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1. Introduction and context 

Growing concerns about the performance of network industries as well as climate 

change are challenging drinking water distribution utilities and triggering interest 

in their production structure and efficiency. The determinants of cost and 

efficiency need to be explored to provide drinking water of the highest quality at 

minimum possible cost. Indeed an increasing literature seeks to determine 

economies of density, scale and scope to judge water industry market structure 

(Carvalho et al., 2012). The comparison of the cost and performance of private 

and public companies has also attracted particular attention (Walter et al., 2009). 

Today, many countries are using various regulatory schemes that involve 

benchmarking of water distribution utilities to enhance performance, for example 

the United Kingdom, Australia or the Netherlands (de Witte and Marques, 2010). 

Measuring the efficiency of water distribution utilities is thus a major challenge. 

Particularly, given that drinking water utilities typically face very diverse 

environmental conditions, the assessment of their performance has to account for 

the impact of exogenous factors and unobserved heterogeneity. Exogenous or 

environmental factors characterise the operational environment in which the 

drinking water utility operates: they cannot be controlled by the management, but 

have an impact on its costs and performance. As shown by the literature reviews 

of Renzetti and Dupont (2003), Conti (2005), Abbott and Cohen (2009), Walter et 

al. (2009) and Berg and Marques (2011) there are a range of exogenous factors 

which impact the technology and the performance of water distribution utilities, 

such as population density, the regulatory context, water input source, customer 

type, water quality and local topography. Some recent studies that are particularly 

dedicated to the assessment of the role of exogenous factors in the estimation of 

the efficiency of water utilities also highlight the necessity to include those 

environmental factors in the analysis. Carvalho and Marques (2011) employ non-

parametric estimation techniques to evaluate the influence of the operational 

environment on the efficiency of water utilities in Portugal. They find regulation, 

the share of purchased and surface water, customer density, peak factor and the 

percentage of residential customers to be significantly related to the performance 

of water utilities. Picazo-Tadeo et al. (2009a, 2009b) investigate the role of 

environmental factors in water utilities’ technical efficiency in Andalusia. Private 

outperform public utilities, and firms located in highly and densely populated 
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areas have a higher technical efficiency. Utilities providing water services to 

tourist municipalities also exhibit efficiency levels that differ from those in other 

areas. Marques et al. (2011) investigate the influence of exogenous factors on the 

performance of water utilities in Japan with Data Envelopment Analysis (DEA). 

They find significant links between efficiency and peak factor, water consumption 

per capita, prefecture GDP and subsidization. Zschille and Walter (2012) estimate 

the performance of German water utilities with both parametric and non-

parametric techniques. Groundwater input, share of water losses, output density, 

elevation differences, per capita debt in the municipality, eastern location, private 

governance and provision of sewage services impact efficiency. While many 

studies now include environmental factors, research on the impact of 

meteorological factors is still sparse. Renzetti and Dupont (2009) include 

maximum weekly summer temperature and total precipitation in the estimation of 

the efficiency of water utilities in Ontario in 1996. They find that those 

meteorological factors are associated with increased inefficiency.  

Switzerland is an interesting case of study. Although there seems to be a general 

consensus that the Swiss water sector has to be preserved from liberalization 

pressures which are presently acting in other network industries, there is 

nevertheless a growing concern about their performance and the relatively small 

size of many of the utilities (cf. Kilchman, 2003). Switzerland is classified as a 

high water availability country, but regions and thus drinking water utilities face 

very diverse conditions, constraints and management structures. In particular, 

population density, climatic, topographic and water conditions are very different 

from one region to the other. Even though it is a small country, weather conditions 

can be very different. Particularly, temperature varies between mountainous and 

plain regions and from year to year. Climate change is expected to increase the 

frequency of heat waves, a phenomenon that already occurred in 2003 and 2006 

summer periods. Moreover, heavy precipitation episodes may increase in the 

future. These are mostly local and often do not affect the whole country, but rather 

specific small regions, thus impacting some water utilities while sparing others.  

Since Switzerland is a federal state, the responsibility of water supply is divided 

between the federal, cantonal and municipal levels (for a detailed discussion of 

water institutions in Switzerland, see Luís-Manso, 2005). The Confederation 

mainly sets the legal framework for water protection and drinking water quality 
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standards, with a limited role in the financing of infrastructures for water 

protection. Contrary to other countries, except for quality standards, there is no 

central water regulator, although there is a Price Supervisor who can express 

recommendations on water price levels. Drinking water provision and control are 

thus mostly within the competence of the Cantons, which however generally 

delegate those responsibilities to various degrees to the municipalities. As a result, 

the Swiss drinking water market is highly segmented, characterized by a very 

large number of water utilities operating in a very heterogeneous context, acting 

as local monopolies very often controlled by the municipalities. The Swiss 

drinking water distribution industry thus provides a very interesting framework to 

study the impact of both observed and unobserved heterogeneity on cost and 

performance. 

Recently, there has been a surge in literature related to the analysis of the cost and 

performance of the drinking water sector, reflecting worries about market 

structure and performance. European examples outside the United Kingdom 

include the studies discussed above for Germany, Portugal and Spain, and further 

work about the Netherlands (de Witte and Saal, 2010; de Witte and Dijkgraaf, 

2010), France (Garcia et al., 2007), Italy (Abrate et al., 2011; Di Cosmo, 2012) 

and Slovenia (Filippini et al., 2007). On the contrary, the Swiss water distribution 

sector has received little attention in the literature. To our knowledge, there is 

only a study by Farsi and Filippini (2009) analysing the performance of 34 Swiss 

water multi-utilities for the years 1997 to 2005. They estimated stochastic cost 

frontiers accounting for population density, which the authors find to have a 

positive impact on the marginal cost of water distribution. 

Our paper adopts a parametric approach and estimates a stochastic cost frontier to 

measure the efficiency of Swiss drinking water utilities, accounting for 

differences in environmental constraints. Its contributions are threefold. First, it 

accounts not only for customer density, water type, or regional environmental 

factors, but it also analyses the impact of weather-related factors on cost and 

performance, an issue that has received little attention yet. Second, it measures the 

efficiency of Swiss drinking water distribution utilities, using an unexploited 

database of the Swiss Gas and Water Industry Association (SGWA). Third, it 

compares alternative estimation techniques to treat both observed and unobserved 

heterogeneity. The structure of the paper is the following. Section 2 discusses the 
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model specification and empirical implementation. Section 3 defines the variables 

and presents the descriptive statistics of the sample. Section 4 discusses the 

results, and finally section 5 concludes. 

2. Model specification 

To analyse performance, the literature proposes various parametric and non-

parametric methodological approaches, the two most common being stochastic 

frontier analysis (SFA) and DEA. Both have their strengths and shortcomings and 

have been used to study the efficiency of water distribution utilities in various 

contexts. We use SFA, independently introduced by Aigner et al. (1977) and 

Meeusen and van den Broeck (1977), to estimate the variable cost frontier and 

efficiency scores of Swiss drinking water utilities. The main weakness of SFA is 

that it calls for distributional assumptions on the error terms, as well as a 

functional form for the cost frontier. These can have an important impact on 

results, while particularly the appropriateness of the distribution of error terms is 

difficult to ascertain. However, in the context of our study, SFA offers some 

important advantages over alternative techniques. Firstly, measurement errors and 

random shocks are accommodated in SFA, and the technique is consequently less 

sensitive to outliers. Secondly, it easily allows for statistical hypothesis testing. 

Thirdly, SFA proposes solutions to distinguish between unobserved heterogeneity 

and inefficiency and to deal with both observed and unobserved heterogeneity in a 

one-step procedure.  

We estimate a variable rather than a total cost frontier, because the latter supposes 

that the producers are at their long term equilibrium and that they use their 

production factors at the level minimizing total cost. In the case of water utilities, 

such an assumption is relatively strong, in particular with regard to their capital 

stock, which may not be at its optimal level for two main reasons (Baranzini, 

1996). Firstly, modifications in the capital stock are relatively costly and thus the 

size of the main water utilities infrastructures is typically based on demographic 

and economic forecasts, which can be wrong. Secondly, water utilities are obliged 

to respond to all the demand, and thus they typically dispose of excess capacities 

to account for seasonal and unexpected demand variations (e.g. in case of fire). 

For those reasons, the capital stock of the water utilities can be considered fixed in 

the short term and only adjusting partially with respect to its long term 
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equilibrium. The stochastic variable cost frontier can be expressed in general 

terms as: 

          (                      )           (1) 

Where VCit are the variable costs of firm i at time t, yit the output, pit the vector of 

factor prices, mit the quasi-fixed input, zit the exogenous (environmental) factors 

and   the vector of coefficients to be estimated. The vit is a random error term 

measuring white noise, while uit is a non-negative random variable interpreted as 

the cost inefficiency measure. uit must take positive values, because firms cannot 

operate below the cost frontier.  

The cost frontier does not only include output, price and quasi-fixed input 

variables, but accounts for the environment in which the firms operate. 

Environmental variables can be included in the estimated model following two 

different approaches (e.g. see Coelli, Perleman and Romano, 1999).  

The first approach assumes that the exogenous variables have a direct impact on 

the cost frontier, affecting the technology and the production structure, and 

therefore the shape of the frontier. Environmental factors are thus directly 

included into the cost frontier. In this approach, every firm faces a different 

frontier, or benchmark, depending on the environment in which it operates, and 

the resulting inefficiency scores are net of environmental influences. In other 

words, by including the exogenous factors directly in the frontier, the level of the 

cost frontier is adapted to the environmental conditions of the utility. For example, 

a utility faced with a particularly hostile environment will be confronted with a 

scaled-up cost frontier, thus lowering its inefficiency score. The environment 

impacts performance by altering the structure of the cost frontier and not 

efficiency levels, as it is assumed uncorrelated to them (Kumbhakar and Lovell, 

2000). This approach has among others been used by Filippini et al. (2007) in 

their study on the cost efficiency of the Slovenian water distribution utilities, by 

Abrate et al. (2011) in their paper about the cost efficiency of the Italian water 

service and by Zschille and Walter (2012) to analyse the performance of water 

distribution utilities in Germany.  

The second approach assumes that exogenous variables do not directly influence 

the frontier, but rather impact the cost-inefficiency score. Consequently, in this 

approach the environment does not affect the technology, a strong assumption in 

heterogeneous sectors: all the firms share a unique cost frontier and are evaluated 
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against the same benchmark. The exogenous variables are modelled to influence 

the distribution of the uit and therefore the distance that separates the firms from 

the benchmark. Their effect is included in the inefficiency scores, which 

consequently are gross values. This approach was developed by Kumbhakar, 

Gosh and Mc Gulkin (1991), Reifschneider and Stevenson (1991), Huang and Liu 

(1994) and Battese and Coelli (1995) and it has for example been chosen by 

Fraquelli and Moiso (2005) in their study about the cost efficiency of the Italian 

water industry.  

There are no compelling theoretical arguments to prefer one approach over the 

other. In this paper, we have opted for the first approach, allowing for the 

exogenous variables to directly influence the shape of the frontier. We indeed 

believe that the environmental background of the Swiss water utilities is so 

heterogeneous that it is likely to affect their technology and production structure, 

therefore commanding the inclusion of environmental factors into the cost 

frontier. Nevertheless, a model in which observed heterogeneity is included in the 

variance of the inefficiency is also estimated as a robustness check of the results. 

In the empirical application it is then necessary to specify the functional form of 

the cost frontiers to be estimated. In the literature, several studies use a Cobb-

Douglas cost function (e.g. Antonioli and Filippini, 2001). Although its simplicity 

and easily interpretable results make it an attractive choice, the Cobb-Douglas 

specification imposes unnecessary restrictions on the production technology, in 

particular regarding economies of scale. For this reason, the majority of studies 

use a translog form, which is more flexible and also contains the Cobb-Douglas 

specification as a special case. The translog cost function, first introduced by 

Christensen et al. (1973), corresponds to a second degree Taylor approximation in 

the logarithms of an arbitrary cost function, with some restrictions in the 

parameters to respect the main desired economic properties (e.g. symmetry and 

homogeneity). The main disadvantage of the translog is related to its definition: 

since it is a local approximation, the results are reliable only close to the 

approximation point1. For Swiss water utilities, we specify a one output, two input 

translog frontier, including six exogenous factors. To save degrees of freedom, the 

environmental factors are not interacted with the other variables, implicitly 

                                                 

1 The globally flexible Fourier functional form (Gallant, 1981) could offer an even more flexible solution. 

However, it would increase the number of parameters to be estimated and result in a further loss of degrees 

of freedom (Filippini et al., 2007), which is why it is not estimated in this paper. 
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assuming separability between these factors and the other variables2. The translog 

thus takes the following form: 
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where Yit is the quantity of water delivered by utility i at time t, pL is labour price, 

pMA the material price and CAP the stock of capital. The n environmental factors 

are contained within the vector Z, n = PUM, DENS, DMALT, DHALT, MAXTEMP 

and DPREC. PUM is the share of water that has to be pumped, DENS is customer 

density and DMALT and DHALT are dummy variables that equal one if the utilities 

are located in medium or high altitudes, as opposed to low altitude regions. 

MAXTEMP is the maximum 30 day average temperature over the year and DPREC 

is a dummy indicating whether the utility was exposed to a high precipitation 

event during a given year. Finally, D03 to D09 are time dummies for the years 2003 

to 2009.  

All monetary amounts are deflated to 2003 constant Swiss francs using the 

producer’s price index of the Federal Office of Statistics.  ost and factor prices 

are normalized by the material price to guarantee homogeneity in input prices and 

 jn =  nj imposes symmetry. Given that some properties of the translog cost 

function are not imposed (in particular concerning its curvature), they should be 

verified ex post, based on the estimated coefficients. 

To estimate equation (2), we use two alternative stochastic frontier estimation 

techniques that differ in the way uit is defined
3
. They are random effects models, 

                                                 

2 Possible interactions between output and exogenous factors seem intuitively appealing, as the impact of 

environmental conditions on variable cost may vary with utility size. The model was also estimated 

including interaction terms between output and exogenous factors. However, none of these proved to be 

statistically significant and a likelihood ratio test rejected the model including interactions in favour of the 

restricted one. 
3 For a detailed description of the different estimation methods, see Kumbhakar and Lovell (2000) and 

Greene (2005a,b). 
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because there is very little or no within-group variability in many of the variables. 

The drawback of these models is the assumption that individual effects are 

uncorrelated with the regressors, because random noise and inefficiency as well as 

unmeasured heterogeneity are distributed independently of each other and the 

regressors. 

First, to investigate the issue of observed heterogeneity and its impact on cost and 

efficiency, we use the Pitt and Lee (1981) (PL) stochastic cost frontier estimated 

by maximum likelihood (ML). In this approach, the inefficiency term is time 

invariant, and the distribution of the inefficiency and random noise terms are the 

following: 

           (                      )          

      
 [    

 ]         

  t    [    
 ]          

We will refer to this model as “Model I with environment”. An obvious 

shortcoming of this model is the time-invariant inefficiency term. Therefore, our 

second approach relaxes this restrictive assumption by using the Battese and 

Coelli (1992) (BC) model, where:  

  t          (  (    ))        

  t    [    
 ]          

where η is a parameter to be estimated and Ui are independent and identically 

distributed as an   [    
 ] distribution. This model has the advantage of allowing 

time variation in the inefficiency term. Indeed, uit varies through time; however 

the random component Ui is still constant through time. 

As discussed above, observed heterogeneity can enter the model through various 

avenues, one being the cost frontier itself, while in the other the exogenous factors 

influence the distribution of the inefficiency term. As a robustness check of the 

results, we have introduced heterogeneity in the variance of the inefficiency term4. 

This model offers the advantage of both correcting for heteroscedasticity in ui and 

providing an alternative method to account for heterogeneity (Kumbhakar and 

                                                 

4 We thank an anonymous referee for this suggestion. 
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Lovell, 2000)5. We will refer to this model as “Model II with environment”. The 

distribution of the one-sided error term becomes (with γ the coefficients to be 

estimated): 

      
 [     

 ]         

   
      (   )         

The other important issue to address in (2) is the treatment of unobserved 

heterogeneity. Both the PL and the BC models suppose that unobserved time-

invariant heterogeneity is entirely inefficiency. This can be problematic especially 

under very heterogeneous conditions, where many of the differences in 

environmental conditions cannot be observed and as a result inefficiency may be 

overestimated. A potential solution to this issue lies in the estimation of the “true 

random effect” (TRE) model by Greene (2005b). This model introduces a 

stochastic term denoted wi that captures time-invariant unmeasured heterogeneity 

and separates it from the inefficiency measure uit. It addresses both the problems 

of time-invariant firm specific heterogeneity and time-varying inefficiency: 

               (                      )          
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By assuming none of the unobserved persistent differences to be inefficiency, the 

TRE model can in turn lead to an underestimation of inefficiency levels, and the 

true inefficiency may thus lie somewhere between the PL model on one side and 

Greene’s TRE on the other side. The TRE is estimated by simulated maximum 

likelihood using 300 quasi-random Halton draws. Inefficiency terms uit are 

estimated indirectly, using the Jondrow et al. (1982) estimator to obtain estimates 

of the conditional expectation of uit given the observed values of εit (with εit = vit + 

uit)
6
, E[uit | εit]. For the i

th
 firm in year t, cost inefficiency CI is defined as: 

        (   )  (3) 

                                                 

5 As only time-invariant exogenous factors are accommodated in this model, the mean values of the variables 

are used for time-varying environmental variables. This is not problematic for density and the share of 

pumped water, which display very little within group variability. However, it entails some loss of 

information for both meteorological factors that vary from year to year. 
6
 For the TRE model  εit = vit + uit + wi 
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Cost inefficiency estimates measure the distance that separates the firm from the 

cost frontier. The score of a perfectly cost-efficient water utility is one and its uit, 

which accounts for inefficiency, is zero. Consequently, the perfectly efficient 

water utility operates on the cost frontier. At the other extreme, an infinite cost 

inefficiency score would occur if uit → ∞. More generally  the higher the  I 

coefficient is, the higher the cost-inefficiency of the firm. 

3. Data description 

We use a database of the SGWA, which originally contains information on 

approximately 400 water utilities, over the period 2000 to 2009. The database 

results from a detailed survey done by the SGWA every five years (thus in our 

case in 2000 and in 2005), and a shorter survey which is conducted each year 

(SGWA 2002-2010). It gives information on the type of the water production 

process, the network characteristics, customer attributes and the costs of water 

supply. The survey is not compulsory and therefore many utilities do not 

participate every year or give incomplete answers, resulting in a high number of 

missing values. In the original database, the missing value issue is particularly 

important for the years 2000 and 2001, especially for the variables needed to 

measure labour cost. These years are thus excluded from our sample. After 

eliminating some aberrant values that were misreported, our final sample is an 

unbalanced panel containing data on 141 water distribution utilities and a total of 

745 observations over the years 2002 to 2009. The final sample does only include 

about 5 per cent of the about 3000 existing Swiss water utilities. However, the 

utilities included in the sample supplied water to about 27 per cent of the Swiss 

population on average over the years 2002 to 2009. This implies that larger water 

utilities are overrepresented. Also, bigger utilities have a slightly lower probability 

to be missing in the dataset than smaller ones, so that missing values are not 

random. Nonetheless, the utilities included in the database still differ widely in 

terms of size, structure, water resources, geological characteristics of the 

distribution area, production processes and weather conditions and are situated all 

across Switzerland. As already mentioned, most of them are public companies 

owned by the municipalities, some acting as well as electricity and gas 

distributors. 
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Please insert Table 1 about here. 

 

The output is measured as the yearly total quantity of water delivered in thousands 

of cubic meters. As shown in table 1, it varies between 22 thousand and 65 

million cubic meters of drinking water. The number of customers goes from about 

200 for the smallest utility to more than 450000 for the biggest. These figures 

highlight the large diversity of the drinking water distribution utilities included in 

the sample in terms of size. Variable costs are calculated by summing labour costs 

and all material expenses, including energy costs. Given the differences of the 

utilities in terms of size, the spread of variable cost is not surprising. However, 

average variable costs vary from 0.15 CHF per cubic meter of water to 3.3 CHF 

per cubic meter
7
. These large differences emphasize the importance of 

understanding the determinants of the costs of drinking water utilities, and in 

particular of separating cost differences due to inefficiency from those stemming 

from heterogeneity in the operating environment.  

The price of labour is defined as total labour cost divided by the number of 

employees in full time equivalent (FTE)
8
. The second input is materials, which 

includes energy costs, water treatment products, material costs and all remaining 

“other expenses”. We follow Garcia and Thomas (2001) in constructing a price 

variable for materials by dividing it by the quantity of water delivered. This 

procedure seems acceptable, given the heterogeneity of the costs included in the 

material and other expenses categories and the lack of access to more pertinent 

data. To lessen the impact of outliers on estimation results and to avoid problems 

due to misreported values, the labour price values lower than the 1 per cent 

quantile and higher than the 99 per cent quantile of labour costs in Switzerland in 

the water distribution sector are eliminated from the sample, as are the 1 per cent 

smallest and the 1 per cent largest material price values.  

                                                 

7 In 2003, 1 CHF = 0.74 USD = 0.66 EURO.  
8 We have information about FTE in 2009 only. For the previous years, the survey reports the total number of 

employees working part time and the total number of employees working full time only. We assume that 

the FTE of part-time employees in 2009 is constant over the whole period. For those utilities for which we 

do not have FTE for 2009, part-time employees correspond to the median FTE of utilities of comparable 

size. To test the possible impact of this variable on our results, we have estimated the cost frontier and 

inefficiency scores using alternative labour cost data from the Swiss Federal Office of Statistics based on 

the median gross salary in 7 Swiss regions. Results are very similar and the main conclusions are 

unchanged. Therefore, we use the much more precise utility-specific cost of labour data instead of the 

regional median salaries.  
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Capital stock can be measured either by using a capacity measure or a cost 

measure applying the perpetual inventory technique, as for example in Nelson 

(1989). Although the latter method is theoretically more appropriate, we cannot 

apply it due to the lack of data. Therefore, as in other studies (e.g. Nauges and van 

den Berg, 2008) we use the total network length as measure for the capital stock. 

Data on network length is collected every five years only (in our case in 2000 and 

2005). We have interpolated the data assuming a linear investment path, which is 

a reasonable assumption, given that network length is relatively stable in the 

period under observation. For 2009 and for those utilities which have missing data 

in 2000 or in 2005, we estimate the network length with lagged network length 

and total investment in the network during the period as regressors
9
.  

Six exogenous factors are included in the analysis. First, we consider the 

proportion of pumped water over total water adduction. We expect that utilities 

with larger shares of pumped water have higher energy and treatment cost. 

Indeed, the water that does not have to be pumped is spring water, which in 

Switzerland is generally of very high quality and needs less treatment than ground 

or surface water. In our sample, while some small utilities use only spring water 

that flows by gravity, an average of approximately 70 per cent of the water has to 

be pumped.  

Second, we include customer density, which is measured as the number of 

customers per meter of network. Customer density is integrated as an 

environmental factor rather than including the number of customers directly as an 

output dimension. Indeed, the inclusion of additional output dimensions would 

entail adding not only the variables, but also their squares and interaction terms, 

as the functional form is a translog. This would lead to the loss of degrees of 

freedom and possibly to multicollinearity problems, as the number of customers is 

highly correlated with both output and capital stock. This problem does not arise 

with customer density. However, the model including the number of customers as 

an output dimension instead of customer density as an environmental factor is 

                                                 

9
 The  estimated equation is the following:   

ln(Networklengtht ) = 0.69 + 0.81 ln(networklengtht-1 ) + 0.11 ln(sum of investments) 

                                   (0.43)   (0.05)                                   (0.04) 

With standard errors in brackets. R2 = 0.87  
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estimated as a robustness check of our results. The main results and conclusions 

remain unchanged.10 

The impact of customer density on costs can be positive or negative. On the one 

hand, distributing water to more densely populated areas can be more costly since 

water has to be extracted outside these areas and consequently transported (Saal 

and Reid, 2004), increasing not only capital expenses, but also energy and other 

operating costs. Further, Torres and Morrison (2006) note that higher density may 

call for more complex connections and thus cause pressure or maintenance 

problems. On the other hand, distributing water in less populated areas could be 

expensive because it requires long distribution pipelines (Torres and Morrison, 

2006) and thus increases capital cost. Also, more pumping is needed to bring the 

drinking water to the customers and energy expenses are thus heightened. 

Estimation of the cost frontier has to determine if the positive or the negative 

effect prevails. 

The third and fourth environmental factors relate to the altitude at which the water 

utility is situated. Dummies are used to differentiate lowland utilities (i.e. those 

below 460 meters) from those at medium or high altitude (between 460 and 670 

and above 670 meters, respectively). There is a variety of reasons why costs could 

be related to altitude. Firstly, the need for pumping may be influenced by altitude 

(Corton, 2011). As it is already controlled for by the inclusion of a variable 

measuring the share of pumped water, these impacts should be limited. Secondly, 

challenging topography can lead to higher costs for the building and maintenance 

of infrastructure. Additionally, cold winter temperatures or landslides may 

damage infrastructure and lead to an increase in labour and material expenditure. 

One should note that these dummy variables may also capture regional 

heterogeneity like geographic differences that the model does not address.  

The remaining exogenous variables are weather-related factors and are collected 

from MeteoSwiss: maximum mean temperature over 30 days and heavy 

precipitation events. We use X-Y geographic coordinates to determine the closest 

weather station for each water distribution utility and then associate the two 

weather-related events to it. These environmental factors are included to assess 

the impact of extreme weather events on drinking water distribution cost, as it is 

                                                 

10 Detailed results are available upon request. 
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expected they will occur more frequently in Switzerland due to climate change 

(OcCC 2008). 

Maximum 30 day temperature is expected to increase variable cost for a number 

of reasons. Firstly, episodes of high temperatures can impact water quality by 

affecting oxygen content of the water and favour algae growth (Gander, 2009). 

They can lead to taste and odour problems and the water may require additional 

treatment. Secondly, higher temperatures are expected to cause an increase in 

drinking water demand and thus lead to higher variable cost. Further, high 

summer temperatures may lead to peaks in water demand and small water 

distribution utilities that are not interconnected with others may encounter 

problems to meet drinking water demand if episodes of high temperature come 

along with drought, as was the case during the very hot and dry summer of 2003 

(ProClim, 2005). Maximum 30 day temperature varies across weather stations due 

to different altitudes and locations across Switzerland. Year to year patterns are 

similar across stations, with a peak in 2003, a year that saw an exceptionally warm 

and dry summer, as well as high temperatures in 2006, due to very hot July 

temperatures. 

The occurrence of high precipitation events during one year is measured with a 

dummy variable. MeteoSwiss defines various levels of threats associated with 

precipitations, on a scale from 1 to 5. To define high precipitation we consider 

degree 4 and 5 threats only, as these are the levels at which important floods and 

landslides that potentially damage infrastructure can occur. The dummy indicating 

high precipitation takes the value 1 if there has been during the year an episode 

where precipitation exceeded 110 mm in two days, which is a degree 4 threat as 

defined by MeteoSwiss. The two-day time-frame was chosen after estimating the 

model with variables for one, two and three day episodes. One day seems to be 

too short a time frame, as the estimated coefficients are not statistically 

significant. As three-day coefficients are slightly less significant than those 

measuring two-day episodes, we include the latter in the cost frontier. This 

variable is expected to increase cost. Indeed, high precipitation events can result 

in water quality deterioration due for example to sewage overflow and call for 

additional treatment. In extreme cases they might damage the utilities’ 

infrastructure and cause higher expenses for repairs, increasing labour and 

material as well as capital expenses, although the latter would impact total and not 
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variable cost. In our sample, about 12 per cent of observations have at least one 

heavy precipitation event over the period.  

4. Results and discussion 

The variable cost frontier (2) is estimated using the PL (1981) and Greene (2005b) 

models. We also estimate the BC (1992) model. However, a likelihood ratio test 

of the BC model with time-varying inefficiency against the PL model favours the 

latter11. Indeed, with η equal to zero  the normal half-normal BC model reduces to 

the PL (1981) model. This result might be due to the relatively short time-span of 

the panel or the modelling of time-varying inefficiency, where the random 

component Ui is still constant through time. Table 2 reports the likelihood ratio 

tests of the translog (2) against a Cobb-Douglas functional form. The test statistic 

has a chi-squared distribution and equals –2(LLr – LL0), where LLr and LL0 are 

respectively the log likelihoods of the restricted (Cobb-Douglas) and the 

unrestricted (translog) models. Degrees of freedom equal the number of 

restrictions imposed on the restricted model. As reported in table 2, likelihood 

ratio tests reject the Cobb-Douglas in favour of the translog in all models12. 

Furthermore, models excluding exogenous variables are rejected when tested 

against their counterpart that accounts for the environment, emphasizing the 

importance to include heterogeneity in the estimations.  

 

Please insert Table 2 about here. 

 

We also estimate a nested PL model including observed heterogeneity both in the 

cost frontier and the variance of the inefficiency term. None of the estimated γ 

coefficients were significant at 10 percent levels, and a likelihood ratio test rejects 

the nested model with heteroscedasticity in inefficiency in favour of a model 

accounting for environmental factors in the cost frontier only. This indicates that 

the inclusion of heterogeneity in the cost frontier rather than in the inefficiency 

distribution appears as a more suitable solution for Swiss drinking water utilities. 

                                                 

11 Time-variance was tested only in the model where heterogeneity is directly included in the cost frontier. 

Indeed, the BC model could not be estimated with heterogeneity included in the inefficiency distribution 

as models did not converge. 
12 Detailed results of the estimation of the Cobb-Douglas cost frontier are available upon request. 
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Table 3 displays the estimation of equation (2) and a variation that excludes 

environmental factors for the PL as well as the Greene TRE models. Estimation 

results for the PL model with heterogeneity in the variance of the inefficiency 

term (Model II) are included as robustness check of the results. The estimated 

coefficients of the traditional variables included in the cost frontier possess the 

expected signs and are similar across the PL and TRE models. Differences arise 

mostly in the estimated efficiency scores that will be discussed later. 

 

Please insert Table 3 about here. 

 

We choose the median water utility as reference point for local approximation, 

thus all regressors except the dummies are normalized by their sample medians. 

This allows for the direct interpretation of the first order coefficients as cost 

elasticities evaluated at the median. Thus, referring for example to the TRE model 

with environment, a 1 per cent increase in the quantity of drinking water 

distributed results in an about 0.75 per cent increase in variable cost, ceteris 

paribus. The coefficients of the output and of the price variables are statistically 

significant and have the expected positive sign in all models. Although theory 

suggests the capital stock should have a negative impact on variable cost 

(Antonioli and Filippini, 2001), the estimated coefficient is positive and 

significant. This result is observed very frequently in the literature, see for 

instance Bottasso and Conti (2008) and Garcia and Thomas (2001). This problem 

may result from several causes. Firstly, the positive coefficient may be due to a 

multicollinearity problem between the network length and output variables 

(Filippini, 1996). Indeed, the correlation between output and network length is 

high, a remark that would probably apply for most capital measures. Secondly, 

network length may be considered an output characteristic, which would explain 

the positive impact on cost. Thirdly, as suggested by Cowing and Holtmann 

(1983) this result may also indicate high levels of overcapitalisation. When 

discussing variable cost functions that are increasing in capital, these authors point 

out that “although this condition is clearly inconsistent with long-run equilibrium, 

it is not inconsistent with a short-run equilibrium if current operating conditions 

are substantially different from those prevailing, or expected, when the original 

capital decision was made.” This statement is particularly relevant for water 
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distribution utilities, where the need to meet all demand and very long planning 

horizons for modification of capital stock often result in excess capacity. In such 

case, a total cost function would be mis-specified and the estimated coefficients 

biased. This article would benefit from the estimation of the frontiers with other 

capital stock measures to shed more light on this issue. However, there is no data 

available on other variables that could serve as a proxy for the capital stock. 

Concerning the environmental variables, the coefficient associated with the share 

of pumped water is positive and statistically significant at least at the 5 percent 

level in both models that include heterogeneity in the frontier. As expected, a 

higher share of pumped water relates to increased variable costs. This result is in 

line with Bottasso and Conti (2003), who associate higher levels of average 

pumping head with increased cost inefficiency.  

A higher population density also possesses a significant positive impact on 

variable costs. Possible congestion, pressure and maintenance problems thus seem 

to override the potential cost savings of distributing drinking water to more 

densely populated areas. Population density is found to increase cost in other 

studies as well, such as Saal and Reid (2004), where density is found to increase 

variable cost, or Fraquelli and Moiso (2005), who associate higher density with 

increased total cost inefficiency. This result is also compatible with the findings of 

Farsi and Filippini (2009), who conclude that population density has a positive 

impact on the marginal cost of water distribution.  

Estimation results further show variable cost to be significantly higher in high and 

medium altitude regions than in the plain. The drawbacks of a difficult 

topography and adverse climatic conditions seem to offset possible advantages of 

being located at a higher altitude.  

The coefficient of the dummy measuring the occurrence of heavy rainfall has the 

expected positive sign and is statistically significant at the 1 per cent level for both 

the PL and the TRE models, indicating that very heavy rain is linked to increased 

variable cost. Drinking water utilities that experience an episode of heavy 

precipitation during the year display variable costs about 3 per cent higher than a 

utility that is not subjected to such an episode. Heavy rainfall and consequent 

floods or landslides can damage the infrastructure or contaminate the drinking 

water. This may not only result in higher total, but also variable cost, as for 
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example expenditures in labour and material could increase due to repair works 

and cleaning of the pipes.  

Maximum 30 day temperature has a relatively high and statistically significant 

impact. In the TRE model, a 1 per cent increase in the maximum 30 day average 

temperature results in 0.52 percent higher variable costs. This result is compatible 

with the findings of Renzetti and Dupont (2009), who show maximum weekly 

summer temperature to increase the inefficiency of water distribution utilities. The 

positive relationship between high summer temperature and variable cost might 

have several causes. First, higher temperatures can result in peaks in drinking 

water demand, thus increasing the ratio of maximum daily water demand to mean 

daily water demand. Next, heat waves are often associated to drought and high 

demand coupled to lowered supply may increase the cost of drinking water 

utilities. An increase in future summer temperature related to climate change 

could thus heighten variable costs of drinking water distribution. Lastly, the 

coefficient could be capturing time or regional effects not otherwise accounted for 

in the cost frontier. Time dummies and the inclusion of altitude in the regression 

should at least partially control for these effects, as in Switzerland the between-

utility variation in temperature is linked to altitude13.  

When environmental factors are included in the variance of the error term, only 

population density has a statistically significant impact. The exogenous factors do 

explain some of the variance in the inefficiency, since a likelihood ratio test 

rejects the simple PL model against the heteroscedastic one. However, as 

mentioned above, the heteroscedastic model is rejected in favour of the 

homoscedastic version of the model when a nested model including heterogeneity 

both in the frontier and in the inefficiency is estimated. 

The estimated cost frontiers should possess the economic properties summarised 

in Table 4. Homogeneity in input prices has been imposed prior to estimation. 

Well-behaved cost frontiers should also be monotonically increasing in input 

prices and output and concave in input prices. The estimated cost shares are 

positive for all observations in all models, implying that the condition of the 

frontier being monotonically increasing in input prices is well respected. Further, 

the estimated frontiers are all monotonically increasing in output because 
        

      
 

                                                 

13 The inclusion of other regional dummies (for example accounting for statistical regions in Switzerland) 

also produced a significant positive coefficient for temperature. 
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is positive for all data points. In addition, they should be concave in input prices, 

meaning that the hessian matrix should be negative semi-definite. This property is 

respected at a majority – over 90 per cent – of all data points in all the estimated 

models. Still, since concavity is not verified at every data point, some caution 

should be taken when interpreting the estimation results. 

 

Please insert Table 4 about here. 

 

Table 5 summarizes the estimated inefficiency scores for the different models. 

Scores of all the models including environmental factors and their counterparts 

excluding them are very close. Indeed, mean inefficiency scores in the various PL 

models vary between 38 and 44 percent, while they are virtually identical in the 

TRE models. In the PL specification, accounting for observed heterogeneity 

reduces the standard deviation and the maximum values of inefficiency scores, 

pointing that particularly high inefficiency may be related to unfavourable 

environmental conditions.  

 

Please insert Table 5 about here. 

 

Unsurprisingly, inefficiency scores from the TRE models, estimated to be a little 

below 11 per cent, are much lower than from the PL models. These differences 

result from the way unobserved heterogeneity is treated: it is attributed to 

inefficiency in the PL model  while Greene’s TRE captures time-invariant 

unobserved heterogeneity separately. Indeed, other than the theoretical 

construction of the model, empirical applications show Greene’s TRE and “True 

Fixed Effects” (TFE) models to give much higher efficiencies than models that 

assume all time-invariant unobserved heterogeneity to be inefficiency. This is 

particularly true in network industries, where environmental conditions evolve 

slowly or not at all in time. Illustrations can among others be found in the 

Slovenian and Italian water sectors (Filippini et al., 2007 and Abrate et al., 2011), 

Swiss multi-utilities (Farsi and Filippini, 2009) or Finnish electricity distribution 

(Kopsakangas-Savolainen and Svento, 2008). This has two important 

consequences for our analysis. First, estimated inefficiency is much lower in the 

TRE compared to the PL model. Second, inefficiency scores of models that 
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include environmental factors are quite close to those that do not when estimated 

with the TRE, as four of the environmental factors, namely population density, the 

percentage of pumped water and the two altitude related dummies are constant or 

change very little in time. These findings are similar to results found in 

comparable studies for other sectors in the literature, for example by Growitsch et 

al. (2011), who analyse the performance of Norwegian electricity distribution 

networks accounting for geographic and weather related factors. 

 

Please insert Table 6 about here. 

 

One of the most important outputs of SFA is the ranking of the utilities. This is 

particularly true if SFA is applied to benchmark utilities for regulation purposes, 

as inefficiency scores would be used to establish the best and worst performing 

utilities. The rankings of drinking water utilities resulting from models including 

environmental factors and their counterparts excluding them are also close. 

Indeed, Table 6 shows that Spearman rank correlations are about 0.91 between the 

PL model without environmental factors and the PL model that includes 

heterogeneity directly in the frontier (Model I) and are even as high as 0.98 

between the PL model without environment and its heteroscedastic counterpart 

(Model II). In the TRE model, Spearman correlations are also very high and 

rankings are thus very similar. Close efficiency scores and high rank correlations 

among scores derived from methods accounting or not for observed heterogeneity 

support recent findings for Spanish water utilities by Picazo-Tadeo et al. (2009b) 

who reject the hypothesis that rankings based on initial technical efficiency and 

scores adjusted for operating environment and luck differ, even though the scores 

themselves change. On the other hand, in the studies by Renzetti and Dupont 

(2009) for Ontario and for the non-parametric approach by Zschille and Walter 

(2012) for Germany, efficiency scores vary substantially when accounting for 

exogenous factors and importantly, correlations between efficiency scores 

adjusted for the environment and those that are not are low. These studies based 

on non-parametric methods offer quite contrasting conclusions, highlighting that 

the impact of exogenous factors may depend not only on estimation techniques, 

but is also case- and country-specific.   
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On the contrary, the differences in the rankings are very important between the PL 

and the TRE models. Indeed, Spearman correlations of 0.14 between the PL 

model and TRE show that the choice of one model over the other does not only 

influence the value of inefficiency scores, but also substantially changes the 

efficiency ranking of utilities and could thus have a very important impact in a 

regulatory context. 

 

Please insert Figure 1 about here. 

 

Figures 1 and 2 highlight these findings. Figure 1 shows the distribution of 

inefficiency scores for the estimated models, while figure 2 compares estimated 

inefficiency scores directly. Estimated inefficiencies are similar when the points 

are close to a 45 degree line. Both figures confirm the two results already 

discussed. Firstly, estimated inefficiencies differ a lot between the models that 

capture time-invariant unobserved heterogeneity in the inefficiency and the TRE 

which treats it separately. In the latter case, unsurprisingly, inefficiency is much 

lower. Secondly, estimated inefficiencies and, very importantly, ranks are slightly 

affected by the inclusion of the environmental factors. The impact of including or 

not environmental factors is however much lower than the one of choosing how to 

treat unobserved heterogeneity. 

 

Please insert Figure 2 about here. 

 

The impact on rankings of the choice of whether or not to include environmental 

factors into the estimated cost frontier is finally illustrated by the individual utility 

rankings in table 7. This table reports the rankings of the top ten ranked utilities in 

the PL model with environmental factors directly in the cost frontier (Model I) for 

the year 2009.  

 

Please insert Table 7 about here. 

 

Rankings between models that include or not exogenous factors are very close in 

most cases. However, differences in rankings are much more pronounced between 

the PL and the TRE models. For example, the most efficient utility in the PL 
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models ranks 97
th

 or 98
th

 in the TRE. These results again emphasize the 

importance of the treatment of unobserved heterogeneity in analysing the 

performance of water utilities as this choice can seriously alter both estimated 

inefficiency scores and rankings. If stochastic frontier models are to be used for 

regulation in the Swiss water distribution industry, the most important choice 

seems thus about how to account for non-observed rather than observed 

heterogeneity.  

5. Conclusion 

This paper estimates the efficiency of Swiss drinking water utilities using two 

alternative stochastic frontier estimation techniques and accounting for exogenous 

factors. Results show that the share of pumped water, population density, altitude, 

maximum 30 day average temperature and heavy precipitation events have a 

significant impact on variable cost. The impact of heat waves and heavy 

precipitation is particularly interesting, as both summer temperature and the 

occurrence of high precipitation episodes are predicted to increase in Switzerland 

due to climate change (OcCC 2008). Further, likelihood ratio tests emphasize the 

importance to include observed environmental heterogeneity in the estimations. 

Rankings provided by models accounting for the environment and their 

counterparts that do not differ a little in the Pitt and Lee model, while rankings are 

similar in the TRE model. The efficiency rank of utilities is however very 

different in the Pitt and Lee vs. Greene’s TRE models. Therefore  our results show 

the statistically significant impact of environmental factors on the cost of water 

distribution utilities, but more importantly, they highlight the importance of 

paying attention to the way unobserved heterogeneity is treated. The Swiss 

drinking water distribution utilities are very heterogeneous and operate in very 

different conditions, most of which vary very little through time. Due to data and 

econometric constraints, it is impossible to include variables that would account 

for all these differences. This favours Greene’s TRE as the model of choice  even 

though it might underestimate inefficiency. Wide differences in ranking of the 

utilities show the sensitivity of results to modelling choices and consequently 

emphasize that if stochastic frontier analysis is to be used for regulation, 

alternative models should be tested and that even though econometric 
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benchmarking can be an effective tool, it should be complemented by further 

analysis. 
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Table 1 Descriptive statistics 

Variable Measurement unit Mean Median SD Min Max 

Variable cost CHF (thousands) 2927 897 8379 12 61700 

Output 1000 m
3 
/ year 2787 924 7803 22 65411 

Labour price 1000 CHF /worker/year 104 101 36 40 294 

Material price CHF / 1000 m
3
 water/year 636 543 422 35 2653 

Network Km 129 76 214 8 1624 

Customers Thousands 21.8 8.8 58.5 0.2 456.9 

Density Customers/network unit 0.13 0.12 0.06 0.02 0.36 

Pumped water Part of total water delivered 0.71 0.86 0.33 0 1 

Medium altitude Dummy 0.51 1 0.5 0 1 

High altitude Dummy 0.25 0 0.43 0 1 

Max. 30 day temperature Degrees 26.1 26 2.6 17.4 32.5 

Heavy 2 day precipitation Dummy 0.12 0 0.32 0 1 

Number of observations 745           

Utilities 141           

Data source: SGWA and MeteoSwiss. 

 

Table 2 Likelihood ratio tests 

  Restrictions PL (Model I) PL (Model II) Greene TRE 

Translog with environment 

vs. Translog without 

environment 

6 43.8 *** 15 ** 58.2 *** 

Translog with environment 

vs. Cobb-Douglas with 

environment 

6 148.8 *** 149.3 *** 179.9 *** 

Note: Statistically significant at 1%***, 5%** 
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Table 3 Estimation results 

  Pitt and Lee Greene TRE 

  
Environment       

(Model I) 
Without environment 

Environment       

(Model II) 
With environment Without environment 

  

 Y 0.7651 *** 0.0305 0.8346 *** 0.0236 0.7964 *** 0.0198 0.7467 *** 0.0077 0.8523 
*** 

0.0054 

 PL 0.2989 *** 0.0090 0.2962 *** 0.0094 0.2993 *** 0.0080 0.3041 *** 0.0036 0.2992 
*** 

0.0037 

 CAP 0.2422 *** 0.0346 0.1699 *** 0.0252 0.1824 *** 0.0226 0.2665 *** 0.0094 0.1566 
*** 

0.0074 

 YY -0.0024   0.0356 -0.0638 * 0.0365 -0.0818 ** 0.0407 0.0159   0.0119 -0.0426 
*** 

0.0115 

 PLPL 0.1100 *** 0.0122 0.1061 *** 0.0125 0.1050 *** 0.0085 0.0919 *** 0.0045 0.0906 
*** 

0.0047 

 CAPCAP 0.1525 *** 0.0507 0.1289 *** 0.0484 0.1316 ** 0.0565 0.1239 *** 0.0217 0.0826 
*** 

0.0212 

 YPL -0.0242 * 0.0128 -0.0257 ** 0.0131 -0.0235 ** 0.0117 -0.0218 *** 0.0059 -0.0220 
*** 

0.0060 

 YCAP -0.0358   0.0351 -0.0001   0.0356 0.0003   0.0431 -0.0533 *** 0.0145 0.0017 
  

0.0139 

 PLCAP 0.1072 *** 0.0179 0.1135 *** 0.0181 0.1137 *** 0.0124 0.1033 *** 0.0074 0.1047 
*** 

0.0077 

 PUM 0.0630 ** 0.0311             0.0900 *** 0.0088   
  

  

 DENS 0.1316 *** 0.0337             0.1780 *** 0.0087   
  

  

 MALT 0.0911 *** 0.0359             0.0495 *** 0.0075   
  

  

 HALT 0.1319 *** 0.0424             0.1179 *** 0.0104   
  

  

 MAXTEMP 0.5183 *** 0.1884             0.5215 *** 0.0429   
  

  

 PREC 0.0353 *** 0.0132             0.0290 *** 0.0101   
  

  

 03 -0.0971 *** 0.0330 -0.0210   0.0139 -0.0192   0.0218 -0.0977 *** 0.0188 -0.0180 
  

0.0174 

 04 -0.0294 ** 0.0147 -0.0168   0.0139 -0.0170   0.0192 -0.0309 ** 0.0146 -0.0178 
  

0.0145 

 05 -0.0332 ** 0.0133 -0.0329 ** 0.0134 -0.0333 ** 0.0166 -0.0342 *** 0.0132 -0.0347 
*** 

0.0133 

 06 -0.0850 *** 0.0283 -0.0229   0.0151 -0.0237   0.0215 -0.0802 *** 0.0166 -0.0149 
  

0.0158 

 07 0.0297   0.0198 0.0019   0.0151 -0.0010   0.0201 0.0225   0.0142 -0.0022 
  

0.0144 

 08 0.0153   0.0169 -0.0066   0.0155 -0.0082   0.0215 0.0048   0.0145 -0.0140 
  

0.0147 

 09 -0.0043   0.0151 -0.0047   0.0151 -0.0074   0.0163 -0.0197   0.0127 -0.0153 
  

0.0123 

α -0.4298 *** 0.0487 -0.3243 *** 0.0202 -0.3242   0.0223 -0.2023 *** 0.0153 -0.0978 
*** 

0.0108 

γPUM             0.6700   0.4443         
  

  

γDENS             0.8256 ** 0.3490         
  

  

γMALT             0.3875   0.5946         
  

  

γHALT             0.6880   0.8465         
  

  

γMAXTEMP             2.5508   3.5838         
  

  

γPREC             -0.0144   1.4674         
  

  

Sigma u 0.3512     0.37726     0.2468     0.1291     0.1311     

Sigma v 0.0882     0.09004     0.0892     0.0401     0.0429     

LL 531.38     509.487     516.97     563.86     534.77     

Notes: Statistically significant at 1%***, 5%** and 10%*; Standard errors in italic 
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Table 4 Properties of the cost frontier 

  Percentage of observations for which the property is verified 

  Pitt and Lee Greene TRE 

  

environment 

(Model I) 

environment 

(Model II) 

without 

env. 
environment 

without 

env. 

Homogeneity of degree one in input prices imposed imposed imposed imposed imposed 

Monotonically increasing in input prices 100% 100% 100% 100% 100% 

Monotonically increasing in output 100% 100% 100% 100% 100% 

Concave in input prices 94.90% 95.57% 95.30% 98.93% 98.79% 

 

 

 

Table 5 Estimated inefficiency scores 

  Mean Median Std. Dev. Minimum Maximum 

PL with env. (Model I) 1.378 1.355 0.254 1.011 2.295 

PL with env. (Model II) 1.444 1.355 0.319 1.010 2.418 

PL without environment 1.416 1.338 0.285 1.010 2.510 

TRE with environment 1.106 1.080 0.089 1.013 2.025 

TRE without environment 1.107 1.083 0.089 1.013 2.034 
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Table 6 Spearman rank correlations 

  PL (Model I) PL (Model II) PL no. Env. TRE env. TRE no. Env. 

PL (Model I) 1                   

PL (Model II) 0.86 *** 1               

PL no. Env. 0.91 *** 0.98 *** 1           

TRE env. 0.14 *** 0.11 *** 0.12 *** 1       

TRE no. Env. 0.13 *** 0.12 *** 0.13 *** 0.96 *** 1   

Note: Statistically significant at 1%***, 5%** and 10%* 

 

 

 

Table 7 Ranking of individual utilities in 2009 

  PL TRE 

  with (Model I) with (Model II) without with without 

utility 1 1 1 1 98 97 

utility 2 2 2 2 97 98 

utility 3 3 3 4 14 11 

utility 4 4 14 11 23 20 

utility 5 5 10 14 75 81 

utility 6 6 30 19 64 53 

utility 7 7 5 9 25 44 

utility 8 8 4 5 63 31 

utility 9 9 11 8 27 13 

utility 10 10 19 22 69 72 
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Fig. 1 Density of inefficiency scores 
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Fig. 2 Comparison of inefficiency scores 

 

 

 


