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Abstract
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The results associated with an application to US bond and stock futures markets indicate
that investors are willing to pay a significant premium for knowledge of the dynamics of
volatility, though the magnitude of this premium varies over time, and depends on risk pref-
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dynamics (this is, forecasting method choice) should be a conditional exercise.
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1 Introduction

The importance of forecasting risk in financial markets has motivated a vast literature on

the evaluation of volatility forecast quality (see Poon and Granger, 2003, for a comprehensive

review). The value of any new approach is often assessed by establishing (or refuting) both

the statistical and economic significance of the proposed forecasts. Assessment of the former

is characterised by well-defined metrics (e.g., the mean squared error), while the latter is often

based on economic criteria that provide a translation of forecasting ability into meaningful units

(e.g., a performance fee measured in basis points). Despite their usefulness, improvements in

existing measures are possible. The purpose of the current paper is to introduce a measure of

the economic value of volatility forecasting ability such that it varies over time. In doing this,

we are able to conduct a more thorough examination of volatility forecast quality by considering

unconditional and conditional aspects of this ability.

A variety of economic measures of forecasting performance have been considered in the

extant literature. Commonly-employed examples include the Sharpe ratio and the performance

fee associated with conditionally-optimised portfolios constructed using volatility forecasts; see,

e.g., West et al (1993), Fleming et al (2001, 2003), Marquering and Verbeek (2004), Şerban et

al (2007), Clements et al (2009), Liu (2009), and Chiriac and Voev (2011).1 Such measures

are unconditional in nature and deliver a single performance measure over the entire sample.2

For instance, the unconditional performance fee represents the amount an investor is willing

to pay to switch from one investment strategy to another in order to equate the unconditional

expected utility levels over the two strategies. By contrast, we introduce a measure based on

conditional expected utility levels. Use of this measure drives the primary contribution of this

paper: an assessment of multivariate volatility forecast quality using the Giacomini and White

(2006) conditional testing framework under economically meaningful loss function assumptions.

The proposed approach is applied to data pertaining to US bond and stock futures markets.

In particular, we consider investors (with various utility functions) who take positions in the

30-year Treasury bond and S&P 500 index futures market at the beginning of each day in

order to maximise their conditional expected utility over the day. The investors in our study

differentiate themselves in terms of their volatility forecasting method. At the limit we consider

investors who select portfolio weights based on a simple random walk model, and those who

1A similar approach has been adopted with respect to the evaluation of asset return forecast quality; see, e.g.,
Rapach et al (2010).

2Voev (2009) demonstrates that in the presence of noise in the realised volatility measure, use of unconditional
economic criteria can lead to sizeable distortion in the ranking of competing forecasts.
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select portfolio weights based on advanced volatility methods. By considering the economic

cost of competing forecasting methods, we are explicitly examining the benefits of using one

volatility method with respect to a competing method within a meaningful investment context.

Moreover, we are able to measure how this economic value is distributed over time, and to

test whether this value covaries with market conditions (including volatility, correlation, and

economic activity levels). Few, if any, studies have conducted such a rich assessment of the

economic value of multivariate volatility forecast quality.

To anticipate some of the results, we find that methods based on parameters estimated by

optimising investors’ utility perform well. Moreover, the conditional testing framework reveals

that the performance of each method (relative to a competing method) varies in a predicable

fashion over time, with volatility levels contributing to performance differences. For instance,

GARCH-based methods typically exhibit below average performance during low volatility pe-

riods, but perform very well during high volatility periods. Such predictability means that

methods based on functions of forecast sets (including those based on switching to the best

method each period) exhibit excellent performance under all conditions. The results also high-

light the virtues of using simple methods. The moving average method consistently beats the

majority of competing models and enjoys relatively low levels of portfolio turnover (and thus

transaction costs). Moreover, a method based on the random walk assumption performs very

well when investors face portfolio weight restrictions. Such results have two practical implica-

tions: researchers should be mindful of the nature of the data sample used (e.g., a method that

is successful during high volatility periods may not be so successful during other periods), and

investors should consider switching between a set of forecasting methods that includes those

based on economic criteria optimisation and those based on simple dynamics.

2 Multivariate volatility forecasting methods

A wide variety of multivariate volatility forecasting methods have been proposed in the

literature, each of which differentiates itself in terms of model specification and/or the estimation

technique used. While we cannot include all methods, we do consider a representative subset of

this universe. Specifically, we consider methods based on five popular realised volatility (RV)

models, four popular conditional volatility (CV) models, combinations thereof, and on a number

of different estimation procedures.
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2.1 RV-based methods

The first method we consider is the simplest of all methods whereby forecasts of realised

covariance are given by realised covariance observed in the preceding period; formally,

vech(Ỹt) = vech(Yt−1), t ∈ {S + 1, . . . , T}, (1)

where vech(A) is the half-vectorisation operator such that it stacks the nonredundant elements

of the matrix A, and Yt is an (N ×N) daily frequency realised covariance matrix measure.3 As

this method assumes that covariances follow a random walk (RW), this method is henceforth

referred to as the RW method.

The next two methods assume that forecasts of realised covariance are given by the mean

of previously observed realised covariances; specifically,

vech(Ỹt) = ϕ̂0,t−1, (2)

where ϕ̂0,t−1 is the (N(N+1)/2×1) out-of-sample maximum likelihood (ML) coefficient vector.

This vector is given by the solution to the following residual sum of squares (RSS) constrained

optimisation problem:

ϕ̂0,t−1 = argmin
ϕ0,t−1

t−1∑
r=t0

|(vech(Yr)− ϕ0,r−1)(vech(Yr)− ϕ0,r−1)
′|, (3a)

s.t. λi(ϕ0,r−1) > 0, ∀ r ∈ {t0, . . . , t− 1}, and i ∈ {1, . . . , N}, (3b)

where λi(A) is the ith eigenvalue of A, and t0 = t − twin dictates the amount of past data

to use in the estimation process. We use an expanding window of past observations such that

twin = t − 1 (henceforth the MEAN method), and a 20-day moving average (MA) such that

twin = 20 (henceforth the MA method).4

Given the documented benefits of vector autoregressive (VAR) models of realised volatility

(see, e.g., Andersen et al, 2003), the next method we consider assumes that forecasts are given

3The covariance matrix measure used is based on the subsampling methodology of Zhang et al (2005) within a
multivariate setting (see, e.g., Chiriac and Voev, 2011, for use of this methodology in a similar context). Further
details are provided in Appendix A.

4The 20-day fixed window size is selected because of its use in previous studies within the volatility forecasting
literature; see, e.g., Jorion (1995).
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by the following first-order vector autoregressive moving average (VARMA) structure:

vech(Ỹt) = ϕ̂0,t−1 + ϕ̂1,t−1 vech(Yt−1) + θ̂1,t−1ξ̃t−1, (4)

where ξ̃t−1 is a (N(N + 1)/2× 1) vector of residuals, and ϕ̂1,t−1 and θ̂1,t−1 are (N(N + 1)/2×

N(N +1)/2) ML-estimated coefficient matrices based on an expanding window of data (that is,

data observed up to time t− 1). This method is henceforth referred to as the VARMA method.

The above approach is augmented in two ways. First, Engle and Rangel (2007) find that

macroeconomic variables such as GDP growth have an impact on low frequency volatility. To

investigate whether macroeconomic effects are present in high frequency volatility measures, we

consider forecasts generated as follows:

vech(Ỹt) = ϕ̂0,t−1 + ϕ̂1,t−1 vech(Yt−1) + Γ̂t−1Xt−1 + θ̂1,t−1ξ̃t−1, (5)

where Γ̂t−1 is an (N(N + 1)/2 × 1) ML-estimated coefficient vector based on an expanding

window of data, and Xt is the daily frequency real-time measure of economic activity introduced

by Aruoba, Diebold, and Scotti (2009). This method is henceforth referred to as the VARMAX

method.

The second augmentation adopts the heterogeneous autoregressive (HAR) model of realised

variance introduced by Corsi (2009).5 This provides a convenient way of allowing for long-

memory dynamics and is achieved via an additive cascade model of volatility components defined

over different time periods. In the spirit of this model, we consider the following HAR-based

forecasts:

vech(Ỹt) = ϕ̂0,t−1 + ϕ̂1,t−1 vech(Yt−1) + ϕ̂2,t−1

5∑
k=1

vech(Yt−k) + ϕ̂3,t−1

20∑
k=1

vech(Yt−k), (6)

where ϕ̂2,t−1 and ϕ̂3,t−1 are (N(N + 1)/2 × N(N + 1)/2) ML-estimated coefficient matrices

based on an expanding window of data. This method is henceforth referred to as the vector-

HAR method.6

As an alternative to using ML-estimated parameters based on the RSS function, Kirby and

Ostdiek (2011) demonstrate that improvements in performance are available to investors (with

5Corsi concludes that the performance of the HAR model ‘is comparable to the much more complicated and
tedious to estimate long-memory ARFIMA model ’.

6The subsequent analysis finds that the performance of the VAR-based methods is improved by assuming that
all coefficient matrices are diagonal.
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unconditional mean-variance risk preferences) if parameters are estimated using an objective

function that matches the portfolio management strategy rather than a conventional RSS-

type objective function. Within the current context, we examine this potential by considering

new versions of the VAR-based methods in which parameters are estimated such that the

economic criterion (utility-based loss function) in Corollary 1 in Appendix B is minimised

using an expanding window of data; henceforth these methods are referred to as the VARMA

(econ.), VARMAX (econ.), and vector-HAR (econ.) methods. In contrast, the counterpart

methods based on the RSS statistical criterion are henceforth referred to as the VARMA (stat.),

VARMAX (stat.), and vector-HAR (stat.) methods.7

2.2 CV-based methods

In addition to the above RV-based methods, we also consider four CV-based methods that

are commonly used in practise (each of which is based on low frequency measures of past

volatility). First, motivated by the current RiskMetrics methodology introduced in 2006, we

assume that forecasts are generated via the weighted average of several different exponential

weighted moving average (EWMA) forecasts:

vech(Ỹt) =

K∑
k=1

wk vech(Ỹk,t). (7a)

In turn, each EWMA forecast is given by

vech(Ỹk,t) = Λk vech(Ỹk,t−1) + (IN −Λk) vech(Rt−1R
′
t−1), (7b)

with coefficients,

Λk = exp(−1/τk)IN , (7c)

and weights,

wk =


1
C

(
1− ln(τk)

ln(τ0)

)
, if τk ≤ τmax,

0, otherwise,

(7d)

7For investors who use the MEAN (or MA) method, it is possible to demonstrate that changing the objective
function to the economic criterion does not change the parameter values. Consequently, we make no distinction
between these methods with respective to the objection function used.
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where Rt−1 is an (N × 1) vector of lagged open-to-close daily returns, and C is a normalising

constant designed to ensure that the weights sum to unity.8 We follow RiskMetrics advice

and assume that τk = τ1ρ
k−1, ρ =

√
2, τ0 = 1560, τ1 = 4, and τmax = 256; see Zumbach

(2007) for further details. The above method encompasses the original RiskMetrics methodology

introduced in 1994. Specifically, if one assumes that K = 1 and Λ1 = 0.94IN , such that

vech(Ỹt) = 0.94 vech(Ỹt−1) + 0.06 vech(Rt−1R
′
t−1), (8)

then the old methodology is replicated. This restricted approach, and its unrestricted counter-

part, are henceforth referred to as the RM1994 and RM2006 methods, respectively.

The third CV-based method is similar in spirit to the RM1994 method in that past volatility

is exponentially-weighted. However, in contrast, the decay parameter is estimated. Specifically,

we follow Fleming et al (2001, 2003) and assume that covariance forecasts are given by

vech(Ỹt) = exp(−λ̂t−1) vech(Ỹt−1) + λ̂t−1 exp(−λ̂t−1) vech(Rt−1R
′
t−1), (9)

where λ̂t−1 is the ML-estimated decay parameter based an expanding window of data and

a Gaussian likelihood function; see Fleming et al (2003) for further details of the estimation

methodology. This method is henceforth referred to as the EXP method.

While the above method is widely employed it is limited in its ability to capture complex

conditional volatility dynamics via a single parameter. To address this issue we consider a

method based on the dynamic conditional correlation (DCC) multivariate generalised autore-

gressive conditional heteroskedasticity (MGARCH) model introduced by Engle (2002). This

model implies decomposed forecasts given by

vech(Ỹt) = vech(dg(Ỹt)
1/2ρ̃t dg(Ỹt)

1/2), (10a)

where ρ̃t is the value of the conditional correlation matrix. The diagonal elements in Ỹt each

follow a separate univariate GARCH(1,1) process,

vech(dg(Ỹt)) = α̂0,t−1 + α̂1,t−1 ⊙ vech(dg(Rt−1R
′
t−1)) + β̂1,t−1 ⊙ vech(dg(Ỹt−1)), (10b)

where α̂0,t−1, α̂1,t−1, and β̂1,t−1 are (N × 1) ML-estimated parameter vectors for each separate

8The weighting of different EWMA forecasts is designed to capture long memory in the volatility process
(Zumbach, 2007).
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GARCH equation based on an expanding window of data and a Gaussian likelihood function (as

suggested in Engle, 2002), and ⊙ denotes the Hadamard product. The value of the conditional

correlation matrix is obtained by assuming that

ρ̃t = dg(Q̃t)
−1/2Q̃t dg(Q̃t)

−1/2, (10c)

and modelling Q̃t as follows:

vech(Q̃t) = (1− ψ̂1,t−1− ψ̂2,t−1) vech(Qt−1)+ ψ̂1,t−1 vech(υt−1υ
′
t−1)+ ψ̂2,t−1 vech(Q̃t−1), (10d)

where ψ̂1,t−1 and ψ̂2,t−1 are ML-estimated parameters based on an expanding window of data

and the Gaussian likelihood function specified in Engle (2002), and υt−1 is the standardised

return vector with unconditional covariance Qt−1. This method is henceforth referred to as the

DCC-MGARCH method.9

2.3 Combination methods

Given the documented superior performance of combination forecasts in other literatures

(see, e.g., Stock and Watson, 2003), we combine the forecasts associated with the above meth-

ods (excluding those based on economic criterion minimisation). Specifically, we examine the

performance of the median of the forecasts associated with all methods and subsets thereof (viz.

RV-based and CV-based methods). These are henceforth referred to as the combination (RV),

combination (CV), and combination methods.10

In addition, we also consider a portfolio weight shrinkage approach in which an investor’s

weights are given by the median of the weights implied by the forecasting methods described

above and subsets thereof. These combined weights are then used to generate the values of the

economic loss functions derived in Appendix B.11 These methods are henceforth referred to as

the shrinkage (RV), shrinkage (CV), and shrinkage methods.

9It is possible to allow for leverage effects in the DCC-MGARCH model; see, e.g., the asymmetric DCC-
MGARCH model of Cappiello et al (2006). Indeed, we considered such a model in the current analysis. However,
as the results were very similar to those of the DCC-MGARCH model, we refrained from presenting these results
– though they are available on request.

10The mean of the forecasts is also considered. Indeed, Timmermann (2006) demonstrates that mean combining
is optimal in the presence of squared error loss. However, we find that median forecasts deliver slightly superior
results in the current application. See Andreou et al (2012), for further details of volatility forecast combination
performance under a variety of loss functions.

11Tu and Zhou (2011) demonstrate that optimal combinations of various sophisticated portfolio rules with the
1/N rule are superior to competing strategies from an unconditional perspective. However, in the absence of
an optimal conditional combining scheme, we focus on the simplest of all combination strategies in which the
median of all portfolio weights is used.
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3 Assessing forecast quality

Volatility forecasts are assessed using investor utility-based loss functions and a conditional

testing framework. These are described in the following subsections.

3.1 Utility-based loss functions

Under the assumption that investors allocate their wealth each period by selecting their

optimal portfolios based on competing covariance matrix forecasts (generated by the above

forecasting methods), the economic cost of forecasting method B with respect to forecasting

method A is defined by the following conditional utility difference:

∆Lt = E(f(Rpt )|Ga,t)− E(f(Rpt )|Gb,t), (11)

where f(.) is the utility function, Rpt is the portfolio return, and Ga,t and Gb,t depend on fore-

casting methods A and B, respectively. If we replace forecasting method A with a method that

generates perfect covariance matrix forecasts (that is, realised values of the covariance matrix),

then the expression in (11) can be interpreted as a loss function that measures the cost of fore-

cast imperfection associated with method B. Explicit expressions for the above measure are

provided in Appendix B under HARA and quadratic utility.

In addition, the results in Appendix B demonstrate that these differences can be interpreted

as the performance fee an investor is willing to pay each period to avoid using a compet-

ing investor’s forecasting method; see Proposition 3. Specifically, we demonstrate that under

quadratic utility, the (maximum) performance fee δ∗t given by the root of the following equation:

E(f(Rpt − δt)|Ga,t)− E(f(Rpt )|Gb,t) = 0 (12)

is equal to ∆Lt. Consequently, the economic cost of forecast method B with respect to method

A, is equal to the performance fee an investor who employs forecasting method A is willing to

pay each period to avoid using forecasting method B.12

12We also demonstrate that, under certain assumptions, the proposed measure is a member of Patton’s (2011)
Homogeneous Robust (HR) loss function family; see Proposition 4 in Appendix B. Consequently, we demonstrate
that it is robust to the presence of noise in the realised volatility measure; see, e.g., Hansen and Lunde (2006),
Laurent et al (2009), and Patton (2011) for details of robust loss functions.
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3.2 The testing framework

We wish to test whether the relative costs associated with competing volatility forecasting

methods are orthogonal to a particular information set. This can be achieved via the following

ordinary least squares (OLS) regression:

∆Lt = φ′Zt−1 + ϵt, t ∈ {S + 1, . . . , T}, (13)

where ∆Lt is the out-of-sample relative economic cost of competing forecasting methods, φ is

a vector of coefficients, Zt−1 is a vector of explanatory variables, and ϵt is a suitably defined

error term. We express each hypothesis as q zero restrictions Θφ = 0q imposed upon the above

regression and calculate the following robust Wald test statistic:

W = (T − S)(Θφ̂)′(ΘM−1V̂M−1Θ′)−1(Θφ̂)
d−→ χ2(q). (14)

where M = (T − S)−1
∑T

t=S+1 Zt−1Z
′
t−1 and V̂ is a heteroscedasticity and autocorrelation

consistent (HAC) estimator of the variance-covariance matrix of φ̂.

A number of existing tests can be considered within the above framework. First, a test

similar to the conditional predictive ability test of Giacomini and White (2006), henceforth the

GW conditional test, can be performed. Specifically, we test the null hypothesis

H0: E(∆Lt|It−1) = 0, (15)

by assuming that Θ = Iq (with q set equal to the number of elements in Zt−1), where It−1 is

an information set of interest, and Zt−1 is It−1-measurable. Note that the test statistic implied

by these assumptions is slightly different from the simplified one suggested by Giacomini and

White (2006); see equation (4) in their paper. Use of their formulation in the current application

is not recommended as expanding window forecasting schemes are used.

Second, it is also possible to examine the impact of more specific information sets on costs.

In particular, the unconditional predictive ability test of Giacomini and White (2006) can

be conducted, henceforth the GW unconditional test (see Giacomini and White, 2006, for a

comparison to the related approaches of Diebold and Mariano, 1995, and West, 1996). This

test examines the hypothesis

H0: E(∆Lt) = 0, (16)
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by assuming that Θ = 1, and Zt−1 = 1 ∀ t. Here It−1 has been replaced with an empty set such

that only a constant term is included in the test regression.

Third, the above framework also enables consideration of relative costs within different

regimes. In particular, we are interested in testing the null hypotheses that

H0: E(∆Lt|Rt = j) = 0, j ∈ {1, . . . , J}, (17a)

where Rt is the regime at time t. We can go further and test the null hypothesis that costs are

equal across all regimes:

H0: E(∆Lt)|Rt = 1) = . . . = E(∆Lt|Rt = J). (17b)

These hypotheses can be tested by respectively assuming that Θ = e′j,J (henceforth the regime

test (individual)), and Θ = (1J−1,−IJ−1) (henceforth the regime test (difference)), where

Z′
t−1 = (1Xt≤c1 , . . . , 1Xt>cJ−1

), Xt is the variable of interest underlying the regimes, ej,J is

the jth column of IJ , 1K equals one if condition K is satisfied (and zero otherwise), and cj are

pre-selected cutoff points.

4 Results

We proceed with an empirical analysis of daily return volatility in the 30-year Treasury bond

and S&P 500 index futures markets. This begins with a description of the data used.

4.1 Data

We consider trades in the 30-year Treasury bond and S&P 500 index futures markets over

the period, January 1, 1983, to December 31, 2011. In particular, one-second frequency trans-

action prices were obtained for each market (with ticker symbols US and SP, respectively) from

TickData, Inc., with the grid of prices filled with the most recently available price.13 To obtain

a single continuous series for each futures contract, we adopt the common practise that futures

contracts with the nearest maturity are replaced (through trading) by contracts with the next

nearest maturity when the next contract’s daily tick count exceeds the current contract tick

13All prices pertain to pit transactions, except for the 30-year Treasury bond futures prices over the period
July 1, 2003, to December 31, 2011 (reflecting the dominance of the electronic trading mechanism for this market
over this period).
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count using TickData’s automatic roll dates. These data were collected over the daytime trading

period in which both markets are open.14

The subsequent analysis also makes use of various macroeconomic data. These data were ob-

tained from the following sources. We use the latest vintage of the daily Aruoba-Diebold-Scotti

(ADS) index obtained from the Federal Reserve Bank of Philadelphia website: http://www.

philadelphiafed.org/research-and-data/. The dates of the economic expansion and con-

traction periods were obtained from the National Bureau of Economic Research (NBER) web-

site: http://www.nber.org/cycles.html. Inflation expectations are given by the Thomson

Reuters/University of Michigan survey-based inflation expectation series and consist of monthly

values of the median expected price change over the next 12 months. This series was obtained

from the Federal Reserve Economic Data (FRED) website: http://research.stlouisfed.org/

fred2/.

4.2 Estimation details

Before proceeding to a description of the results, further details of the assumptions used in

the estimation process are required. First, all models are estimated using a minimum of five

years of data such that the sample period, t ∈ {5 × 251, . . . , T} is used, with out-of-sample

1-step ahead forecasts generated at each point in time. These forecasts are then compared to

realised variance and covariance (given by the averaged subsample realised covariance matrix

measure). Second, the models (where applicable) are estimated using the BFGS optimisation

method with Brent line search programmed via use of the Constrained Optimization application

in GAUSS 11.0 (64-bit version).15

4.3 Summary statistics

A selection of summary statistics associated with the averaged subsample realised covari-

ance matrix measure given by (A.5) are given in Table 1. The results highlight three main

characteristics of the data. First, the S&P 500 index futures market is more volatile than the

30-year Treasury bond futures market, reflecting the well established result that stocks are more

risky than bonds. Second, all volatility measures are highly time-dependent (as evinced by the

14The intersection point of trading hours varies over the sample. At the start of the sample in 1983 the trading
hours of the 30-year Treasury bond and S&P 500 index futures markets were 8.00am to 2.05pm (CT) and 9.00am
to 3.15pm (CT), respectively. However, the current (circa February 2012) trading hours of these markets are
7.20am to 2.00pm (CT) and 8.30am to 3.15pm (CT), respectively.

15All code used in this paper is available on request.
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first and fifth-order autocorrelations), with fifth-order autocorrelation only slightly lower than

first-order autocorrelation. Thus, it is important to allow for strong levels of persistence when

modelling these volatility measures. Third, realised correlation is noticeably less than unity

and exhibits nontrivial variation over time. For instance, during the sub-periods 1983 to 1997

and 1998 to 2011, average realised correlation was 0.347 and −0.302, respectively; see Yang et

al (2009) for an economic rationale for such variation. This has two implications: there would

appear to be diversification benefits to those investors who simultaneously trade both of these

markets; and one must adequately account for the persistence and time-variation in correlation.

Insert Table 1 here

4.4 Statistical measures of forecast accuracy

The results associated with selective members of Patton’s (2011) HR loss function family

given by (B.14) are provided in Table 2. Specifically, we consider b = 0 (MSE), b = −1, b = −2

(QLIKE), and b = −3. The last of these loss functions is particularly relevant in the current

application as it coincides with the loss function derived in the current paper under, inter alia,

the single-asset portfolio and quadratic utility assumption; see Proposition 4 in Appendix B.

The null hypothesis that the MA method has equal forecast quality to each of the other methods

is tested using a Wald test based on Newey-West HAC standard errors.

Insert Table 2 here

The results can be summarised as follows. First, irrespective of the shape of the loss function,

only a small number of methods produce variance forecasts that are significantly more accurate

than the forecasts associated with the MA method, particularly when considering the utility-

based loss function considered in this paper (this is, b = −3). Second, the forecasts associated

with the utility-optimised and combination methods appear to be highly accurate. Third, the

relative performance of the other methods depends upon the measure and/or loss function used.

For instance, the RM2006 method produces highly accurate realised variance forecasts when

stock data and b = −3 are used. However, its relative performance deteriorates when applied

to bond data (under the same loss function).16

16The RM2006 method provides uniformly more accurate forecasts than the RM1994 method.
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4.5 Economic measures of forecast accuracy

Having established an initial ranking of various forecasting methods in terms of their sta-

tistical accuracy, we proceed with an examination of the economic value of this accuracy.

4.5.1 Mean imperfection costs

The economic costs of forecast imperfection for each forecasting method are calculated under

the assumption that investors hold unbounded positions in either bonds, stocks, or a combi-

nation of the two, have log or quadratic utility, γ ∈ {1, 2, 4, 8}, and µ′ − Rf = (0.017, 0.055)

(annualised), where γ is the coefficient of relative risk aversion, µ is the expected return vector,

and Rf is the risk-free rate.17 The means of these costs are provided in Table 3, with differ-

ences between these costs representing the mean performance fees associated with competing

methods.18

Insert Table 3 here

A number of features are apparent amongst the considerable variation in the mean costs over

the portfolios, utility functions, and methods considered. First, as γ is proportional to costs

(see (B.11a) in Corollary 1), it follows that these fall as γ increases. Second, the ranking of the

methods is consistent over the utility function assumptions, with log utility results similar to

the quadratic utility (γ = 1) results. Finally, combination-type methods perform particularly

well, with those based on all methods outperforming those based on RV or CV methods. For

instance, when investors are permitted to simultaneously hold bonds and stocks, the mean cost

of forecast imperfection to an investor who uses the shrinkage method under log utility is 8.0%

per annum. This compares to 8.6% for the MA method, and 16.3% for the MEAN method (the

worst method).19

The mean costs of forecast imperfection in Table 3 also highlight the virtues of using fore-

casting methods with parameters optimised according the objective function used. In particular,

the VARMA (econ.), VARMAX (econ.), and vector-HAR (econ.) methods deliver mean costs of

17The assumption that µ′ −Rf = (0.017, 0.055) (annualised) is based on the average mean returns to 30-year
Treasury bond and S&P 500 index futures over the 1983 to 2011 period. Unless otherwise stated, this assumption
is maintained in the subsequent analysis.

18All costs are given in annual percentage terms.
19Despite their simplicity, the quality of MA-type methods has been documented previously. For instance,

González-Rivera et al (2004) demonstrate that an MA method based on 20 days of past squared returns is no
worse than a variety of GARCH-based methods when forecasting S&P 500 index volatility under an option-based
loss function assumption. The excellent performance of such methods may explain their popularity within the
practitioner community.
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forecast imperfection that are uniformly lower than the competing methods. For instance, for

investors with log utility who trade both futures markets, the mean cost of forecast imperfection

equals 7.1% (vector-HAR (econ.) method), compared to 10.5% (vector-HAR (stat.) method) –

implying a benefit to using parameters based on the utility-based loss function of 3.4%. It is

also noticeable that the utility-optimised methods are the only ones (apart from the shrinkage

method) to provide significantly lower costs than the MA method. This result is consistent

with the findings of Kirby and Ostdiek (2011) regarding the superior performance of methods

based on parameters that are estimated using an objective function that matches the portfolio

management strategy.20

4.5.2 Portfolio turnover

To give an indication of the magnitude of transaction costs that are likely to be incurred

by investors in the current analysis, we report mean portfolio turnover for each asset (including

the risk-free asset). This is defined as the mean of the absolute change in portfolio weights

associated with each asset and forecasting method. Results provided in Table 4 are calculated

under the assumption that investors trade both futures markets.

Insert Table 4 here

The results indicate that for low risk aversion levels the majority of methods exhibit a fairly

large amount of portfolio turnover, with only the MEAN and MA methods providing low levels

of portfolio turnover. Indeed, only the portfolio turnover associated with the MEAN method

is significantly lower than the turnover associated with the MA method. Thus, apart from

these methods, the performance of the forecasting methods documented elsewhere in this paper

should be tempered by the fact that they are likely to deliver significant transaction costs.

4.5.3 The distribution of performance

To gain an appreciation for the distribution of relative costs over time, plots of these costs

(and associated portfolio weights) are provided in Figure 1 for a selection of methods under the

assumption that investors trade both futures markets and have quadratic utility (with γ = 4).

20These methods perform well in the current context as the loss function upon which they are based (and
assessed) is highly asymmetric and more heavily penalises volatility forecasts that are below realised volatility
(cf. the symmetric RSS loss function). This will manifest itself in generally higher volatility forecasts associated.
Consequently, when volatility increases unexpectedly, costs are more likely to be lower for these methods in
comparison to methods based on the RSS loss function. See subsection B.4.2 in Appendix B for details of the
utility-based loss function used in this paper.
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The use of this value of γ is motivated by the fact that the portfolio weights take reasonable

values under this assumption. For instance, the mean portfolio weights associated with the

MEAN method are 0.473 (bond futures) and 0.755 (stock futures).

Insert Figure 1 here

It is apparent that imperfection costs associated with the MEAN method are highly variable.

This variation is due to the static nature of the forecasts (and hence portfolio weights). The

relative costs associated with this method (with respect to the MA method) appear to show

two peaks: around 1994/95 and 2008/09 (see panel (h)). The first of these is due to MEAN

method users not taking offsetting positions in bond and stock futures when their correlation

was high (cf. weights in panels (d) and (e)). The second is due to these users taking too high a

position in bond and stock futures during the recent financial crisis period. In both cases it is

the failure of the MEAN method to adjust to current conditions that causes the high relative

costs. By contrast, the MA and vector-HAR (econ.) both adjust to market conditions, such that

the relative costs of these methods is relatively small over the sample (with the latter method

almost always less costly).

To explore unconditional distributional features of the performance of all competing meth-

ods, we present histograms of the annualised relative costs between the MA method and all

the other methods under the assumption that investors trade both futures markets and have

quadratic utility (with γ = 4). These are provided in Figure 2. Under the performance fee

interpretation, these costs represent the amount an investor is willing to pay to avoid switching

from using each method to the MA method during each period.

Insert Figure 2 here

The plots highlight the merits of using the MA, VARMA (econ.), VARMAX (econ.), and

vector-HAR (econ.) methods. For the majority of methods, relative costs appear to be more

often negative than positive – implying that investors are less often willing to pay a fee to avoid

switching to the MA method. However, there are some exceptions. Most notably, the VARMA

(econ.), VARMAX (econ.), and vector-HAR (econ.) methods appear to be the only methods

with positive modal performance fees.21

21The RW method delivers a small number of highly negative relative costs not captured by these plots. Hence,
the apparent contradiction of the symmetry of the RW plot and the large mean RW imperfection costs found in
Table 3.
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4.5.4 Predicting future performance

To gain further insight into the conditional nature of performance, we present the results of

the test regression given by (13) estimated over the out-of-sample period. Specifically, coeffi-

cients (and adjusted R2 values) associated with regressions of relative costs (for investors who

trade both futures markets and have quadratic utility (with γ = 4)) upon a constant, lagged

relative costs, lagged 1/N volatility (that is, volatility associated with a portfolio containing

equal weights in bond and stock futures), and lagged values of the ADS index of economic

activity are presented in Table 5. In addition to relative costs based on unrestricted method

comparisons, we also consider relative costs with respect to restricted versions of each method

in which all correlation forecasts are set to zero.22 For all comparisons, we indicate whether the

null hypothesis that each coefficient equals zero can be rejected using a HAC-based Wald test.

Insert Table 5 here

The results indicate that relative costs are dependent on each of the independent variables

considered (though there is considerable variation across method comparisons). For instance,

when comparing the RM1994 and RM2006 methods, 19.4% of the variation in relative costs is

due to these variables, with the future relative performance of RM2006 over RM1994 improving

as past relative performance increases, and volatility decreases. By contrast, when compar-

ing the MA and vector-HAR (econ.) methods, only 0.6% of the variation in relative costs

is explained, with future relative performance unrelated to any of the independent variables.

However, it is noticeable that in this instance the intercept is positive and significant implying

that the vector-HAR (econ.) method generally exhibits superior performance. The results also

indicate that for the majority of methods it is better to avoid imposing the zero-correlation

forecast restriction (the exception applies to the MEAN method). However, there is consid-

erable predictability in this relative cost – suggesting potential benefits if one could switch to

the restricted method when the predicted relative cost of the restriction is negative in the next

period.

The above regression results suggest that for some methods it may be possible to predict

relative performance in the next period. This motivates a new method in which one switches

22As the non-intercept independent variables are demeaned, the intercept term can be interpreted as the mean
relative cost net of independent variable effects. Furthermore, the coefficients associated with non-intercept
independent variables are standardised such that they can be interpreted as the standard deviation change in the
dependent variable when the independent variables change by one standard deviation, holding all other variables
constant.
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from a poor forecasting method to a good forecasting method each period. To this end (and in

the spirit of Giacomini and White, 2006), we consider a method based on the following decision

rule:

Step 1: Perform the regression of ∆Lt on Zt−1 over the out-of-sample period, where ∆Lt is

the relative cost of a forecasting method with respect to a benchmark method, and Zt−1

contains the independent variables described above. Let φ̂ denote the estimated coefficient

vector from this regression.

Step 2: Repeat Step 1 until all forecasting methods have been examined. Switch to the fore-

casting method that delivers the lowest predicted relative cost at each point in time (that

is, the lowest value of φ̂′Zt−1).

Given the excellent performance of the vector-HAR (econ.) method in the previous analysis,

this method is selected as the benchmark method. Two versions of the above decision rule

are considered. This first compares the benchmark method and unrestricted versions of each

method, henceforth referred to as the hybrid method.23 The second version attempts to exploit

the predictability in switching to zero-correlation forecasts documented in Table 5. To this end,

the benchmark method is compared to unrestricted and restricted (zero-correlation forecast)

versions of each method. This method is henceforth referred to as the hybrid (zero-corr.)

method. The conditional performance of these and competing methods is formally tested in the

next subsection.

4.5.5 Testing conditional performance

The GW conditional and unconditional tests described in subsection 3.2 are performed.

Regarding the former test, we also adopt the test rule proposed by Giacomini and White

(2006). Specifically, we define method B as superior to method A if the proportion of time the

expected (predicted) relative costs (the fitted value from (13)) are positive is below 50% and

the GW conditional test rejects the null at the 5% level. These proportions (and an indication

of which method is superior according to the above rule) are presented in Table 6 for various

method comparisons under the assumption that investors trade both futures markets and have

quadratic utility (with γ = 4). Regarding the GW unconditional test (and associated test rule),

we report the ratio of the costs of forecast imperfection and provide an indication as to which

23The performance of this method appears best when the vector-HAR (econ.) method is only compared to the
MA and DCC-MGARCH methods. This assumption is maintained in the subsequent analysis.
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method is superior (that is, a ratio below unity and a significant GW unconditional test result

at the 5% level).

Insert Table 6 here

A clear ranking emerges regarding the quality of each method. In particular, the hybrid

method is the best, following closely by the VARMA (econ.), VARMAX (econ.), Vector-HAR

(econ.) methods, and then the combination-type and MA methods.24 Of these, the first four

methods exhibit very similar performance and are the clear winners in that they are almost

always selected as the superior methods irrespective of the method it is compared to or the test

used. While the quality of these methods is unequivocal, for other comparisons the conditional

and unconditional tests deliver different method rankings. For instance, the DCC-MGARCH

method beats five other methods (that is, it has five successes) when the GW conditional test

rule is adopted, but only four when the GW unconditional test rule is used. This difference is

ultimately due to the superior power of the GW conditional test derived from the dependence

of relative costs on the independent variables.

To gain further insight into the conditional nature of method performance, we report the

results of the regime tests described in subsection 3.2 for a selection of the best forecasting

methods. Specifically, the results in Table 7 provide the results of the regime (individual) and

regime (difference) tests under the assumption that investors trade both futures markets and

have quadratic utility (with γ = 4). The following regimes are considered: low and high volatility

regimes (based on 1/N volatility), low and high (absolute) bond-stock correlation periods (based

on the correlation between bond and stock futures returns), economic contraction and expansion

periods (based on NBER dates), and low and high inflation expectation periods (based on

Thomson Reuters/University of Michigan inflation expectations).25 With the exception of the

economic contraction/expansion regime, the median value is used to determine the distinction

between the low and high regimes.

Insert Table 7 here

The results indicate that the superiority of the hybrid and vector-HAR (econ.) methods

is somewhat dependent on the level of volatility. In the low volatility regime, these methods

24The hybrid and hybrid (zero-corr.) methods exhibit very similar performance. This suggests that the pre-
dictability of the zero-correlation restriction documented in Table 5 does not have value in the current context.
For this reason the subsequent analysis focuses exclusively on the hybrid method.

25The inclusion of the economic activity and inflation expectation regimes is motivated by their documented
relationship with asset return correlations (see, e.g., Yang et al, 2009).
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dominate the other methods considered. However, in the high volatility regime, they are signifi-

cantly better than the MA method, but not significantly better than the shrinkage method. For

instance, the ratio of the hybrid mean forecast imperfection cost to the shrinkage mean forecast

imperfection cost is 0.81 (and significantly different from unity) in the former regime, but 1.04

(and insignificantly different from unity) in the latter regime. Other changes in performance

are noteworthy: the MA method appears useful during low volatility regimes (it is superior to

the shrinkage method), but less so during high volatility regimes (it is not superior to any of

the featured methods), and the superiority of the hybrid and vector-HAR (econ.) methods is

maintained, with only minor variation in their dominance over the non-volatility regimes.

4.6 Summarising method performance

To summarise the above results we provide the ranks of the methods for all time periods

(based on the GW conditional and unconditional test rules), and within the four types of

regimes used previously, under the assumption that investors trade both futures markets and

have quadratic utility (with γ = 4). The ranks are based on the number of successes achieved,

where successes are defined as occasions when the method is selected by the test rule. Results

are given in Table 8.

Insert Table 8 here

A number of features are apparent from this table. The hybrid and vector-HAR (econ.)

methods are dominant though they weaken slightly during high volatility periods. Here combination-

type methods are the best – a result consistent with the literature on optimal weight combining

in the presence of parameter uncertainty (see, e.g., Tu and Zhou, 2011). For the other methods

there is clear variation in the ranks across the regimes. For instance, the MA method is partic-

ularly strong (3rd best) during low volatility periods, but only 7th best during high volatility

periods. By contrast, the DCC-MGARCH method is the 9th and 3th best method during these

regimes, respectively. Results of this type imply that variation in the conclusions of previous

studies may be due to use of different sample periods in which certain events (such as high

volatility episodes) are more prominent. Finally, there appears to be less variation in the ranks

when other regimes are considered.
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4.7 Robustness checks

The robustness of the above results is examined with respect to variation in the assumptions

of the investment framework: viz. the mean return and portfolio weight assumptions.

4.7.1 Asset return assumptions

To examine the robustness of the superiority of the vector-HAR (econ.) method to the

investment framework assumptions, the mean relative costs (and associated HAC standard

errors) are calculated for investors who trade both futures markets, have quadratic utility (with

γ = 4), and µ − Rf ∈ (−0.08, 0.08) (annualised). The contour plots in Figure 3 present the

relative costs of the MA and combination methods with respect to the vector-HAR (econ.)

method.

Insert Figure 3 here

The contour plots exhibit fairly regular non-linearities, with relative costs increasing as the

absolute value of the risk premia increases (unsurprising given the presence of (µ′ − Rf )2 in

(B.11a) in Corollary 1). The plots also indicate that mean relative costs from 20 to 40 basis

points exist for realistic risk premia levels. Moreover, these costs are likely to be significantly

different from zero (in a statistical sense), as the mean relative costs are typically five to ten

times larger than the associated standard errors.

4.7.2 Portfolio weight assumptions

As a second check of the robustness of the results to variation in the investment environment,

we consider the ranks of the methods in the absence of a risk-free asset (with and without

short-sale restrictions). The results in Table 8 indicate that the hybrid and vector-HAR (econ.)

methods remain dominant. However, the ranking of the other methods does change. Most

notably, there is a clear improvement in the relative performance of the RW method. For

instance, under the GW conditional test rule with no portfolio restrictions, it is the worst

method. However, it is the 7th best method (out of 12 methods) under the no risk-free asset

restriction (without short-sale restrictions), and 2nd best (jointly) if we go further and forbid

short-selling.

The success of the RW method under portfolio restrictions can be explained as follows.

The nature of the RW method means that the forecasts produced are highly variable. In
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the absence of portfolio weight restrictions this means that extreme positions in the assets

are required (as evinced by the portfolio turnover in Table 4) leading, in turn, to potentially

outlying performance. By contrast, when restrictions are imposed the effect of these positions

is mitigated. At the limit, when there is no risk-free asset and no short-selling, portfolio weights

must lie between zero and unity (and must sum to unity); consequently, the extreme RWmethod

positions are truncated and there adverse effects limited to reveal the quality of this method.

5 Concluding remarks

A conditional assessment of the economic value of volatility prediction is provided within a

dynamic investment environment. The evidence presented suggests that it is worth investing

in knowledge of volatility dynamics – though this result is highly temporal and depends on

investor risk preferences and economic conditions (including volatility levels); see Henkel et al

(2011) for similar conditional evidence within the asset return predictability literature.26 Of

the methods considered there is overwhelming support for use of forecasts based on hybrid-

type methods and those in which the underling model parameters are estimated by minimising

the economic criterion considered in this paper; however, simple moving average and random

walk-type methods also have value depending on the nature of the sample of data used and the

investment environment adopted.

It is possible to augment the investment environment assumed in this paper in a number of

ways. First, investors with Epstein-Zin preferences could be considered. However, the recursive

nature of the utility function would mean that deriving expressions for the associated forecasting

performance loss function would present a significant challenge that would undoubtedly require

use of simplifying assumptions within a numerical optimisation framework. Second, transaction

costs could be incorporated by changing the objective functions given by (B.7a) and (B.7d), such

that portfolio returns that appear in these equations are adjusted to reflect the cost of changing

portfolio weights. Finally, the analysis assumes that only second moments are predictable.

This could be relaxed by dropping the Gaussian assumption and allowing for time variation in

higher moments (see, e.g., Brooks et al, 2005, for evidence of such time variation). This would

then result in a new set of approximations in Proposition 1; specifically, (B.8) in the proof

of Proposition 1 would replace (B.7b), such that higher conditional moments are considered.

Implementation of these improvements in left for future work.

26Henkel et al (2011) do not consider the economic value of asset return predictability. Rather, they examine
the adjusted R2 statistics associated with predictor equations within economic contraction and expansion periods.
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Appendices

A Realised covariance matrix measures

As we allow for simultaneous positions in more than one market in the analysis, we require
realised covariance matrix measures. Prior to defining these measures, some preliminary nota-
tion is required: let day t have unit length, and let the full grid of all observation points be given
by G = {t0, . . . , tm}. Given this notation, the following realised covariance matrix estimator
can be defined:

Y
(all)
t =

∑
ti∈G

(Pti,+ −Pti)(Pti,+ −Pti)
′, (A.1)

where Pti is an (N × 1) vector of log prices observed during the ith intraday period of day
t, and ti,+ represents the next observation after ti on G. We use 1-second frequency data
to construct this particular realised covariance measure. While the asymptotic distribution
theory for the realised covariance estimator in (A.1) has been established (Barndorff-Nielsen
and Shephard, 2004), it is known to be adversely affected by the microstructure noise observed
at high frequencies.

The non-robustness of the above measure has spawned a number of competing measures.
We follow Zhang et al (2005) and apply their subsampling methodology within a multivariate
context. In particular, we first partition the grid G into J nonoverlapping subgrids G(j), such
that,

G =

J∪
j=1

G(j), (A.2)

where G(j) ∩ G(k) = ∅ when j ̸= k, and the jth subgrid G(j) contains sj equally spaced obser-
vations such that G(j) = {tj−1, tj−1+J , tj−1+2J , . . . , tj−1+sjJ}. Based on these subgrids we can
construct the following (sparse) realised covariance matrix estimator for each grid:

Y
(j)
t =

∑
ti∈G(j)

(Pti,+ −Pti)(Pti,+ −Pti)
′, (A.3)

where if ti ∈ G(j), then ti,+ is the following element in G(j). We follow the extant literature and
construct each subgrid realised covariance measure using five-minute frequency data (K = 300).

To construct a single realised covariance measure based on the J measures in (A.3), the
average is taken over all subgrid measures to give the following realised covariance matrix
measure:

Y
(ave)
t =

1

J

J∑
j=1

Y
(j)
t . (A.4)
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Within a univariate context, Zhang et al (2005) demonstrate that the asymptotic bias and
variance associated with the estimator given by (A.4) are both smaller than those associated
with the measure given by (A.1). However, it remains biased. To correct for this, we consider
a multivariate version of their bias-corrected measure:

Yt = Y
(ave)
t − m

m
Y

(all)
t , (A.5)

where m = (m − J + 1)/J is the (average) number of G(j) subgrid elements. This measure is
henceforth referred to as the averaged subsample realised covariance matrix measure. Given its
demonstrated superiority over competing measures (see the Monte Carlo simulation evidence
in Table 2 of Zhang et al, 2005), only this measure is considered in the analysis.

B Economic measures of forecasting method quality

Methods for calculating the economic value of competing forecasting methods are established
in two stages: the assumptions of the investors are stated, and measures of the comparative
performance of two competing investor strategies are derived.

B.1 The investment framework

Assumption 1. A myopic investor selects an optimal portfolio in order to maximise the condi-
tional expectation of next period utility given by

E(Ut|M(Ft−1)) = E(f(Rpt )|M(Ft−1)), (B.1)

where M(Ft−1) is the method used to generate forecasts of utility, Ft−1 is chosen as the σ-field
generated by a set of conditioning instruments available at time t − 1, Rpt is the gross return
to the investor’s risky asset portfolio, and the function f is a monotonic, quasi-concave, and
globally non-satiated utility function dependent on Rpt such that f: [0,+∞) → R.
Assumption 2. The risky asset portfolio consists of N risky assets, with returns to this portfolio
given by

Rpt = Rf +w′
t(Rt −Rf ), (B.2)

where Rt is an (N×1) vector of gross returns to the risky assets, Rf is the risk-free rate, and wt

is an (N × 1) vector containing the fractions of wealth allocated to the risky assets constructed
using the set of conditional moments of these returns based on a forecasting method (with
1− 1′wt allocated to the risk-free asset).

Assumption 3. Risky asset returns evolve as follows:

Rt = µ+ ϵt, (B.3)

where µ is an (N × 1) vector of risky asset return means, ϵt = Σ
1/2
t νt is an (N × 1) vector of

errors, Σ
1/2
t is the (unique) square root of an (N ×N) covariance matrix Σt, and νt ∼ IN(0, 1).

Remark. The covariance matrix Σt is given by the averaged subsample realised covariance
matrix measure Yt described in Appendix A.

Assumption 4. Two types of (imperfect) investor exist (referred to as investor A and investor
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B), each with a different forecast of the next period return covariance matrix.27 These investors
can be represented in terms of the following conditional distributions:

Rt|M(Fi,t−1) ∼ N(µ,Σi,t|t−1), (B.4)

where µ is the expected return vector, Σi,t|t−1 is the expected covariance matrix of the i-type
investor generated by their forecasting method (M(Fi,t−1)).

Given the above assumptions, we wish to assign an interpretable economic value to the
expectation of the difference in utility levels associated with the two investor strategies. The
extant literature often considers the performance fee required to force the unconditional expec-
tation of utility differences to zero (see, e.g., Fleming et al, 2001, 2003). By contrast, we consider
the conditional expectation of these differences in order to provide a time-specific measure of
economic value. We penalise use of incorrect conditional expectations by conditioning on the
current value of the realised covariance matrix (in addition to the portfolio weights based on
the expected covariance matrix). Thus, we have the following definitions:

Definition 1. The economic cost of a volatility forecasting method is given by the following
conditional expectation:

L(Σt,Σi,t|t−1) = E(f(Rpt )|w∗
i,t(Σt),Σt)− E(f(Rpt )|w∗

i,t(Σi,t|t−1),Σt), (B.5a)

where w∗
i,t(Σt) is the perfect foresight vector of optimal fractions of wealth allocated to the

risky assets, and w∗
i,t(Σi,t|t−1) is the i-type investor allocation constructed using Σi,t|t−1 (based

on M(Fi,t−1)).

Remark. The first term on the RHS of (B.5a) measures the highest available conditional ex-
pectation, while the second expression gives the conditional expectation achieved using Σi,t|t−1.
Conditioning on realised covariance ensures that the above cost is non-negative, is negatively
related to volatility forecast accuracy, and equals zero for perfect-foresight volatility forecasts.

Definition 2. The economic cost of volatility forecasting method B with respect to forecasting
method A is given by the difference in conditional expectations:

∆Lt ≡ L(Σt,Σb,t|t−1)− L(Σt,Σa,t|t−1)

= E(f(Rpt )|w∗
a,t(Σa,t|t−1),Σt︸ ︷︷ ︸

Ga,t

)− E(f(Rpt )|w∗
b,t(Σb,t|t−1),Σt︸ ︷︷ ︸

Gb,t

), (B.5b)

where Fi,t−1 ⊂ Gi,t.

Definition 3. The (maximum) performance fee δ∗t investor A is willing to pay each period to
avoid use of investor B’s volatility forecasts is given by the root of the following equation:

E(f(Rpt − δt)|Ga,t)− E(f(Rpt )|Gb,t) = 0, (B.5c)

where δt ∈ R.

B.2 A solution under HARA utility

Expressions for the above loss functions are available under a general class of utility func-
tions.

27As it is widely accepted that accurate forecasts of expected returns are particularly difficult to obtain (Merton,
1980), we surrender all knowledge of expected returns to the most basic level. In particular, we assume that
expected (and mean) returns to the risky assets are constant over time.
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Assumption 5. The i-type investor employs the hyperbolic absolute risk aversion (HARA) class
of utility functions given by

fh(R
p
t ) =

γ1
1− γ1

(
γ2
γ1
Rpt + γ3

)1−γ1
, (B.6)

where γ2 > 0 and γ2R
p
t /γ1 + γ3 > 0.

Remark. This class of utility functions contains a number of important special cases: isoelastic
(power) utility (γ1 > 0, γ2 = γ1, γ3 = 0, with the Arrow-Pratt coefficient of relative risk
aversion given by γ1), logarithmic utility (γ1 = 1, γ2 = 1, γ3 = 0), and negative exponential
utility (γ1 = ∞, γ2 > 0, γ3 = 1, with the Arrow-Pratt coefficient of constant risk aversion given
by γ2).

Closed-form expressions are unlikely to be available given the complex nature of the condi-
tional expectations involved. Therefore, we propose the following numerical procedure.

Proposition 1. Under assumptions 1 to 5, and Definition 2, the economic cost of forecast dif-
ferences to investor B (with respect to investor A) is given by the following non-linear equation:

∆Lh,t = E(fh(R
p
t )|Ga,t)− E(fh(R

p
t )|Gb,t), (B.7a)

where

E(fh(x)|Gi,t) ≈ fh(E(x|Gi,t)) +
K∑
k=1

1

2k!
f
(2k)
h (E(x|Gi,t)) var(x|Gi,t)k

k∏
j=1

(2j − 1), (B.7b)

and f
(2k)
h (E(x|Gi,t)) is the 2kth derivative of fh(x) with respect to x evaluated at E(x|Gi,t) such

that

f
(2k)
h (E(x|Gi,t)) =

(
γ2
γ1

)2k ( γ1
1− γ1

)(
γ2
γ1

E(x|Gi,t) + γ3

)1−γ1−2k 2k−1∏
j=0

(1− γ1 − j), (B.7c)

with x denoting either Rpt or Rpt − δt. In turn, the optimal HARA portfolio weights embedded
in Gi,t are given by

w∗
i,t|t−1 = argmin

wi,t|t−1∈(wl,wu)
−E(fh(R

p
t )|Fi,t−1), (B.7d)

and wl and wu are the user-specified lower and upper bounds on portfolio weights, respectively.
The solutions to (B.7d) is obtained by numerical methods.

Proof. Taking the conditional expectation of a Taylor series expansion of the HARA utility
function in (B.6) about the conditional mean of x we obtain

E(fh(x)|Gi,t) =
∞∑
k=0

1

k!
f
(k)
h (E(x|Gi,t)) E((x− E(x|Gi,t))k|Gi,t). (B.8)

Truncating to a 2Kth-order series expansion, and invoking the conditional Gaussian assumption
(see Assumption 4), leads to (B.7b) such that it involves nonlinear transformations of the first
two conditional moments only.28

28We use the BFGS optimisation method with STEPBT line search programmed via the Constrained Opti-
mization application in GAUSS 11.0 (64-bit version) as our numerical method for portfolio weights under HARA
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B.3 A closed-form expression under quadratic utility

If we make the following quadratic (mean-variance) utility assumption, then a closed-form
expression is available.

Assumption 6. The i-type investor maximises the conditional expectation of quadratic utility
given by

E(fq(R
p
t )|Gi,t) = E(Rpt |Gi,t)−

γ

2
var(Rpt |Gi,t), (B.9)

where γ is the coefficient of relative risk aversion.

Proposition 2. Under Assumptions 1 to 4, and 6, and Definition 2, the economic cost of
forecast differences to investor B (with respect to investor A) is given by

γ∆Lq,t = (ωa,t|t−1 − ωb,t|t−1)
′(µ−Rf )− 1

2
tr
(
(ωa,t|t−1 − ωb,t|t−1)(ωa,t|t−1 + ωb,t|t−1)

′Σt

)
,

(B.10a)

where
ωi,t|t−1 = Σ−1

i,t|t−1(µ−Rf ), (B.10b)

and tr(X) is the trace of the X.

Proof. Replacing the conditional expectations in (B.5b) with those in (B.9), using the expres-
sions in (B.2), (B.3), and (B.4), and rearranging, eventually leads to (B.10a) and (B.10b).

It is possible to go further and express the above values in terms of a familiar statistical loss
function via the following additional assumption.

Assumption 7. Investor A possesses perfect-foresight covariance expectations (referred to as the
perfect investor), while investor B remains imperfect in this regard (referred to as the imperfect
investor).

Corollary 1. Under Assumptions 1 to 4, 6 and 7, and Definition 1, the cost of forecast imper-
fection (Lq(Σt,Σt|t−1) ∈ R+) can be decomposed as follows:

γLq(Σt,Σt|t−1) =
1

2

(
1′((Σd

t )
1/2(Σd

t|t−1)
−1 − (Σd

t )
−1)2(µ−Rf )2

)
+ Ct, (B.11a)

where Σd
t = dg(Σt), Σ

d
t|t−1 = dg(Σt|t−1), Σt (Σt|t−1) is the expected covariance matrix of the

perfect (imperfect) investor, and dg(X) is a diagonal matrix containing the diagonal elements
of X. The term Ct ∈ R represents the sum of all covariance effects such that it equals zero in
the presence of zero-correlated asset returns (and zero-covariance forecasts), and is given by

Ct = At(µ−Rf )− 1

2

 4∑
j=1

tr(Bj,tΣ
c
t) +

4∑
j=2

tr(Bj,tΣ
d
t )

 , (B.11b)

where At = (ωct−ωct|t−1)
′, B1,t = (ωdt −ωdt|t−1)(ω

d
t +ωdt|t−1)

′, B2,t = (ωct−ωct|t−1)(ω
d
t +ωdt|t−1)

′,

B3,t = (ωdt − ωdt|t−1)(ω
c
t + ωct|t−1)

′, B4,t = (ωct − ωct|t−1)(ω
c
t + ωct|t−1)

′, ωct = −(Σd
t )

−1(IN +

utility with a 10th-order Taylor approximation imposed and no bounds placed on the admissible weight values.
The choice of K has been investigated within an unconditional context. Levy and Markowitz (1979) demonstrate
the quality of second-order Taylor series approximations of standard utility functions. However, higher order
approximations may be more appropriate particularly when the series converge, though this choice is ultimately
an empirical issue (Hlawitschka, 1994).
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(Σc
t)(Σ

d
t )

−1)−1(Σc
t)(Σ

d
t )

−1(µ−Rf ), ωdt = (Σd
t )

−1(µ−Rf ), ωct|t−1 = −(Σd
t|t−1)

−1(IN+(Σc
t|t−1)(Σ

d
t|t−1)

−1)−1

(Σc
t|t−1)(Σ

d
t|t−1)

−1(µ−Rf ), ωdt|t−1 = (Σd
t|t−1)

−1(µ−Rf ), Σc
t = Σt−Σd

t , Σ
c
t|t−1 = Σt|t−1−Σd

t|t−1,
and IN is an N -dimension identity matrix.

Proof. The result follows by substituting (B.10b) into (B.10a), decomposing ωt and ωi,t|t−1

into variance and covariance effects, and rearranging. The statement that Ct equals zero for
zero-correlated asset returns follows from the fact that At, B2,t, B3,t, B4,t, and tr(Bj,tΣ

c
t) in

(B.11b) all equal zero under such conditions.

B.4 Relations to existing measures of performance

The results established in this appendix are related to previously considered measures of
performance as described below.

B.4.1 Performance fees

The relationship between relative costs and performance fees is formalised in the following
proposition.

Proposition 3. Under Assumptions 1 to 4, and 6, and Definition 3, the economic cost of fore-
cast differences to investor B (with respect to investor A) is equal to the (maximum) performance
fee investor A is willing to pay each period to avoid use of investor B’s volatility forecasts, that
is, ∆Lq,t = δ∗q,t.

Proof. Under (B.9), we have

E(Rpt − δq,t|Ga,t)−
γ

2
var(Rpt − δq,t|Ga,t)−

(
E(Rpt |Gb,t)−

γ

2
var(Rpt |Gb,t)

)
= 0. (B.12a)

Solving for δq,t gives

δ∗q,t = E(Rpt |Ga,t)−
γ

2
var(Rpt |Ga,t)︸ ︷︷ ︸

E(fq(R
p
t )|Ga,t)

−
(
E(Rpt |Gb,t)−

γ

2
var(Rpt |Gb,t)︸ ︷︷ ︸

E(fq(R
p
t )|Gb,t)

)
, (B.12b)

which, in turn, equals ∆Lq,t.

Performance fees have been considered previously; see, e.g., Fleming et al (2001, 2003).
These are traditionally defined in terms of the unconditional expectation of utility differences,
and deliver a single measure for the entire sample period. By contrast, we consider the con-
ditional expectation of these differences such that a time-specific performance measure can be
obtained.

B.4.2 Loss functions

Imperfection costs (albeit under a restricted investment strategy) can be considered in terms
of an existing loss function as formalised in the following proposition.

Proposition 4. For a single asset portfolio (or for each risky asset within a zero-correlated
portfolio), the loss function in Corollary 1 is robust to noise in the realised variance measure
and is a member of the Homogeneous Robust (HR) loss function family proposed by Patton
(2011) with a degree of homogeneity equal to −1.
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Proof. For a single asset portfolio (or for each risky asset within a zero-correlated portfolio),
the loss function in Corollary 1 simplifies to

Lq(σt, ht) =

(
σ2t − ht
σtht

)2

, (B.13)

where σ2t (ht) is the volatility forecast made by the perfect (imperfect) investor, and Lq: R2
+ →

R+. The HR loss function proposed by Patton (2011) is given by

Lr(σt, ht; b) =


1

(b+1)(b+2)(σ
2b+4
t − hb+2

t )− 1
b+1h

b+1
t (σ2t − ht), if b /∈ {−1,−2},

ht − σ2t + σ2t ln
σ2
t
ht
, if b = −1,

σ2
t
ht

− ln
σ2
t
ht

− 1, if b = −2,

(B.14)

where b governs the shape of the loss function (b < 0 indicates heavier penalisation of under-
prediction, b = 0 corresponds to the MSE loss function, and b = −2 corresponds to the QLIKE
loss function, with degree of homogeneity given by b+ 2), and Lr: R2

+ → R+. If we set b = −3
in (B.14) we obtain

Lr(σt, ht;−3) =
1

2

(
σ2t − ht
σtht

)2

. (B.15)

Thus, as Lq(σt, ht) ∝ Lr(σt, ht;−3), it follows that the loss function in Corollary 1 is robust
with degree of homogeneity equal to −1.

The above loss function is asymmetric with respect to forecast errors (σ2t − ht). Under-
prediction of volatility (σ2t > ht) is more heavily penalised than over-prediction (σ2t < ht); cf.
the MSE function – a result also theoretically established by West et al (1993) within a utility
framework. The reasons for this asymmetry stem from the fact that it is based on investors
maximising per period conditional utility in which under-prediction (hence an excessively high
risky asset portfolio weight) is more heavily penalised in the utility function. In this sense, the
proposed loss function provides a formal rationale for the commonly advised use of asymmetric
loss functions when using financial data.
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Table 1 – Summary statistics

Statistic

Volatility Measure Mean SD ρ̂1 ρ̂5

Panel A: Full Sample (1983-2011)

Realised Variance (Bond) 7.137 2.823 0.578 0.493
Realised Variance (Stock) 11.861 7.497 0.741 0.571
Realised Correlation 0.034 0.405 0.894 0.846

Panel B: Sub-sample 1 (1983-1997)

Realised Variance (Bond) 7.277 2.832 0.623 0.506
Realised Variance (Stock) 10.279 6.614 0.634 0.379
Realised Correlation 0.347 0.211 0.646 0.495

Panel C: Sub-sample 2 (1998-2011)

Realised Variance (Bond) 6.985 2.807 0.527 0.476
Realised Variance (Stock) 13.567 8.003 0.798 0.674
Realised Correlation −0.302 0.273 0.743 0.618

Notes: This table contains summary statistics (including first and fifth-order autocorrelations, ρ̂1 and ρ̂5, respectively)
associated with realised variance in the 30-year Treasury bond futures market, realised variance in the S&P 500 index
futures market, and realised correlation associated with these markets. The realised variance and covariance measures are
constructed using the averaged subsample approach of Zhang et al (2005). The variance measures are given in square root
form and are in annualised percentage terms. The sample period used is January 1, 1983, to December 31, 2011.
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Table 2 – Statistical measures of forecasting method quality

Loss Function Parameter

Method Measure b = 0 b = −1 b = −2 b = −3

RW Realised Variance (Bond) 0.071 0.056 0.238 1.947
MEAN 0.046 0.071 0.281 1.515
MA 0.040 0.042 0.153 0.919
VARMA (stat.) 0.041 0.042 0.149 0.894∗

VARMAX (stat.) 0.041 0.042 0.149∗ 0.895∗

Vector-HAR (stat.) 0.042 0.041 0.146∗∗ 0.876∗∗

VARMA (econ.) 0.041 0.040∗ 0.143∗∗ 0.865∗∗

VARMAX (econ.) 0.041 0.040∗ 0.144∗∗ 0.866∗∗

Vector-HAR (econ.) 0.041 0.040∗ 0.144∗∗ 0.868∗∗

RM1994 0.040 0.045 0.172 1.100
RM2006 0.040 0.043 0.162 0.992
EXP 0.040 0.044 0.172 1.116
DCC-MGARCH 0.039 0.043 0.162 0.976
Combination (RV) 0.040 0.041 0.146∗∗ 0.882∗∗

Combination (CV) 0.039 0.043 0.164 1.024
Combination 0.038 0.039∗∗ 0.145∗∗ 0.875∗∗

RW Realised Variance (Stock) 0.947 0.186∗ 0.212 0.815
MEAN 1.151 0.516 0.543 0.994
MA 0.739 0.211 0.209 0.505
VARMA (stat.) 0.675 0.194∗ 0.225 0.591
VARMAX (stat.) 0.668 0.200 0.239 0.630
Vector-HAR (stat.) 0.680∗ 0.200 0.231 0.603
VARMA (econ.) 0.646∗ 0.156∗∗ 0.154∗∗ 0.397∗∗

VARMAX (econ.) 0.645∗ 0.156∗∗ 0.154∗∗ 0.397∗∗

Vector-HAR (econ.) 0.645∗ 0.156∗∗ 0.153∗∗ 0.394∗∗

RM1994 0.718 0.215 0.217 0.520
RM2006 0.717 0.214 0.212 0.499
EXP 0.748 0.226 0.228 0.543
DCC-MGARCH 0.684 0.204 0.210 0.513
Combination (RV) 0.670∗ 0.191∗∗ 0.220 0.581
Combination (CV) 0.711 0.210 0.209 0.499
Combination 0.669∗ 0.184∗∗ 0.182∗∗ 0.456∗∗

RW Realised Covariance 0.027
MEAN 0.043
MA 0.022
VARMA (stat.) 0.021
VARMAX (stat.) 0.021
Vector-HAR (stat.) 0.019∗∗

VARMA (stat.) 0.019∗∗

VARMAX (stat.) 0.019∗∗

Vector-HAR (stat.) 0.019∗∗

RM1994 0.023
RM2006 0.022
EXP 0.022
DCC-MGARCH 0.024
Combination (RV) 0.020∗∗

Combination (CV) 0.022
Combination 0.020∗∗

Notes: This table contains the mean values of the Patton (2011) HR loss function: b governs the shape of the loss function,
with b < 0 indicating heavier penalisation of under-prediction, b = 0 corresponds to the MSE loss function, b = −2
corresponds to QLIKE loss function, and b = −3 corresponds to a scaled version of the utility-based loss function derived
in Appendix B. The null hypothesis that the evaluation measure associated with the MA method equals the evaluation
measure associated with each other method is tested using a Wald test based on Newey-West HAC standard errors.
Rejections at the 5% and 1% level are indicated by superscripts ∗ and ∗∗, respectively.
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Table 3 – Economic measures of forecasting method quality

Utility Function

Method Portfolio LN Q(1) Q(2) Q(4) Q(8)

RW Bond 2.263 2.250 1.125 0.563 0.281
MEAN 1.752 1.752 0.876 0.438 0.219
MA 1.063 1.062 0.531 0.266 0.133
VARMA (stat.) 1.034∗ 1.034∗ 0.517∗ 0.258∗ 0.129∗

VARMAX (stat.) 1.035∗ 1.035∗ 0.517∗ 0.259∗ 0.129∗

Vector-HAR (stat.) 1.012∗∗ 1.012∗∗ 0.506∗∗ 0.253∗∗ 0.127∗∗

VARMA (econ.) 1.000∗∗ 1.000∗∗ 0.500∗∗ 0.250∗∗ 0.125∗∗

VARMAX (econ.) 1.001∗∗ 1.001∗∗ 0.501∗∗ 0.250∗∗ 0.125∗∗

Vector-HAR (econ.) 1.003∗∗ 1.003∗∗ 0.502∗∗ 0.251∗∗ 0.125∗∗

RM1994 1.273 1.272 0.636 0.318 0.159
RM2006 1.147 1.146 0.573 0.287 0.143
EXP 1.292 1.290 0.645 0.322 0.161
DCC-MGARCH 1.129 1.129 0.564 0.282 0.141
Combination (RV) 1.019∗∗ 1.019∗∗ 0.510∗∗ 0.255∗∗ 0.127∗∗

Combination (CV) 1.185 1.184 0.592 0.296 0.148
Combination 1.012∗∗ 1.012∗∗ 0.506∗∗ 0.253∗∗ 0.126∗∗

Shrinkage (RV) 1.019∗∗ 1.019∗∗ 0.509∗∗ 0.255∗∗ 0.127∗∗

Shrinkage (CV) 1.190 1.189 0.595 0.297 0.149
Shrinkage 1.012∗∗ 1.012∗∗ 0.506∗∗ 0.253∗∗ 0.126∗∗

RW Stock 10.140 9.514 4.931 2.466 1.233
MEAN 12.036 12.018 6.014 3.007 1.503
MA 6.155 6.095 3.052 1.526 0.763
VARMA (stat.) 7.127 7.141 3.575 1.788 0.894
VARMAX (stat.) 7.623 7.618 3.814 1.907 0.953
Vector-HAR (stat.) 7.268 7.283 3.646 1.823 0.912
VARMA (econ.) 4.804∗∗ 4.799∗∗ 2.404∗∗ 1.202∗∗ 0.601∗∗

VARMAX (econ.) 4.795∗∗ 4.790∗∗ 2.400∗∗ 1.200∗∗ 0.600∗∗

Vector-HAR (econ.) 4.766∗∗ 4.761∗∗ 2.385∗∗ 1.193∗∗ 0.596∗∗

RM1994 6.322 6.288 3.149 1.574 0.787
RM2006 6.043 6.025 3.017 1.509 0.754
EXP 6.606 6.564 3.287 1.643 0.822
DCC-MGARCH 6.195 6.198 3.104 1.552 0.776
Combination (RV) 7.003 7.017 3.513 1.757 0.878
Combination (CV) 6.052 6.029 3.019 1.510 0.755
Combination 5.502∗∗ 5.506∗∗ 2.758∗∗ 1.379∗∗ 0.689∗∗

Shrinkage (RV) 6.984 6.998 3.504 1.752 0.876
Shrinkage (CV) 6.065 6.041 3.025 1.513 0.756
Shrinkage 5.441∗∗ 5.445∗∗ 2.727∗∗ 1.364∗∗ 0.682∗∗

RW Bond/Stock 15.627 14.727 7.540 3.770 1.885
MEAN 16.257 16.265 8.137 4.069 2.034
MA 8.608 8.550 4.280 2.140 1.070
VARMA (stat.) 10.203 10.223 5.116 2.558 1.279
VARMAX (stat.) 12.780 12.662 6.336 3.168 1.584
Vector-HAR (stat.) 10.518 10.526 5.268 2.634 1.317
VARMA (econ.) 7.196∗∗ 7.192∗∗ 3.601∗∗ 1.800∗∗ 0.900∗∗

VARMAX (econ.) 7.180∗∗ 7.176∗∗ 3.593∗∗ 1.797∗∗ 0.898∗∗

Vector-HAR (econ.) 7.088∗∗ 7.084∗∗ 3.547∗∗ 1.774∗∗ 0.887∗∗

RM1994 11.204 11.115 5.562 2.781 1.391
RM2006 9.985 9.942 4.976 2.488 1.244
EXP 11.469 11.365 5.687 2.844 1.422
DCC-MGARCH 9.370 9.383 4.696 2.348 1.174
Combination (RV) 9.982 10.002 5.006 2.503 1.251
Combination (CV) 9.710 9.668 4.839 2.420 1.210
Combination 8.225 8.235 4.122 2.061 1.031
Shrinkage (RV) 9.857 9.876 4.943 2.472 1.236
Shrinkage (CV) 10.306 10.247 5.129 2.564 1.282
Shrinkage 7.975∗∗ 7.982∗∗ 3.996∗∗ 1.998∗∗ 0.999∗∗

Notes: This table contains the mean annualised costs of forecast imperfection. These costs assume that investors hold one
or two risky asset portfolios and have either logarithmic (LN) or quadratic utility (Q(γ)). The null hypothesis that the
mean costs associated with the MA method equals the mean costs associated with each other method is tested using a
Wald test based on Newey-West HAC standard errors. Rejections at the 5% and 1% level are indicated by superscripts ∗
and ∗∗, respectively.
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Table 4 – Portfolio turnover

Utility Function

Model Position LN Q(1) Q(2) Q(4) Q(8)

RW Bond 3.574 3.588 1.794 0.897 0.448
MEAN 0.001∗∗ 0.001∗∗ 0.000∗∗ 0.000∗∗ 0.000∗∗

MA 0.208 0.208 0.104 0.052 0.026
VARMA (stat.) 0.676 0.677 0.339 0.169 0.085
VARMAX (stat.) 0.822 0.824 0.412 0.206 0.103
Vector-HAR (stat.) 0.846 0.848 0.424 0.212 0.106
VARMA (econ.) 0.771 0.773 0.386 0.193 0.097
VARMAX (econ.) 0.762 0.764 0.382 0.191 0.096
Vector-HAR (econ.) 0.772 0.774 0.387 0.193 0.097
RM1994 0.565 0.567 0.284 0.142 0.071
RM2006 0.645 0.647 0.323 0.162 0.081
EXP 0.503 0.504 0.252 0.126 0.063
DCC-MGARCH 0.255 0.255 0.128 0.064 0.032
Combination (RV) 0.692 0.693 0.347 0.173 0.087
Combination (CV) 0.515 0.517 0.258 0.129 0.065
Combination 0.584 0.585 0.293 0.146 0.073
Shrinkage (RV) 0.672 0.673 0.336 0.168 0.084
Shrinkage (CV) 0.544 0.545 0.273 0.136 0.068
Shrinkage 0.575 0.576 0.288 0.144 0.072

RW Stock 3.542 3.567 1.793 0.896 0.448
MEAN 0.001∗∗ 0.001∗∗ 0.000∗∗ 0.000∗∗ 0.000∗∗

MA 0.205 0.206 0.103 0.051 0.026
VARMA (stat.) 0.278 0.279 0.139 0.070 0.035
VARMAX (stat.) 0.438 0.440 0.220 0.110 0.055
Vector-HAR (stat.) 0.311 0.312 0.156 0.078 0.039
VARMA (econ.) 0.868 0.872 0.436 0.218 0.109
VARMAX (econ.) 0.859 0.862 0.431 0.216 0.108
Vector-HAR (econ.) 0.965 0.969 0.484 0.242 0.121
RM1994 0.483 0.486 0.243 0.121 0.061
RM2006 0.535 0.538 0.269 0.134 0.067
EXP 0.440 0.442 0.221 0.111 0.055
DCC-MGARCH 0.497 0.498 0.249 0.125 0.062
Combination (RV) 0.292 0.292 0.146 0.073 0.037
Combination (CV) 0.500 0.502 0.251 0.125 0.063
Combination 0.525 0.526 0.263 0.132 0.066
Shrinkage (RV) 0.293 0.294 0.147 0.074 0.037
Shrinkage (CV) 0.494 0.496 0.248 0.124 0.062
Shrinkage 0.507 0.509 0.254 0.127 0.064

RW Risk-free 5.729 5.762 2.891 1.445 0.723
MEAN 0.001∗∗ 0.001∗∗ 0.000∗∗ 0.000∗∗ 0.000∗∗

MA 0.314 0.315 0.158 0.079 0.039
VARMA 0.784 0.786 0.393 0.196 0.098
VARMAX 0.834 0.836 0.418 0.209 0.105
Vector-HAR 1.045 1.048 0.524 0.262 0.131
VARMA (econ.) 1.217 1.222 0.611 0.305 0.153
VARMAX (econ.) 1.205 1.209 0.605 0.302 0.151
Vector-HAR (econ.) 1.305 1.310 0.655 0.328 0.164
RM1994 0.738 0.741 0.370 0.185 0.093
RM2006 0.837 0.840 0.420 0.210 0.105
EXP 0.650 0.652 0.326 0.163 0.082
DCC-MGARCH 0.511 0.513 0.256 0.128 0.064
Combination (RV) 0.829 0.831 0.415 0.208 0.104
Combination (CV) 0.702 0.705 0.353 0.176 0.088
Combination 0.826 0.828 0.414 0.207 0.104
Shrinkage (RV) 0.802 0.804 0.402 0.201 0.100
Shrinkage (CV) 0.722 0.725 0.363 0.181 0.091
Shrinkage 0.840 0.842 0.421 0.210 0.105

Notes: This table contains portfolio turnover defined as the mean absolute change in portfolio weights associated with
each market. We assume that investors trade both futures markets and have either logarithmic (LN) or quadratic utility
(Q(γ)). The null hypothesis that the turnover associated with the MA method equals the turnover associated with each
other method is tested using a Wald test based on Newey-West HAC standard errors. Rejections at the 5% and 1% level
are indicated by superscripts ∗ and ∗∗, respectively.
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Table 5 – The determinants of forecasting method quality

Method Standardised Regression Coefficient/Fit

A B ψ̂0 ψ̂1 ψ̂2 ψ̂3 R
2

Panel A: Unrestricted Method Comparisons

MEAN RW −0.299 −0.054∗∗ −0.090∗∗ 0.031∗ 1.212
MA 1.630∗∗ −0.041∗∗ −0.045∗ 0.025∗∗ 0.431
VARMA (econ.) 1.970∗∗ −0.050∗∗ −0.043∗ 0.026∗∗ 0.517
VARMAX (econ.) 1.973∗∗ −0.049∗∗ −0.043∗ 0.026∗∗ 0.509
Vector-HAR (econ.) 1.997∗∗ −0.047∗∗ −0.043∗ 0.027∗∗ 0.488
RM1994 0.989∗∗ 0.001 −0.061∗ 0.004 0.339
RM2006 1.282∗∗ −0.025 −0.057∗ 0.014 0.392
EXP 0.926∗∗ 0.009 −0.064∗ 0.001 0.384
DCC-MGARCH 1.422∗∗ −0.055∗∗ −0.036∗ 0.023∗∗ 0.483
Combination 1.708∗∗ −0.055∗∗ −0.041∗ 0.026∗∗ 0.548
Shrinkage 1.773∗∗ −0.054∗∗ −0.041∗ 0.027∗∗ 0.534

MA MEAN 1.929∗∗ 0.236∗∗ 0.077∗ −0.019 6.958
VARMA (econ.) 2.268∗∗ 0.362∗∗ 0.025 −0.042 14.260
VARMAX (econ.) 2.272∗∗ 0.357∗∗ 0.020 −0.045 13.821
Vector-HAR (econ.) 2.295∗∗ 0.363∗∗ 0.025 −0.041 14.343
RM1994 1.288∗∗ 0.361∗∗ 0.025 −0.046 13.866
RM2006 1.581∗∗ 0.351∗∗ 0.023 −0.044 13.114
EXP 1.225∗∗ 0.377∗∗ 0.024 −0.045 14.923
DCC-MGARCH 1.721∗∗ 0.425∗∗ 0.000 −0.062 18.975
Combination 2.007∗∗ 0.454∗∗ −0.007 −0.053 21.004
Shrinkage 2.072∗∗ 0.430∗∗ 0.013 −0.045 19.492

VARMA (econ.) MA 0.340∗∗ 0.074∗ −0.006 −0.007 0.492
VARMAX (econ.) 0.343∗∗ 0.072∗ −0.007 −0.010 0.470
Vector-HAR (econ.) 0.367∗∗ 0.079 −0.007 −0.006 0.560
RM1994 −0.641∗∗ 0.303∗ −0.038 −0.047∗ 9.658
RM2006 −0.348∗∗ 0.160∗ −0.048∗ −0.037∗ 2.796
EXP −0.704∗∗ 0.337∗ −0.033 −0.046∗ 11.934
DCC-MGARCH −0.208∗∗ 0.108∗∗ 0.002 −0.015 1.155
Combination 0.078 0.087∗ −0.006 −0.006 0.694
Shrinkage 0.143∗∗ 0.086∗ −0.002 −0.001 0.688

VARMAX (econ.) VARMA (econ.) 0.004 −0.005 0.001 −0.030 0.042
Vector-HAR (econ.) 0.027∗∗ −0.030 0.004 0.014 0.055
RM1994 −0.981∗∗ 0.407∗∗ 0.021 −0.020 16.424
RM2006 −0.687∗∗ 0.327∗∗ −0.005 −0.018 10.748
EXP −1.043∗∗ 0.428∗∗ 0.028 −0.018 18.013
DCC-MGARCH −0.548∗∗ 0.140∗∗ 0.020 −0.014 2.032
Combination −0.261∗∗ 0.136∗∗ 0.004 0.004 1.792
Shrinkage −0.197∗∗ 0.091∗ 0.014 0.014 0.801

Vector-HAR (econ.) VARMAX (econ.) 0.023∗ −0.032 0.000 0.024 0.105
RM1994 −0.985∗∗ 0.402∗∗ 0.027 −0.017 15.890
RM2006 −0.691∗∗ 0.319∗∗ 0.001 −0.014 10.157
EXP −1.047∗∗ 0.423∗∗ 0.033 −0.015 17.460
DCC-MGARCH −0.552∗∗ 0.138∗∗ 0.025∗ −0.009 1.969
Combination −0.265∗∗ 0.121∗∗ 0.008 0.009 1.408
Shrinkage −0.201∗∗ 0.081∗ 0.016 0.020 0.636

RM1994 Vector-HAR (econ.) −1.008∗∗ 0.428∗∗ 0.026 −0.019 18.117
RM2006 −0.714∗∗ 0.340∗∗ −0.003 −0.019 11.640
EXP −1.070∗∗ 0.450∗∗ 0.033 −0.017 19.818
DCC-MGARCH −0.575∗∗ 0.149∗∗ 0.019 −0.018 2.327
Combination −0.288∗∗ 0.147∗∗ 0.004 −0.001 2.098
Shrinkage −0.224∗∗ 0.103∗∗ 0.015 0.010 1.023

RM2006 RM1994 0.293∗∗ 0.443∗∗ −0.041∗ 0.022 19.430
EXP −0.063∗∗ 0.331∗∗ 0.001 −0.019 10.976
DCC-MGARCH 0.433∗∗ 0.398∗∗ −0.018 0.014 15.611
Combination 0.720∗∗ 0.394∗∗ −0.014 0.024 15.448
Shrinkage 0.784∗∗ 0.415∗∗ −0.012 0.026 17.230

EXP RM2006 −0.356∗∗ 0.435∗∗ 0.042 −0.021 18.562
DCC-MGARCH 0.140∗ 0.335∗∗ 0.008 0.009 11.301
Combination 0.426∗∗ 0.312∗∗ 0.014 0.023 9.889
Shrinkage 0.491∗∗ 0.333∗∗ 0.019 0.027 11.362
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Table 5 – The determinants of forecasting method quality (cont.)

Method Standardised Regression Coefficient/Fit

A B ψ̂0 ψ̂1 ψ̂2 ψ̂3 R
2

DCC-MGARCH EXP 0.496∗∗ 0.423∗∗ −0.026 0.012 17.508
Combination 0.782∗∗ 0.417∗∗ −0.021 0.022 17.206
Shrinkage 0.847∗∗ 0.440∗∗ −0.020 0.023 19.188

Combination DCC-MGARCH 0.287∗∗ 0.269∗∗ −0.008 0.033 7.519
Shrinkage 0.351∗∗ 0.242∗∗ 0.006 0.046∗ 6.077

Shrinkage Combination 0.064∗∗ 0.224∗∗ 0.036 0.027 5.035

Panel B: Restricted Method Comparisons (zero-correlation forecasts imposed)

RW zero-corr. imposed 0.603∗∗ −0.011 0.002 0.060∗∗ 0.309
MEAN −0.149∗∗ 0.327∗∗ −0.021 −0.023 10.245
MA 0.650∗∗ 0.164∗∗ −0.022 0.035 2.999
VARMA (econ.) 0.638∗∗ 0.105∗∗ −0.030∗ 0.037∗ 1.428
VARMAX (econ.) 0.636∗∗ 0.117∗∗ −0.032∗ 0.033∗ 1.671
Vector-HAR (econ.) 0.658∗∗ 0.101∗∗ −0.031∗ 0.034 1.330
RM1994 0.141∗ 0.388∗∗ −0.033 −0.026 15.495
RM2006 0.323∗∗ 0.284∗∗ −0.053 −0.009 8.681
EXP 0.184∗∗ 0.419∗∗ −0.034 −0.026 18.100
DCC-MGARCH 0.348∗∗ 0.231∗∗ −0.032 0.020 5.487
Combination 0.469∗∗ 0.206∗∗ −0.046 0.030 4.896
Shrinkage 0.523∗∗ 0.169∗∗ −0.037 0.040 3.473

Notes: This table contains the estimated standardised coefficients (and adjusted R2 statistics) associated with the
regression given by (13). Specifically, regressions of relative cost (B with respect to A in annualised percentage terms)
upon a constant (with coefficient ψ0), lagged relative costs (ψ1), lagged 1/N volatility (ψ2), and lagged ADS economic
activity (ψ3). The relative costs assume that investors trade both futures markets and have quadratic utility (Q(4)).
The null hypothesis that each coefficient equals zero is tested using a HAC-based Wald test. Rejections at the 5% and
1% level are indicated by superscripts ∗ and ∗∗, respectively.
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Table 8 – Forecasting method ranks

All Vol. Corr. Act. Inf.

Method T1 T2 R1 R2 R1 R2 R1 R2 R1 R2

Panel A: Unrestricted portfolio

Hybrid 1 1 1 3 1 1 1 1 1 1
Vector-HAR (econ.) 2 1 1 3 1 1 1 1 1 1
Shrinkage 3 3 7 1 3 3 3 3 3 3
Combination 4 4 8 1 5 4 4 4 4 4
MA 5 4 3 7 3 5 4 4 5 5
DCC-MGARCH 6 6 9 3 7 5 7 6 7 6
RM2006 7 7 5 8 6 7 7 7 6 7
Vector-HAR (stat.) 8 9 10 3 10 7 4 9 7 9
RM1994 9 8 5 9 7 9 7 8 7 8
EXP 10 9 4 11 7 10 7 9 7 9
MEAN 11 11 12 9 11 10 7 11 11 11
RW 12 11 10 11 11 10 7 11 11 11

Panel B: Restricted portfolio (no risk-free asset)

Hybrid 1 1 1 1 1 1 1 1 1 1
Vector-HAR (econ.) 1 1 1 1 1 1 1 1 1 1
Combination 3 3 7 1 3 3 4 3 3 3
Shrinkage 3 3 7 1 3 3 4 3 3 3
MA 5 5 3 7 5 5 6 5 5 5
DCC-MGARCH 6 6 9 6 7 6 6 6 8 5
RM2006 7 7 3 8 5 6 6 7 6 5
RW 7 9 9 9 9 6 6 9 8 8
Vector-HAR (stat.) 9 9 11 1 9 6 3 9 8 8
RM1994 10 8 5 9 8 6 6 8 6 8
EXP 11 9 5 11 9 11 6 11 8 11
MEAN 12 12 12 11 12 11 6 11 12 11

Panel C: Restricted portfolio (no risk-free asset and no short-sales)

Hybrid 1 1 1 1 1 1 1 1 1 1
Vector-HAR (econ.) 2 1 2 2 2 1 1 1 2 1
RW 2 3 3 3 3 3 3 3 5 3
Combination 4 3 3 3 3 3 5 3 3 3
Shrinkage 4 3 3 3 3 3 5 3 4 3
Vector-HAR (stat.) 6 6 11 3 6 6 3 7 6 6
MA 7 6 9 7 6 8 7 7 9 6
RM2006 8 9 9 7 6 8 7 7 7 6
RM1994 9 6 7 7 6 7 7 6 7 6
EXP 9 9 7 10 6 8 7 7 9 6
DCC-MGARCH 11 9 6 10 6 8 7 7 9 6
MEAN 12 12 12 12 12 12 7 12 12 12

Notes: This table contains the ranks of the forecasting methods for all time periods (based on the GW conditional and
unconditional test rules, denoted T1 and T2, respectively), and within various regimes, under the assumption that investors
trade both futures markets (with and without portfolio weight restrictions), and have quadratic utility (with γ = 4).
Volatility, correlation and two macroeconomic regimes are considered: regime 1 (R1) is the low volatility, low correlation (in
absolute terms), NBER-defined recession, or the Thomson Reuters/University of Michigan low inflation expectation regime,
and regime 2 (R2) is the high volatility, high correlation (in absolute terms), NBER-defined expansion, or the Thomson
Reuters/University of Michigan high inflation expectation regime. The ranks are based on the number of successes
achieved, where successes are defined as occasions when the method is selected by GW conditional or unconditional test
rule.
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(a) Cost (mean): MA v. Vector-HAR (econ.) (b) Cost (mean): Comb. v. Vector-HAR (econ.)

(c) Cost (s.e.): MA v. Vector-HAR (econ.) (d) Cost (s.e.): Comb. v. Vector-HAR (econ.)

Figure 3 – Contour plots of relative costs

This figure contains contour plots of the relative costs (measured in basis points) between the MA (or combination)
method and the vector-HAR (econ.) method. In addition, we provide contour plots of the HAC standard errors associated
with these costs. The costs assume that investors trade both futures markets, have quadratic utility (with γ = 4), and
µ−Rf ∈ (−0.08, 0.08) (annualised). The intersection of the dashed lines represent the values of µ used in the paper, viz.
µ′ −Rf = (0.017, 0.055). The relative cost can be interpreted as the performance fee an investor is willing to pay to avoid
switching from using the vector-HAR (econ.) method to the competing method.
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