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Abstract 

Agricultural research has transformed agriculture and in doing so 

contributed to the transformation of economies. Economic issues 

arise because agricultural research is subject to various market fail

ures, because the resulting innovations and technological changes 

have important economic consequences for net income and its distri

bution, and because the consequences are difficult to discern and 

attribute. Economists have developed models and measures of the 

economic consequences of agricultural R&D and related policies in 

contributions that relate to a very broad literature ranging across 

production economics, development economics, industrial organiza

tion, economic history, welfare economics, political economy, econo

metrics, and so on. A key general finding is that the social rate of 

return to investments in agricultural R&D has been generally high. 

Specific findings differ depending on methods and modeling assump

tions, particularly assumptions concerning the research lag distribu

tion, the nature of the research-induced technological change, and 

the nature of the markets for the affected commodities. 



  1. INTRODUCTION 

Agricultural research has transformed agriculture and in doing so has contributed to the 

transformation of whole economies. Economic and policy issues arise because agricultural 

research is subject to various market failures, because the resulting innovations and tech

nological changes have important economic consequences for net income and its distribu

tion among individuals and among factors of production, and because the consequences 

are difficult to discern. These issues have been studied by economists and documented in a 

literature on the economics of agricultural research and development (R&D) that began 

as such in the 1950s, with work by T.W. Schultz and others. 

Over the ensuing half century or so, economists have developed models and measures of 

the economic consequences of agricultural R&D and related policies in contributions that relate 

to a very broad literature, drawing on and at times contributing to the full range of subfields of 

economics.1 For instance, some contributions extend back to the foundations of production 

economics, the measures of inputs and outputs, and their relationships to one another, as 

we attempt to obtain better measures of productivity. Others relate to the modern litera

ture on industrial organization as we attempt to understand the role of market power of 

firms with intellectual property rights to inventions. Yet others relate to income distribu

tion in multimarket settings, whether in the context of rich-country agriculture and con

cerns for displaced labor or in developing countries where a general equilibrium approach 

is necessitated by the role of agriculture in the economy as a whole. At some level, then, to 

understand the economic literature on agricultural R&D requires an appreciation of its 

relationship to the major subfields of economics (such as econometrics, labor economics, 

public economics, production economics, economic history, industrial organization, or 

operations research) to which it contributes and from which it draws ideas, methodologi

cal approaches, and tools and techniques. Within the constraints of this review, however, 

for the most part we treat the literature on the economics of agricultural R&D in 

isolation, only occasionally drawing attention to the linkages to the broader literature. 

In this review, we focus on the role of methods used by economists and their implica

tions for findings about research impacts. We cover the mainstream issues and the bulk of 

the published work on the economics of agricultural R&D, dealing with conceptual models 

of the impacts of agricultural research, data and methods for measuring the impacts, the 

resulting measures of the impacts, and the meaning of those measures. 

Section 2 is organized around supply and demand models of the size and distribution of 

research impacts among producers, consumers, and others in the marketing chain. Much 

of the literature in this area has concerned the role of modeling assumptions in determin

ing the findings—in particular, assumptions about the nature of research-induced techno

logical changes and how they are represented in the model, as well as assumptions about 

the form of competition, and related issues. We present the main ideas from that literature 

and attempt a synthesis. 

An important and often underappreciated type of economic research is contributed 

by studies that describe research institutions and quantify research investments or by 

1Griliches (2001) observed that, “Current work 

(Griliches(R&D) expenditures development 

1944), the first detailed total-factor productivity (TFP) calculations (Barton & Cooper 1948), the first estimates of 

has deep roots in the early work of agricultural economics. The first micro-production function estimates (Tintner 

on the role of public and private research in productivity growth 

returns to public research and 1958, Schultz 1953), and the first 

production function estimates with an added R&D variable (Griliches 1964) all originated in agricultural econom

ics” (p. 23). 



       
   

  
 

 

studies that develop measures of agricultural outputs, inputs, and productivity, and there

by provide data for econometric and other modeling studies. Section 3 documents some 

key contributions of this type and touches on some enduring issues related to the data. 

Section 4 discusses a different set of methodological questions that arise in modeling 

agricultural innovation. In particular, the treatment of (spatial) spillovers and research lag 

structures can be seen both as elements of the general attribution problem raised by 

Alston & Pardey (2001) and as sources of specification bias with implications for the 

interpretation of findings. A related literature linking innovation processes to technology 

development and economic impacts deals with the rate, extent, and nature of technology 

adoption and diffusion processes. 

Section 5 reports key findings about the impacts of agricultural research in terms of its 

consequences for the rate of technological change (or productivity growth) and its factor 

bias as well as the rate of return to the investments. The rate of return evidence generally 

indicates that agricultural research has generated very large dividends. It supports the view 

that agriculture is characterized by market failures associated with incomplete property 

rights over inventions and that, in spite of the significant government intervention to 

correct the market failure, nations have continued to underinvest in agricultural research. 

Section 6 summarizes and concludes the review. 

2. MODELS OF THE SIZE AND DISTRIBUTION 
OF RESEARCH BENEFITS 

Agricultural economists have used supply and demand models of commodity markets to 

represent agricultural research impacts, beginning with Schultz (1953) and Griliches 

(1958), with important subsequent contributions by Petersen (1967), Duncan & Tisdell 

(1971), Duncan (1972), Akino & Hayami (1975), and Scobie (1976), among others.2,3 

In a standard model of research benefits, research causes the commodity supply curve 

to shift down and out against a stationary demand curve, giving rise to an increase in 

quantity produced and consumed as well as a lower price. The benefits are assessed using 

Marshallian measures of research-induced changes in consumer surplus for consumer 

benefits and of research-induced changes in producer surplus for producer benefits. 

The total gross annual research benefits (GARB) depend primarily on the size of the 

research-induced supply shift (expressed as a vertical shift by an amount equal to a propor

tion, k, of the initial price) and the scale of the industry to which it applies. Hence, Griliches 

(1958) proposed the approximation GARB = kPQ, where P is the commodity price and 

Q is the annual quantity to which the supply shift applies.4 Some issues in the literature 

relate to the methods used for measuring the primary determinant of total measured 

benefits—the research-induced reduction in the industry-wide unit cost of production as 

represented by the supply shift, k—for instance, those based on adoption rates combined 

2Although this seems to be a natural approach for technologies embodied in particular inputs, like seeds, it is less 

well-suited to many other kinds of agricultural R&D. An alternative approach may be to use a model of supply and 

demand for agricultural science. 

3Some studies leave this model implicit when inferring a rate of return to research from the parameters of an 

econometric model of production (e.g., Evenson 1967) or when using short-cut approximations to measure benefits 

(e.g., Griliches 1958). 

4As noted by Alston et al. (1995, pp. 60–61), and more recently elaborated by Oehmke & Crawford (2002), the 

elasticity of supply can have important implications for measures of research benefits if it is used to translate an 

assumed horizontal shift into a vertical shift, or vice versa. 



  

 

 

  

 

     

with changes in experimental yields or commercial yields or others based on changes in 

total factor productivity. Other important issues are the size and structure of the market to 

which the shift factor pertains as well as the time-varying magnitude of the shift. 

The distribution of the benefits between producers and consumers depends on the 

relative elasticities of supply and demand, the nature of the research-induced supply shift, 

and, less importantly, on the functional forms of supply and demand (see Alston et al. 

1995). The nature of the research-induced supply shift has been controversial because it 

matters for results and is not easy to observe. Lindner & Jarrett (1978, 1980), Rose 

(1980), and Wise & Fell (1980) discussed the underlying conditions for and likelihood of 

parallel, pivotal, convergent, and divergent supply shifts driven by research. They also 

considered the implications of the alternatives for the size and distribution of total re

search benefits (see also Voon & Edwards 1991, Oehmke & Crawford 2002, among 

others). One point demonstrated by this literature was that the assumption of a linear 

supply function that is inelastic in the neighborhood of the equilibrium implies a positive 

intercept on the quantity axis, which is both implausible and a source of awkwardness 

when measuring the benefits from research-induced supply shifts that require extrapolat

ing supply back to the origin. A similar problem arises with constant elasticity supply 

models (the main alternative to the linear model in this literature), which also become 

implausible at low prices and quantities. 

One solution to this set of problems is to assume an alternative functional form for the 

supply function, as illustrated in Figure 1, where D0 represents the demand for U.S. 

agricultural output and S0 represents the supply.
5 Suppose a research-induced technical 

change causes supply to shift down in parallel to S1 and, as a result, quantity produced 

and consumed increases from Q0 to Q1 and price falls from P0 to P1. Accepting Harberger’s 

(1971) postulates so that changes in economic surplus are the relevant welfare measures, 

the total benefits from the research-induced supply shift are equal to the area between the 

two supply curves, behind the demand curve, and this is equal to area (B + C + E + F + G).  

Of that total, the consumer benefit is equal to area (A + B + F) and the producer benefit is 

equal to area (C + G) given the assumption of a vertically parallel supply shift, which 

means area A is equal to area E. These shares of the total benefits are distributed according 

to the elasticities of supply (e) and demand (Z, representing the absolute value), where the 

producer share is approximately Z/(Z + e) and the consumer share is approximately e/(Z + 
e). Alternatively, suppose research causes a pivotal supply shift (i.e., holding the price 
intercept constant at b) that would have the same price and quantity effects. The total 

research benefits are now only roughly one-half of those from a parallel shift, but 

the consumer benefits are the same as from the corresponding parallel shift such that the 

producer benefits must be smaller, possibly negative. 

To illustrate the role of elasticities in conjunction with the nature of the supply shift in 

determining the size and distribution of research benefits we use an algebraic representa

tion of the model depicted in Figure 1, as follows: 

P ¼ ð1� k1Þb þ ð1� k2ÞBQb ðsupplyÞ; ð1Þ 

5This supply function nests linear and constant elasticity models as special cases and has the virtue of a positive price 

intercept (or shutdown price) while permitting supply to be inelastic in the vicinity of the equilibrium (see Lynam & 

Jones 1984, Pachico et al. 1987, Alston & Wohlgenant 1989). 
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Figure 1 

Price, quantity, and welfare effects of agricultural R&D. 

Q ¼ APZ ðdemandÞ: ð2Þ 
This model nests as special cases both the linear supply model (b = 1) and the constant 
elasticity supply model (b = 0) and can combine these functional form alternatives with 

alternative types of supply shifts by using alternative combinations of values for k1 (which 

implies parallel shifts in the price direction) and k2 (which implies multiplicative shifts in 

the quantity direction); B and A are “slope” parameters. Although it cannot be solved 

analytically in its general form for the equilibrium price and quantity, this model can be 

solved numerically given particular values of parameters. Table 1 shows the resulting 

estimates of producer benefits as a share of total benefits for three different kinds 

of 1% shifts down of the supply function: (a) vertically “parallel” (k1 = 0.01, k2 = 0); 

(b) “pivotal” (or multiplicative in the quantity direction, k1 = 0,  k2 = 0.01); and (c) 

“proportional” (or multiplicative in the price direction, k1 = k2 = 0.01)—essentially 

combining a parallel shift and a pivotal shift. This range of parameters, which implies 

values for the elasticity of supply at the initial equilibrium ranging from 0.33 to 2.0, is 

combined with demand elasticities from 0.5 to 1. 6 

6Small elasticities of demand are appropriate for most agricultural commodities in the context of a closed economy 

or they would small countries in trade (facing excess demand elasticities for domestic output approaching infinity) 

model. But larger elasticities are appropriate for traded (or tradable) goods, and in many cases, either countries are 

be but for trade barriers. More elaborate models are required to partition the “consumer surplus” in Figure 1 among 

nations and to deal with the consequences of trade-distorting policies in such cases. 



           

       

  

 

      

       

         

         

         

  

 

Table 1 Producer shares (percentage) of research benefits and their determinantsa 

Supply function parameters Demand elasticity (absolute value) 

b b 

Elasticity 

(«) 0.5 1.0 1.5 2.0 4.0 

Parameter values Producer shares of benefits (percent) 

Pivotal supply shift: k1 = 0.00, k2 = 0.01 

4.00 0.25 0.33 �100 �25 9 29 62 

4.00 0.50 0.50 �150 �67 �25 0 44 

4.00 0.75 1.00 �234 �150 �100 �67 0 

2.00 0.25 0.67 �71 �20 8 25 57 

2.00 0.50 1.00 �100 �50 �20 0 40 

2.00 0.75 2.00 �140 �100 �72 �50 0 

Proportional supply shift: k1 = 0.01, k2 = 0.01 

4.00 0.25 0.33 0 37 55 64 81 

4.00 0.50 0.50 17 44 58 67 82 

4.00 0.75 1.00 17 38 50 59 75 

2.00 0.25 0.67 �14 20 38 50 71 

2.00 0.50 1.00 0 25 40 50 70 

2.00 0.75 2.00 4 20 32 40 60 

Parallel supply shift: k1 = 0.01, k2 = 0.00 

4.00 0.25 0.33 60 75 82 86 92 

4.00 0.50 0.50 50 67 75 80 89 

4.00 0.75 1.00 34 50 60 67 80 

2.00 0.25 0.67 43 60 69 75 86 

2.00 0.50 1.00 33 50 60 67 80 

2.00 0.75 2.00 20 34 43 50 67 

aEntries in this table are measures of producer benefits as a percentage of the total benefits from the supply shift. 

The parameter b represents the shutdown price as a fraction of the initial price, and the parameter b is the exponent 

of the quantity in the price-dependent supply response function, such that a larger value of b tends to imply a 

smaller supply elasticity, as does a smaller value of b. 

With a linear model, producers lose from a pivotal shift either if demand is inelastic 

model. Producers do not benefit from 

Somewhat similar results if demand is elastic but less elastic than supply. 

or 

are found here 

for the nonlinear a pivotal shift unless demand is 

elastic, and much more elastic than supply. In contrast, with a parallel research-induced 



      

supply shift, producers gain a substantial share of the benefits, especially if supply is 

relatively inelastic. And, with the proportional shift, although the producer share of 

benefits is smaller than for the parallel shift, it is still in the range of 30–60% of total 

benefits given the more likely values for the supply and demand elasticities. 

The possibility of losses to producers in aggregate is often discounted, on the grounds 

either that demand is relatively elastic or that a parallel research-induced supply shift is 

relatively likely (or that the pivotal shift seems comparatively unlikely), but concrete 

empirical evidence on that issue has been elusive to date. Thus, even when we can be 

assured of benefits to the nation, some uncertainty remains about the distribution of 

benefits between producers and consumers.7 

2.1. Distribution of Benefits Among Producers 

Another issue is distribution of producer benefits among producers. Even if we can be 

assured that producers as a whole would benefit, those who do not adopt the new 

technology will not gain and may even be made worse off (if the adoption by others leads 

to price reductions), so individual producers or groups of producers may be uncertain 

about their benefits from a given research investment because of uncertainty over what 

technology may be developed and who will adopt it and when. Timing issues are also 

important. The lags between investing in agricultural research and reaping benefits are 

very long—recent results from Alston et al. (2009), reinforced with evidence presented 

by Alston et al. (2008), suggest lags as long as 10–15 years before important benefits begin 

to be realized, with streams of benefits extending for 40 years and more after the initial 

investment. This means that the distributional question has an intergenerational dimen

sion to add to the other dimensions related to factor ownership and adoption patterns. 

In addition to issues about the distribution of benefits and costs between adopters and 

nonadopters, there may be further distributional issues associated with how the “producer 

surplus” is distributed among factor suppliers: Do land owners benefit at the expense of 

suppliers of farm labor, including farm operators, or vice versa? To illustrate the key ideas, 

we can divide the total surplus into benefits accruing to “farmers” (i.e., the suppliers of 

land and managerial inputs used in agricultural production) and “others” (i.e., the suppli

ers of other inputs, including off-farm labor, purchased by farmers and other agribusiness 

inputs used in activities beyond the farm gate). Following Alston et al. (1995, pp. 246–50), 

we can measure these outcomes using a variant of the Muth (1964) two-factor, single-

commodity market in which research gives rise to factor-augmenting changes in technolo

gy, which imply shifts in factor demand and product supply. Here, producer benefits 

correspond to producer surplus measured off the supply function for the factor supplied 

by farmers, and under the maintained assumption of competition, national benefits are 

given by the sum of changes in producer surplus across factor suppliers plus consumer 

surplus in the output market. 

7All of this discussion abstracts from the dynamics of supply response to price, which means that the elasticity of 

supply (and, in some cases, the elasticity of demand) becomes greater with increases in the length of run. The 

dynamics of supply response to price—either alone or in combination with the spatial dynamics of the research-

innovation-adoption process—mean that the pattern of research benefits evolves over time in complex ways that 

vary from case to case. A consideration of these dynamic aspects adds to the ambiguity of results derived from 

relatively simple comparative static analysis. 



In this setting, it is not necessary to extrapolate any of the functions back to the origin to 

measure the changes in welfare associated with technical changes specified in this way. 

Local approximations to the functions are adequate for measuring the impacts of the small 

displacements involved. By measuring producer welfare impacts in the factor markets, we 

avoid the problem of having to specify the nature of the research-induced shift in the 

commodity supply function. Even so, we cannot avoid the fact that the measure of research 

benefits will depend on the assumed nature of the research-induced technical changes, 

which, with other assumptions, will implicitly define the nature of the shift of the commod

ity supply function. A difference is that we may have a reasonable intuitive basis for 

assuming a particular type of technological change (e.g., factor augmenting, neutral, or 

biased) in situations where we do not have such a basis for assuming a particular form 

of research-induced product supply shift. 

In fact, however, the very specification of technology defined at the industry level or the 

use of a representative firm model will condition distributional findings: The approach 

generally entails technological changes that are consistent with multiplicative shifts of 

supply functions and the associated implications for distribution of benefits. For instance, 

if simple models such as the Cobb-Douglas model or the Constant Elasticity of Substitu

tion model are used to represent the production function, factor-augmenting technological 

change (whether neutral across all factors or biased to augment just one factor) or the 

inclusion of research as a separate input will imply proportional (pivotal or otherwise 

divergent) supply curve shifts. More flexible functional forms for the production function 

may imply different types of technological possibilities, but such functions may prove 

difficult to work with. The same issues arise if, rather than a production function, we 

begin by specifying a cost or profit function, and we derive the implied output supply 

functions. Martin & Alston (1997) exemplify this approach to discussing the effects of 

R&D on market outcomes. Here, as they showed, parallel shifts can be derived but only if 

technological change enters the profit or cost function as a separate input. If the R&D is 

factor augmenting, or has the effect of reducing the cost for “effective” inputs, however, 

a multiplicative supply shift is implied. 

If an industry is made up of diverse individual firms, it may not be well represented 

by an approach that implicitly or explicitly assumes an industry technology or a repre

sentative firm. Wohlgenant (1997) illustrated the roles of entry and exit of firms, variety 

in cost conditions among firms, and differential rates of adoption in determining the 

nature of the shift of the industry supply function (see also Foster & Rausser 1993). 

Consider an industry made up of heterogeneous firms in which firm entry and exit are 

key components of adjustment along the industry supply curve in response to price 

changes. A rising industry supply curve may reflect progressive increments in firms’ 

reservation prices for entry, indicating variations in their opportunity costs of the 

quasi-fixed factors earning quasi-rents that make up producer surplus. A factor-aug

menting technical change could give rise to proportional shifts in individual firm supply 

functions (in the context of the types of production, cost, or profit functions discussed 

above), while leaving their reservation 

shift, such that marginal and average approximately parallel industry supply 

pricesin reservation reductions 

proportionalapproximatelybemay 

prices unaffected, and the resulting shift in the 

industry supply function or pivotal as well. In 

contrast, similar per-unit across firms would imply an 

curve costs 

would fall by the same amount per unit. More generally, technical changes may involve 

combinations of effects on the slopes and intercepts of individual firm supply functions 



  
 

      

 

 

as well as differential effects on different types of firms. Thus, research-induced techno

logical change may plausibly give rise to supply curve shifts that are divergent, conver

gent, or parallel—depending on the nature of the industry, its technology, and the 

technological change—in ways that make the issue difficult to judge either ex ante or 
ex post. Because specification choices are unavoidable, it makes sense to be aware of the 

implications of the main alternative specifications for findings about the distribution of 

research benefits. 

2.2. Extensions to the Basic Model 

Measures of the size and distribution of research benefits will be affected by various 

complications that can be introduced to extend the basic model represented in Figure 1. 

The introduction of international trade is a straightforward elaboration of the simple 

model, from which we can obtain measures of welfare impacts for different spatial or 

market aggregates.8 It becomes slightly more complicated when we allow for technologi

cal spillovers in the same model. More elaborate and complex multimarket models are 

implied if we want to disaggregate the market structure either (a) vertically in order to 

represent different stages of the marketing chain or (b) horizontally in order to represent 

different geopolitical or spatial markets for a given product or different products (includ

ing different qualities of the same product). Alston et al. (1995) laid out the basic theory 

for these approaches, and a number of studies have reported specific applications (among 

the many examples are Mullen et al. 1989, Freebairn 1992, Frisvold 1997, Wohlgenant 

1997, Davis & Espinoza 1998, and Zhao et al. 2000). 

A further dimension for extension to the basic model is to allow for the case of 

proprietary technology. The basic model treats the technological change as essentially 

exogenous, a reasonable treatment for the case of public research from which the results 

are freely accessible, which is the stereotypical application. However, this model is not 

appropriate for proprietary technology resulting from private research over which the 

inventor has (often monopoly) property rights, such as the fruits of modern biotechnology. 

In an important contribution, Moschini & Lapan (1997) extended the basic model to deal 

with proprietary research that could lead to a drastic innovation or a nondrastic innova

tion that would be priced in either case so as to entirely eliminate the pre-existing technol

ogy. A number of subsequent studies have extended the ideas, but these types of 

conceptual developments have not been incorporated much in the applied work to date, 

and very little evidence is available on the distribution of benefits from private research 

between technology developers and providers, on the one hand, and others including 

farmers, consumers, and agribusiness.9 

8A significant complication in evaluating the supply-shifting consequences of agricultural research is that, because of 

the biological basis of agricultural production, many agricultural technologies have distinctive location-specific 

attributes. The specific location of firms may well affect their decisions about adoption of technology and the 

resulting factor demand and output supply responses to R&D, with implications for the aggregate industry-wide 

responses, even within a given spatial or market aggregate. Substantive efforts are under way to calibrate measured 

supply shifts in ways that take explicit account of these spatial heterogeneities (for example, see http://www. 

HarvestChoice.org). 

9Moschini & Lapan (1997) treated the research effort and the research result as exogenous, whereas Alston & 

Venner (2002) developed a model in which the research effort was chosen by the biotech firm. See also Frisvold et al. 

(1999), Falck-Zepeda et al. (2000), Qaim (2003), and Lapan & Moschini (2004). 



   

 

    

  

The basic model also assumes competition in the market for the commodity and the 

absence of any other market distortions. Models of research benefits have been extended 

to incorporate various types of market distortions, for example, (a) those resulting from 

the introduction of distortions associated with government policies such as farm commod

ity programs or trade barriers, including the failure to impose optimal trade taxes in 

the large-country case; (b) those resulting from the exercise of market power by middle

men (e.g., Huang & Sexton 1998); and (c) those resulting from environmental external

ities (e.g., Antle & Pingali 1994). In this context, the main effect of a market distortion is 

to change the distribution of research benefits, with comparatively small effects on the 

total benefits. These changes in the distribution of benefits (and the total benefits) depend 

on the nature of the market distortion, along with the other market characteristics and the 

nature of the research-induced technological change, which together determine the poten

tial research benefits in an undistorted setting. 

Alston et al. (1988) identified and Alston & Martin (1995) subsequently proved a key 

aspect of the relationship between the distorted and undistorted research benefits. Specifi

cally, research benefits in the presence of a distortion (DWACT) are equal to benefits in the 

absence of the distortion (DWMAX) minus the effects of research on the deadweight losses 

WACT WMAXfrom the distortion (DDWL, where we define DWL = – )—i.e., DWACT = 
DWMAX – DDWL. Thus, research benefits may be smaller or greater than in the absence of 

the distortion, depending on whether the research-induced technological change exacer

bates or mitigates, respectively, the deadweight loss from the distortion—a result that 

depends, in turn, on the specific nature of a distortion and the other features of the market 

in which it applies. This simple but powerful result encompasses many ideas and is 

broadly applicable to any second-best analysis, not just this specific category. It helps to 

account for a variety of specific results in the literature on research benefits in a distorted 

market setting (e.g., Murphy et al. 1993, Chambers & Lopez 1993). For instance, immi

serizing technological change requires that the effect of research be to worsen the con

sequences of an existing distortion sufficiently to more than outweigh the maximum 

potential benefits, which is a rather extreme outcome. 

2.3. Political Economy Models 

Models of agricultural research in a distorted market setting have been used to draw 

inferences about implications of market distortions for the rate of investment in agricul

tural research and thus the rate and direction of technological change (e.g., Hayami & 

Ruttan 1971, Schultz 1978, Mellor & Johnston 1984). Further wrinkles are added if we 

treat the distortions as endogenous, being determined jointly with the research investment 

and thus the technological change in a political economy or interest group model: 

Studies in this vein include, among others, Rausser (1982), Gardner (1988), de Gorter & 

Zilberman (1990), Rausser & Foster (1990), de Gorter et al. (1992), Alston & Pardey 

(1993), Foster & Rausser (1993), and de Gorter & Swinnen (1998, 2002). For instance, de 

Gorter & Zilberman (1990) used a model of industry technology with inelastic demand in 

which, consistent with the discussion in Section 2.1, farmers would lose from research in 

account for and justify farm support policies we can 

in the presence setting but would benefit from research an undistorted of a target price 

policy. Thus, they suggest as having 

been introduced to make possible socially beneficial research that otherwise would not 

have been politically acceptable to agricultural interests. 



       
    

   

Political economy models that suppose agricultural research and farm program policies 

are chosen jointly to maximize a single criterion function typically involve two important 

abstractions from reality. First, the models assume a single government choosing combina

tions of policies to maximize a single criterion function. However, in countries such as the 

United States, the policies are chosen by different governments. Farm program policies are 

determined federally, whereas public agricultural research investments are predominantly 

the province of state government agencies, albeit using funds from a mixture of sources 

including state governments and various arms of the federal government.10,11 Second, the 

models treat the consequences of today’s R&D policies as though they are felt immediately 

along with the effects of today’s farm commodity policies, but the impacts of today’s 

research are realized only after long lags, measured in decades. The research policies that 

are interacting with and determining the impacts of today’s commodity programs were 

implemented by the governments in power 20 years ago—the agricultural R&D policies 

established under George H.W. Bush, not George W. Bush, will determine the impact of 

farm program policies to be introduced by President Obama.12 

The extent to which the results from the models are conditioned by these abstrac

tions remains a matter for conjecture. To be sure, research policies chosen by any of the 

50 state governments will be influenced by the present and prospective price policies to 

be implemented by the federal government, and the price policies introduced by the 

federal government in its periodic farm bills will have been influenced by the federal 

and state agricultural R&D programs over the previous decades. However, the relation

ships are many dimensional and multiperiod, with recursive rather than simultaneous 

causation, and thus are unlikely to be represented accurately by a simple static trade-off 

of welfare among producers, consumers, and taxpayers to maximize a single objective 

function. 

3. RESEARCH THAT CREATES DATA ON RESEARCH 
INSTITUTIONS, INVESTMENTS, AND IMPACTS 

A significant part of the economic literature includes studies that describe, document, and 

quantify the institutions that fund, regulate, and conduct agricultural research as well as 

the investments that they make. These “descriptive” studies are of value in their own right, 

but they also provide an institutional frame of reference and data for econometric and 

other modeling studies. Although documenting the institutional-descriptive studies alone 

would take much more time than we can spend in this review, we mention a few key 

10Over the past several decades in particular, federal government departments and agencies other than agriculture, 

such as the National Science Foundation, National Institutes of Health, Department of Defense, and the Environ

mental Protection Agency, account for a larger, and now sizable, share of the federal funds directed to public 

agricultural R&D in the United States. 

11de Gorter et al. (1992, p. 30) recognized the issue of multiple governments and asserted that “there is no reason to 

believe that disaggregating the decision process would refute [their] results.” Gordon Rausser has advised us in a 

personal communication that Rausser et al. (2009) formally demonstrate that, even when agricultural research is the 

result of policies chosen by different governments, a criterion function can be derived that is based on a weighting of 

consumer, producer, and taxpayer interests. 

12Given very long agricultural R&D lags, it does not seem reasonable to use a model that requires an implicit 

assumption that commodity program policies set in a given farm bill will be fixed for the period in which the R&D 

policies set in the same farm bill will have effect. For instance, consider the dramatic changes in farm program 

policies in 1985, 1996, and 2002 (e.g., see Alston & Sumner 2007). 



studies that documented institutions in the context of making broader contributions to the 

literature on the economics of research. Notable contributions to the literature on U.S. 

agricultural research policy that provided institutional history, documented data on invest

ments, or both include Ruttan (1982), Huffman & Evenson (1993, 2006), Kerr (1987), 

and Alston & Pardey (1996, 2006). Studies taking an international perspective include 

Hayami & Ruttan (1971), Evenson & Kislev (1975), Baum (1986), Pardey et al. (1991, 

2006), Alston et al. (1999), and World Bank (2008). 

Work has also been undertaken to develop concepts and measures related to agricultur

al science effort (in terms of public and private research investments, training and employ

ment of research staff, and the like) and research output (in terms of new crop varieties 

and livestock breeds, patents, plant breeders rights, publications, and so on). In addition, 

substantial investments have been made in conceptual and empirical development of other 

measures (e.g., of prices and quantities of agricultural inputs and outputs) that are useful 

for measuring production relationships in agriculture, including research outcomes (e.g., 

the impacts on prices, production, consumption, and trade as well as the total benefit from 

research and its distribution). 

Studies of the relationship between research and productivity rely on the painstaking 

and demanding work of the economist who makes the data on inputs and outputs used in 

studies of production more generally. As noted by Griliches in his Presidential Address to 

the American Economic Association: 

We ourselves do not put enough emphasis on the value of data and data 

collection in our training of graduate students and in the reward structure of 

our profession. It is the preparation skill of the econometric chef that catches 

the professional eye, not the quality of the raw materials in the meal, or the 

effort that went into procuring them (Griliches 1994, p. 14). 

In his Waugh lecture to the American Agricultural Economics Association, Gardner 

discussed the importance of data creation and of having econometricians and other data 

users know how the data they use were created: 

Agricultural economists and other social scientists tend to take data as 

facts. . . The problem is the data are not facts. Facts are what is really 

there. Data are quantitative representation of facts, which statistical work

ers and economists concoct (Gardner 1992, p. 1074). 

I call the study of how primary statistical information is made into economic 

data “factology.” The neglect of factology risks scientific ruin (Gardner 1992, 

p. 1067). 

Gardner drew specific attention to the measurement of agricultural inputs (especially 

capital), outputs, and productivity as instances where a lot of effort and judgment goes 

into the creation of the “data,” such that the data themselves are very much trans

formed from the raw material used to make them, and consequently 

to agricultural R&D, when they involve 

point applies perhaps sameThemost. 

areas where factol

ogy matters more than even more forcefully to 

studies of the returns significant further trans

formation of data on research investments and productivity that already had embodied 

in them a great deal of judgment, much of which may not be apparent to the user. 

Unfortunately, the lessons from Gardner’s lecture have not been embraced by all 



      

   

practitioners, but some progress has been made with developing and documenting im

proved measures of agricultural inputs, outputs, and productivity as well as agricultural 

research investments, which are the raw materials for many studies of returns to agricul

tural R&D. 

Andersen (2005) reviewed previous studies of U.S. agricultural productivity patterns 

and documented the evolution of approaches and results.13 This literature shows an 

evolution from national fixed-weight indexes to state-level Divisia approximations using 

Fisher-ideal or Tornqvist-Theil indices, with increasing use of the appropriate index num

ber theory (and other economic theory) combined with less aggregated data to reduce 

index number bias and other distortions in the measures. 

Two separate long-term endeavors, one led by Eldon Ball at the U.S. Department of 

Agriculture (USDA)-Economic Research Service and the other by Philip Pardey at the 

University of Minnesota, have produced alternative state-level data sets that entail substan

tial differences in spite of essentially common purposes and similar basic information (for 

details and discussion, see Acquaye et al. 2000, 2003; Andersen 2005; Andersen et al. 2008; 

Alston et al. 2009). The data from Andersen et al. (2009) were developed specifically for 

measuring the economic consequences of U.S. public agricultural research, and the creation 

of these and the corresponding data on research investments has been by far the most 

demanding part of that long-standing project culminating in the book by Alston et al. 

(2009). 

Compared with measures of productivity and its elements, measures of investment in 

research (and counterpart measures of stocks of scientific knowledge) have attracted 

much less effort and attention in the literature. This relative neglect could be compara

tively pernicious. It takes a lot of work to develop measures of agricultural research 

investments. Appropriate measures of public agricultural research investments are not 

published in suitably long time series, in the relevant form, by any government agency. 

However, some data have been compiled by Huffman & Evenson (1993), the National 

Science Foundation (2008), Robbins & Moylan (2007), and Pardey & Andersen (2009). 

Guidelines for compiling such data include work by the Organization for Economic 

Cooperation and Development (2002, 2005). For international data, see Pardey et al. 

(2006) and the Agricultural Science and Technology Indicators (ASTI) Web site at 

http://www.asti.cgiar.org/. 

To derive the relevant measures of public research spending requires delving through 

various government documents and sorting out those elements from particular spend

ing lines that are truly research and truly applied to agriculture. It also requires going 

across places and backward through time, dealing with changing definitions, changing 

reporting procedures, and inevitable omissions. The long agricultural R&D lags mean 

13Barton & Cooper (1948), Loomis & Barton (1961), and Baron & Durost (1960) were among the first researchers 

to compile national indexes of inputs, outputs, and productivity in U.S. agriculture. These authors calculated fixed-

weight indexes, where the weights were equal to the average price of each subaggregate over a few selected years 

(see also Griliches 1960). The USDA published fixed-weight (Laspeyres) indexes of inputs, outputs, and productivity 

annually in Changes in Farm Production and Efficiency until the early 1990s. Griliches & Jorgenson (1966, 1967) 

of the general economy. were among the first to apply Divisia aggregation procedures to productivity measures 


According to Capalbo & Vo (1988, p. 101), Brown (1978) was the first researcher to compile Divisia indexes of 


inputs and outputs in U.S. agriculture. More recent studies of U.S. agricultural productivity include Ball (1985), 


Evenson et al. (1987), Capalbo & Vo (1988), Craig & Pardey (1990a,b; 2001), Jorgenson & Gollop (1992), 


Huffman & Evenson (1992, 1993), Ball (1994), Pardey et al. (1994), Ahearn et al. (1998), Ball et al. (1997), Ball & 


Nehring (1998), Ball et al. (1999), Acquaye et al. (2000, 2003), and Alston et al. (2009). 




        

        

that time-series econometric studies require many years of data on both investments in 

R&D and productivity. Many studies have been constrained by the lack of suitably 

long time series, and researchers have resorted to estimation devices that almost surely 

have distorted the findings—such as imposing restrictions on the lag distribution length 

and shape or creating estimates of past data using crude extrapolations from the 

present, a data step that is not always apparent to the reader of the distilled research 

product. Data on private research investments have been particularly difficult to ob

tain, even in relatively short time series, because the information is proprietary—and 

even public companies are not obliged to publish the relevant information in their 

annual reports in a way that would be useful to economics researchers: For compila

tions of U.S. private sector agricultural R&D data, see Huffman & Evenson (1993), 

Klotz et al. (1995), Fuglie et al. (1996), Echeverrıa & Byerlee (2002), and Dehmer´ 

et al. (2009). 

4. ATTRIBUTION PROBLEMS IN MODELS OF RESEARCH IMPACTS 

In modeling the effects of research on agricultural productivity the two principal areas of 

difficulty are in identifying the research lag structure (the temporal attribution problem) 

and in the treatment of knowledge spillovers whether they are among different firms 

within an industry, different industries within a country or other geopolitical entity, or 

among countries (the spatial and institutional-cum-sectoral attribution problem). 

4.1. Temporal Aspects of the R&D Attribution Problem 

Research takes a long time to affect production, and then it affects production for a long 

time. Once formed, innovations and knowledge take time to be diffused and affect 

productivity, and so the overall lag between R&D spending and productivity growth 

reflects a confluence between the lags involved in knowledge creation and in its 

subsequent use. One element of the attribution problem, then, is in identifying the 

specifics of the dynamic structure linking research spending, knowledge stocks, and 

productivity. 

A large number of previous studies have regressed a measure of agricultural production 

or productivity against variables representing agricultural research and extension, often 

with a view to estimating the rate of return to research. Alston et al. (2000) provided a 

comprehensive reporting and evaluation of this literature (see also Schuh & Tollini 1979, 

Norton & Davis 1981, Evenson 2001, Alston et al. 2009). 

Only a few studies have presented much in the way of formal theoretical justifica

tion for the particular lag models they have employed in modeling returns to agricul

tural research. Alston et al. (1995) presented a conceptual framework based on a view 

that agricultural production uses service flows from a stock of knowledge (e.g., see 

Rausser 1974), which is augmented by research (e.g., see Griliches 1979).14 The specifi

cation of the determinants research investments andof the lag relationship between 

The fact that science is a cumulative process, in which today’s new ideas are derived from the accumulated stock 14

of past ideas, influences the nature of the research-productivity relationship as well. This makes the creation of 

knowledge unlike other production processes. 



  

        

   

production, which involves the dynamics of knowledge creation, depreciation, and utiliza

tion, is crucial. A finite lag distribution relates past investments in research to current 

increments to the stock of knowledge. However, even if knowledge depreciates in some 

fashion over time, under reasonable views of the nature, rate, and form of depreciation of 

knowledge, some effects of research will persist forever. As a practical matter, analysts end 

up representing these effects with a finite distributed lag that represents the confounded 

effects of the lags in the knowledge creation process and the dynamics of depreciation of 

the knowledge stock. In such a context, it is difficult to have precise views about the 

nature of the reduced-form empirical lag relationship between research investments and 

productivity, in terms of its overall length and shape, apart perhaps from a perception that 

there will be an initial “gestation” or “invention” lag (before research has any effects), an 

“adoption” lag during which the lag weights rise to a maximum, and, eventually, declining 

weights as the impact of past research investments on current productivity fades into 

unimportance. 

Table 2 summarizes some key features of research lag distribution models applied in 

studies of agricultural productivity in Organization for Economic Cooperation and Devel

opment countries. This table represents a reworked version of table 5 in Alston et al. 

(2000). Until quite recently, it was common to restrict the lag length to be less than 

20 years. In the earliest studies, available time series were short and lag lengths were very 

short, but the more recent studies have tended to use longer lags. Most studies have 

restricted the lag distribution to be represented by a small number of parameters, both 

because the time span of the data set is usually not much longer than the assumed 

maximum lag length and because the individual lag parameter estimates are unstable and 

imprecise given the high degree of collinearity between multiple series of lagged research 

expenditures.15 

In their application using long-run, state-level data on U.S. agriculture, Alston et al. 

(2009) found in favor of a gamma lag distribution model with a much longer research lag 

than most previous studies had found—for both theoretical and empirical reasons.16 Their 

empirical work supported a research lag of at least 35 years and up to 50 years for U.S. 

agricultural research, with a peak lag in year 24. Alston et al. (2008) also documented the 

adoption lags for particular agricultural technologies and their results are consistent with 

relatively long overall lags. This comparatively long lag has implications for both econo

metric estimates of the effects of research on productivity and the implied rate of return to 

research. 

4.2. Spatial Aspects of the R&D Attribution Problem 

Compared with the research lag structure, the issue of spatial attribution has received less 

attention in the literature on agricultural R&D and has been approached differently in the 

15Common types of lag structures used to construct a research stock include the de Leeuw or inverted-V (e.g., 

Evenson 1967), polynomial (e.g., Davis 1980, Leiby & Adams 2002, Thirtle & Bottomley 1988), and trapezoidal 

(e.g., Huffman & Evenson 1989, 1992, 1993, 2006; Evenson 1996). A small number of studies have used free-form 

lags (e.g., Ravenscraft & Scherer 1982, Pardey & Craig 1989, Chavas & Cox 1992). 

16The detailed arguments are laid out in Alston et al. (1995) and some earlier evidence is presented by Pardey & 

Craig (1989) and Alston et al. (1998) (see also Huffman & Evenson 1989). Alston et al. (1998) discussed the issue 

of knowledge depreciation drawing on the previous literature, and these arguments are restated and refined by 

Alston et al. (2008), and Alston et al. (2009). 



          

 

  

      

  

 

 

  

Table 2 Research lag structures in studies of agricultural productivitya 

Characteristic 

Number of 

estimates 1958–1969 1970–1979 1980–1989 1990–1998 1958–1998 

Count Percentage 

Research lag length (benefits) 

0–10 years 253 9.7 6.2 17.9 12.7 13.4 

11–20 years 537 41.9 22.0 38.8 22.8 28.5 

21–30 years 376 0.0 20.7 12.0 25.9 19.9 

31–40 years 178 0.0 4.3 5.6 14.3 9.4 

40 up to 1 years 141 0.0 9.5 6.6 7.6 7.5 

1 years 102 35.5 7.5 2.9 5.4 5.4 

Unspecifiedb 109 12.9 13.1 3.2 4.9 5.8 

Unclearc 190 0.0 16.7 12.7 6.3 10.1 

Total 1,886 100.0 100.0 100.0 100.0 100.0 

aBased on the full sample of 292 publications reporting 1886 observations. Adapted from Alston et al. (2000). 

bUnspecified estimates are those for which the research lag length is not made explicit. 

cLag length is unclear. 


literature on industrial R&D. In the more-recent literature, however, increasing attention 

has been paid to accounting for the fact that knowledge created within a particular 

geopolitical entity can have impacts on technology elsewhere, with implications that may 

matter to both the creators of the spillouts and the recipients of the spillins (for a review of 

this literature, see Alston 2002). 

Some of the earliest work on these matters was done in applications to agriculture. The 

analysis by Griliches (1957) of the generation and dissemination of hybrid-corn technolo

gy throughout the United States was a seminal study in the economics of diffusion as well 

as the spatial spillover of an agricultural technology. This work inspired others on adop

tion of individual technologies, some of which entailed spatial spillovers. For example, 

Evenson & Kislev (1973) analyzed spillovers related to wheat and maize research, Araji 

et al. (1995) looked at spillovers regarding potato research, and Maredia et al. (1996) and 

Traxler & Byerlee (2001) investigated wheat spillovers. Pardey et al. (1996) analyzed the 

U.S. effects of rice and wheat varieties developed by international research centers in the 

Philippines and Mexico, and Pardey et al. (2006) assessed international and institutional 

crop varietal spillovers into Brazil. 

Other studies have sought to assess the overall effects of agricultural research on 

productivity, including spillover impacts, with regression-based methods using more ag

gregate (region or state-specific as well as national) measures of R&D. For example 

Huffman & Evenson (1993) found that a sizable share (upwards of 45%) of the benefits 

from research conducted in U.S. State Agricultural Experiment Stations was earned as 

interstate spillovers. 



      
   

 

Whether they were concerned with spillovers or not, the past studies have imposed 

implicit or explicit assumptions about the spatial spillover effects of agricultural research 

based on geopolitical boundaries. For example, most past studies of the effects of U.S. 

agricultural research on productivity have implicitly assumed that agricultural research 

is totally fungible, such that U.S. national agricultural output depends on the national 

aggregate of U.S. spending on public agricultural R&D, regardless of where it was spent 

or by whom (e.g., Griliches 1964, Evenson 1967, White & Havlicek 1982, Chavas & 

Cox 1992, Alston et al. 1998). In contrast, some studies at the level of individual states 

proposed that research efforts by individual states have spillover effects only among 

states within the same (subnational) geopolitical region, whereas research outside a 

region does not affect its agricultural productivity (e.g., Khanna et al. 1994, Yee & 

Huffman 2001).17 Several other studies, beginning with Huffman & Evenson (1989), 

incorporated geoclimatic information while retaining the restriction that technology 

spillovers occur only among neighboring states within contiguous geopolitical regions. 

Huffman & Evenson (1992, 1993, 2001, 2006), Huffman & Just (1994, 1999), and 

McCunn & Huffman (2000) subsequently used the same set of constructed spillover 

weights. 

Many studies, however, simply ignored the effects of research in other states or by the 

federal government, and almost all of the regression-based studies of agricultural R&D 

have ignored the possibility of international spillovers, unless they were specifically 

emphasizing that possibility.18 Looking more broadly at the literature, few studies of 

national systems, irrespective of the method used, have allowed for either spillins or 

spillouts—in their meta-analysis, Alston et al. (2000) identified less than 20% of studies 

allowing for any spillovers. 

The modeling decisions—either to ignore spillovers or to represent them using mea

sures based on physical proximity—have been at least to some extent driven by the 

limitations of available data and the requirements for parsimonious models. Even when 

we are conscious of the possibility of interstate or international spillover effects (and not 

totally hamstrung by data limitations), it is not clear what we ought to do about them. 

Clearly, however, restrictive assumptions are inevitable. 

5. EVIDENCE ON THE ECONOMIC CONSEQUENCES 
OF AGRICULTURAL R&D 

Alston et al. (2000) conducted a meta-analysis of 292 studies that reported estimates of 

returns to agricultural R&D, and they reported an overall mean internal rate of return 

for their sample of 1852 estimates of 81.3% with a mode of 40% and a median of 

44.3% (see Table 3). After dropping some outliers and incomplete observations, they 

conducted regression analysis using a sample of 1128 estimates with a mean of 64.6%, a 

17Citation patterns in the patent applications and in professional published literature indicate that spatial spillovers 

are much more pervasive. 

18Bouchet et al. (1989) is an exception. In addition, studies of the effects of the CGIAR centers on agricultural 

productivity in adopting countries using other than regression methods have emphasized the spillins of technology 

(e.g., Brennan & Fox 1995, Pardey et al. 1996, Brennan et al. 1997, Brennan & Bantilan 1999, Brennan 2007). 

Alston (2002) reviewed these studies. Brennan (2007) reported a more-recent application to wheat spillovers from 

CIMMYT to Australia. 



           

 

    

 

  

      

  

   

 

 

   

 

Table 3 Lag structures and rates of return to agricultural R&Da 

Characteristic 

Estimates Rate of return 

Number 

Share of 

total Mean Mode Median Minimum Maximum 

Count Percentage 

Research lag length 

0–10 370 20.9 90.7 58.0 56.0 �56.6 1,219.0 

11–20 490 27.7 58.5 49.0 43.7 �100.0 677.0 

21–30 358 20.2 152.4 57.0 53.9 0.0 5,645.0 

31–40 152 8.6 64.0 40.0 41.1 0.0 384.4 

40 to 1 years 113 6.4 29.3 20.0 19.0 0.3 301.0 

1 years 57 3.2 49.9 20.0 35.0 �14.9 260.0 

Unspecified 205 11.6 48.7 25.0 34.5 1.1 337.0 

Unclear 27 1.5 43.1 27 and 60 38.0 9.0 125.0 

Research gestation lag 

Included 468 59.2 65.5 46.0 47.1 �14.9 526.0 

Omitted 314 39.7 96.7 95.0 58.8 0.0 1,219.0 

Unspecified or 

unclear 

8 1.0 25.1 24.1 6.9 55.0 

Total 790 100.0 77.5 46 and 58 50.2 �14.9 1,219.0 

Spillovers 

Spillins 291 16.7 94.5 95.0 68.0 0.0 729.7 

Spillouts 70 4.0 73.7 95.0 46.4 8.9 384.4 

No spillovers 1,428 81.7 78.8 49 and 57 40.0 �100.0 5,645.0 

aBased on a full sample of 292 publications reporting 1886 observations. For all characteristics, the sample excludes two extreme outliers and 

includes returns to research only and combines research and extension so that the maximum sample size is 1772. For the research gestation lag, 

the sample includes only observations with an explicit lag shape, resulting in a sample size of 790 observations. For spillovers, 25 observations 

were lost owing to incomplete information, resulting in a sample size of 1747 observations. Some estimates have spillover effects in both 

directions. Based on data reported in Alston et al. (2000). 

mode of 28%, and a median of 42.0%. They found results that were generally consistent 

with expectations, but in many cases they could not distinguish statistically significant 

effects on the estimated rates of return associated with the nature of the research being 

evaluated, the industry to which it applied, or the evaluation methodology, because the 

signal-to-noise ratio was too low. Nevertheless, a predominant and persistent finding 

across the studies was that the rate of return was quite large. The main mass of the 

distribution of internal rates of return reported in the literature is between 20% and 80% 

per annum. 



       

  

   

Alston et al. (2000) concluded that the evidence suggests that agricultural R&D has 

paid off handsomely for society, but they raised a number of concerns about the 

methods used in the  studies that were likely to have led  to  upwards biases in the  

estimates. In particular, they suggested the studies may have suffered from bias asso

ciated with (a) using research lag distributions that were too short (the results showed 

that increasing the research lag length resulted in smaller rates of return, as theory 

would predict); (b) “cherry picking” bias in which only the most successful research 

investments were evaluated; (c) attribution biases associated with failing to account 

for the spillover roles of other private and public research agencies, in other states or 

other countries, in contributing to the measured benefits; or (d) other aspects of the 

methods used. 

5.1. Recent Evidence on U.S. Agricultural R&D 

More recently, Alston et al. (2009) modeled state-specific U.S. agricultural productivity 

for the period 1949–2002 as a function of public agricultural research and extension 

investments over 1890–2002. In this study, careful attention was paid to the types of 

methodological issues raised by Alston et al. (2000) and emphasized in this section, in 

particular to modeling the research lag distribution and the state-to-state spillovers of 

research impacts. Spillovers (or agroecological similarity or technological closeness) 

between states were represented using a measure based on output mix correlations— 

an adaptation of the approach of Jaffe (1986, 1989) who constructed a measure of 

technological distance between firms based on patent data. The research lag distribu

tion was estimated using a flexible gamma distribution model. The results supported 

relatively long research lags (an overall lag length of 50 years with a peak impact at 

24 years but with most of the impact exhausted within 40 years), with a very 

substantial share of a state’s productivity growth attributable to research conducted 

by other states and the federal government. These results mean that the national 

benefits from a state’s research investment substantially exceed the own-state benefits, 

adding to the sources of market failure in agricultural R&D because state govern

ments may be expected to ignore or at least (heavily) discount the spillover benefits to 

other states. 

Table 4 summarizes the results from the authors’ preferred model, showing the 

distribution of own-state and national benefits from state-specific and federal invest

ments in agricultural research and extension in the United States, expressed in terms of 

benefit-cost ratios and internal rates of return.19 The results show that marginal incre

ments in investments in agricultural research and extension (R&E) by the 48 contiguous 

U.S. states generated own-state benefits of between $2 and $58 per research dollar, 

averaging $21 across the states (the lower benefit-cost ratios were generally for the states 

with smaller and shrinking agricultural sectors, especially in New England). Allowing for 

the spillover benefits into other states, state-specific agricultural research 

generated national benefits of between $10 and $70 per research dollar, 

19There are compelling reasons to report benefit-cost ratios rather than internal rates of return in this instance, as 

discussed by Alston et al. (2009). Some internal rates of return are reported here to facilitate comparisons with other 

studies. 

investments 

averaging 



             

  

  

        

    

        

  

  

 

  

 

  

 

 

Table 4 Benefit-cost ratios and internal rates of return for U.S. agricultural R&Da 

Returns to 

(3% 

Benefit-cost ratio 

real discount rate) Internal rate of return 

Own-state National Own-state National 

State research and extension Ratio Percent per year 

48 states 

Average 21.0 32.1 18.9 22.7 

Minimum 2.4 9.9 7.4 15.3 

Maximum 57.8 69.2 27.6 29.1 

Selected states 

California 33.3 43.4 24.1 26.1 

Minnesota 40.6 55.4 24.7 27.3 

Wyoming 12.7 23.6 16.8 20.9 

Regions 

Pacific 21.8 32.9 20.2 23.5 

Mountain 20.0 31.6 19.0 22.7 

Northern Plains 42.4 54.5 24.9 27.0 

Southern Plains 20.2 31.0 19.5 22.7 

Central 33.7 46.8 23.1 25.9 

Southeast 15.1 26.7 17.6 22.0 

Northeast 9.4 18.4 14.0 19.0 

USDA Research 17.5 18.7 

aSource: Alston et al. (2009). 

$32 across the states. The marginal benefit-cost ratio for USDA intramural research was 

comparable, at $18 per dollar invested in research. 

The benefit-cost ratios in Table 4 are generally large and might seem implausibly large 

to some readers. In fact, however, these ratios are consistent with internal rates of return at 

the smaller end of the range compared with the general results in the literature as reviewed 

by Alston et al. (2000) and summarized in Table 3, and as discussed by others (e.g., 

Evenson 2001, Fuglie & Heisey 2007). Specifically, the estimates of own-state “private” 

rates of return ranged from 7.4% to 27.6%, with an average of 18.9% per annum across 

the states, the estimates of national “social” rates of return ranged from 15.3% to 29.1%, 

with an average of 22.9% per annum across the states, and the rate of return to USDA 

intramural research was 18.7% per annum. 



  

   

6. CONCLUSION 

The literature on the economics of agricultural R&D is large. In this review, we have 

concentrated on some key areas where results may be fragile or distorted as a result of 

modeling choices made by economists. The creation of the “data” used in our analyses is a 

critical step. Because the interpretation of results often depends crucially on the data, it is 

incumbent on the data user to invest at least as far as knowing how the data were made, 

but there is no mechanism for enforcing this investment and it does not appear to have 

been a focus of effort. Like the work of creating data, factology is not well rewarded 

within the agricultural economics profession. Even so, the available data have significantly 

improved as a result of the efforts of a few individuals. 

Along with the data, models used for measuring research benefits have improved over 

the years. Analysis has revealed some areas where findings are sensitive to modeling 

choices, including the representation of technological change in the model, the treatment 

of spillovers, and the R&D lag distribution. These are essentially empirical questions that 

are often difficult to resolve with the available data but must be settled, and they can have 

substantial impacts on the findings. The issue of how to go about specifying the research-

induced technical change is largely unresolved. Better progress has been made with lags 

and spillovers. The trend has been to find larger spillover impacts and longer research lags 

in studies that test for these aspects. Models that inappropriately ignore spillovers or 

truncate the lag are likely to find higher rates of return to research as a result. Other 

specification choices—such as how to deal with market distortions from market power of 

firms, government policy, or environmental externalities—have relatively important 

effects on estimates of the distribution of benefits and relatively little effect on estimates 

of the total benefits. 

Agricultural economists have invested extensively in quantifying the payoffs to agricul

tural R&D, but for the most part, these studies have referred to total benefits to the 

relevant society, rather than to particular groups in society. Partly, this may reflect the fact 

that findings regarding distributional impacts are comparatively sensitive to aspects of 

specification that often must be chosen arbitrarily; thus the results are fragile. An example 

is Cochrane’s technology treadmill argument suggesting that, among farmers, only the 

early adopters of new technology benefit, and even they do so only temporarily (Cochrane 

1958, Herdt & Cochrane 1966). As shown in this review, specific conditions must hold for 

this argument to be true (it requires a relatively inelastic demand and a multiplicative 

supply shift), and they probably do not hold in most applications.20 But what we do not 

have is compelling, direct econometric evidence to show that farmers have in fact bene

fited from technological change. It says something about our models and measures that we 

have not yet been able to address this issue definitively. 

As a profession, we have amassed a persuasive body of evidence demonstrating that the 

world as a whole and individual nations alone have benefited enormously from productiv

ity growth in agriculture, a substantial amount of which has been enabled by technological 

20Even considering agriculture in aggregate in the United States, the relevant demand is likely to be quite elastic (see 

Alston 2007), which is sufficient for farmers to benefit, even if research causes a multiplicative supply shift, for 

which there is no evidence . For any individual agricultural industry for any individual country, demand is likely to 

be highly elastic because of international trade. The relevant demand is likely to be highly inelastic in a case where 

the analysis applies to relative aggregated commodities in the world as a whole—e.g., global producer benefits from 

increases in the supply of wheat—or highly localized markets in a developing country where lack of adequate 

infrastructure circumscribes the market reach of agricultural producers. 



  

  

change resulting from public and private investments in agricultural R&D. The evidence 

suggests that the benefits have been worth many times more than the costs. This is so, even 

if we discount the estimates heavily because we suspect they may have been upwardly 

biased, perhaps inadvertently through unfortunate choices of methods or limitations in the 

available data of the types discussed in this review. An implication is that the substantial 

government intervention notwithstanding, the world is continuing to underinvest in agri

cultural R&D. 

SUMMARY POINTS 

1. The 	 total	 gross annual research benefits depend primarily on the size of the 

research-induced supply shift and the scale of the industry to which it applies. 

2. The distribution 	 of the benefits between producers and consumers depends on 

the relative elasticities of supply and demand, on the nature of the research-

induced supply shift, and, less importantly, on the functional forms of supply 

and demand. 

3. The very specification 	 of technology defined at the industry level or the use of 

a representative firm model will condition distributional results. If simple mod

els (such as the Cobb-Douglas model or the Constant Elasticity of Substitution 

model) are used to represent the production function, then factor-augmenting 

technological change—whether neutral across all factors or biased to augment 

just one factor—or the inclusion of research as a separate input will imply 

proportional (pivotal or otherwise divergent) supply curve shifts. 

4. The possibility of losses to producers in aggregate as a consequence of research-

induced technical change is often discounted, on the grounds either that demand 

is relatively elastic or that a parallel research-induced supply shift is relatively 

likely (or that the pivotal shift seems comparatively unlikely), but concrete em

pirical evidence on that issue has been elusive to date. 

5. Models of research benefits have been extended to incorporate various types of 

market distortions, such as farm commodity programs or trade barriers, the 

exercise of market power by middlemen, and those resulting from environmental 

externalities. The main effect of a market distortion in this context is to change 

the distribution of research benefits, with comparatively small effects on the total 

benefits. 

6. A significant part of the economic literature includes studies that describe, docu

ment, and quantify the institutions that fund, regulate, and conduct agricultural 

research as well as the investments that they make. These “descriptive” studies 

are of value in their own right but they also provide an institutional frame of 

reference and data for econometric and other modeling studies. 

7. In modeling the effects of research on agricultural productivity, the two principal 

areas of difficulty are in identifying the research lag structure (the temporal 

attribution problem) and in the treatment of knowledge spillovers whether they 

are among different firms within an industry, among different industries within a 



  

 

      
      

    
  

     

    
     

     
      

     
       

         
   

    
                  

          

    

   

country or other geopolitical entity, or among countries (the spatial and institu

tional-cum-sectoral attribution problem). 

8. A predominant and persistent finding across the economic returns-to-research 

studies is that the measured rate of return is quite large. The main mass of the 

distribution of internal rates of return reported in the literature is between 20% 

and 80% per annum. 
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