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The relationship of agency is one of the 
oldest and commonest codified modes of 
social interaction. We will say that an 
agency relationship has arisen between two 
(or more) parties when one, designated as 
the agent, acts for, on behalf of, or as rep- 
resentative for the other, designated the 
principal, in a particular domain of deci- 
sion problems. Examples of agency are 
universal. Essentially all contractural ar- 
rangements, as between employer and 
employee or the state and the governed, 
for example, contain important elements 
of agency. In addition, without explicitly 
studying the agency relationship, much of 
the economic literature on problems of 
moral hazard (see K. J. Arrow) is con- 
cerned with problems raised by agency. In 
a general equilibrium context the study of 
information flows (see J. Marschak and 
R. Radner) or of financial intermediaries 
in monetary models is also an example of 
agency theory. 

The canonical agency problem can be 
posed as follows. Assume that both the 
agent and the principal possess state in- 
dependent von Neumann-Morgenstern 
utility functions, G(.) and U(.) respec- 
tively, and that they act so as to maximize 
their expected utility. The problems of 
agency are really most interesting when 
seen as involving choice under uncertainty 
and this is the view we will adopt. The 
agent may choose an act, aCA, a feasible 
action space, and the random payoff from 

this act, w(a, 0), will depend on the random 
state of nature O(EQ the state space set), 
unknown to the agent when a is chosen. 
By assumption the agent and the prin- 
cipal have agreed upon a fee schedule f to 
be paid to the agent for his services. T he 
fee, f, is generally a function of both the 
state of the world, 0, and the action, a, but 
we will assume that the action can influ- 
ence the parties and, hence, the fee only 
through its impact on the payoff. T his 
permits us to write, 

(1) f = f(w(a,6);6). 

Two points deserve mention. Obviously 
the choice of a fee schedule is the outcome 
of a bargaining problem or, in large games, 
of a market process. Much of what we 
have to say is relevant for this view but 
we will not treat the bargaining problem 
explicitly. Second, while it is possible to 
conceive of the fee as being directly func- 
tionally dependent on the act, the theory 
loses much of its interest, since without 
further conditions, such a fee can always 
be chosen as a Dirac 8-function forcing a 
particular act (see S. Ross). In some sense, 
then, we are assuming that only the payoff 
is operational and we will take this point 
up below. Now, the agent will choose an 
act, a, so as to 

(2) max E{G[f(w(a, 0); 0)]}, 
a 0 

where the agent takes the expectation 
over his subjectively held probability dis- 
tribution. The solution to the agent's 
problem involves the choice of an optimal 
act, ao, conditional on the particular fee 
schedule, i.e., ao=a((f)), where a(.) is a 
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mapping from the space of fee schedules 
into A. 

If the principal has complete informa- 
tion about the fee to act mapping, a((f)), 
he will now choose a fee so as to 

max El U[wv(a((f)), 0) 
(3 

(f) e 

(3) - f(w(a((f)), 0); 0)] 

where the expectation is taken over the 
principal's subjective probability distribu- 
tion over states of nature. If the principal 
is not fully informed about a(.), then a(X) 
will be a random function from his point 
of view. Formally, at least, by appropri- 
ately augmenting the state space the 
criterion (3) could still be made to apply. 
In general some side constraints on (f) 
would also have to be imposed to insure 
that the problem possesses a solution (see 
Ross). A market-imposed minimum ex- 
pected fee or expected utility of fee by the 
agent would be one economically sensible 
constraint: 

(4) E IG[f (w(al 0);0] > k. 
0 

Since utility functions are assumed to be 
independent of states, 0, one of the im- 
portant reasons for a fee to depend di- 
rectly on 0 would be if individual subjective 
probability distributions differed. In what 
follows we will assume that both the agent 
and the principal share the same subjective 
beliefs about the occurrence of 0 and write 
the fee as a function of the payoff only, 

(5) f = f(wv(a, 0)). 

Notice that this interpretation would 
not in general be permissible if the prin- 
cipal lacked perfect knowledge of a(.). 
More importantly, though, surely aside 
from simple comparative advantage, for 
some questions the raison dY'etre for an 
agency relationship is that the agent (or 
the principal) may possess different (better 
or finer) information about the states of 

the world than the principal (agent). If we 
abstract from this possibility we will have 
to show that we are not throwing out the 
baby with the bath water. 

Under this assumption the problem is 
considerably simplified but much of inter- 
est does remain. Suppose, first, that we are 
simply interested in the properties of 
Pareto-efficient arrangements that the 
agent and the principal will strike. Notice 
that the optimal fee schedule as seen by the 
principal is found by solving (3) and is 
dependent on the desire to motivate the 
agent. In general, then, we would expect 
such an arrangement to be Pareto-in- 
efficient, but we will return to this point 
below. The family of Pareto-efficient fee 
schedules can be characterized by assum- 
ing that the principal and the agent co- 
operate to choose a schedule that maxi- 
mizes a weighted sum of utilities 

(6) max El U[wv-f] + XG[f]}, 
(f) 

where X is a relative weighting factor (and 
where strategies have been randomized to 
insure convexity). K. Borch recognized 
that the solution to (6) is obtained by 
maximizing the function internal to the 
expectation which requires setting 

(P.E.) U'[w -f] = XG'[f] 

when U and G are monotone and concave. 
(See H. Raiffa for a good exposition.) The 
P.E. condition defines the fee schedule, 
f -), as a function of the payoff' w (and the 
weight, A). (See R. Wilson (1968) or Ross 
for a fuller discussion of this derivation 
and the functional aspect of the fee 
schedule.) 

An alternative approach to finding op- 
timal fee schedules was first proposed by 
Wilson in the theory of syndicates and 
studied by Wilson (1968, 1969) and Ross. 
This is the similarity condition that solves 
for the fee schedule by setting 
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(S) U[w-f] = aG[f] + b 

for constants a > O, b. If (f) satisfies S then, 
given the fee schedule, it should be clear 
that the agent and the principal have 
identical attitudes towards risky payoffs 
and, consequently, the agent will always 
choose the act that the principal most 
desires. Ross was able to completely char- 
acterize the class of utility functions that 
satisfied both P.E. and S (for a range of A) 
and show that in such situations the fee 
schedule is (affine) linear, L, in the payoff. 
(The class is simply that of pairs (U, G) 
with linear risk tolerance, 

U' G' 
= czv + d and - =cw + e, 

U"f G"/ 

where c, d and e are constants.) In fact, 
it can be shown that any two of S, P.E., 
or L imply the third. 

A question of interest that naturally 
arises is that of the relation that S and 
P.E. bear to the exact solution to the prin- 
cipal's problem. (A comparable "agent's 
problem" can also be posed but we will 
not be concerned with that here. Some ob- 
servations on such a problem are contained 
in Ross.) The solution to the principal's 
problem (3) subject to the constraint (4) 
and to the constraint imposed by the 
condition that the agent chooses the op- 
timal act from his problem (2) can, under 
some circumstances, be posed as a classical 
variational problem. To do so we will 
assume that the payoff function is (twice) 
differentiable and that the agent chooses 
an optimal act, given a fee schedule, by the 
first order condition 

(7) E G' 1f(v) ]f'(7v)w,} = Oy 

where a subscript indicates partial differ- 
entiation. The principal's problem is now 
to 

max E{H} -max El U[w-f] 
(8) (f) 0 (f) 0 

+ TG'f'wa + XG} 

where T and X are Lagrange multipliers 
associated with the constraints (7) and 
(4) respectively. Changing variables to 
V(0) =f(w(a, 0)) where we have suppressed 
the impact of a on V and assuming, with- 
out loss of generality, that 0 is uniformly 
distributed on [0, t] permits us to solve 
(8) by the Euler-Lagrange equation. Thus, 
at an optimum 

d () AH) AH 

dobVf _av 
(9)dFVa 

ds Wa] dO LZVO_ 

or the marginal rate of substitution, 

U' d rWZaI 
(10) -= X I T_ _ . 

GI ~~dO -Lwo] 

This is an intuitively appealing result; 
the marginal rate of substitution is set 
equal to a constant as in the P.E. condi- 
tion plus an additional term which cap- 
tures the constraint (7) imposed on the 
principal by the need to motivate the 
agent. To determine the optimal act, a, 
we differentiate (8) with respect to a 
which yields 

El U'[I - f']Wa + TG 'G(f'Wa)2 
(1 ) 0 

+ TG'f"(w0)2 + TG'f'WaaJ = 

where we have made use of (7). Substitut- 
ing the boundary conditions permits us to 
solve for the multipliers T and X. 

Like Sor P.E. (10) defines the fee schedule 
as a function of w. (Notice that we are 
tacitly assuming that, at least for the 
optimal act, the payoff is (a.e. locally) 
state invertible. This allows the fee to 
take the form of (5).) It follows that (10) 
will coincide with P.E. if and only if T is 
zero, or if TX 0, we must have 
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(12) = ] 

a function of a alone. 
In particular, using these conditions we 

can ask what class of (pairs of) utility 
functions (U, G) has the property that, 
for any payoff structure, w(a, 0), the solu- 
tion to the principal's problem is Pareto- 
efficient. Conversely, we can ask what class 
of payoff structures has the property that 
the principal's problem yields a Pareto- 
efficient solution for any pair of utility 
functions (U, G). 

A little reflection reveals that the only 
pairs of (U, G) that could possibly belong 
to the first class must be those which 
satisfy S and P.E. for a range of schedules 
(indexed by the X weight in P.E.). Clearly 
if (10) is to be equivalent to P.E. for all 
payoff functions, w (a, 0), then T must be 
zero and the motivational constraint (7) 
must not be binding. For this to be the 
case, for an interval of values of k (in (4)), 
the satisfaction of P.E. must imply that 
the agent chooses the principal's most 
desired act by (7). For any fee schedule, 
(f), the principal wants the act to be 
chosen to maximize E0 U[w-f] which 
implies that 

(13) E { U'(1 -f')Wa} = 0. 

If (13) is to be equivalent to the motiva- 
tional constraint (7) for all possible payoff 
structures, then we must have 

(14) U'(1 -f') = G'f' 

which, with P.E. (or (10) with T=0O) 
yields a linear fee schedule in the payoff. 
But, as shown in Ross, linearity of the 
fee schedule and P.E. imply the satisfac- 
tion of S and the (U, G) pair must belong 
to the linear risk-tolerance class of utility 
functions described above. 

Since the linear risk-tolerance class, 
while important, is very limited, we turn 

now to the converse question of what pay- 
off structures permit a Pareto-efficient 
solution for all (U, G) pairs. If T=O we 
must, as before, have that the motivational 
constraint is not binding for all (U, G) or 
(13) must always imply (7). Ihe implica- 
tion will always hold if there exists an a* 
such that for all a there is some choice of 
the state domain, I, for which 

(15) w(a*, 0) > w(a, 0), 6 E I. 

Conversely, from P.E., we must have that 
for all G(-) 

(16) E{G'[f](I -f')Wa} = 0 
0 

implies (7) where f is determined by P.E. 
Since (U, G) can always be chosen so as to 
attain any desired weightings of Wa in (7) 
and (16) the special case of (15) is the only 
one for which motivation is irrelevant. 
Given (15) all individuals have a uniquely 
optimal act irrespective of their attitudes 
towards risk. 

If TX 0, then to assure Pareto efficiency 
we must satisfy (12). This is a partial 
differential equation and its solution is 
given by 

(17) wv(a, 0) = H[6B(a) -C(a)], 

where H(.), B(.) and C(Q) are arbitrary 
functions. (The detailed computations are 
carried out in an appendix.) This is a 
rich and interesting class of payoff func- 
tions. In particular, (17) is a generalization 
of the class of functions of the form 
1(0-a), where the object is to pick an act, 
a, so as to best guess the state 0. It there- 
fore includes, for example, traditional 
estimation problems, problems with a 
quadratic payoff function, and all prob- 
lems with payoff functions of the form 

I 0-a I th(a), and many asymmetric ones as 
well. It is not, however, difficult to find 
plausible payoff functions which do not 
take the form of (17). (The class of the 
form (15) will generate such functions.) 
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We may conclude, then, that the class of 
payoff structures that simultaneously solve 
the principal's problem and lead to Pareto 
efficiency for all (U, G) pairs is quite im- 
portant and quite likely to arise in practice. 

In general, though, it is clear that the 
solution to the principal's problem will not 
be Pareto-efficient. This is, however, a 
somewhat naive view to take. Pareto effi- 
ciency as defined above assumes that per- 
fect information is held by the participants. 
In fact, the optimal solution to the prin- 
cipal's problem implied that the fee-to-act 
mapping induced by the agent was com- 
pletely known to the principal. In such a 
case it might be thought that the principal 
could simply tell the agent to perform a 
particular act. The difficulty arises in 
monitoring the act that the agent chooses. 
Michael Spence and Richard Zeckhauser 
have examined this problem in detail in 
the case of insurance. In addition, if agents 
are numerous the fee may be the only com- 
munication mechanism. While it might in 
principle be feasible to monitor the agent's 
actions, it would not be economically 
viable to do so. 

The format of this paper has been such 
as to allow us to only touch on what is 
surely the most challenging aspect of 
agency theory; embedding it in a general 
equilibrium market context. Much is to 
be learned from such attempts. One would 
naturally expect a market to arise in the 
services of agents. Furthermore, in some 
sense, such a market serves as a surrogate 
for a market in the information possessed 
by agents. To the extent to which this 
occurs, the study of agency in market 
contexts should shed some light on the 
economics of information. To mention one 
more path of interest -in a world of true 
uncertainty where adequate contingent 
markets do not exist, the manager of the 
firm is essentially an agent of the share- 
holders. It can, therefore, be expected that 

an understanding of the agency relation- 
ship will aid our understanding of this 
difficult question. 

The results obtained here provide some 
of the micro foundations for such studies. 
We have shown that, for an interesting 
class of utility functions and for a very 
broad and relevant class of payoff struc- 
tures, the need to motivate agents does not 
conflict with the attainment of Pareto 
efficiency. At the least, a callous observer 
might view these results as providing some 
solace to those engaged in econometric 
activity. 

APPENDIX 

This appendix solves the partial differen- 
tial equation (12) in the text. 
Integrating (12) over 0 yields 

'aw '07 

--+ [b(a)O + c(a)] = 0. 

Along a locus of constant w, 

dO Ow/oa 
- - - ______ = b(a)0 + c(a), 

da &zv/&O 

is a first order Bernoulli equation that inte- 
grates to 

6=efb(a) [ ef efb(a)c(a) + k 

where k is a constant of integration. It fol- 
lows that 

w(a, 0) = H[OB(a) - C(ajj, 

where 

B(a) = e-Jb(a) 

and 

C(a) --f efb(a)c(a) + k, 

and H(.) is an arbitrary function. 
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