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Abstract: As antibiotic resistance undermines efforts to treat bacterial infections, phage therapy is 
being increasingly considered as an alternative in clinical settings and agriculture. However, a major 
concern in using phages is that pathogens will develop resistance to the phage. Due to the constant 
evolutionary pressure by phages, bacteria have evolved numerous mechanisms to block infection. 
If we determine the most common among them, we could use this knowledge to guide phage 
therapeutics. Here we compile data from 88 peer-reviewed studies where phage resistance was 
experimentally observed and linked to a bacterial gene, then assessed these data for patterns. In 
total, 141 host genes were identified to block infection against one or more of 80 phages 
(representing five families of the Caudovirales) across 16 microbial host genera. These data suggest 
that bacterial phage resistance is diverse, but even well-studied systems are understudied, and there 
are gaping holes in our knowledge of phage resistance across lesser-studied regions of microbial 
and viral sequence space. Fortunately, scalable approaches are newly available that, if broadly 
adopted, can provide data to power ecosystem-aware models that will guide harvesting natural 
variation towards designing effective, broadly applicable phage therapy cocktails as an alternative 
to antibiotics. 

Keywords: phage resistance; phage therapy; vConTACT 2.0; phage resistance ecology, 
bacteriophages  

 
 

1. Introduction 

With the rapid development of bacterial antibiotic resistance threatening the efficacy of 
antibiotic treatments, and lack of development of new antibiotics due to regulatory obstacles and 
costs [1]. Phages, viruses that infect bacteria, stand out as an alternative approach to combat 
bacterial antibiotic resistance in clinical and agricultural settings [2,3]. Phages have been utilized 
therapeutically to treat and prevent bacterial infections in humans, plants, and livestock [4]. In the 
United States, Adaptive Phage Therapeutics (APT) have a growing stock of phages against multi-
drug resistant bacterial pathogens, and report 7 successful cases using their precision-matched 
phage technology after normal standard of care failed [5]. Concurrently, the FDA has approved the 
use of SalmoFresh consisting of lytic phages that target Salmonella and has been approved to treat 
fish, shellfish, poultry, fresh fruits, and vegetables in Canada [6]. Though phages are being 
increasingly considered as an alternative to combat the rise of bacterial resistance to phage 
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infection, extraordinarily little is known about the interactions between the bacterial host and 
phage, specifically in terms of resistance. 

It is known that, like antibiotic treatment, bacteria can develop resistance to phage [7–11]. These 
resistance variants can impact phage therapeutics. A recent study using a cocktail of phages to treat 
burn wounds infected by Pseudomonas aeruginosa found resistance variants that contributed to a 
reduced efficacy of treatment in some patients [7]. Bacteria have an array of infection blocking 
mechanisms that can target any of the five steps in the phage lytic cycle: 1) adsorption, 2) DNA 
entry and stability, 3) phage genomic replication, transcription and translation, 4) phage assembly, 
and 5) host cell lysis  [12,13].  

Here, we review what is known about mechanisms found to block phage infection. Our goal is 
to develop an understanding of possible emergent patterns that could be predictive and 
informative for combatting resistance in applications of phage therapy. Specifically, we compiled 
data from 88 peer-reviewed studies where phage resistance was both observed and experimentally 
linked to a bacterial gene. We then analyzed the data to determine if there are links between 
infection blocking mechanisms and phage genera. With enough knowledge, we could predict the 
patterns of resistance and use this knowledge to develop models to improve the therapeutic use of 
phages. 

2. Results and Discussion 

2.1.  Phage resistance genes and mechanisms identified in previous studies 

In this study, we sought to review the literature to identify studies where specific genes had been 
shown experimentally to cause phage resistance. This led initially to the identification of 135 studies 
where bacterial colonies were described as resistant to phage and the host gene was possibly 
identified. We then evaluated these descriptions to establish a systematic definition of “resistance” 
such that any findings where efficiency of plating, spot tests, or optical density was reduced at least 
10-fold after target gene mutations demonstrating strong experimental evidence of that gene that 
block phage infection. Due to the nature of data presented in many studies being qualitative to 
relatively quantitative, we could not refine these responses to less than the robust 10-fold phenotypic 
response. Further, we required phage genomes to be sequenced and host ranges to be documented. 
Of these 135 studies, 58 failed to meet our criteria for further analysis, but 11 of these studies did have 
genes that were used in the analysis for other phages (Table S1 in Supplemental data 1) [14–70].  

Across the remaining 88 studies that met these criteria, 16 bacterial genera were represented (only 
genus-level taxonomy was evaluated since many experimentally evaluated strains lacked ‘host’ 
bacterial genomes) [71] and 80 phages with complete genomes. Though the phage taxonomy was 
largely unknown, the availability of complete genomes could be used in gene-sharing networks 
[72,73] to establish phage taxonomy. This revealed that, of the 80 phages, most (n=47) were from the 
family Siphoviridae, with the remaining from the families Myoviridae (n=17), Podoviridae (n=12), 
Helleviridae (n=3), or Microviridae (n=1) (Table S2 in Supplemental data 1). Thus, the Siphoviridae and 
Myoviridae might be relatively well represented, but the others are certainly not.  

Among the criteria-meeting studies, a total of 141 genes were examined, but only a subset (n=104) 
had known modes of action. The remaining 36 had unknown modes of action but have clear evidence 
of inhibiting phage infection [57,67,70,74–86]. Where multiple genes inhibited infection to a phage, 
they were counted only once [68] , but for our purposes the 6 gene ‘system’ was counted as one due 
to all genes being necessary to inhibit infection. 

To understand the types of resistance systems found at each step of the lytic cycle (Figure 1) we 
give an overview of some of the infection blocking mechanisms that have been experimentally 
verified. The initial step for a successful infection, phage adsorption, begins with the phage binding 
to a specific bacterial surface receptor. Bacteria have found ways to block the initial step by alteration, 
masking, or the physical blocking of the receptor [13,87]. For example, phage 52 that infects 
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Staphylococcus aureus normally binds to OmpA, but an outer membrane lipoprotein (TraT) can 
overlap OmpA and block the phage receptor [88]. Another example, T5, known to infect Escherichia 

coli, is blocked from the receptor by being outcompeted by the antimicrobial peptide MccJ25 that 
competitively binds to receptor FhuA [89]. Alternatively, bacteria can reduce expression of proteins, 
termed phase variation, that can reduce the expression of bacterial phage receptors [90–92]. Examples 
include Haemophilus influenzae altering the structure of a lipooligosaccharide in response to phage 
HP1c1 and Bordetella bronchiseptica differentially expressing the outer membrane protein Prn to 
prevent adsorption of phage BPP-1 [91]. 

 

Figure 1. The obligate phage lytic cycle and known infection blocking mechanisms. The five steps of the 
lytic cycle are listed in bold, whereas known infection blocking systems are italicized. Abbreviations: ABI = 
abortive infection system, TA = toxin-antitoxin, R-M = restriction-modification. Numbers in parentheses listed 
after each description represent the number of genes known from the literature to confer resistance. Figure was 
created with BioRender.com. 

Once the phage has adsorbed to the bacteria the next step in the lytic cycle is injection of phage 
DNA into the cell. At this point, bacteria can stop the phage by blocking or degrading the phage DNA. 
Superinfection exclusion (Sie) and superimmunity (Sim) system are proteins found to block DNA 
entry and have been found in Lactococcus, Streptomyces, Escherichia, and Salmonella [93–99]. Once the 
DNA has entered the cell it can be degraded by restriction modification systems [74,86,100–103]. 
DISARM (Defense island system associated with restriction–modification) is a recently discovered 
multi-gene restriction–modification system with broad anti-phage activities that can degrade 
phage DNA after phage DNA entry [100]. Clustered regularly interspaced short palindromic repeats 
(CRISPR)-Cas systems are also adopted by many bacteria as an immune system that can target 
phage genomes and plasmids [104–112] Examples include Streptococcus thermophilus in defending 
against phage 858 and Pseudomonas aeruginosa in defending against phage DMS3 [104,108,111]. 

If phage genomic material has successfully entered the cells and avoided degradation the phage 
must take over the host to transcribe and translate its genome and build phage progeny. Bacterial 
hosts have several methods to block genome replication, as well as transcription and translation of 
intracellular phage genes. Phage replication can be blocked by the bacteriophage exclusion (BREX) 
system by blocking phage DNA replication without DNA degradation [68]. Bacterial host proteins 
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the play a role in replication of phage DNA can also inhibit phage infection. In E. coli, dnaJ is required 
for phage DNA replication, so when the gene is disrupted phage infection is inhibited [76] Similarly, 
host proteins involved in phage transcription and translation regulation have been found to be inhibit 
infection when disrupted [74,76,113]. Abortive Infection Systems (Abi) are a collective term 
representing systems that cause premature cell death due to phage infection, in turn aborting the 
phage replication cycle [87,114]. A series of Abi systems from AbiA to AbiZ have been reported in 
Lactococcus to inhibit phage infection these ABI systems are diverse and can be triggered at any 
point after phage entry [55,63,66,68,115–134]. Finally, the phage takes over the host and the phage 
progeny are produced the phage must find a way to release the resultant phage progeny through 
host cell lysis. Here too, Virion assembly can be prevented by Abi systems which block either DNA 
packaging or capsid assembly via cell death. All genes related to virion assembly blockage were 
identified in Lactococcus lactis against lactococcal phages [119,123,124,132,135–138].  

Similarly, our analysis has found only abortive infection systems involved in host cell lysis 
[56,103,139–143]. Examples include AbiZ system found in L. lactis which causes premature cell lysis 
upon phage ul36 infection [56], hok/sok system in E. coli that leads to post segregation killing after 
the cells are infected by phage T4 [139], and rexA/B genes found in E. coli that reduce cell 
metabolisms after infection of lambda phage [142,144].  

2.2. Analyses of patterns of phage resistance 

To begin to assess patterns across this meta-analysis, we first asked which of the above 5 steps in 
the phage lytic cycle were best studied as inferred from the abundance of known infection-blocking 
genes at each step (Figure 1). This revealed that adsorption had the most genes with 53 genes across 
13 bacterial genera (Table S3 in Supplemental data 1). We found that 48 of the 53 genes preventing 
adsorption were from mutations or knockouts (Table S3 in Supplemental data 1) 
[54,64,65,67,75,76,86,145–156]. This is mainly receptors or regulators of receptors that when mutated 
or disrupted inhibit the first step of phage infection. Genes involved in DNA entry had 20 genes 
across 9 bacterial genera and included 5 bacterial resistance systems. DNA replication, transcription 
and translation covered 21 genes and 6 bacterial genera. Host cell lysis and phage assembly had the 
fewest genes with 7 and 4 genes, respectively, that covered 3 and 1 bacterial genera, respectively. 
Anomalously, abortive infection systems made up a large proportion of the dataset for DNA 
replication, transcription, and translation (16/21), as well as all of the phage assembly (4 genes) and 
host cell lysis (7 genes) considered in this meta-analysis. We interpret this to be due to focused studies 
of phage infections in Lactococcus where such mechanisms were targeted [80,87,157,158]. This is a first 
strong indicator of the need for diverse research efforts in this area.  

Vast swaths of viral and microbial dark matter have been explored to reveal 5389 genera of 
bacteria [71], and phage diversity also being high with 1133 genera from cultured reference genomes 
[73] and the global oceans surveys identifying 867 viral clusters (defined as approximately as genus-
level groups) in GOV 1.0 and further expanding the dataset ~12 fold in GOV 2.0 [159,160]. With the 
caveat that our meta-analysis data currently available is not robust enough to cover this vast natural 
diversity now known for bacteria or viruses, we still sought to see if any patterns emerged as follows. 
To evaluate patterns of phage resistance, we first examined numbers of identified infection-blocking 
genes with known functions found in each host species. We wanted to examine the abundance of 
genes across genera to determine if there are some bacteria that have more genes involved in phage 
infections and resistance compared to other bacteria. Escherichia had the most genes consisting of 67 
genes known to inhibit infection followed by Lactococcus 26, significantly more than the other 14 
genera (Figure 2a). We again interpret this to reflect researcher sampling bias, i.e., resistance systems 
have long been intensively studied in these model systems [161,162]. 

Escherichia has several model phages that have been studied extensively such as phages T7, T4, 
and lambda [163–165]. We can see this in Figure 2b where phage T7 has 19 genes shown to inhibit 
phage infection followed by lambda with 18 genes, and T4 with 14 genes, and phage 186 with 11 
genes. Similarly, we can see this with the Lactococcus phages 712, c2, sk1, BIL170, jj50 having a high 
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abundance of genes due to the discovery of plasmids with ABI systems from research into defense 
systems in lactococcal phages [166]. Thus, not surprisingly, currently available data are biased 
towards extensively studied model phages. 

 

Figure 2. Number of genes based on phage and bacterial genera. (a) The number of genes 
found to inhibit phage infection by bacterial genera. (b) The number of host genes found to 
inhibit phage replication. These are the phages that have 4 or more genes experimentally 
verified to inhibit phage infection: Escherichia (blue), Lactococcus (green), and Bacillus 
(orange).  

To statistically evaluate whether there might be patterns in phage resistance across phage taxa, 
we established a genome-based phylogeny and layered on available metadata that was assessed for 
structure (non-randomness) in the data (details in Figure 3). To compare the 80 phages in our analysis 
and determine if there was any significance between phage genera and steps of resistance inhibited, 
we used the PERMANOVA procedure in the GUniFrac package (statistical analysis citation). In this 
package the UniFrac distances are calculated and used to test the hypothesis if the steps of phage 
resistance groupings by genera are due to chance [167]. GUniFrac adds an additional parameter α 
that controls the weight on abundant lineages so phages with numerous genes inhibiting one step of 
the infection cycle did not skew the analysis [168]. To test the hypothesis that the steps of phage 
resistance grouping were nonrandom, we ran PERMANOVA using alpha of 0.5 without rarefication 
when comparing bacterial and phage genera [168,169].  
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Figure 3. Phylogenetic tree of the 80 phages used in the analysis. Tree was created using 
VICTOR that compares nucleotide sequences using genome-BLAST Distance Phylogeny 
method via standard prokaryotic virus settings [170] with VICTOR [171] and data was 
analyzed using iTOL [172]. All bootstrap values below 70% were removed. Phage genera are 
grouped by black lines determined by vConTACT 2.0 analysis [73]. To determine if any of 
these groupings of infection-blocking systems are non-random. GUniFrac and PERMANOVA 
were used to compare infection blocking systems to phage genera [168,169]. Statistically 
significant results (<0.01) are denoted by asterisks. *, P<0.05; **, P<0.001. 

Analysis using PERMANOVA showed that all steps of phage resistance showed no statistical 
significance in resistance groupings in terms of bacterial genera (Table S1 in Supplemental data 2). 
We also ran PERMANOVA using the groupings from vConTACT 2.0 [73].  A total of 51 ‘viral sub-
clusters’ from vConTACT 2.0 emerged from the 80 phages. When steps of phage resistance were 
compared using PERMANOVA only one phage group was found to have statistical significance. This 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 May 2020                   doi:10.20944/preprints202005.0232.v1

https://doi.org/10.20944/preprints202005.0232.v1


group only contained phage T4. We examined the types of genes found in each cluster and what 
phage infection steps were blocked for each cluster. From these analyses it showed that many of the 
clusters only consisted of one phage showing the diversity of phages studied. Only 15 clusters 
contained more than one phage (figure 3). Clusters 224_0 and 145/147/279 showed the greatest 
diversity in types of resistance types with both groups blocking 4 of the 5 steps in the lytic phage 
cycle. Cluster 224_0 only consisted of one phage lambda and had genes that were found to be 
used/required for 3 of the steps in phage infection Adsorption, DNA entry and stability, DNA 
replication, phage assembly, and host cell lysis. This is likely due to lambda being a model phage and 
in tur has been extensively studied with some studies using high-throughput experiments to find 
host genes involved in phage infection [67,76]. Cluster 145/147/279 was the second group with the 
most resistance types. This group consisted of 2 phages ul36 and Tuc2009 with genes that could 
inhibit phage infection at DNA entry, DNA replication, phage assembly, and host cell lysis.  

2.3. The need for high throughput, systematic phage resistance studies 

Our meta-analyses of the readily available phage resistance literature (that met our criteria) 
demonstrates that very little generalizable knowledge exists for phage resistance, and yet this is 
critical for viral ecology and application (e.g., phage therapy). To better elucidate the potential phage 
infection-blocking patterns and instruct phage therapy development, future research of phage 
infection-blocking mechanisms should focus on using high-throughput techniques to allow 
researchers to screen for resistance-conferring host genes involved in phage infection. With sufficient 
data to dig in to, comparisons of infection blocking mechanisms in the context of either host or phage 
classification as conducted in this study would provide answers to multiple profound questions, such 
as: what mechanisms do bacteria tend to adopt when defending against certain groups of phages? which 

mechanisms are most widely-spread among different phage-host pairs? what are the potential interactions 

between two or more infection blocking mechanisms when defending against certain phage? If systematic, 
high-throughput research is conducted and across known phage-host diversity, we would better be 
able to predict patterns between bacteria species in defending against certain phage genera. 

Fortunately, such scalable genetic approaches are emerging. Traditionally, finding resistance-
conferring genes was largely manual requiring bacterial colony isolation, sequencing, single-gene 
knockouts, or genome-wide transposon screens [38,54,74,86,149]. Although these techniques have 
allowed people to find new genes required for phage infection it is expensive and labor intensive, 
studies are largely limited to studying few (n<3) phages. Recently, however, high-throughput 
techniques have been developed that may lead to more easier screening for infection blocking host 
genes. Specifically, we highlight RB-Tnseq, which uses DNA-barcoded transposons to generate 
mutant libraries of single-gene insertion mutants that are each coupled to a unique barcode so as to 
be scalably assayed by next-generation sequencing [173]. This approach will work well for studying 
non-essential genes. To evaluate essential genes, researchers are currently limited to more targeted 
approaches, with the most sophisticated likely being CRISPRi, which uses guide RNA to decrease the 
expression of genes after induction [67,76]. To evaluate the effect of gene overexpression, Dub-seq 
combines the DNA barcoding sequencing of RB-Tnseq with gene overexpression to determine the 
effects of gene overexpression [67,174]. All three approaches (RB-Tnseq, CRISPRi, and Dub-seq) were 
recently applied to study 14 E. coli phages [67]. Though these include some of the most well-studied 
phages in science, the new, scalable approaches helped ‘see’ both known mechanisms to block phage 
infection, as well as completely new ones with RB-Tnseq identifying 52 unique infection blocking 
genes and CRISPRi identifying 542 infection-blocking genes, 44 promoter regions and 44 
transcription factor binding sites that when disrupted or downregulated decreased susceptibility to 
phage and Dub-seq with 129 multicopy suppressors of phage infection [67,76].  

3. Conclusions 

Phage biology has provided much of the foundations for molecular biology and genetics, but as 
a result it has long been known to be a field that is ‘a mile deep and an inch wide’. While we are now 
well into the third age of phage [175] thanks to a phage (meta)genomic revolution [176,177] that is 
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changing how we view viral sequence space in the broader natural world, this meta-analysis reveals 
that the breadth of model systems to which we can ascribe mechanistic knowledge is woefully thin. 
While we cannot hope to study in detail all 1031 viruses thought to inhabit the Earth [178] the data 
available from even the well-studied model systems are insufficient to draw the kinds of ecology-
scale mechanistic conclusions needed to power models to better design phage therapy cocktails. 
Though we are far from understanding phage resistance across the virosphere, such scalable methods 
coupled to increasingly culture-independent virus-host linkage methods [179] should help us rapidly 
come up to speed for better understanding the environment. Complementarily, focused similar 
application to pathogen-related phages will provide the knowledgebase likely to be so critical for 
phage therapy cocktail design that will drive success in the greater than century-old idea [180] to use 
phages to combat nuisance bacteria.   

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Supplementary data 1: 
Phages and genes discussed in the manuscript. Table S1: Phages excluded from the analysis and reasons for 
exclusion, Table S2: Phages used in the analysis and the phage family, Table S3: Genes found to block each phage 
used in the analysis by type of resistance mechanism; Supplementary data 2: Statistical analysis for figure 3. 
Table S1: OUT table used to calculate UniFrac distance metrics, Table S2: Meta-data used for PERMANOVA 
analysis of bacterial genera, Table S3: Permanova based off of bacterial genera, Table S4: Meta-data used for 
PERMANOVA analysis of phage genera, Table S5: Permanova based off of phage genera. 
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