the end of each simulation, the success probability for a newly arriving focal

competitor was calculated using the assumption that the success probability in a given

patch is proportional to the ratio of the number of resources to the number of competitors

in that patch (Equation 6). In particular, the success probability for patch y was calculated

as

py =
my
ny+1∑

y∈Y
my
ny+1

. (B2)

Note that to make the estimated success probabilities comparable across different

landscapes, we normalized the ratio of the number of resources to the number of

competitors to the value of the sum of this ratio across the patches.

Since patches were homogeneous in terms of resource size, the success probability in a

given patch was also the probability of success for the relevant resource size, ps. Thus, in

each simulation we obtained 20 estimates of the success probability for any given resource

size.

We investigated low and high levels of competitor saturation of the landscape by

distributing either n = 100 total competitors across the landscape or n = 1, 000

competitors. These different population sizes of competitors either entered a landscape

with low resource density with ms = 100 resources of each of 10 resource sizes (i.e., 1,000

resources in total), or the competitors entered a landscape with high resource density with

ms1, 000 resources of each of 10 resource sizes (i.e., 10,000 resources in total). For each of
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the resulting four parameter combinations, we ran 1,000 simulations.

Figure 3 summarizes the results of the simulations. We found that the median (and

mean) success probability still decreases with resource size, but the more shallow the

decrease, the less saturated the landscape is with respect to the number of competitors.

Further, the probability of success is more variable the lower the saturation of the

landscape with either competitors or resources, particularly for small resource sizes.
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Appendix C

Unequal Competitors

The ideal free distribution principle assumes not only that competitors are ideal, but also

that they are equally competitive in the landscape. That is, they have an equal ability to

obtain a resource. To examine the consequences of this assumption we relax it, allowing for

two classes of competitors: bullies and wimps. Bullies are twice as good at acquiring

resources as are wimps. Thus, the presence of a bully impacts a wimp’s resource

consumption twice as strongly as the presence of another wimp does, while any wimp

impacts on a bully’s intake only half as strongly as another bully does.

With these constraints, based on an ideal free distribution, we set the per capita

resource consumption rate u in a given patch y for bullies as

uy,bullies = ry
ny,bullies + 1

2ny,wimps
. (C1)

The per capita resource consumption rate u in a given patch y for wimps is

uy,wimps = ry
2ny,bullies + ny,wimps

. (C2)

It follows from Equations C1 and C2 that the per capita consumption rate for wimps is

half that for bullies in each patch with both classes of competitors. An ideal free

distribution of unequal competitors across patches is possible: If both bullies and wimps

move between patches so as to maximize their own resource consumption, then the per

capita resource consumption rate for bullies at equilibrium is the same in all patches, and

that for wimps is also the same in all patches. However, the constant per capita resource

consumption rate for wimps is only half as large as that for bullies,

ubullies = 2uwimps = κ. (C3)

It follows from Equations C1 and C3 that the distribution of competitors in each

patch is

ny,bullies + 1
2 · ny,wimps = ry

κ
(C4)
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Recalling the amount of resources is determined by the number and size of resources,

ry = my × sy (Equation 4), this implies

ny,bullies + 1
2 · ny,wimps = ry

κ
= my × sy

κ
. (C5)

We are interested in a bully’s (or wimp’s) success probability within a patch. Based

on the resource to competitor assumption (Equation 6), the success probability for bullies is

py,bullies ∝
my

ny,bullies + 1
2 · ny,wimps

. (C6)

Recall that each wimp only impacts half as much as another bully on a bully’s resource

uptake, and, thus, on a bully’s probability of successfully gaining a resource within a given

time period. Similarly, the success probability for wimps is

py,wimps ∝
my

2 · ny,bullies + ny,wimps
(C7)

Substituting Equation C4 into Equations C6 and C7, we can determine the expected

relationship between success probability and resource size at equilibrium. For bullies, this

results in

py,bullies ∝
my

my×sy
κ

. (C8)

Because κ is a constant this expression simplifies to

py,bullies ∝
1
sy
. (C9)

For wimps, their reduced competitiveness results in the success probability being

proportional to

py,wimps ∝
my

my×sy
1
2κ

. (C10)

This expression simplifies to

py,bullies ∝
1

2sy
. (C11)

That is, for bullies and for wimps the success probabilities are different: In our example the

success probability of bullies is always twice as high as that of wimps for all resource sizes.
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This reflects the fact that, as competitors, bullies are twice as strong as wimps. However,

within each class of competitors, the success probability is still inversely proportional to

resource size. Hence, just as for equal competitors, the success probability for an individual

competitor of a given class can be predicted by resource size. The conclusions are similar

when one considers more than two different classes of competitors.
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Appendix D

Interference Competition

If competitors interfere with each other’s ability to acquire resources (e.g., because they

frighten each other’s prey off, or engage in antagonistic interactions), the impact of

competitors on the resource consumption rate is more than just proportional (Parker &

Sutherland, 1986),

u ∝ ry
nθy
, (D1)

where θ > 1 and captures the degree of interference. Since the per capita resource

consumption rate at equilibrium is the same in all patches, the ideal free distribution

principle (Equation 3) changes to

ny ∝ ry
1
θ . (D2)

Because ry = my × sy (Equation 4), it follows that

ny ∝ (my × sy)
1
θ . (D3)

The success probability is also impacted by interference such that it is no longer

inversely proportional simply to the number of competitors (Equation 6). Instead we

assume that the interference impacts the success probability to the same degree it impacts

the per capita consumption rate so that

py ∝
my

nθy
. (D4)

Substituting Equation D2 into Equation D4 shows that

py ∝
my

nθy
= my

[(my × sy)
1
θ ]θ
. (D5)

Thus, with interference among competitors the success probability is still inversely

proportional to the size of the resources,

py ∝
1
sy
. (D6)

That is, while interference of competitors changes the distribution of competitors (see

Equation D2), it has no effect on risk–reward relationship.
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1 Risk–Reward Estimation Study

Our goal was to replicate the risk–reward estimation studies in Pleskac & Hertwig (2014) with a
German sample. We used the scenario (in German) described in Study 2. Moreover, we manipulated
the order in which participants were asked to estimate how many balls they thought were in the
basket and if they wanted to pay to play the gamble. Half of the participants completed the
estimation question before the choice question, while the other half completed it in the other order.
We also extended the range of payoffs (payoff levels, between participants: e2.5, e4, e10, e50,
e100, e200, e500, e1,000, and e10,000).

1.1 Methods

1.1.1 Participants

A total of 455 participants were recruited using a web panel hosted at the Max Planck Institute
for Human Development in Berlin, resulting in approximately 50 participants per payoff × order
condition (between-participants). Each participant earned e2.0 for participation. The study was
approved by the IRB at the Max Planck Institute for Human Development in Berlin.

1.2 Results

1.2.1 Estimation

Coefficient HDI (lower) HDI (higher)

Intercept (Mean) -1.45 -1.60 -1.29
Reward (Mean) -1.48 -2.12 -0.79
Order:Choice first (Mean) -0.19 -0.41 0.03
Order:Choice first × Reward (Mean) 1.43 0.56 2.28
Intercept (Dispersion) 0.34 0.14 0.53
Reward (Dispersion) 1.35 0.50 2.10
Order:Choice first (Dispersion) 0.48 0.20 0.76
Order:Choice first × Reward (Dispersion) -2.10 -3.11 -1.05

Table S1: Bayesian beta regression table using normalized rewards (0–1), estimates (0–1), and
question order (baseline: estimates, then choice) as predictors for both the mean and the dispersion
of the estimates.

We modeled the effect of payoff on the mean and dispersion (variance) in the estimates using a
beta regression with Bayesian estimation techniques (Kruschke, 2014), using Stan in R for regression
analyses with the rstanarm package (RStanArm Version 2.9.0-4 , 2016). In the regression, we used
the reward value (normalized to be between 0 and 1), question order (estimate first vs. choice first),
and the interaction between reward value and order, as predictors via a logit link of the estimates
(normalized to be between 0 and 1). In addition, we used the same variables to simultaneously
predict the dispersion (a proxy for the variance) of the estimates (Smithson & Verkuilen, 2006) via
a log link.

Results of the beta regression are summarized in Table S1. Replicating past results, and consis-
tent with participants using the risk–reward heuristic, as rewards increased the probability estimates
decreased. There was also a credible order effect on the estimates as well as an interaction between
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order and reward level: Participants who chose whether or not to play first (and then estimated
the chances of winning) generally showed a diminished effect of reward on their estimates. This
also meant that participants who chose first appeared to estimate their chances of winning average,
higher.

In terms of the dispersion, there was a credible decrease in the dispersion of the estimates as
payoff increased (due to a negative log-link function). As with the mean estimates, there was a
credible order effect on the dispersion of the estimates as well as an interaction between order and
reward level. For participants who chose first (and then estimated the chances of winning), there
was more dispersion in the estimates. Moreover, the effect of reward value changed from showing
a credible decrease when estimating the probability first (b = 1.38, CI = [0.52, 2.13]) to a credible
increase when making a choice first (b = −0.76, CI = [−1.41,−0, 14]; dispersion coefficient from a
beta regression for estimate first condition).

It is difficult to draw strong conclusions about the order effect as the study was not designed to
examine this effect. Nevertheless, the risk–reward estimation model (described in detail in section 2)
can help understand these results. The risk–reward estimation model suggests that the order effects
are due to an increase in the rate of participants using the principle of indifference (i.e. estimating a
probability of .5) when choosing whether to play first compared to when estimating before choosing:
Analyzing the data from Study 3 alone showed that the rate of the principle of indifference was
M = .28 (HDI = [.12, .41]) for participants who chose before estimating, and M = .24 (HDI =
[.07, .37]) for participants who estimated before choosing (difference: Mchoose>estimate = .04, HDI =
[−.03, .12]).

1.2.2 Choice

Coefficient HDI (lower) HDI (higher)

Intercept -0.52 -0.89 -0.16
Reward 1.25 0.35 2.19
Estimate 1.32 0.15 2.51
Order:Choice first 0.69 0.18 1.20
Order:Choice first × Reward 0.62 -0.90 2.29
Order:Choice first × Estimate -1.15 -2.88 0.58

Table S2: Logistic regression table using normalized rewards (0–1), estimates (0–1), and question
order (baseline: estimates, then choice) as predictors for both the mean and the variance estimates.

We also examined the choices participants made in terms of whether or not to pay to play. We
did so using a logistic regression with Bayesian estimation techniques (Kruschke, 2014). The logistic
regression was run using Stan in R for regression analyses with the rstanarm package (RStanArm
Version 2.9.0-4 , 2016). In the regression, we entered the normalized reward value, the normalized
estimates, whether participants entered an estimate first (1) or choice first (0), and the interaction
between order and the reward value and the interaction between the order and the estimate as
predictors of the choice. The results are summarized in Table S2. They largely replicate the studies
reported in Pleskac & Hertwig (2014). On average, participants were more likely to choose to pay
e2.0 to play the gamble as the reward value increased. Consistent with participants using the risk–
reward heuristic to help decide whether to pay to play, their estimates were also credible predictors
of their choice. Finally, note there was a credible order effect such that participants that chose first
were more likely to pay to play.
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2 Risk–reward estimation model

2.1 Model estimation

We estimated the posterior distributions over the parameters of the hierarchical models using Markov
Chain Monte Carlo (MCMC) methods. Our model estimation procedure was implemented with
JAGS 4.3 using Matlab via matjags to interface with JAGS. The general JAGS code used is in the
OSF. The estimation of the model used three parallel chains. Each chain consisted of 1,000 burn-in
steps (unrecorded samples to allow the chain to reach the reasonable parameter space) and 20,000
samples for a total of 60,000 samples.

The chains were evaluated for representativeness and accuracy using the procedures outlined
by Kruschke (2014). Representativeness was evaluated using visual inspection of trace plots of the
chains and density plots. All the chains at the group level were inspected visually with random
samples of chains from the individual level. Representativeness was also evaluated numerically using
the Gelman-Rubin statistic with the conventional heuristic that values of the Gelman-Rubin statistic
above 1.1 were worrisome. All the chains met these standards suggesting representativeness of the
posterior distributions. Accuracy was evaluated by examining the autocorrelation and the effective
sample size. The effective sample size estimates the sample size of the chain after accounting for the
autocorrelation present in the samples. As a rough standard we sought to have approximately an
effective sample size of approximately 10,000. Our main focus in this paper was on comparing the
group level mean estimates of the parameters.

2.2 Model comparisons

As a means for testing for the importance of different components of the RREM, we also fit several
variants. We compared the fits of the different models with the Deviance Information Criterion
(DIC; Spiegelhalter et al., 2002) where smaller values are better. Table S3 lists the DICs for the
different variants of the risk–reward estimation model where different models were included (1) or
not (0). The comparisons show that the best model has all three components, which is the model
we report in the paper. However, DICs do show that the distortion and ignorance prior components
play a larger role than the change in dispersion.

It is also informative that a beta regression on the estimates where the mean and variance are
allowed to vary as a function of the payoff level has a DIC of -1,1139.2 That is, the Risk–Reward
Estimation Model provides a better fit to the data than a statistical model, demonstrating the
importance of accounting for the cognitive strategies used in making estimates.

Distortion Dispersion Ignorance Prior DIC

1 1 1 -1,249.4
1 1 0 -1,247.4
1 0 1 -1,247.3
0 1 1 -1,241.6
1 0 0 -1,247.6
0 1 0 925.1
0 0 1 -1,228.9
0 0 0 936.7

Table S3: DICs for different variants of the Risk–Reward Estimation Model.
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