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Supplementary Materials

In the following we provide a detailed account of our analyses. The supplement is structured

by methods; first linear stability analysis, second permanence analysis, third individual-based

simulations, and fourth experimental validation. The contents are as follows:
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Method 1

1a. Linear stability analysis

Our model considers networks of interacting species in which each species’ growth is deter-

mined by its own intrinsic growth rate, interactions with other members of the same species,

and interactions with members of other species. This is in accordance with previous models

(17, 18, 32) and a generalization of classic Lotka-Volterra equations that allows us to incorpo-

rate multiple species and interaction types. Species are represented as densities averaging over

many individuals – an approach that is well suited to the large population sizes of microbial

species.

We analyze equilibrium populations and ask: will a population return to this equilibrium

following a perturbation? This allows us to investigate the effect of different between-species

interaction types on both the asymptotic stability of populations (17), and another measure

of stability, the speed at which such a stable population returns to its equilibrium point (48).

The former definition of stability has been applied widely to analyze fundamental properties of

dynamical systems, and generates similar predictions to other measures of ecological stability,

which ask whether any species will be lost from a system following perturbation (37). In later

sections (Methods 2 and 3, below) we also consider alternative methods and definitions of sta-

bility, which show consistent results. Note that all our analyses are based on the logic of asking

how community properties, like degree of connectedness or cooperation, affect ecological sta-

bility. This focus means we do not deal with the interesting corollary of how communities of a

particular set of properties arise. However, we refer the reader to the literatures on both com-

munity assembly (49) and the evolution of species interactions (50) that focus on this question.

In addition, we acknowledge that there is the potential for important interactions between these
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processes and those that we study here, which are interesting targets for future work.

Our analytical approach is based upon calculating the eigenvalues of the Jacobian matrix

of the dynamical system considered – a matrix that tells us how a change in the density of any

of the species at equilibrium will affect the whole community. A population is asymptotically

stable provided the real part of each of its associated eigenvalues lies below zero, and the com-

munity will return to its equilibrium following a small perturbation faster, the more negative its

largest real part is. Both measures of stability, therefore, can be determined from the region in

the complex plane to which all eigenvalues will be restricted, and we extend the recent analytic

results of Allesina and Tang to derive these regions for an ecosystem with any potential mix-

ture of interaction types (18). Specifically, we show that given certain assumptions about the

distribution from which interaction strengths are drawn, eigenvalues will be localized within an

ellipse in the complex plane with horizontal radius re, centered about �s. One single eigenvalue

may be localized outside of this ellipse; we denote this by rs which is given by the average row

sum of the Jacobian matrix minus the average self interaction s. The equilibrium community

will therefore be asymptotically stable provided both the ellipse and rs lie within the negative

real part of the complex plane, equivalent to,

Rightmost point = max(re, rs)� s < 0.

We can further deduce that the more negative this rightmost point is, the quicker the com-

munity will return to equilibrium, and thus the stability of the system can be determined from

the negative of this rightmost value. We are therefore able to study the effect of changing

various community characteristics upon stability by examining the subsequent effects upon this

rightmost value. In the following we discuss in detail how the eigenvalue bounds can be derived.
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Problem outline

Throughout this work, we consider a microbiota community composed of S interacting species,

whose population dynamics are determined by a Holling type 1 functional response, such that

the change in the density of species i is given by,

dXi

dt
= Xi(ri � siXi +

S
X

j=1,j 6=i

aijXj). (1)

Here ri represents the intrinsic species growth rate, si captures the effect of a species upon

itself, and aij the effect of species j upon species i (for i 6= j). We assume that each species

competes to the same extent with members of their own species (i.e. resulting in the same

degree of self-regulation), such that si = s, i = 1, . . . , S. The connectivity C 2 [0, 1] of the

community determines the fraction of all S species that a single species i interacts with (i.e.,

the average number of links between species such that ai 6=j 6= 0)

We assume that non-zero interactions between species i and j can take one of five possible

forms based on the signs of aij/aji; +/� (exploitative), �/� (competitive), +/+ (cooperative),

+/0, and �/0. For a given community, the proportion of interactions taking each of these forms

are defined as,

+/� = Pe,

�/� = Pc,

+/+ = Pm,

+/0 = P+,

�/0 = P�,

where Pe + Pc + Pm + P+ + P� = 1.
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Following the same approach as Chen and Cohen and others (18, 32, 37), we assume the

system has a positive definite equilibrium given by the S ⇥ 1 vector X⇤. This is equivalent to

examining the system

dYi

dt
= Yi(ri + qiiYi +

S
X

j=1,j 6=i

qijYj),

normalized by replacing each yi by xi = yi
qi

. We ignore systems that do not have a positive

definite equilibrium, as they will automatically be deemed unstable by our definition, and con-

tradict experimental evidence suggesting equilibrium communities in the gut exist for extended

periods of time. We can therefore determine the stability of a thus normalized equilibrium point

by examining the distribution of the eigenvalues of the Jacobian of the system, evaluated at X⇤,

whose entries are given by,

Aii = �si, i = 1, . . . , S

Aij = aij, i, j = 1, . . . , S.

Derivation of stability criterion

The basis of our stability criterion can be traced back to the seminal work by Gerschgorin, who

showed for a complex S ⇥ S matrix M with elements mij that each eigenvalue λi lies within at

least one of S Gerschgorin disks, which are centered at the diagonal entries (mii) with radii

Ri =
S
X

j=1,j 6=i

|aij|,

(51). This was used by Sommers et al in 1988 (30), who examined the eigenvalues of an S⇥S

matrix M⇤ with elements drawn from a Normal distribution with mean,
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E(M⇤
ij) = 0,

V ar(M⇤
ij) =

1

S
,

M⇤
ii = 0.

The authors proved that as S ! 1 then the eigenvalues of M⇤ will be distributed on an

ellipse described by (x
a
)2 + (y

b
)2  1 centered at the origin, with a = 1 + τ and b = 1 � τ

where τ = SE(M⇤
ijM

⇤
ji). Allesina and Tang (18), motivated by Tao et al. (52), showed that

this conclusion is also applicable to non-Normal distributions, save for one eigenvalue that is

approximately equal to the average row sum of M⇤, and further noted that setting each of the

diagonal entries aii to �s will move the center of this ellipse to (�s, 0), thus the system will be

stable if the half-horizontal radius of the eigenvalue ellipse is less than s.

Here we follow a similar approach to that used in (18), and use various rescaling arguments

to derive a bound upon the eigenvalues of the Jacobian, A, corresponding to our dynamical

system of the microbiota evaluated at the equilibrium X
⇤ for any mixture of different interaction

types. We assume that between-species interaction strengths aij are drawn from a half Normal

distribution |N(0, σ2)| such that the mean strength of realized interactions is given by E(|X|) =
q

2σ2

π
, and the variance V ar(|X|) = σ2

⇣

1� 2
π

⌘

.

When S is large, the row sum of A is constant and equal to

lim
S!1

m = S�1

S
X

i,j=1;i 6=j

aij,

thus 1 is an eigenvector of A. The mean of the off-diagonal entries of A, E(Aij) = m, and

thus A does not meet the requirements of Sommers’s theorem, so we next define a new matrix

N = A + (�s + m)I � m.1.1T . Rothblum and Tan showed that for any m 2 R, the half

horizontal radius of the eigenvalue ellipse for the matrix N = A + (�s +m)I �m.1.1T will
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have the same value as the half horizontal radius for A (18, 53). We can therefore calculate

a bound on the distribution of the eigenvalues of A by first calculating the distribution of the

eigenvalues of N .

We begin by taking into account the different interaction types present in our community,

and decompose the mean of the off-diagonal entries according to these different types. The

average off-diagonal row sum for mixed interaction type matrices is then given by,

E(Aij) = C(PmE(|X|)� PcE(|X|) + 0.5P+E(|X|)� 0.5P�E(|X|)),

= CE(|X|)(Pm � Pc + 0.5(P+ � P�)),

and we note that m = E(Aij), and the matrix N is therefore,

E(Nij) = E(Aij �m) = E(Aij)�m = 0,

such that N and any scalar multiple of this matrix will obey the first requirement of Som-

mers’s theory, i.e. E(cN) = 0, c 2 R. We next consider the variance of N , V ar(Nij) =

V ar(Aij �m). As m is simply a constant, we have,

V ar(Nij) = V ar(Aij),

= E(A2
ij)� E(Aij)

2.

Further, using the fact that Pe + Pc + Pm + P+ + P� = 1, and the definition of the second

moment of the half-normal distribution from which the Aijs are drawn, we have,
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E(A2
ij) = C(PmE(A

2
ij) + PcE(A

2
ij) + PeE(A

2
ij) + 0.5P+E(A

2
ij) + 0.5P�E(A

2
ij)),

= CE(A2
ij)(1� 0.5P+ � 0.5P�),

= Cσ2(1� P+ + P�

2
), and therefore,

V ar(Nij) = Cσ2(1� P+ + P�

2
)�m2. (2)

We next rescale N , setting N⇤ = N
β

with β =
p

SV ar(Nij), such that the matrix N⇤ fulfills

both of the requirements of Sommers’s theory. That is:

E(N⇤) = 0,

V ar(N⇤) =
1

S
.

Thus all eigenvalues of N⇤ will be contained in the ellipse with half-horizontal radius

a⇤ = 1 + τ and half-vertical radius b⇤ = 1 � τ with τ = E(N⇤
ijN

⇤
ji) =

E(NijNji)

β2 . Further,

we note that eigenvalues are closed under scalar multiplication, thus if λ is an eigenvalue of

the matrix N⇤, then βλ will be an eigenvalue of N . This means that the eigenvalues of N will

be contained in the ellipse with half-horizontal radius a = β(1 + τ) and half-vertical radius

b = β(1 � τ). This gives us a bound on the half-horizontal radius of the ellipse containing the

eigenvalues of N , and therefore of A of:

re =
q

SV ar(Nij)
⇣

1 +
SE(NijNji)

SV ar(Nij)

⌘

. (3)

We must then calculate E(NijNji), which we do by noting that:
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E(NijNji) = E(AijAji)� 2mE(Aij) +m2, (4)

= E(AijAji)�m2

where,

E(AijAji) = C(PmE(AijAji|+ /+) + PcE(AijAji|� /�) + . . .

PeE(AijAji|+ /�) + P+E(AijAji|+ /0) + P�E(AijAji|� /0)),

= C(PmE(AijAji|+ /+) + PcE(AijAji|� /�) + PeE(AijAji|+ /�)),

= C(PmE(|X|)2 + PcE(|X|)2 � PeE(|X|)2),

= CE(|X|)2(2(Pm + Pc) + P+ + P� � 1).

We can substitute (2) and (4) into (3) to give the expression for the half-horizontal radius of

the eigenvalue ellipse of A as:

re =

r

SC(σ2(1� P+ + P�

2
)� CE(|X|)2(Pm � Pc +

P+ � P�

2
)2) . . .

⇣

1 +
E(|X|)2((2Pm + 2Pc + P+ + P� � 1)� C(Pm � Pc + 0.5P+ � 0.5P�)

2)

σ2(1� 0.5P+ � 0.5P�)� CE(|X|)2(Pm � Pc + 0.5P+ � 0.5P�)2

⌘

Finally, we observe that the eigenvalue corresponding to the average row sum will be given

by,

rs = (S � 1)C(Pm � Pc +
P+ � P�

2
)E(|X|).

From these we generate a stability criterion for a network with any mixture of interaction

types,

max(re, rs)� s < 0.
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1b. Analysis of stability criterion

The analyses presented in the main paper suggest that cooperation has a destabilizing influence

on microbial communities (Figure 2). Here we provide supplementary analyses of our model to

show that this prediction holds for the vast majority of conditions and parameters in our analyt-

ical model. We first show that cooperation has a universally destabilizing effect on exploitative

or random communities for any realistic combinations of species number and connectivity. We

then analyze the effect of cooperation on purely competitive networks. Here, increasing co-

operation nearly always destabilizes communities except for a minor parameter range where

increased cooperation can have a weakly stabilizing effect. Moreover, as we show below, the

weakly stabilizing effect is further minimized when we consider realistic communities with a

mixture of competitive and exploitative interactions.

To determine how cooperation affects community stability we take the derivative of our

measure of stability, U , with respect to Pm. This tells us how stability changes with respect

to the level of cooperation - with a negative derivative meaning cooperation decreases stability.

We can therefore examine the effect of cooperation by looking at the sign of this derivative,

dU
dPm

, across parameter space.

In the analysis below we treat each type of community (exploitative / random / competitive)

separately, and follow the same series of steps. For simplicity we consider communities with

only +/+, �/�, and +/� interactions, however, the same analysis can equivalently be ex-

tended to cover communities that also contain +/0 and �/0 interactions. We begin by recalling

that stability of a community at equilibrium is defined as the negative of the rightmost bound

upon its underlying eigenvalues (that is, communities whose eigenvalues lie further to the right

in the complex plane are less stable), which are contained within an ellipse centered at �s with

half-horizontal radius,
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re =
q

SV ar(Nij)
⇣

1 +
E(NijNji)

V ar(Nij)

⌘

, (5)

=
p

SC(σ2 � CE(|X|)2(Pm � Pc)2) . . .
⇣

1 +
E(|X|)2((2Pm + 2Pc � 1)� C(Pm � Pc)

2)

σ2 � CE(|X|)2(Pm � Pc)2

⌘

,

save for a single eigenvalue that may lie outside the ellipse, and is approximated by,

rs = �s+ (S � 1)C(Pm � Pc)E(|X|). (6)

Stability is therefore defined as U = �(max(re � s, rs)). As such, the derivative of stabil-

ity, dU
dPm

will be defined differently, depending upon whether the ellipse or the dot represents

the rightmost bound. In our analysis, we therefore calculate separately the derivative of the

ellipse, dUellipse

dPm
, and of the dot, dUdot

dPm
, then for each combination of Pm, C, and S check which

component is governing stability for that parameter set, to determine the appropriate derivative.

We then plot a heatmap across parameter space, to indicate in which regions cooperation is

stabilizing ( dU
dPm

> 0) and in which it is destabilizing ( dU
dPm

< 0).

We begin by noting that in all community types, the self-regulation, s, does not affect the

impact of cooperation upon community stability and so our conclusions on how cooperation

influences stability are general for all values of self-regulation. Specifically, in our measure of

stability the self-regulation is a constant, independent of Pm, and as such, it does not appear

in dU
dPm

(equivalently, note that d2U
dPmds

= 0 for both the ellipse and the dot). Moreover, whilst

increasing species number, S, will increase the magnitude of the role cooperation plays upon

community stability, it will not affect the directionality - thus if we find that increasing coop-

eration is destabilizing, increasing species number will not affect this conclusion. This can be

seen from the derivative of dU
dPm

with respect to S for the ellipse and dot. For the ellipse,
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d2U

dPmdS
=

�1

2
p
S

d

dPm

⇣
q

V ar(Nij)
⇣

1 +
E(NijNji)

V ar(Nij)

⌘⌘

,

and so only the magnitude of the effect of increasing cooperation upon stability is affected.

Specifically, the magnitude will decrease with the inverse of the square root of S when the

ellipse governs stability. Similarly for the dot,

d2U

dPmdS
= � d

dPm

C(Pm � Pc),

which is constant over S, so again only the magnitude of the effect of cooperation upon

stability is affected. Crucially, these observations mean that any conclusions drawn about the

effect of increasing cooperation upon stability for low species number will also hold for all

larger communities (and any value of self-regulation). As such, in our analysis we can set

species number and self-regulation to constants, S = 100 and �s = �1 respectively, and focus

exclusively upon whether changing connectivity, C, will affect the role of cooperation upon

stability.

Exploitative communities

We start by considering the case of increasing cooperation in communities in which all interac-

tions are otherwise exploitative (+/�). In this case there are never any competitive interactions,

so we substitute Pc = 0 into our equations for stability, (5) and (6). We then take the derivative

of each with respect to Pm to get the equation for the ellipse bound,

dU ellipse
exploit

dPm

= �CS
1

2E(|X|)2(2C2P 3
mE(|X|)2 � CPmE(|X|)2 � 3CPmσ

2 + 2σ2)

(�CP 2
mE(|X|)2 + σ2)

p

C(σ2 � CP 2
mE(|X|)2)

,

and for the dot,
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dUdot
exploit

dPm

= �(S � 1)CE(|X|).

It is evident from the form of dUdot

dPm
that in cases where the dot governs community behavior

stability will decrease linearly with cooperation. However, the form of dUellipse

dPm
is less obvious,

and we therefore plot dU
dPm

across C/Pm parameter space for a community with 100 species

(Figure S4). This illustrates how cooperation will always decrease stability ( dU
dPm

is always

negative) and moreover, as explained above, this behavior will hold true for any equivalent

communities with differing levels of self-regulation or greater species numbers. Figure S4 also

illustrates how this destabilizing effect of increasing cooperation upon the community will be

stronger in communities with higher network connectivity.

Random communities

We next examine the effect of increasing cooperation in communities that are otherwise random.

In these communities networks start with cooperative, exploitative, and competitive interactions

in a 1 : 2 : 1 ratio. As cooperation increases, exploitative and competitive interactions are

replaced with equal probability, such that exploitation : competition remains at a ratio of 2 : 1.

To capture this, we substitute Pc = 1
3
(1 � Pm) in equations (5) and (6). We then take the

derivative of each with respect to Pm to calculate the derivative for the ellipse,

dU ellipse
rand

dPm

=
4CS

1

2E(|X|)2
⇣

2C2
E(|X|)2(64P 3

m � 48P 2
m + 12Pm � 2)� 27σ2(4CPm � C � 1)

⌘

3(9Cσ2 � C2E(|X|)2(4Pm � 1)2)1/2(E(|X|)2(16CP 2
m � 8CPm + C)� 9σ2)

,

and for the dot,

dUdot
rand

dPm

= �4

3
(S � 1)CE(|X|).
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Again it is clear by inspection that when community behavior is determined by the dot,

stability will decrease linearly with cooperation, and at a greater rate than for exploitative com-

munities (the value of
dUdot

rand

dPm
is constant and less than that of

dUdot
exploit

dPm
). As in the exploitative

case, we plot dU
dPm

across C/Pm for S = 100 (Figure S5). Again we see that in this case cooper-

ation is always destabilizing, regardless of whether the dot or the ellipse determines community

behavior (the derivative is always negative), and as outlined above, this will hold for any level of

self-regulation and any larger communities. Moreover, again it is evident that this destabilizing

effect is greater for communities with higher network connectivity.

Competitive communities

Finally we consider increasing cooperation in systems that are otherwise purely competitive, so

substitute Pc = 1� Pm in equations (5) and (6). As before, we take the derivative of each with

respect to Pm to find the change with cooperation to the ellipse,

dU ellipse
compete

dPm

=
2C2S

1

2E(|X|)2(2Pm � 1)(E(|X|)2(2C + 1 + 8CPm(Pm � 1))� 3σ2)

((Cσ2 � C2E(|X|)2(2Pm � 1)2))1/2(4CPmE(|X|)2(Pm � 1) + CE(|X|)2 � σ2)
,

and to the dot,

dUdot
compete

dPm

= �2CE(|X|)(S � 1).

As before, we observe that when the behavior of the community is determined by the dot,

stability will decrease linearly with cooperation, and at a rate twice as fast as equivalent ex-

ploitative communities. However, in this case, we find regions of C/Pm parameter space

where increasing cooperation can in fact have a stabilizing effect upon the community (that

is, dU
dPm

> 0), as illustrated by Figure S6. However, the magnitude of this effect is small such

that it will rarely make an unstable system stable (Figure S6 C). Moreover, this effect is further
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reduced when one considers more realistic communities that contain even just small amounts of

exploitative interactions such that the total proportion of cooperative and competitive links are

no longer kept constant (Figure S6 D – F). From these analyses, we conclude that cooperation

between species is a destabilizing influence on ecological stability for the vast range of network

compositions, species numbers, and connectivities.

1c. Independent scaling of interaction types

In order to study the effects of host manipulation (Figure 4), we want to independently scale the

interaction strengths within communities. In this section, we outline how this is done. For sim-

plicity, below we derive our new stability criterion with only +/�,�/�, and +/+ interactions.

However, the same methods could be applied to also incorporate +/0 and �/0 interactions.

We begin by weighting interactions such that the average magnitude of each interaction type is

given by,

fE(|X|) for +/+,

gE(|X|) for �/�,

hE(|X|) for +/�,

whilst self-regulation will now take the form �s ⇤ k. The mean of the off-diagonal entries

of the Jacobian will now be given by,

E(Aij) = CE(|X|)(fPm � gPc),

and similarly, the variance and covariance by,

15



V ar(Aij) = Cσ2(f 2Pm + g2Pc + h2(1� Pm � Pc))� C2
E(|X|)2(fPm � gPc)

2,

E(AijAji) = C(f 2PmE(|X|)2 + g2PcE(|X|)2 � h2(1� Pm � Pc)E(|X|)2).

We can then use the same logic as in supplementary section 1 to get an expression for the

half-horizontal radius of the ellipse,

rwe =
p

SC(σ2(f 2Pm + g2Pc + h2(1� Pm � Pc))� CE(|X|)2(fPm � gPc)2) . . .
⇣

1 +
E(|X|)2(Pm(f

2 + h2) + Pc(g
2 + h2)� h2 � C(fPm � gPc)

2)

σ2(f 2Pm + g2Pc + h2(1� Pm � Pc))� CE(|X|)2(fPm � gPc)2

⌘

,

and the average row sum,

rws = C(S � 1)E(|X|)(fPm � gPc).

From these our stability criterion for a network with any mixture of interaction types, each

of which can now be weighted independently, is given by

max(rwe , r
w
s )� sk < 0.

With this we can now investigate how different manipulations to the microbiota will affect

the stability of the community. Specifically, we consider three distinct cases: in the first, we

consider spatial structure that reduces between-species interactions while self-regulation stays

the same, corresponding to a decrease in f , g, and h, whilst k remains the same (Figure 4). In

the second, we consider the case where a host provides a generic food source with which all

microbes interact instead of interacting with each other, corresponding to a decrease in f, g, h

and k (down-weighting all interaction types, Figure S12). In the final case, only cooperative

links are weakened by host nutrient secretion, for example when a nutrient source is diverting
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interaction efforts away from cross-feeding interactions towards consumption of host provided

nutrients. This corresponds to a decrease in f only (Figure 4). See methods 2 and 3 below for

further analyses of these three cases.

1d. Effect of host-mediated killing on community stability

The immune system is thought to act, via inflammation and other mechanisms, to help suppress

pathogens or other species that reach densities where they are harmful to a host (3–5, 23). We

can capture this effect in our model as species-specific density dependent killing at a rate ki

where,

dXi

dt
= Xi(ri � siXi +

X

aijXj � kiXi),

= Xi(ri � s⇤iXi +
X

aijXj), (7)

with s⇤i = si+ki. As such, density dependent killing acts in the same way as self-regulation,

which has a stabilizing effect on the community.

We can also ask what happens should the host kill members of each species at a constant

rate independent of the population sizes. Here, we observe no change in the stability of com-

munities. Killing does put extra demands on community members, it will favor faster growing

community members that can survive in the face of the killing. But for viable communities

that can persist in the face of the killing, there is no net effect on ecological stability. This can

be seen incorporating a global increased death rate in our model. The term ri is the intrinsic

growth rate of species i, which is a combination of the rates of birth, bi, and death, di, of cells

of species i, that is, ri = bi� di. In the absence of general host killing, stable communities with

a given set of interactions, aij , fulfil,

ri = s⇤iXi �
X

aijXj.
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If the host kills members of each species at a constant rate, ki, then this will be incorporated

into our original system describing community dynamics as,

dXi

dt
= Xi(r

⇤
i � siXi +

X

aijXj)� kiXi,

= Xi((r
⇤
i � ki)� siXi +

X

aijXj), (8)

Species members of a stable community must now have an intrinsic growth rate, r⇤, such

that,

r⇤ = siXi�
X

aijXj + ki.

A community will therefore have to possess a stronger intrinsic growth rate when subject to

a constant level of killing to be viable. However, we note that,

r⇤ � ki = siXi �
X

aijXj = ri,

such that the equations governing the dynamics of both populations are in fact identical,

regardless of the level of killing, and thus will have an identical probability of being stable.

While the evolution of non-responsive killing may cause shifts in which species are able to

make a viable community, therefore, we find no net effect on the stability of the communities

that can persist in the face of the killing.

1e. Effect of redundancy on community stability

Our models indicate that the instability of highly cooperative communities stems from having

strong positive dependencies between species. What happens though if the interactions between

cooperating partners is less specific and, instead of interacting strongly with few partners, co-

operators interact weakly with several partners? Such redundancy is common in biological
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networks and we want to understand its effects here. One simple effect of such redundancy

will be to weaken the strength of cooperative links, which has a stabilizing effect (supplement

section 1b). However, redundancy is also expected to increase the number of interactions. For

example, rather than interacting with one species with an interaction strength of aij = 1, a

species may instead interact with 3 others, where each interaction now has strength 1
3
.

We capture this in our analytic model with the parameter q, which represents the average

number of new links that each original cooperative link is replaced with. Each new link has,

on average, a strength aijq, where aij represents the strength of the original interaction. As

redundancy increases so too will the connectivity of the community, Cnew, as well as the overall

proportion of cooperation, P new
m . However, concurrently the average strength of cooperative

interactions, and interactions in the community as a whole, will decrease. These changes are

captured by,

Cnew = CI(P I
mq + P I

c )

Pmnew =
qP I

m

qP I
m + P I

c

(9)

Where P I
m, P I

c , and CI represent the initial levels of cooperation, competition, and connec-

tivity respectively.

We can then examine the effect of increasing redundancy in communities with different ini-

tial levels of cooperation (Figure S13). We find that redundancy does not affect communities

that start with high levels of cooperation, as any stabilizing effects of reduced link strength are

canceled out by equivalent increases in the levels of cooperation and connectivity. However, in

communities that begin with intermediate levels of cooperation, the stabilizing effect of reduced

interaction strengths outweigh the destabilizing effects of increased cooperation and connectiv-

ity. To conclude, when redundancy means that cooperators interact with several other species
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weakly rather than few species strongly, ecological stability can increase.

1f. Numerical simulations of representative communities

In the sections below we present two fundamentally different methods for analysing ecologi-

cal stability: permanence analysis and individual-based modelling. However, we first directly

confirm our analytical method by simulating representative networks and explicitly calculat-

ing the eigenvalues of the corresponding Jacobians. As above, we consider the generalized

Lotka-Volterra model with S species outlined in (1), and now follow the same approach as (32)

and (18), whereby each species intrinsic growth rate ri is solved for so as to ensure a feasible

equilibrium at X = 1. The corresponding Jacobians will therefore have off-diagonal entries

Jij = aij , and diagonal entries Jii = �si. We can then construct representative Jacobians as

follows.

We first create an S ⇥ S matrix M with our desired connectivity, C. For each interaction

pair (Mij,Mji) we draw a random variable p1 from a Uniform U([0, 1]) distribution, if p1  C

then we set Mij and Mji = 1, else, both are set to 0. We next impose the relevant distribution of

interaction types on this network, where Pm represents the proportion of cooperative, +/+, in-

teractions, Pc the proportion of competitive, �/�, interactions, and 1�Pm�Pc the proportion

of exploitative, +/�, interactions (for simplicity we confine ourselves to these types, however,

this method can easily be extended to also incorporate +/0 and �/0 interactions). For each non-

zero interaction pair (those where Mij and Mji = 1) we draw a new random variable p2 from

a U([0, 1]) distribution. If p2 � 1 � Pm then (Mij,Mji) represents a cooperative interaction,

and we draw values for the entries of our Jacobian Jij and Jji from a half-normal distribution

|N(0, σ2)|. If p2  Pc then (Mij,Mji) represents a competitive interaction, and we draw the en-

tries Jij and Jji from a negative half-normal distribution �|N(0, σ2)|. If Pc < p2 < 1�Pm then

(Mij,Mji) represents an exploitative interaction, in this case we draw a further random variable
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p3 from a U([0, 1]) distribution. If p3  0.5 then species i benefits from the interaction whilst

species j suffers and we draw Jij from an |N(0, σ2)| distribution and Jji from an �|N(0, σ2)|

distribution. If p3 > 0.5 then the converse is true, and we draw Jij from an �|N(0, σ2)| dis-

tribution and Jji from an |N(0, σ2)| distribution. Finally, we set each diagonal entry Jii to �s.

Thus we are able to generate Jacobians corresponding to networks with any mix of different

interaction types, then solve to find the corresponding eigenvalues using Matlab (Mathworks,

Natick, MA, USA).

The effects of feeding or spatial segregation on network stability are incorporated through

altering the strengths of the interactions between species. Here, representative Jacobians are

generated as outlined above, then, in the case of general feeding, all entries of the Jacobian

are reduced by the weighting factor, in the case of targeted feeding, only the Jacobian entries

corresponding to cooperative interactions are reduced, and in the case of spatial segregation, all

Jacobian entries except for those on the diagonal, Jii, are reduced.

1g. Comparison with previous numerical work

In this section we analyze a recent study of macroscopic communities by Mougi and Kondoh

(32) to show that our analytical method can recapitulate the behaviour of previous numerical

analyses. In addition, we explain the relationship of our predictions to (32), as we reach different

conclusions owing to our focus on microbial communities. Both our work and that of (32)

investigate the stability of a community of S species whose dynamics are described by the

system of Lotka-Volterra equations,

dXi

dt
= Xi(ri � siXi +

N
X

j=1,j 6=i

aijXj).
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Here Xi is the density of species i, ri its intrinsic growth rate, si the strength of self-

regulation, and aij the effect of species j on i. A proportion C of possible interactions between

species are realized, and these interactions are split such that Pm are cooperative (+/+) and

Pc = 1 � Pm are exploitative (+/�). Our work also allows for �/�,+/0, and �/0 interac-

tions, however, for comparison, we here limit ourselves to just +/+ and +/� interactions.

Mougi and Kondoh numerically simulated communities with varying proportions of interac-

tion types, and showed an increase in ecological stability for intermediate levels of cooperation

(intermediate Pm). However, we find a monotonic decrease in ecological stability as coopera-

tion is increased. Here we show that the finding of peak stability at intermediate cooperation is

a consequence of specific assumptions in (32) on how organisms in macroscopic communities

function. As we discuss below, these assumptions are unlikely to generally apply to microbial

communities. Nevertheless, we show here that our analytic approach can recapitulate these

earlier numerical results.

The key assumption can be understood in terms of a focal species having a separate “ca-

pacity” (time budget) for each of its interaction types. Consider, for example, an ant species

that is in in a mutualism with an acacia plant. Mougi and Kondoh assign the ant species a sep-

arate time budget for a) the exploitative interactions with other species and b) the cooperative

interactions with other species. As a result, if the ant species takes on more mutualistic part-

ners, a second acacia species, it is assumed that the strength of its interaction with the original

plant is weakened but, critically, the strength of its interaction with prey species is not weak-

ened. Therefore, if one adds more cooperative (mutualistic) interactions to a network, it will

down-weight only the cooperative interactions, and if one adds more exploitative (predator) in-

teractions to a network it will down-weight only the exploitative interactions. However, this

particular form of weighting, by interaction type, does not have a clear application to microbial
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communities. Interactions between microbial species can readily switch from cooperative to

exploitative (or competitive) in a manner that is inconsistent with each interaction type being

a distinct enterprise with its own capacity. For example, a bacterial mutualism can change to

another interaction type if a focal species simply stops providing a metabolite for another, or if

the focal species up-regulates the production of an antibiotic (50). Such switches - effectively

from a mutualist to a predator - highlight that different interaction types function within a single

capacity, and give no justification for the weighting scheme illustrated with the ants and acacias

above. And, as we show next, this assumption is key to the conclusion that community stability

peaks at an intermediate proportion of cooperative interactions.

Mathematically, the weighting assumption is described by,

aij =
eifMAij

P

k2resources of mutualist i Aik

,

for cooperative (mutualistic) interactions, and,

aij =
gifAAij

P

k2resources of predator i Aik

and

aji = � fAAji
P

k2resources of predator i Aik

,

for the predator and prey respectively in an exploitative interaction. Here Aij represents the

potential preference of species i to interact with species j, whilst eij and gij describe the effi-

ciency of cooperative (mutualistic) and exploitative (predatory) interactions respectively. Each

of these variables are drawn from Uniform U(0, 1) distributions with means E(Aij) = A,

E(eij) = e and E(gij) = g. fM and fA describe the relative importance of mutualism versus

predation, although these are simply set to fM = fA = 1 (32). In the limit of large S, C, and

Pm this can be approximated by,
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Mutualistic, (+/+) aij =
fMeijAij

Pm(S � 1)CA
,

Predation, (+/�) aij =
fAgijAij

0.5Pe(S � 1)CA
,

Prey, (�/+) aij =
�fAAij

0.5Pe(S � 1)CA
.

In their supplementary material, Mougi and Kondoh showed numerically that the increase

in stability at intermediate levels of cooperative interactions was not present when omitting this

weighting in networks with a cascade structure. In Figures S7 and S8 we first confirm numeri-

cally that the increase in stability at intermediate levels of cooperation also disappeared without

the frequency dependent scaling of interaction strength in unstructured networks, such as our

microbial networks. We next derive a stability criterion that captures frequency-dependent scal-

ing of interaction strengths analytically. We determine stability by analyzing the Jacobian, M

corresponding to this system, whose off-diagonal entries are given by Mij = aijXi, whilst the

on-diagonal entries are simply Mii = �siXi. In the following derivation, we assume a constant

level of self-regulation and equilibrium species densities, such that Xi = X8i and si = s8i.

The general results still hold when these factors are also drawn from probability distributions,

but the ellipses become less accurate.

We use the same analysis employed when deriving our previous stability criteria, which

hinges upon the observation made by Sommers (30), that a matrix N with mean 0, variance

1
S

, and correlation E(NijNji) (the mean of the product of all entries) centered at 0 will have

eigenvalues uniformly distributed within an ellipse (x/a)2 + (y/b)2  1 where a = 1 + τ, b =

1 � τ and τ is defined as τ = SE(NijNji). Further, Rothblum and Tan showed that the only

affect of adding the matrix m1.1T to N will be to change the eigenvalue, λ⇤, corresponding

to the average row sum and the eigenvector 1 (which will become λ + Sm). Finally, adding

a constant factor d to each diagonal entry of the matrix will simply shift all eigenvalues by d
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along the real axis, such that each λi = λi + d. Thus, whilst the Jacobian, M , corresponding

to our equilibrium community does not meet the requirements of Sommers’s work, the network

N⇤ = Np
(SV arN))

, with N = M � E(M), does, and therefore, the eigenvalues of our Jacobian

will be contained within the ellipse centered at �sX , with half-horizontal radius, a, and half-

vertical radius, b, given by,

a =
p

SV ar(N)
⇣

1 +
E(NijNji)

V ar(N)

⌘

, (10)

b =
p

SV ar(N)
⇣

1� E(NijNji)

V ar(N)

⌘

. (11)

We now derive expressions for V ar(N) and E(NijNji) in terms of the various community

parameters (S,C, and the proportions of interaction types), such that we can determine how

the eigenvalue distribution, and therefore stability, of our community varies as these parameters

change. We first note that the mean of our Jacobian is given by,

E(Mij) = C
⇣

PmE(Mij|+ /+) + 0.5PeE(Mij|+ /�) + 0.5PeE(Mij|� /+)
⌘

,

= C
⇣

Pm
fMeX

Pm(S � 1)C
+ 0.5Pe

fAgX

0.5Pe(S � 1)C
� 0.5Pe

fAX

0.5Pe(S � 1)C

⌘

,

=
X

(S � 1)

⇣

fMe+ fA(g � 1)
⌘

,

and the second moment E(M2
ij) by,

E(M2
ij) = C

⇣

PmE(M2
ij|+ /+) + 0.5PeE(M2

ij|+ /�) + 0.5PeE(M2
ij|� /+)

⌘

,

= C
⇣

Pm
f 2
Me2A2X

2

(Pm(S � 1)CA)2
+ 0.5Pe

f 2
Ag2A2X

2

(0.5Pe(S � 1)CA)2
. . .

+
f 2
AA2X

2

(0.5Pe(S � 1)CA)2

⌘

,

=
X2A2

C(S � 1)2A2

⇣f 2
Me2
Pm

+
2f 2

A(g2 + 1)

Pe

⌘

.
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Where A2, e2 and g2 are the second moments of Aij , eij and gij , A2 = E(A2
ij), e2 = E(e2ij)

and g2 = E(g2ij) respectively. We can then calculate the variance of M , which is also the

variance of N = M � E(Mij), such that,

V ar(M) = V ar(N) =
X2

C(S � 1)2

⇣f 2
Me2A2

PmA2
+

2f 2
A(g2 + 1)A2

PeA2
� C(fMe+ fA(g � 1))2

⌘

.(12)

From Sommers’s theorem, we next require E(NijNji) = E(MijMji) � E(M)2, for our

stability criterion, and note that,

E(MijMji) = C
⇣

PmE(aijajiXiXj|+ /+) + PeE(aijajiXiXj|+ /�)
⌘

,

= C
⇣

Pm
f 2
Me2X2

(Pm(S � 1)C)2
� Pe

4f 2
AgX

2

(Pe(S � 1)C)2

⌘

,

=
X2

C(S � 1)2

⇣f 2
Me2

Pm

� 4f 2
Ag

Pe

⌘

.

We can, therefore, calculate the correlation of N ,

E(NijNji) =
X2

C(S � 1)2

⇣f 2
Me2

Pm

� 4f 2
Ag

Pe

� C(fMe+ fA(g � 1))2
⌘

. (13)

Combining this with equations (12) and (13) in (10) and (11) allows us to determine the co-

ordinates of our eigenvalue ellipse. As before, there will also be an eigenvalue that corresponds

to the eigenvector 1 which does not necessarily lie within the ellipse, and is approximately equal

to the average row sum, in this case equal to,

Row sum = C(S � 1)
⇣

Pm
fMXe

C(S � 1)Pm

+ 0.5Pe
fAXg

0.5PeC(S � 1)
� 0.5Pe

fMX

0.5PeC(S � 1)

⌘

,

= X(fMe+ fA(g � 1)).
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We can then see analytically how the distribution of eigenvalues changes as we increase

the proportion of cooperative interactions, Pm, for the frequency-dependent weighted and un-

weighted cases. For example, in Figure S9, we plot the numerical stability (line) and average

maximum eigenvalue from 10 networks, showing how our distributions match, and we repro-

duce the phenomenon of peak stability for intermediate Pm under the assumption of frequency-

dependent, interaction specific weighting of interaction strengths.

Method 2

2a. Permanence analysis

We next consider a different method to analyze the ecological stability of communities. Per-

manence analysis asks whether a community will retain all its members, independent of the

scale of any perturbation. Mathematically, this means that the boundary of the state space –

the points where one or more species have gone extinct – behaves as a repeller, such that if

the densities of any of the species within the community approach zero, these species will not

collapse but instead grow, meaning no trajectory of the system leads to the extinction of any

species. In contrast to the analytics that can deal with large community sizes, permanence anal-

ysis is computationally expensive and so we will analyze small communities with S = 10 and

where interactions are either +/+ or �/� in varying proportions. As we discuss below, per-

manence analysis also has further restrictions in applicability such that it may under-estimate

the proportion of permanent communities. Nevertheless, permanence analysis remains a much

more complete study of the stability properties of a network, which makes it a valuable comple-

ment to the analytics. Moreover, despite its restrictions, we will show that it leads to the same

conclusions as the analytical model and, subsequently, our individual-based model.

A sufficient condition for permanence was derived by Jansen in 1987 (38). This derivation
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requires that not only must no species go extinct, but that it is not possible for any species

to grow infinitely. In mutualistic Lotka-Volterra systems this is not always the case – some

communities have the propensity for positive-feedbacks to drive species growth in such a way

that some species will never stop growing. These situations are clearly unrealistic as microbiota

populations will at least be capped by limited space within the gut. As this kind of cap is difficult

to capture with first order differential equations, we investigate the effects of space limitation

using an individual-based model (see supplementary section 3), and develop constraints for

our permanence analysis so as to guarantee that we only analyze communities where infinite

growth is not possible, while classifying those communities that permit infinite growth as non-

permanent.

Specifically, the permanence analysis of a given community can be broken into the fol-

lowing parts. First, as in previous sections, we use Lotka Volterra equations to find a feasible

equilibrium for the whole community by solving for the growth rates r using X = 1 (supple-

mentary section 1a). We next check whether the community is unbounded – if the community is

not bounded, and therefore has the capacity for infinite growth we classify it as non-permanent.

If the community is bounded, we next check whether the boundary of the state space is also a

repeller – if so then no species will ever go extinct, nor will any ever grow to infinity, and thus

we classify the community as permanent. We outline these steps in more detail below.

2b. Boundedness of cooperative communities

In communities of mixed competitive and cooperative interactions, any growth towards infin-

ity will be driven by the cooperative components of the community. Therefore, if the purely

cooperative subsystem of a mixed community is bounded above then so too will be the mixed

community.

In a purely cooperative community, interactions are described by an interaction matrix that is
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negative on the diagonal and non-negative elsewhere. Such a matrix is termed a Metzler matrix,

and it has been shown that if a dynamical system described by a Metzler matrix is locally stable,

then the it will also be globally stable (54). This means that, if a feasible equilibrium point of

a purely cooperative community is globally stable, this community will be bounded, such that

no species will grow to infinity. We can therefore determine whether a mixed community is

bounded above by checking whether the cooperative subsystem of the community is locally

stable.

To check the boundedness of a given community described by the matrix J , we therefore

first determine the cooperative subsystem of the community by removing all competitive be-

tween species interactions – setting all the negative off-diagonal elements of J to zero, to create

a new community matrix J⇤. We then solve for a new equilibrium X⇤, using the new community

matrix J⇤. J⇤ is now a Metzler matrix, as all diagonal entries are negative (= �s, s > 0) and all

off-diagonal entries are non-negative. Therefore, if the new equilibrium is feasible, i.e. X⇤
i > 0

for all i, and locally stable, i.e. the largest real part of the eigenvalues of J⇤ at equilibrium is

negative, then we categorize the whole community as bounded.

Note, while global stability is a sufficient condition for boundedness, it is not necessary.

This means we may underestimate the number of permanent communities as we discard those

partially cooperative communities that do not permit a globally stable equilibrium yet do not

grow to infinity. However, this confines our permanence analysis to bounded communities, and

we employ the individual-based model to directly study properties of communities that we here

classify as unbounded and non-permanent (Method 3, below).

2c. Permanence of bounded communities

The necessary conditions for permanence in Jansen’s work yields the following linear program-

ming problem (38):
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Minimize z subject to:

S
X

i=1

hi(ri � siX
B(k)
i +

S
X

j=1,j 6=i

aijX
B(k)
j ) + z � 0.

and hi > 0 for all i = 1, .., S.

The hi and z are variables of the linear programming problem taking into account the con-

straints arising from all feasible boundary equlibria XB indexed by k = 1, ..,m, where

m  2S . We here perform permanence analysis in communities where S = 10. All other

parameters and values, and the assembly of community matrices are the same as in the previ-

ous sections of this work with the exception that for the analysis of permanence, we choose a

smaller self-regulation parameter, s. The small networks that we are studying here using per-

manence analysis are intrinsically more stable than the more realistically-large networks that

we studied with the analytics above. All networks would simply be stable if we used the same

self-regulation parameter as above. In order to study the effects of cooperation and other fac-

tors on stability, therefore, we lower s to 0.2 for the permanence analysis. Host manipulations

such as feeding or spatial segregation are implemented as scaling factors for the entries of the

Jacobian matrix, i.e. aij ⇥ f � 1 where f is the strength of host manipulation. We simulate

200 independent communities for each set of parameters and plot the frequency of permanent

systems.

Method 3

3a. Individual-based model

In addition to our permanence analysis, to verify our analytical work we also developed an

individual-based model (IbM) of the microbiome. This cellular automaton explicitly models

all cells in the community, and tracks their growth, death, and spatial location over time. The

computationally intensive nature of our IbM limits the number of species that we are able to
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investigate, and in accordance with our permanence analysis, we again set species number S =

10.

This approach offers several important pieces of information. First, whilst our other models

focus on the binary question of whether or not an equilibrium community will be stable to

perturbation, this approach gives us added information as to how we expect a community to

behave following perturbation, and allows us to track population sizes of all species over time.

Additionally, we can explicitly take into account spatial structuring of a community. This allows

us to more directly examine the effect of spatially segregated communities upon community

stability. Similarly, we can more explicitly examine the effect of host-supplied nutrients on

the manner in which cells interact with one another, and the subsequent effects on stability.

Additionally, this approach introduces the realistic stochasticity of birth and death events, and

cell-cell interactions.

As in our analytical work, we consider a community of S species, where species interact

with one another with probability C (consistent with our previous work, here C = 0.7 through-

out). These interactions may be competitive, exploitative, or cooperative (the model can also

easily be extended to incorporate commensalism and ammensalism), and are defined by an in-

teraction matrix, A. The interaction strengths are initially drawn from a half normal |N(0, σ2)|

distribution. We then scale A such that overall a discrete approximation of the Jacobian associ-

ated with the community at equilibrium is of a similar magnitude and distribution to that of our

analytic work. Although each cell has a spatial location, we initially assume that diffusion in

the environment is high, such that each cell can interact with every other cell within the environ-

ment. However, when we study the effects of spatial structure, cell interactions are constrained

to a region around each cell (below).

We model the environment as a square lattice with periodic boundary conditions and sides of

size N , such that the environment can contain a maximum of N2 cells (throughout, N = 100).
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However if the population exceeds a certain cap (in our case, 90% of the maximum population

size) then a random selection of cells are removed to reduce the overall population size to the

level of the cap – this can be thought of as a density dependent sloughing that imposes an upper

limit on population size whilst still enabling cells to grow.

Unless stated otherwise, each simulation begins by seeding the environment such that it is

80% full (initial population size 0.8⇥N2), with each species composed of a roughly equivalent

number of cells, distributed at random. Once the environment has been seeded, we count the

starting number of each species, and set this as our initial equilibrium point, Xeq. We then solve

to find the intrinsic growth rate if each species, ri, necessary to maintain this equilibrium,

r = �(A⇥Xeq).

Simulations then consist of the following series of steps, described in further detail below.

1. Count how many cells of each species are present in the environment at the start of the

time point, contained in the vector Xt.

2. Calculate the growth rate for each species as dependent on Xt. In our initial simulations,

all cells of the same species will grow at the same rate.

3. Randomly list all of the cells present in the environment, consider each cell in turn ac-

cording to this order.

4. Instigate growth / death of each cell depending upon its species’ growth rate and whether

there are free spaces such that growth is possible.

At the start of each time point we count the total number of each species, Xt, then calculate

the growth / death rate of each species, defined by,
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growthRates = r + AXt � diag(A).

The �diag(A) term removes the interaction of each specific cell with itself while maintain-

ing interactions with other cells of the same species. We next rescale all the rates to be between

[0, 1] by dividing each rate by the magnitude of the maximum growth / death rate at that time

point. This gives us an adaptive time-step that enables us to distinguish between species with

very small differences in growth rates.

We next list all cells in random order, then assign an independent U([0, 1]) random number,

q, to each cell. We consider each cell in the list in turn. For each cell, if its growth rate is positive

and greater than its assigned random number, q, we assume growth will occur, and a new cell of

the same type will be placed in an adjacent spot (up, down, left, or right, chosen at random). If

there are no free spots immediately adjacent to the focal cell, then no growth occurs. Similarly,

if the cell’s growth rate is negative, and its magnitude greater than its assigned random number,

q, then we assume death occurs, and that cell is removed from the environment.

Once each cell has been considered, we check to see whether the population has grown over

the pre-defined population cap, and if so we remove a randomly chosen set of cells, such that

the population is reduced down to the population cap. This marks the end of the time-point, and

the process repeats again.

We initially allow the simulation to run for five time-steps, then perturb the community –

reducing the population size of each species by 10%. The simulation process then returns to

run as normal for 1000 time-steps, and we evaluate the stability of the community following

this perturbation. Specifically, we define stability as the proportion of communities that retain

all their initial species throughout the simulation.
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3b. Effect of cooperation on community stability

We begin by investigating how changing the proportion of cooperation within a community af-

fects its stability. As in our analytic work, we achieve this by altering the interaction matrix, A,

to change the proportion of cooperative interactions. We investigate this in three different set-

tings – increasing cooperation in initially purely competitive communities, in purely exploitative

ones, and in communities where interactions are otherwise randomly assigned.

3c. Effect of spatial segregation on community stability

We are interested in what potential mechanisms the host might possess to promote a stable

microbiome. As discussed in the main text, one possible mechanism is spatial segregation,

whereby the host reduces the probability of species interacting with one another. Specifically,

we consider a case where populations start from a varying initial density and then grow clonally

to create patches of a single genotype. The lower the density of the initial inoculation, the

stronger the spatial structure (figure S14). Moreover, whilst in our original simulations we

assumed that each cell could interact with every other cell, we now assume that each cell only

interacts with a subset of cells within a certain radius of it.

As in our initial simulations, we define the capacity for interactions between species by the

S ⇥ S matrix A, the parameters of which are drawn from a half normal |N(0, σ2)| distribution,

with signs chosen so as to achieve the desired levels of cooperation, competition, and exploita-

tion. We next take the distribution of cells described above, and set this as our equilibrium

community, and solve for the intrinsic growth rate of each cell necessary to achieve this. Due

to the addition of spatial structure and limited interaction neighborhood each cell will interact

with a different subset of the population, so we must now calculate the growth rate of each cell

individually. We define the vector Xnb
i as the number of of cells of each species within the

neighborhood of cell i. We then calculate the growth rate for cell i as,
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ri = �(A(l, all). ⇤X i
nb),

where l is the species type of cell i. For each species we then average the growth rates, ri, of

all the cells of that type, and set this as the intrinsic growth rate for that species. The simulations

then progress in the same manner as in our first, non-structured model; the cells are randomly

ordered, their growth rates calculated, then any action (growth / death) implemented according

to this random order. Unlike our original simulations where all cells of the same species had

the same instantaneous growth rate, each cell will now have a different overall growth rate

depending upon the subset of the population that lies within its neighborhood. As in our initial

simulations, we run the model for five time steps before perturbing all of the species densities,

then observe the ability of the community to retain all of its initial species over time.

3d. Effect of feeding on community stability

Hosts further manipulate their microbiome via epithelial feeding of microbes within the gut

community. Here we extend our simulations to capture this behavior, and examine the conse-

quences for community stability. We focus on two potential effects of host provision of nutrients

upon the behavior of the gut community – first, the scenario whereby host provided nutrients act

as an alternative nutrient sources for the gut microbes, and second, the case in which nutrients

act as an extra source of energy by which to increase cell growth rates. We discuss each of these

approaches in detail below.

Case 1: food as an alternative to interactions

One potential effect of host-provided nutrients is that they act as an alternative to bacteria-

provided substrates – that is, the use of a host supplied nutrient weakens the interactions be-

tween the microbes in the community. For example, the host supplied nutrient may be an alter-
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native carbon source to a nutrient supplied by another community member. This case is directly

analogous to the case explored in our analytic work (Figures 4 B, S12). Here, we explore two

possible options; in the first all interactions between cells can potentially be weakened by inter-

acting with the host supplied nutrients (general feeding, Figure S12) whilst, in the second, host

supplied nutrients only have the effect of weakening interactions between cooperative species

(targeted feeding, Figure 4 B). In both cases we assume that each species’ initial equilibrium

density is determined from a combination of both its interactions with other microbes and with

the host supplied nutrient.

In our simulation we capture this with the presence of an additional nutrient source, kept

at a constant level, which can be metabolized by members of the gut community. Like cells

themselves, this nutrient has a spatial component, and will only weaken interactions when a

cell overlaps with the location of the nutrient. We define the effect of using the nutrient, φ,

(here φ = 10�5 so as to be on the same order of magnitude as a single cell-cell interaction in

our models) and the simulation is then composed of the following steps, listed below.

As in our initial simulations, the process begins by seeding the environment with roughly

equal numbers of each species, placed at random (without any structure), and setting this dis-

tribution as the community equilibrium. In the same manner, set quantities of nutrients are also

placed at random in the environment (to be redistributed each timestep). We set γ to be the

proportion of cells that will on average overlap in location with nutrient molecules, and of this,

δ represents the proportion of these overlaps in which, on average, nutrients are metabolized in

favor of an interaction with neighboring cells. This equates to whether cells have a preference

for interacting with other microbes (when δ < 0.5), or with the host provided nutrients (when

δ > 0.5). We then use this to calculate the intrinsic growth rates, r, of each species as,

r = �(A(Xeq � δ γ Xeq) + 1δ φ γ N2),
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so as to set the initial population as the community equilibrium. The simulation then follows

the same series of steps to our previous implementations of the model.

Case 2: Food as a supplement to cell-cell interactions

We next investigate the scenario where host-provided nutrients acts as an extra resource that

acts in addition to pre-existing microbial interactions. In this case we consider a population

that is already at equilibrium, then study the effect of adding nutrients to the environment. As

in Case 1, we begin by seeding the environment with a random distribution of each species,

and a set amount of nutrients. We then calculate the intrinsic growth rates of each species, r,

independent of any nutrients present in the environment, such that,

r = �(A(Xeq)).

Each time-step then begins by counting the population size of each species, contained in X ,

then calculating each species’ growth rate, now given by,

growthRates = r + AX � diag(A) + φ γ N2,

where as before φ represents the strength of an interaction with the host supplied nutrients,

and γN2 the number of nutrient molecules that each cell interacts with. As such, the last

term on the right represents the contribution to the overall growth rate from interactions with

host-supplied nutrient molecules. As before, growth rates are rescaled by the magnitude of the

maximum rate of cell growth or death in the community, cells ordered at random, then each cell

considered in turn, with any actions (growth / death / nothing) decided based on the value of

their species’ growth (or death) rate.

When the additional nutrients provided by the host remain at a constant level throughout the

simulation, this increases intrinsic growth rates (growth not dependent upon microbial interac-
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tions) and therefore reduces the likelihood of species going extinct. By the measure of stability

used to analyze our IbM results – whether a community is able to maintain all of its initial

species over time, feeding therefore acts to increase the stability of the microbial community

(Figure 4 C). This is a different form of stability to that above. As is typical in the literature,

our earlier analyses consider communities maintained at a stable equilibrium by the interactions

between the community members. However, the effect of increased growth rates here is to push

the species’ populations to their maximum size, such that they are now regulated extrinsically

by the capacity of the host. This is critical because it can turn what were formerly cooperating

species into competitors.

To see this, it is important to realize that the occurrence of competition versus cooperation

can be more nuanced than simply examining the interaction parameters (aij) between species in

the model. In the presence of an external population cap, these interaction terms only define the

net effects of one species on another during early stages of growth, before the community has

reached the cap. However, once the community has reached its steady state at the cap, the effect

of one species on another is now a combination of both the direct interaction terms (aij) and

competition for limited space. This latter effect can change previously cooperative interactions

into competitive ones.

The change to competition can be demonstrated in our model by removing a previously

cooperative species and observing how this removal affects the other species. If the focal species

is cooperating, removing it should harm the other species (50). However, removing the focal

species, we see that the other species typically both increase in their densities and their rate of

cell production per unit time (Figure 4 C). The removed species was then, at this point, primarily

a competitor with negative effects on most other species.
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4. Experimental validation

While there is a rapidly growing body of data on species abundances in the mammalian mi-

crobiome, there have been few studies focused on deciphering the interactions between these

species. However, the work by Stein et al. (16) is one such study. The authors used time-

resolved metagenomics and machine learning to infer the interactions between community

members – species or genera – within a mouse model. These data then allowed us to test

our predictions about the profile of ecological interactions within the mammalian microbiome.

We first looked at the distribution of interaction types between the community members.

Our analysis predicts that a stable community within the microbiome will contain only a small

proportion of destabilizing cooperative interactions, amongst a larger number of competitive or

exploitative links. We found that this is indeed the case in the Stein et al. dataset (Figure 4 D,

bar chart), in which of all possible interactions, only 14.8 % are cooperative.

A second key prediction from our analysis is that, in a stable microbial community, the

interactions between species should be predominantly weak relative to the self-regulation that

each species experiences due to within-species competition, captured by s (see equation S1).

Again we find our prediction is supported by the Stein et al. data – the histogram in Figure

4 D shows how the vast majority of ecological interactions between community members are

weaker than that of the average interaction of a species with itself (s̄), with only a few strong

ecological interactions between members.

The models we have presented here are general, which makes them widely applicable and

able to identify general principles. However, a criticism of such models is that generality might

come at a cost of accuracy if important details are not accounted for. Do our models then make

correct predictions when we parameterize them using real data? We evaluated this question

using the Stein et al. data. Specifically, we obtained the general community parameters –

S,C, Pm, Pc, σ, s̄ – of a stable mouse microbiome community from Steinet al. Using these in
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our analytical model (supplementary section 1) we can predict the bound on the eigenvalues,

and therefore the stability, of this community. Not only did our analysis correctly predict the

community to be stable, but we also correctly estimated the location of the stability determining

dominant eigenvalue in the community when this value was explicitly calculated using each

individual member’s densities and interaction strengths (Figure 4 D, right).
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Figure S1: Diversity destabilizes communities. Here we plot our analytic measure of sta-

bility over increasing species number for random networks with different interaction types

(C = 0.7,�s = �1, σ = 0.05). Increasing the species number has destabilizing effects across

communities of all interaction types. Mathematically, adding new species to a network in this

way always increases the largest real part of the community’s eigenvalues and, therefore, the

stability of the community decreases. The higher the proportion of positive interactions within

the community, the larger this effect - and thus diversity is most destabilizing for cooperative

communities. Note that we use a break in the y axis of some plots in order to allow the early

behaviour of all plots to be directly compared.
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Figure S2: Increased proportions of cooperative interactions decrease stability in ex-

ploitative and random communities. A) Illustration of different network types; com-

petitive (green), exploitative (blue), random, and cooperative (red). B) Linear stability

analysis. Left hand plot shows analytical solutions for eigenvalue locations as a function

of increasing cooperation (shown as increasing red). The largest value of the real compo-

nents (x-axis) determines whether, and how fast, a return to equilibrium occurs (stability),

whilst the imaginary components (y-axis) determine the frequency of oscillations in pop-

ulation densities following perturbations (Figure 1). The solutions give the position of all

eigenvalues in the form of an ellipse, with the exception of a single eigenvalue that corre-

sponds to the average row sum of the interaction matrix (represented by a dot that may lie

outside of the ellipse). Increasing cooperation increases the largest eigenvalues, and sta-

bility decreases. Solutions hold for any permutation of a community network with a given

parameter set (here: S = 100, C = 0.7, �s = �1, σ = 0.05, see supplementary section

1b for parameter sweeps that show that cooperation is nearly always destabilizing). Right

hand plots are simulation results showing the proportion of communities that are stable

to confirm our analytic results. C, D) Increasing cooperation also decreases community

stability in our permanence analysis and individual-based model (here: S = 10, C = 0.7,

�s = �0.2, σ = 0.05, errorbars: SEM for 100 samples). E) Increasing commensalism

(+/0) within an ammensal (�/0) community has a similarly destabilizing effect.
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Figure S3: Numerical confirmation of the analytical model for increasing cooperation in

an exploitative community. The stability of a community is dependent upon the localization

of its eigenvalues within the complex plane, which we can predict using our analytic measure.

We confirm the accuracy of this analytical approach by simulating representative communities

(S = 100, C = 0.7,�s = �1, σ = 0.05) and explicitly calculating their eigenvalues (black

dots), which we can see are contained within our analytically calculated bound (red, Figure 2).

For example, we confirm that stability decreases (the largest real eigenvalue part becomes less

negative) when we increase the proportion of cooperation in an otherwise exploitative network.
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Figure S4: Effect of increasing cooperation on stability in exploitative communities. The

derivative of stability with respect to the level of cooperation, Pm, across C/Pm parameter space

reveals how increasing cooperation always destabilizes exploitative communities, regardless of

the connectivity of the network that is, dU
dPm

< 0 for all values of connectivity, C, and co-

operation, Pm. Here we illustrate this in a community with species number S = 100, and

self-regulation, �s = � 1, however, the same behavior holds true for equivalent communities

with different levels of self-regulation, and higher species numbers. The two visually distinct re-

gions of the heatmap indicate the regions where the ellipse determines stability (left) and where

the dot does (right), illustrating how the dot decreases stability at a linear rate, whilst this rate

is much slower in regions where community behavior is driven by the ellipse. The magnitude

of dU
dPm

is larger for higher C, indicating how increasing cooperation is more destabilizing in

communities with higher connectivity.

44



Figure S5: Effect of increasing cooperation on stability in random communities. The

derivative of stability with respect to the level of cooperation, Pm, across C/Pm parameter space

reveals how increasing cooperation always destabilizes random communities, regardless of the

connectivity of the network that is, dU
dPm

< 0 for all values of connectivity, C, and cooperation,

Pm. Here we illustrate this in a community with species number S = 100, and self-regulation,

�s = � 1, however, the same behavior holds true for equivalent communities with different

levels of self-regulation, and higher species numbers. The two visually distinct regions of the

heatmap indicate the regions where the ellipse determines stability (left) and where the dot does

(right), illustrating how the dot decreases stability at a linear rate, whilst this rate is much slower

in regions where community behavior is driven by the ellipse. The magnitude of dU
dPm

is larger

for higher C, indicating how increasing cooperation is more destabilizing in communities with

higher connectivity.
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Figure S6: Effect of cooperation on stability in competitive communities. A) The derivative

of stability with respect to the level of cooperation, Pm, across C/Pm parameter space reveals

how the effect of cooperation upon stability in competitive communities changes across C/Pm

parameter space. When dU
dPm

< 0 cooperation is destabilizing, whilst when dU
dPm

> 0 it is sta-

bilizing. Note that the magnitude of the rate of stabilization is far smaller than the average rate

of destabilization. B) Black regions highlight parameter space where increasing cooperation is

destabilizing, whilst white regions mark where it is stabilizing. The size of the region where in-

creasing cooperation is stabilizing decreases as connectivity, C, or species number, S, increase

(here S = 100). C) The stabilizing influence of cooperation increase does not typically affect

the transition from stable to unstable communities. This is illustrated by plots of ecological

stability for a community with S = 100, σ = 0.05. D, E) In realistic communities that also

contain exploitative interactions (here at 20%), the range of parameter space where increasing

cooperation can be stabilizing is further reduced. F) Plot of ecological stability for communities

that also contain exploitative interactions; again the stabilizing effect of increasing cooperation

does not affect the stability threshold.
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Figure S7: Numerical confirmation that intermediate levels of cooperation (mutualism)

can promote stability in a model of a macroscopic community. We reproduce the numer-

ical model of (32) in an unstructured network, and demonstrate how certain interaction de-

pendencies can lead to increased stability for intermediate levels of cooperative interactions.

Specifically, here different interaction types (cooperative versus exploitative) are weighted in-

dependently in a frequency dependent manner – such that a given species always dedicates a

constant level of effort towards cooperative interactions, and a separate constant level towards

exploitative interactions. As in (32) we numerically simulate such communities for varying

values of species number, S, and connectivity, C, and plot the proportion of communities that

are stable for each parameter combination in 25 independent repeats.
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Figure S8: Numerical confirmation that increased stability at intermediate levels of co-

operation (mutualism) is not observed when each interaction type is not weighted indi-

vidually. We numerically simulate communities in S,C parameter space for varying levels of

cooperative interactions (mutualism) without the frequency dependent weighting of interaction

types. We simulate 25 independent communities for each parameter combination, with interac-

tion strengths drawn from a Uniform U([0, 0.1]) distribution so as to, on average, be of a similar

magnitude to those in Figure S7, and plot the proportion of communities that are stable.
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Figure S9: Our analytical model captures the stability behavior seen numerically in (32).

Ecological stability is dependent upon the localization of the community’s underlying eigen-

values in the complex plane. Here we demonstrate that our analytic approach can predict the

change in eigenvalue localization for communities in which interactions between species are

weighted in a frequency dependent manner, as in (32). A-E) Eigenvalues (black dots) of 4

simulated communities (S = 100, C = 0.7) with the frequency dependent weighting on inter-

action types as implemented in Figure S7 and (32), alongside our analytical prediction of the

eigenvalue distribution (red line and dot). Some eigenvalues lie outside the ellipse because we

sample interaction strengths from a random distribution, but this does not affect our ability to

capture the general behavior. Panel F compares our analytical prediction of stability (red line)

against the average observed stability for 100 representative networks (black dots), with blue

lines representing the standard deviation. This demonstrates how our analysis can capture the

behavior seen in (32), and our numerical simulations, when each interactions type is weighted

individually.
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Figure S10: Numerical confirmation of the analytical model for introducing competitive

species to a network of cooperators The stability of a community is dependent upon the lo-

calization of its eigenvalues within the complex plane, which we can predict using our analytic

measure. A) We confirm the accuracy of our analytical results by numerically simulating com-

munities in which competitive species are added to an initially purely cooperative community

of 100 species (C = 0.7,�s = �1.75, σ = 0.05). We plot the eigenvalues of these simulated

communities (black dots) and show how their localization is accurately predicted by our analytic

bound (red line) B) We then simulate independent sample communities with different numbers

of competing species, calculate their average stability (10 each, black line), and compare this

with our analytical results (red line). The addition of competitors changes the proportion of

cooperative links (Pm, blue line) which has a stabilizing effect that initially is stronger than the

destabilizing effect of larger species numbers.
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Figure S11: Introducing exploitative species to a network of cooperators is also stabilizing,

but adding random species is not. We consider an unstable cooperative network in which all

interactions are concentrated between a small number of species (Sinit = 100, C = 0.7,�s =
�1, σ = 0.05), then gradually add new species such that the original cooperative interactions

are now distributed between a larger number of species. The new species interact with com-

munity members in a manner that is either exploitative (A) or ”random” (B). We plot our an-

alytic measure of stability as a function of the number of new species added (black line), and

(A) demonstrate how adding exploitative species can initially stabilize the focal community,

although, at high numbers of additional species, the destabilizing effect of high species num-

bers (Figure S1) will dominate, and the community will again destabilize. To capture this we

break the plot into two sections (note the x-axis break) as the destabilizing behavior occurs at

a much lower rate than the initial stabilization that occurs at low species numbers. (B) Adding

species that interact in a random manner (25 % cooperatively, 25 % competitively, and 50 %

exploitatively) does not have a stabilizing effect, as it does not sufficiently decrease the overall

proportion of destabilizing cooperative interactions (blue line).
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Figure S12: Non-targeted feeding does not make communities stable. Host-supplied nu-

trients that weaken all interaction types equally do not increase community stability in linear

stability analysis (A), permanence analysis (B), or an individual-based model (C). In order to

capture any effects of host manipulation, we study parameters for which some communities are

stable and some are unstable. For linear stability analysis: S = 300, C = 0.7, �s = �1,

σ = 0.05. For permanence analysis and IbM: S = 10, �s = �0.2, errorbars: SEM). We use

different parameters for the second two methods because they are computationally expensive

and can only be applied to smaller communities.
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Figure S13: Redundancy in cooperation can increase ecological stability. We use linear sta-

bility analysis to examine the effect of replacing strong cooperative links with multiple weaker

cooperative interactions. For example, one interaction of strength 1 may be replaced with three

interactions, each of strength 1/3. Whilst this manipulation does not affect highly unstable,

highly cooperative communities, it can increase the stability of communities with lower levels

of cooperation. The cross in the two curves for Pm = 0.25 and Pm = 0.5 occurs because the

former has fewer cooperative links to make redundant and so the effects making cooperative

links highly redundancy is overall weaker. We examine a network with a low initial level of

connectivity, C = 0.2, to allow a wide range of redundancy to be examined (here: S = 100,

�s = �1, σ = 0.05).

Figure S14: Implementation of increasing spatial structure in the individual-based model.

To increase structure, we decrease the number of randomly arranged cells that start communi-

ties, which leads to the emergence of larger clonal patches. In these models, we also assume

that each cell can only interact with those cells within a certain local neighborhood.

52



References and Notes 

1. C. Lozupone, K. Faust, J. Raes, J. J. Faith, D. N. Frank, J. Zaneveld, J. I. Gordon, R. Knight, 
Identifying genomic and metabolic features that can underlie early successional and 
opportunistic lifestyles of human gut symbionts. Genome Res. 22, 1974–1984 (2012). 
Medline doi:10.1101/gr.138198.112 

2. S. R. Gill, M. Pop, R. T. Deboy, P. B. Eckburg, P. J. Turnbaugh, B. S. Samuel, J. I. Gordon, 
D. A. Relman, C. M. Fraser-Liggett, K. E. Nelson, Metagenomic analysis of the human 
distal gut microbiome. Science 312, 1355–1359 (2006). Medline 
doi:10.1126/science.1124234 

3. F. Bäckhed, R. E. Ley, J. L. Sonnenburg, D. A. Peterson, J. I. Gordon, Host-bacterial 
mutualism in the human intestine. Science 307, 1915–1920 (2005). Medline 
doi:10.1126/science.1104816 

4. S. K. Mazmanian, J. L. Round, D. L. Kasper, A microbial symbiosis factor prevents intestinal 
inflammatory disease. Nature 453, 620–625 (2008). Medline doi:10.1038/nature07008 

5. Y. K. Lee, S. K. Mazmanian, Has the microbiota played a critical role in the evolution of the 
adaptive immune system? Science 330, 1768–1773 (2010). Medline 
doi:10.1126/science.1195568 

6. L. Dethlefsen, D. A. Relman, Incomplete recovery and individualized responses of the human 
distal gut microbiota to repeated antibiotic perturbation. Proc. Natl. Acad. Sci. U.S.A. 108 
(suppl. 1), 4554–4561 (2011). Medline doi:10.1073/pnas.1000087107 

7. T. Vanhoutte, G. Huys, E. Brandt, J. Swings, Temporal stability analysis of the microbiota in 
human feces by denaturing gradient gel electrophoresis using universal and group-
specific 16S rRNA gene primers. FEMS Microbiol. Ecol. 48, 437–446 (2004). Medline 
doi:10.1016/j.femsec.2004.03.001 

8. J. J. Faith, J. L. Guruge, M. Charbonneau, S. Subramanian, H. Seedorf, A. L. Goodman, J. C. 
Clemente, R. Knight, A. C. Heath, R. L. Leibel, M. Rosenbaum, J. I. Gordon, The long-
term stability of the human gut microbiota. Science 341, 1237439 (2013). Medline 
doi:10.1126/science.1237439 

9. D. A. Relman, The human microbiome: Ecosystem resilience and health. Nutr. Rev. 70 (suppl. 
1), S2–S9 (2012). Medline doi:10.1111/j.1753-4887.2012.00489.x 

10. A. Giongo, K. A. Gano, D. B. Crabb, N. Mukherjee, L. L. Novelo, G. Casella, J. C. Drew, J. 
Ilonen, M. Knip, H. Hyöty, R. Veijola, T. Simell, O. Simell, J. Neu, C. H. Wasserfall, D. 
Schatz, M. A. Atkinson, E. W. Triplett, Toward defining the autoimmune microbiome for 
type 1 diabetes. ISME J. 5, 82–91 (2011). Medline 

11. C. A. Lozupone, J. I. Stombaugh, J. I. Gordon, J. K. Jansson, R. Knight, Diversity, stability 
and resilience of the human gut microbiota. Nature 489, 220–230 (2012). Medline 
doi:10.1038/nature11550 

12. P. De Cruz, L. Prideaux, J. Wagner, S. C. Ng, C. McSweeney, C. Kirkwood, M. Morrison, 
M. A. Kamm, Characterization of the gastrointestinal microbiota in health and 
inflammatory bowel disease. Inflamm. Bowel Dis. 18, 372–390 (2012). Medline 
doi:10.1002/ibd.21751 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22665442&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22665442&dopt=Abstract
http://dx.doi.org/10.1101/gr.138198.112
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16741115&dopt=Abstract
http://dx.doi.org/10.1126/science.1124234
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15790844&dopt=Abstract
http://dx.doi.org/10.1126/science.1104816
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18509436&dopt=Abstract
http://dx.doi.org/10.1038/nature07008
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21205662&dopt=Abstract
http://dx.doi.org/10.1126/science.1195568
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20847294&dopt=Abstract
http://dx.doi.org/10.1073/pnas.1000087107
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19712312&dopt=Abstract
http://dx.doi.org/10.1016/j.femsec.2004.03.001
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23828941&dopt=Abstract
http://dx.doi.org/10.1126/science.1237439
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22861804&dopt=Abstract
http://dx.doi.org/10.1111/j.1753-4887.2012.00489.x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20613793&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22972295&dopt=Abstract
http://dx.doi.org/10.1038/nature11550
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21604329&dopt=Abstract
http://dx.doi.org/10.1002/ibd.21751


13. E. Y. Hsiao, S. W. McBride, S. Hsien, G. Sharon, E. R. Hyde, T. McCue, J. A. Codelli, J. 
Chow, S. E. Reisman, J. F. Petrosino, P. H. Patterson, S. K. Mazmanian, Microbiota 
modulate behavioral and physiological abnormalities associated with 
neurodevelopmental disorders. Cell 155, 1451–1463 (2013). Medline 
doi:10.1016/j.cell.2013.11.024 

14. J. Schluter, K. R. Foster, The evolution of mutualism in gut microbiota via host epithelial 
selection. PLOS Biol. 10, e1001424 (2012). Medline doi:10.1371/journal.pbio.1001424 

15. V. Bucci, S. Bradde, G. Biroli, J. B. Xavier, Social interaction, noise and antibiotic-mediated 
switches in the intestinal microbiota. PLOS Comput. Biol. 8, e1002497 (2012). Medline 
doi:10.1371/journal.pcbi.1002497 

16. R. R. Stein, V. Bucci, N. C. Toussaint, C. G. Buffie, G. Rätsch, E. G. Pamer, C. Sander, J. B. 
Xavier, Ecological modeling from time-series inference: Insight into dynamics and 
stability of intestinal microbiota. PLOS Comput. Biol. 9, e1003388 (2013). Medline 
doi:10.1371/journal.pcbi.1003388 

17. R. M. May, Will a large complex system be stable? Nature 238, 413–414 (1972). Medline 
doi:10.1038/238413a0 

18. S. Allesina, S. Tang, Stability criteria for complex ecosystems. Nature 483, 205–208 (2012). 
Medline doi:10.1038/nature10832 

19. K. S. McCann, The diversity-stability debate. Nature 405, 228–233 (2000). Medline 
doi:10.1038/35012234 

20. K. R. Foster, T. Bell, Competition, not cooperation, dominates interactions among culturable 
microbial species. Curr. Biol. 22, 1845–1850 (2012). Medline 
doi:10.1016/j.cub.2012.08.005 

21. G. Eberl, A new vision of immunity: Homeostasis of the superorganism. Mucosal Immunol. 
3, 450–460 (2010). Medline doi:10.1038/mi.2010.20 

22. R. D. Sleator, The human superorganism - of microbes and men. Med. Hypotheses 74, 214–
215 (2010). Medline doi:10.1016/j.mehy.2009.08.047 

23. P. Van den Abbeele, T. Van de Wiele, W. Verstraete, S. Possemiers, The host selects 
mucosal and luminal associations of coevolved gut microorganisms: A novel concept. 
FEMS Microbiol. Rev. 35, 681–704 (2011). Medline doi:10.1111/j.1574-
6976.2011.00270.x 

24. R. Di Cagno, M. De Angelis, I. De Pasquale, M. Ndagijimana, P. Vernocchi, P. Ricciuti, F. 
Gagliardi, L. Laghi, C. Crecchio, M. E. Guerzoni, M. Gobbetti, R. Francavilla, Duodenal 
and faecal microbiota of celiac children: Molecular, phenotype and metabolome 
characterization. BMC Microbiol. 11, 219 (2011). Medline doi:10.1186/1471-2180-11-
219 

25. F. Fiegna, G. J. Velicer, Exploitative and hierarchical antagonism in a cooperative bacterium. 
PLOS Biol. 3, e370 (2005). Medline doi:10.1371/journal.pbio.0030370 

26. J. C. Clemente, E. C. Pehrsson, M. J. Blaser, K. Sandhu, Z. Gao, B. Wang, M. Magris, G. 
Hidalgo, M. Contreras, Ó. Noya-Alarcón, O. Lander, J. McDonald, M. Cox, J. Walter, P. 
L. Oh, J. F. Ruiz, S. Rodriguez, N. Shen, S. J. Song, J. Metcalf, R. Knight, G. Dantas, M. 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24315484&dopt=Abstract
http://dx.doi.org/10.1016/j.cell.2013.11.024
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23185130&dopt=Abstract
http://dx.doi.org/10.1371/journal.pbio.1001424
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22577356&dopt=Abstract
http://dx.doi.org/10.1371/journal.pcbi.1002497
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24348232&dopt=Abstract
http://dx.doi.org/10.1371/journal.pcbi.1003388
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=4559589&dopt=Abstract
http://dx.doi.org/10.1038/238413a0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22343894&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22343894&dopt=Abstract
http://dx.doi.org/10.1038/nature10832
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10821283&dopt=Abstract
http://dx.doi.org/10.1038/35012234
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22959348&dopt=Abstract
http://dx.doi.org/10.1016/j.cub.2012.08.005
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20445502&dopt=Abstract
http://dx.doi.org/10.1038/mi.2010.20
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19836146&dopt=Abstract
http://dx.doi.org/10.1016/j.mehy.2009.08.047
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21361997&dopt=Abstract
http://dx.doi.org/10.1111/j.1574-6976.2011.00270.x
http://dx.doi.org/10.1111/j.1574-6976.2011.00270.x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21970810&dopt=Abstract
http://dx.doi.org/10.1186/1471-2180-11-219
http://dx.doi.org/10.1186/1471-2180-11-219
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16248676&dopt=Abstract
http://dx.doi.org/10.1371/journal.pbio.0030370


G. Dominguez-Bello, The microbiome of uncontacted Amerindians. Sci. Adv. 1, 
e1500183 (2015). Medline doi:10.1126/sciadv.1500183 

27. N. M. Oliveira, R. Niehus, K. R. Foster, Evolutionary limits to cooperation in microbial 
communities. Proc. Natl. Acad. Sci. U.S.A. 111, 17941–17946 (2014). 
doi:10.1073/pnas.1412673111 

28. B. S. Samuel, J. I. Gordon, A humanized gnotobiotic mouse model of host-archaeal-bacterial 
mutualism. Proc. Natl. Acad. Sci. U.S.A. 103, 10011–10016 (2006). Medline 
doi:10.1073/pnas.0602187103 

29. E. P. Wigner, On the distribution of the roots of certain symmetric matrices. Ann. Math. 67, 
325–327 (1958). doi:10.2307/1970008 

30. H. J. Sommers, A. Crisanti, H. Sompolinsky, Y. Stein, Spectrum of large random asymmetric 
matrices. Phys. Rev. Lett. 60, 1895–1898 (1988). Medline 
doi:10.1103/PhysRevLett.60.1895 

31. See the supplementary materials on Science Online. 

32. A. Mougi, M. Kondoh, Diversity of interaction types and ecological community stability. 
Science 337, 349–351 (2012). Medline doi:10.1126/science.1220529 

33. R. P. Rohr, S. Saavedra, J. Bascompte, On the structural stability of mutualistic systems. 
Science 345, 1253497 (2014). Medline doi:10.1126/science.1253497 

34. P. Louis, G. L. Hold, H. J. Flint, The gut microbiota, bacterial metabolites and colorectal 
cancer. Nat. Rev. Microbiol. 12, 661–672 (2014). Medline doi:10.1038/nrmicro3344 

35. C. S. Holling, Resilience and stability of ecological systems. Annu. Rev. Ecol. Syst. 4, 1–23 
(1973). doi:10.1146/annurev.es.04.110173.000245 

36. M. Kondoh, A. Mougi, Interaction-type diversity hypothesis and interaction strength: The 
condition for the positive complexity-stability effect to arise. Popul. Ecol. 57, 21–27 
(2015). doi:10.1007/s10144-014-0475-9 

37. X. Chen, J. E. Cohen, Global stability, local stability and permanence in model food webs. J. 

Theor. Biol. 212, 223–235 (2001). Medline doi:10.1006/jtbi.2001.2370 

38. W. Jansen, A permanence theorem for replicator and Lotka-Volterra systems. J. Math. Biol. 
25, 411–422 (1987). doi:10.1007/BF00277165 

39. A. S. Waller, T. Yamada, D. M. Kristensen, J. R. Kultima, S. Sunagawa, E. V. Koonin, P. 
Bork, Classification and quantification of bacteriophage taxa in human gut metagenomes. 
ISME J. 8, 1391–1402 (2014). Medline doi:10.1038/ismej.2014.30 

40. J. Hofbauer, K. Sigmund, On the stabilizing effect of predators and competitors on ecological 
communities. J. Math. Biol. 27, 537–548 (1989). Medline doi:10.1007/BF00288433 

41. J. K. Fredrickson, Ecological communities by design. Science 348, 1425–1427 (2015). 
Medline doi:10.1126/science.aab0946 

42. H. J. Kim, J. Q. Boedicker, J. W. Choi, R. F. Ismagilov, Defined spatial structure stabilizes a 
synthetic multispecies bacterial community. Proc. Natl. Acad. Sci. U.S.A. 105, 18188–
18193 (2008). Medline doi:10.1073/pnas.0807935105 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26229982&dopt=Abstract
http://dx.doi.org/10.1126/sciadv.1500183
http://dx.doi.org/10.1073/pnas.1412673111
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16782812&dopt=Abstract
http://dx.doi.org/10.1073/pnas.0602187103
http://dx.doi.org/10.2307/1970008
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10038170&dopt=Abstract
http://dx.doi.org/10.1103/PhysRevLett.60.1895
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22822151&dopt=Abstract
http://dx.doi.org/10.1126/science.1220529
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25061214&dopt=Abstract
http://dx.doi.org/10.1126/science.1253497
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25198138&dopt=Abstract
http://dx.doi.org/10.1038/nrmicro3344
http://dx.doi.org/10.1146/annurev.es.04.110173.000245
http://dx.doi.org/10.1007/s10144-014-0475-9
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11531387&dopt=Abstract
http://dx.doi.org/10.1006/jtbi.2001.2370
http://dx.doi.org/10.1007/BF00277165
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24621522&dopt=Abstract
http://dx.doi.org/10.1038/ismej.2014.30
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=2794803&dopt=Abstract
http://dx.doi.org/10.1007/BF00288433
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26113703&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26113703&dopt=Abstract
http://dx.doi.org/10.1126/science.aab0946
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19011107&dopt=Abstract
http://dx.doi.org/10.1073/pnas.0807935105


43. L. V. Hooper, J. Xu, P. G. Falk, T. Midtvedt, J. I. Gordon, A molecular sensor that allows a 
gut commensal to control its nutrient foundation in a competitive ecosystem. Proc. Natl. 

Acad. Sci. U.S.A. 96, 9833–9838 (1999). Medline doi:10.1073/pnas.96.17.9833 

44. P. C. Kashyap, A. Marcobal, L. K. Ursell, S. A. Smits, E. D. Sonnenburg, E. K. Costello, S. 
K. Higginbottom, S. E. Domino, S. P. Holmes, D. A. Relman, R. Knight, J. I. Gordon, J. 
L. Sonnenburg, Genetically dictated change in host mucus carbohydrate landscape exerts 
a diet-dependent effect on the gut microbiota. Proc. Natl. Acad. Sci. U.S.A. 110, 17059–
17064 (2013). Medline 

45. J. L. Sonnenburg, J. Xu, D. D. Leip, C. H. Chen, B. P. Westover, J. Weatherford, J. D. 
Buhler, J. I. Gordon, Glycan foraging in vivo by an intestine-adapted bacterial symbiont. 
Science 307, 1955–1959 (2005). Medline doi:10.1126/science.1109051 

46. V. Tremaroli, F. Bäckhed, Functional interactions between the gut microbiota and host 
metabolism. Nature 489, 242–249 (2012). Medline doi:10.1038/nature11552 

47. F. H. Login, S. Balmand, A. Vallier, C. Vincent-Monégat, A. Vigneron, M. Weiss-Gayet, D. 
Rochat, A. Heddi, Antimicrobial peptides keep insect endosymbionts under control. 
Science 334, 362–365 (2011). Medline doi:10.1126/science.1209728 

48. D. Haydon, Pivotal assumptions determining the relationship between stability and 
complexity: An analytical synthesis of the stability-complexity debate. Am. Nat. 144, 14–
29 (1994). doi:10.1086/285658 

49. D. R. Nemergut, S. K. Schmidt, T. Fukami, S. P. O’Neill, T. M. Bilinski, L. F. Stanish, J. E. 
Knelman, J. L. Darcy, R. C. Lynch, P. Wickey, S. Ferrenberg, Patterns and processes of 
microbial community assembly. Microbiol. Mol. Biol. Rev. 77, 342–356 (2013). Medline 
doi:10.1128/MMBR.00051-12 

50. S. Mitri, K. R. Foster, The genotypic view of social interactions in microbial communities. 
Annu. Rev. Genet. 47, 247–273 (2013). Medline doi:10.1146/annurev-genet-111212-
133307 

51. S. Gerschgorin, Über die Abgrenzung der Eigenwerte einer Matrix. B. Acad. Sci. USSR 25, 
750–754 (1931). 

52. T. Tao, V. Vu, M. Krishnapur, Random matrices: Universality of ESDs and the circular law. 
Ann. Probab. 38, 2023–2065 (2010). doi:10.1214/10-AOP534 

53. U. G. Rothblum, C. P. Tan, Upper bounds on the maximum modulus of subdominant 
eigenvalues of nonnegative matrices. Linear Algebra Appl. 66, 45–86 (1985). 
doi:10.1016/0024-3795(85)90125-9 

54. B. S. Goh, Stability in models of mutualism. Am. Nat. 113, 261–275 (1979). 
doi:10.1086/283384 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10449780&dopt=Abstract
http://dx.doi.org/10.1073/pnas.96.17.9833
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24062455&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15790854&dopt=Abstract
http://dx.doi.org/10.1126/science.1109051
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22972297&dopt=Abstract
http://dx.doi.org/10.1038/nature11552
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22021855&dopt=Abstract
http://dx.doi.org/10.1126/science.1209728
http://dx.doi.org/10.1086/285658
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24006468&dopt=Abstract
http://dx.doi.org/10.1128/MMBR.00051-12
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24016192&dopt=Abstract
http://dx.doi.org/10.1146/annurev-genet-111212-133307
http://dx.doi.org/10.1146/annurev-genet-111212-133307
http://dx.doi.org/10.1214/10-AOP534
http://dx.doi.org/10.1016/0024-3795(85)90125-9
http://dx.doi.org/10.1086/283384

