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The Economics of Alternative Pest Management Strategies: Basic 

Assessment and Environmental Uncertainties  

ABSTRACT 

This chapter focuses on the basic economics of choices about pest management at farm and 

industry levels. In doing so, it first of all examines optimal choices at the farm level assuming 

that farmers want to maximize their profit. Existing economic threshold models for deciding 

on pest management at the farm level are then adjusted, for instance, to take account of 

uncertainties (arising in many cases, from environmental influences) and to allow for the 

impact of pests not only on crop yields but also on the quality of the produce. In addition, 

several other factors which influence optimal strategies and choices of pest control techniques 

at the farm level are explored. These include the size of the cropping area to be treated, the 

alternative treatment options, and the timing of treatment. Account is taken of the fact that 

delay in treatment can reduce uncertainty about the economic benefits of pest control (e.g. by 

reducing uncertainty about the level of pest infestation) but also add to the cost of treatment. 

Economic issues involved in choosing herbicide resistant crops and Bt modified crops to 

manage pests are explored. This analysis is followed by a general discussion of additional farm-

level economic issues which merit consideration. The basic economic analysis of the industry-

wide value of pest control follows, and is extended to take account of the effects of pest control 

on the quality of the products supplied. In order to round out this introductory overview of the 

economics of pest management, further relevant industry-wide and community issues (such as 

the nature of public versus private benefit) are identified (but not analysed in depth) before 

concluding. The analysis is supported by examples.  
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1. Introduction 

The management of pest populations is an important part of human control of the environment. 

Overall, it results in increases in the productivity of bio-industries, adds to the quality of their 

production and increases human welfare. However, some production methods can have 

negative consequences for human well-being and the environment. In most contemporary 

economies, decisions about the management of pests (which adversely affect bio-industries) 

are driven by the desire of the proprietors of production units (e.g. farms) to maximize their 

profit. Determining pest management strategies to achieve this objective can be very 

challenging given that the optimal choice usually depends on several uncertain variables. In 

part, this is due to uncertainty about relevant environmental factors. A further complication is 

that optimal private profit-maximizing decisions about pest control may not result in socially 

optimal choices necessitating state intervention in pest control practices.  

The purpose of this chapter is to outline the basic economics of choices about pest management 

focusing initially on decisions at the level of the production unit and then considering economic 

implications of these choices at the industry level. First, a basic threshold (Smith, 1988) model 

is introduced. This assumes that a one-off decision is made about whether or not to adopt a 

given technique to control a pest. The optimal choice is determined initially by assuming 

certainty (for example, about the density of the pest) and then subsequently by allowing for 

uncertainty. Various extensions to the basic model are provided. Similar analysis is then 

undertaken assuming that alternative pest control techniques are available at the farm level. 

The main focus here is on optimal choice between available alternative techniques. This is 

followed by an outline of a standard economic method which has been used to evaluate pest 

control at the industry level and its limitations and extensions are explored 
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2. Economic Decisions at Farm-Level based on Threshold Models Assuming Use 

of a Given Technique and Certainty 

A simple standard model 

A simple economic model, available in the early literature on this subject (Stern, 1966; 

Headley, 1968), assumes that farmers know or anticipate a particular level of infestation of a 

crop by a pest and have a specific technique available to them for eliminating the pest. Use of 

this technique involves a given level of cost per hectare (ha) and the economic benefit achieved 

by a farmer is the avoidance of the loss in profit which would occur in the absence of use of 

this technique, that is profit loss avoided by eliminating the pest (Headley, 1972; Carlson, 1970; 

Auld and Tisdell, 1986; Naranjo et al., 2015). This benefit usually increases with the level of 

pest infestation avoided by the pest control treatment but may be quite variable (Falkenberg et 

al., 2012). 

Note that in this analysis all values are to be taken as referring to per ha values unless otherwise 

specified. Let us consider the first basic model for determining the economics of pest control. 

Where x is the level of infestation of a crop by a pest (that is, the density of the pest per hectare), 

V is the increase in profit per ha obtained by eliminating it, and C is the cost per ha of doing 

so, the net benefit per ha of eliminating the pest is  

 G = V(x) – C (1) 

If this expression is positive, it pays to undertake the pest control; and if this expression is 

negative it provides a justification for the farmer not to engage in pest control.1 An example is 

provided in Figure 1. The curve OAB represents the loss in value of crop production 

experienced by a farmer as a function of the density of a pest and line EH represents the cost 

of eliminating the pest. If x < xk, the rational producer will not control the pest but if x > xk a 
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producer will do so. Consequently, xk is the threshold value where the management costs equal 

the benefit derived from that management action (Headley, 1972). 

 

 

Figure 1: A typical representation of the threshold economic model for deciding 

whether or not it is economic to control a pest. 

 

It is sometimes assumed that the reduction in the yield of the crop due to the presence of pest 

times the price per unit of the output of the crop represents the extra economic benefit the 

farmer will obtain by eliminating the pest.2 This is actually the extra revenue, R, generated by 

controlling the pest. Therefore, where f(x) represents the extra yield obtained by making sure 

the pest is eliminated and p is the price per unit of the output of the crop. 

 R(x) = pf(x) (2) 

Usually, p is assumed to be a constant, probably on the assumption that individual farmers are 

unable to influence the price they receive for their products. However, this assumes that 

increased yield does not involve any increase in production costs such as extra harvesting costs. 
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The possibility that it does should be allowed for. Therefore, if λ(x) represents the extra cost of 

processing the higher yield, the economic value of the extra yield if a level of pest infestation 

of x is avoided, is  

 V(x) = pf(x) – λ(x) (3) 

Also this basic economic model of pest control can be extended further to allow for additional 

possibilities.  

Extensions of the basic model 

First, the presence of pest in many cases not only affects the yield of a crop but also the quality 

of the produce (e.g. weed seeds contaminating harvested grain). Poorer quality produce will 

fetch a lower price, and if its quality is too poor, it may be unsaleable. So for some products p 

is likely to be a function of x. Therefore, for greater generality, Equation (2) can be re-expressed 

as: 

 R(x) = p(x) f(x) (4) 

where, as a rule, dp/dx < o, that is the price per unit received for produce falls with the level of 

pest infestation. Note that it is still appropriate to assume that an individual farmer is unable to 

influence the price received for his/her produce of a given quality. The type of relationship 

shown in Figure 2 by relationship may be common. For produce unaffected by a pest, a price 

of OH is received but the price falls with greater pest infestation. For damages occurring to the 

produce when the density of a pest is x ≥ xm, the output from the crop is unsaleable. In some 

cases, however, it may be possible to sort pest-affected produce from the unaffected. This will 

add to costs and reduce effective yields. This case is not analysed here.  
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Figure 2: Illustration of the relationship for the price received per unit yield of some 

crops as a function of the level of pest infestation. 

 

Note that because of the adverse quality impacts of a pest, it is possible for V(x) to increase at 

an increasing rate rather than at a decreasing rate as is often assumed. 

A second aspect is that the pest treatment may not be fully effective in eliminating the pest, 

perhaps due to the timing of the application or environmental factors (Myers et al., 2005; 

Carlson et al., 2011). This can easily be allowed for in this threshold-type of analysis. Let xr 

represent the density of the pest prior to treatment and xt represent its density after treatment. 

Then, the net economic gain from treatment is: 

 G = V(xr) – V(xt) – C (5) 

If this expression is positive, it pays to treat the pest but not if it is negative. 

A third possibility is that the cost of controlling a pest may not be independent of its density. 

For example, costs can rise as density increases, for example labour costs increase as density 
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increases when the management option is weeding by hand or cut and painting3 woody weeds. 

This can result in a ‘double threshold’. It may not pay to control the pest if it is present at a low 

density, nor if it occurs at a high density. An example is shown in Figure 3. In the case 

illustrated, it does not pay to control the pest if its density is less than x1 or greater than x2. 

 

Figure 3:  Illustration of a case in which two pest-control thresholds exist  

 

A fourth important aspect of the economics of pest control is that the cost per hectare of pest 

control often depends on the size of the cropping area which needs to be treated to control the 

pest. While this is not true for all methods of control, it is true for many. This aspect will be 

covered when the economics of alternative techniques for controlling pests is discussed below.  

If a number of alternative techniques (methods) are available to control a pest then the one 

adopted should be the least cost one for the level of pest-infestation experienced. Therefore, in 

Figure 3, C(x) should correspond to the lower envelope of the cost curve corresponding to all 

the available techniques (methods) for controlling the pest. Another possible response to the 

increased prevalence of a pest is for a farmer to change the type of produce being produced so 
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it is less attractive to the pest. For example, due to increased numbers of feral pigs (Tisdell, 

1982, Ch. 2, especially p.3) and wild dogs, some graziers in Australia have switched from 

running sheep to grazing cattle because this has become the most profitable alternative. Cattle 

are unlikely to be attacked by these pests. 

Note that the standard economic threshold model does not allow for variability in the level of 

pest density in a field. However, the model can be adjusted to allow for this (Auld and Tisdell, 

1988). Observe also that these single economic threshold models do not take account of the 

dynamics of pest reproduction on farm, and the possible immigration of the pest from 

elsewhere. Tisdell (1982, pp. 361-378) specifically discusses both these issues in relation to 

the Headley’s (1972) threshold models. Yokomizo et al. (2009) take some account of relevant 

population reproduction issues. 

Basic economic threshold models also do not take account of the management of multiple pests 

and the impact of controls on economically beneficial organisms. In addition, some pest control 

techniques (although effective in controlling a pest) may have some negative effect on 

crop/produce yields and its quality and on the price received for the output.  

Implications of the above basic models summarised 

Despite these limitations, several inferences can be drawn from the above basic models. These 

are as follows. If other things are held constant and if Vʹ(x) > 0 throughout, pest control is more 

likely to be profitable:  

1. The higher is the price per unit obtained for the yield of a crop; 

2. The larger is the amount of yield saved as a result of treatment; 

3. The lower is the cost of control; 
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4. The larger is the reduction in the price of the product avoided as a result of pest control; 

and 

5. The larger is the level of pest infestation avoided as a result of pest control. 

3. Economic Decisions at Farm-Level Based on Threshold Models Assuming a 

Given Technique and Uncertainty 

Most variables of relevance for decisions about whether or not to undertake pest control are 

subject to uncertainty. These variables include the effectiveness of the control (the kill rate), 

the price of the product, and the increase in yield attributable to the treatment of the pest. Both 

the kill rate and the increase in yield can be expected to be influenced by environmental factors. 

Furthermore, in many situations, the decision about whether or not to institute a pest control 

measure is made before the density of the pest is known. This applies particularly to the 

common practice of prophylactic applications of fungicides for disease management in 

vineyards and orchards, before the disease is present and/or symptoms are present. In these 

circumstances, optimal decisions at farm-level will depend on attitudes of farmers to risk-

bearing. Nevertheless, in most cases, we can narrow optimal choices down to a restricted set, 

no matter what is the attitude of a farmer to risk-bearing. Let us consider the consequences of 

uncertainty for decisions about whether or not to control a pest for two different types of 

situations. In the first case, it is assumed that the benefit of controlling the pest is uncertain. In 

the second case, it is supposed that the (anticipated) level of pest infestation is uncertain. Bear 

in mind that both uncertainties can occur together. 

The benefit function for pest control is uncertain 

In Figure 4, the benefit function is uncertain.4 It is believed that it may be as low as shown by 

the relationship OCD, V1(x), or as high as OAB, V2(x), and that it may assume any value in 
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between. Consequently, in these circumstances (given the goal of profit maximization), it will 

always be rational for a farmer to undertake pest treatment of x > x2 and not to do so if x < x1. 

For values of x in the range x1 < x < x2, the choice of whether or not to undertake pest control 

depends on attitudes to risk-bearing.  

 

 

Figure 4:  A case in which the benefit function of pest control is uncertain 

 

Consider some different cases. If the farmers’ prime objective is to minimize risk, then he or 

she may adopt the minimax loss rule. This rule requires that the maximum possible loss be 

minimized. In the case illustrated, the maximum possible loss occurs when the benefit function 

is V1(x) and the extent of this loss is at its highest level when x = x1 (it is then equivalent to the 

distance EH) and tapers off as x approaches x2. In these circumstances, the adoption of this 

risk-adverse strategy reduces the willingness of farmers to control the pest. Therefore, it is not 

always the case that a high preference for income security favours the control of a pest. At the 
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other end of the spectrum, farmers who like to gamble may adopt a maximax strategy, that is, 

a strategy which maximizes their profit in the most favourable circumstances. They will assume 

(in the case shown in Figure 4) that the benefit function for control of the pest is V2(x). 

Therefore, if the range of possible levels of pest infestation is x1 ≤ x ≤ x2, they will control the 

pest. 

In some cases, the farmer may weigh the likelihood of different benefit functions occurring by 

their subjective probabilities and maximize expected net benefit of pest control on that basis. 

Depending on the distribution of probabilities, this will result in a value of x between x1 and x2 

becoming the critical value for determining whether or not to undertake pest control. If the 

probabilities are skewed towards V2(x), control will occur at a lower pest density than if they 

are skewed towards V1(x). Most farmers operate within this framework of uncertainty. 

Moreover the case illustrated in Figure 4 represents one year or growing season. If the current 

year’s control impacts on future pest levels, the threshold density x1 may be significantly lower 

if one is considering longer term benefits. This particularly applies to annual weeds in annual 

crops such as wheat. In practice, threshold levels for weed density are very low (e.g. Trezzi et 

al., 2015). 

The level of pest infestation is uncertain 

Another important case is that in which the density of the pest is uncertain at the time pest 

control is undertaken. This is so for pre-emergence pest controls, and is effectively the case for 

use of Bt modified plants. It is, however, common in many situations. It can, for example, be 

difficult to predict from the density of their eggs the subsequent levels of infestation by 

caterpillars of lepidoptera species. (Paula-Moraes et al., 2013).5 Risk-aversion strongly favours 

the adoption of pest control in these cases. Some of the effects on the decision of whether or 

not to control a pest can be illustrated by Figure 5 if there is uncertainty about the level of pest 
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infestation. 

In Figure 5, the same basic assumptions are made as those relating to Figure 1. However, the 

economic benefit function (disregarding control costs) of eliminating a pest are in this 

illustration, assumed to be incremental at an increasing rate, that is, it is supposed V″(x) > 0. 

Nevertheless, depending on circumstances, V″(x) may be positive, negative or zero. The 

likelihood is high that V″(x) is positive if the price received for a pest damaged product falls 

rapidly with the extent of its damage by the pest.  

 

Figure 5: Diagram to illustrate influences on decisions to undertake pest control if there 

is uncertainty about the level of a pest infestation when pest control is 

undertaken 

 

Given the relationships illustrated in Figure 5, first note that if all the possible densities of the 

pest are less than xr (the boundary between control and non-control of the pest being optimal), 

it does not rationally pay to control the pest. Similarly, if the set of possible densities of the 
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pest all exceed xk, it is always rational to undertake pest control irrespective of attitudes of the 

pest manager to taking risks and the distribution of probable values of x. These are strong 

results. They hold for all possible forms of V(x) for which V(x) is less than C(x) for x < xk, and 

for which V(x) exceeds C(x) for x > xk. However, the optimal decision about whether or not to 

control a pest is sensitive to attitudes to risk-taking (and some other factors) and the density of 

the pest when xr ≤ x ≤ xs.  

In these circumstances, a highly risk-averse approach to decision making will result in a 

decision to control the pest. For example, if the minimax loss approach is adopted, it results in 

the pest manager deciding to undertake pest control. This decision prevents the largest possible 

reduction in profit, V(xs), occurring. 

For a decision-maker with the objective of minimizing the expected reduction in profit by 

deciding whether or not to engage in pest control, the situation is more complicated. In this 

case, the optimal decision is sensitive to the nature of the probability distribution of x and to 

the sign and size of the second derivative of V(x). As the range of uncertain values of x 

increases (and if the expected value of x remains constant), this tends to increase the likelihood, 

that pest control minimizes the expected loss in profit, if V″(x) > 0. The opposite is the case if 

V″(x) < 0. A simple illustration of this is provided in Figure 5. If the value of x is certain and 

equal to xk, there is no net benefit to be had by engaging in pest control because V(x) = C(x). 

However, assuming that xr and xs are equidistant from xk and that each has a probability of 0.5, 

the expected net benefit from controlling the pest is equal to the distance EB. It pays to control 

the pest in this case. The further apart are xr and xs the greater is the net benefit to be obtained 

by controlling the pest. The opposite relationship occur if V″(x) < 0. 

Taking another example, suppose that 

 V(x) = ax ± bx2 (6) 
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Then, if E[V] represents the expected value of V(x),  

 E[V] = aE[x] ± bE[x]2 ± bV(x) (7) 

In this expression, var x represents the variance of x and is a measure of the extent of uncertainty 

about its value. Hence, given E[x], the loss in profit if pest control is not undertaken, will 

increase with the size of b and the value of var x if b is positive. Consequently, with E[x] 

constant, the likelihood that pest control is optimal rises. If b is negative, the opposite 

relationship occurs. In some cases, a quadratic function is a close approximation to V(x). Note 

that only the branches of parabolas in the positive quadrant of Cartesian space are relevant. In 

all these cases, given that V(x) > 0 for all x, E[V] increases with E[x], var x constant. 

Consequently, it is also true that as the expected level of pest infestation rises, (other things 

being held constant) and if the aim of the decision-maker is to maximize his or her expected 

profit, the likelihood of pest control being optimal increases. 

In general, when the economic penalties imposed by a pest infestation tend to escalate rapidly 

with that level of infestation, increased uncertainty about the level of infestation increases the 

likelihood that pest control is a farmer’s superior economic choice compared to no control. 

Research on the likelihood of pest outbreaks (Guillemin et al., 2013; Izquierdo et al., 2013) 

will reduce the level of uncertainty. Increased information about the magnitude of pest 

outbreaks not only improves the profit-maximizing decisions of farmers (because they are less 

likely to undertake pest control when they know that the level of pest infestation will be lower 

than they would have otherwise thought possible) but it also has social benefits if pest controls 

have negative environmental spillovers or health risks.6 Furthermore, the most economic 

control of some pests requires the collective gathering of information and in some instances, 

collective action for instance, by state bodies, for example, in the case of highly mobile pests, 

such as locusts.  
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4. Choice of Alternative Pest Control Techniques at Farm Level Assuming 

Certainty 

Methods of controlling pests can be classified in several different ways. For example, this can 

be done according to: 

 The means used to kill a pest or limit its population e.g. destruction of the pest by hand, 

machinery, chemical pesticide use, biologically based controls; 

 In relevant cases, the method used to distribute pesticides; and 

 According to the effectiveness of the method adopted for controlling the pest. 

Consider situations in which the optimal choice of a method for distributing a pesticide, for 

example, spraying it on a crop, varies with the size of the area to be treated. This analysis 

enables the modelling considered in Section 2 to be extended.  

Cost minimization 

Assume that a pesticide is to be sprayed onto a crop, and suppose that no matter what method 

is used to spray a pesticide that it is equally effective in controlling a pest. The least cost per 

ha method of spraying the crop should be chosen in order to maximize the profitability of pest 

control. For example, the lowest cost per hectare of spraying a small area maybe by hand, but 

if a large area is to be treated, the least cost method per ha, may be by the use of a tractor or if 

the area is quite large, by a plane or a drone. 

The following indicates (for a simple case) how this matter can be analysed. Suppose that two 

techniques, I and II are available for spraying a pesticide and that in each case, the cost per 

hectare of spraying it declines with the size of the area to be sprayed. Using technique II to 

spray a small area results in greater cost per ha than using technique I but the position is 

reversed when a larger area needs to be sprayed. This relationship may exist because using 
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technique II results in higher overhead costs (fixed costs) than does using technique I but lower 

variable costs. 

Figure 6 illustrates this choice problem. Let function C1(z) represent the cost per hectare of use 

of the pesticide if technique I is adopted. The variable z indicates the size of the area to be 

treated. For example, the relationship C1(z) might be as shown by KLM in Figure 6. Similarly 

let C2(z) represent the cost per ha of controlling a pest when technique II is used. This is 

represented in Figure 6 by curve HLJ. 

 

 

Figure 6:  A case in which the optimal method of applying a pesticide depends on size of 

the area to be treated. 

 

In the case illustrated in Figure 6, the costs per ha of controlling a pest are minimized when z 

< zh by adopting technique I and if z > zh, by adopting technique II. The lower boundaries of 

the cost curves shown (that is, their envelope), KLJ, designate the least cost per ha application 
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method of controlling a pest by pesticide use. Represent this relationship function by C(z). 

Extensions for previous threshold models 

Now the previous models in which the cost of controlling a pest were assumed to be 

independent of its density can be given greater generality because C(z) can be substituted for 

C in Equation 1. In the illustration shown in Figure 1 the line EAH will be lower the larger is 

z. It follows then that the larger the area to be treated to control a pest, the lower is the level of 

infestation at which it is economic to control it, This is so, provided V(x) is monotonically 

increasing, for instance, provided V(x)ʹ > 0 for all values of x. This relationship is, however, 

reversed if C(z) increases with z. It seems likely that economies of scale for controlling pests 

exist in many cases at farm level. Consequently, those with larger sized farms are more likely 

to find the spraying of pesticides more economical than smaller landholders. This implies that 

those with larger landholdings would be more likely to undertake pest control than those with 

smaller holdings as a matter of routine.  

Further extension of this type of analysis is possible. For example, the optimal choice of 

technique to control a pest may in some cases depend on its density and the area to be treated. 

Then the cost minimizing technique depends on both x and z. Hence, Equation (1) in this case 

becomes 

 G = V(x) – C(x, z) (8) 

And the choice of the pest control technique which minimizes costs is sensitive to both x and 

z.  

An additional important extension has to do with the effectiveness of alternative techniques in 

reducing the density of a pest. Often a pest is not entirely eliminated by a control method. 

Consequently, the following decision rules can be applied. Does the gain in gross economic 



18 

 

returns from using a particular technique exceed its costs taking into account its effectiveness 

in reducing the density of the targeted pest? If yes, its use is profitable and otherwise not. If 

several alternative techniques are available compare their additions to profit taking into account 

the factors just mentioned and select the one making the greatest addition to profit. Note that 

the economically optimal technique may not be the one resulting in the greatest reduction in 

density of the pest, because the private benefit-cost ratio may be highest for a technique which 

does not result in the maximum achievable reduction in a pest population. The mathematical 

analysis of this can be formalized, but this will not be done here. It should, however, be kept 

in mind that private decisions about the choices of a pest control technique may not be socially 

optimal.  

5. The Economics of the Timing of Pest Control and the Optimal Choice of 

Techniques given Uncertainty 

Uncertainty can influence the optimal choice of pest control techniques as well as the optimal 

timing of pest control. First, let us briefly consider some of the factors that may influence the 

timing of pest control and subsequently, how uncertainty about the level of pest infestation can 

influence decisions to adopt the use of herbicide-resistant crops rather than the non-resistant 

ones, and about whether to use Bt modified seed rather than unmodified seed. 

Timing of pest control 

The timing of pest controls often influence their ecological effectiveness and the level of their 

economic benefits (Keller et al., 2014). For some techniques, flexibility exists about the time 

at which pest control can be undertaken. If the likely level of the pest infestation is uncertain, 

delay will increase information about its distribution and density within the landscape. As a 

result of delaying a control, it may, for example, become clear that the level of the pest 
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infestation is going to be too low to warrant pest control. However, the benefit of this 

information needs to be weighed against possible economic penalties which may be increased 

by delay. For example, the longer the delay, the lower can be the yield of the crop because the 

pest may have already damaged the produce. Furthermore, applying a pesticide at a late stage 

may add to application costs, damage to the crop or create problems if there is a withholding 

period before marketing. Therefore, the extra benefits from delaying the control of a pest need 

to be compared with any loss in the economic value of the crop caused by the delay and any 

extra cost involved in applying the control. 

In the case of mung beans and other legumes, the control of insects needs to occur before the 

seed pod is compromised. While insects may only cause cosmetic damage to the seedpod, the 

weakening of this protective layer allows fungus, pathogens and moisture into the seedpod, 

ruining the grain. Once the seedpod has been compromised, pesticides are economically 

ineffectual due to the difficulty of getting the active ingredient into the seedpods.   

Choice of herbicide-resistant crops versus non-resistant ones 

The choice of planting a genetically modified herbicide-resistant crop rather than a non-

resistant one can be expected to be influenced by uncertainty about the density of weeds in the 

crop. The purchase of seed for a herbicide-resistant crop will usually cost more than for a non-

resistant one. However, the economic benefit for the farmer is that it adds to flexibility in his 

or her decision-making about pest control. It keeps open the option of eradicating weeds in a 

crop if their density is found after planting to be high enough to warrant it. For several crops, 

the only economic way to control weeds after planting is by use of herbicides. 

Assuming that the decision-maker aims to maximize profit, a simple model can be used to 

highlight factors which influence private decisions to plant a herbicide-resistant crop rather 

than a non-resistant one. Suppose the loss in economic value of the crop as a function of weed 
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density, V(x), is the same for planting a genetically modified crop as for a non-modified one. 

However, GM seed is assumed to be more expensive than non-modified seed. Suppose also 

that if a non-herbicide resistant crop is planted, it is impossible to control the level of weed 

infestation in the crop once planted. In this case, the extra cost of GM seed is the price paid for 

increased flexibility of weed control. Once this cost is incurred, it is a sunk cost but it has an 

economic benefit because it keeps options open. If GM seed is planted, it allows the subsequent 

use of herbicides when this is economic.  

Figure 7 illustrates the economic outcome from choosing to adopt a herbicide-resistant crop 

and or plant a conventional variety (i.e. non-GM). Although the benefit of weed control per ha 

is represented by a linear line OABD, the following argument is applicable provided that the 

function is upward sloping. OF represents the herbicide cost of producing a conventional crop  

and EF is the additional cost of using the GM seed (e.g. the seed costs and the license fee). In 

this case, if prior to planting all predicted values of x exceed xk, it pays to plant GM seed but if 

all predicted values are less than xk, it is more profitable to plant non-modified seed. It does not 

matter whether these values of x are uncertain. The weed density x = xk is the critical value in 

this case. If these predictions are correct, no spraying of herbicide will occur if x < xk. However, 

if GM seed is wrongly selected (for any reason), then spraying will occur at a lower weed 

density, namely x = xr because the extra cost of GM seed is a sunk cost.  

The use of herbicide resistant crops may themselves produce new weed problems (Kniss et al., 

2011)  as well as accelerate the evolution of herbicide resistant weed species (Vencill et al., 

2012) thus producing a range of externality issues.7 
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Figure 7: A diagram to illustrate the economics of choosing between a herbicide-

resistant crop and one that is not 

 

If the predicted levels of weed density straddle xk, the decision about whether it pays to buy 

GM seed or not is more complicated. If x < xr, the comparative loss in profit of GM seed is 

chosen rather than non-GM, is equal to the extra cost of GM seed, EF. If xr < x < xk, this loss 

is partially offset by a net gain from herbicide use. If x > xk, there is a net gain in avoided loss 

of profit. For example, if x = xt, it is equivalent to DJ. If expected profit is to be maximized, net 

values of losses and benefits (times their probability) in these ranges should be computed and 

summed. If the result is positive, the decision maker maximizes expected profit by planting a 

GM crop. If it is negative, the decision maker would maximize profit by planting a traditional 

crop. 

A producer who has a desire for income security will favour planting a herbicide-resistant crop, 

unless all predicted values of x < xk. If x > xk, the minimum possible reduction in profit if a 
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herbicide-resistant crop is planted, is C. If a non-herbicide resistant crop is planted, it is V(x) > 

C. So the maximum possible loss in possible loss in profit is minimized when the herbicide-

resistant crop is chosen. For example, if the highest predicted possible level of x = xt, the loss 

in profit if a non-herbicide resistant crop is planted, is equal to an amount equivalent to the 

distance DL. However, the planting of a herbicide-resistant crop reduces this by an amount 

equivalent to the distance JL. Consequently, this will lower the loss in profit by an amount 

equivalent to the distance DJ. 

Choice of Bt modified crops versus non-modified ones. 

Consider economic factors which can be expected to influence the choice of Bt crops versus 

non-modified crops. An important influence on the optimal economic decision will be the 

uncertainty about possible levels of pest infestations. These levels are influenced by 

environmental conditions. Figure 8 can be used to illustrate the relevant choice problem 

assuming that if a non-modified crop is planted, alternative means (such as spraying 

insecticide) to kill the pest are available. It is supposed that the use of this alternative is more 

costly than control which is achieved by planting a Bt modified crop but maintains greater 

flexibility in deciding whether controlling the pest is warranted economically. Adoption of the 

alternative form of management is responsive to the level of pest infestation but planting a Bt 

modified crop is assumed to eliminate flexibility. 

The economics of these alternative forms of pest management can be illustrated by Figure 8. 

The extra cost of relying on a Bt crop (such as the extra cost of seed, provision of refuges) 

compared to planting the same conventional crop is indicated by OF. If the conventional crop 

is planted and pest control is undertaken, the cost of controlling the pest is assumed to be equal 

to OE. The economic benefit from controlling the pest is shown by the line OB and for 

simplicity, the alternative means of pest control are assumed to be equally effective in 
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eliminating the pest. Therefore, if it is certain that x < xk, it is less profitable to plant Bt modified 

seed than conventional seed. If x > xk, this relationship is reversed.  

 

Figure 8: An illustration of the economics at farm level of choosing between Bt seed and 

conventional seed when a pest is to be managed. Planting of Bt seed involves 

inescapable upfront costs once it is decided to plant it whereas the option of 

controlling the pest remains open if conventional seed is planted. 

 

If uncertainty about the level of pest-infestation exists, this complicates the optimal decision, 

unless of course all uncertain values of x are less than xk or they are larger than xk. Suppose that 

possible values of x may be less than xk or greater than xk. If the farmer places a very high 

emphasis on income security, the minimax loss rule may be adopted. In that case, if there is 

any possibility that x > xk, the farmer should decide to plant Bt seed because this minimizes the 

largest possible reduction in profits taking into account pest management options. However, if 

the (mathematically) expected value of the reduction in profit is to be minimized, the optimal 
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undertaken the level of pest infestation will be known. Then the reduction in profit (as a result 

of pest management for x < xk for the planting of conventional seed) will be V(x) where x < xk. 

This is a smaller reduction than if Bt seed is planted because then this loss is equal to V(xk). 

However if x > xk, the use of conventional seed results in a greater reduction in profit than if 

Bt seed is planted. In this case, the reduction in profit is V(x) for xk < x < xs and V(xs) for x > 

xs compared to OF = V(xk) if the Bt crop is planted. Consequently, the greater is the skew of 

probable x-values towards larger values of x above xk, the more likely is the expected reduction 

in profit to be minimized the adoption of a Bt crop. On the other hand, the more marked is the 

skew in the opposite direction, the greater is the likelihood that the planting of conventional 

seed will minimize the expected reduction in the profit of the farmer. 

6. A Discussion of the Modelling of the Economics of Pest Management at the 

Farm Level 

The above models only cover a limited set of factors which can influence the economics of 

pest control at the farm level. Other factors that can be relevant include: 

 The possibility that multiple pest control measures are needed serially. 

 The speed with which a pest population recovers from a control 

 The likelihood of immigration of a pest population occurring when its on-farm 

population is reduced. This may depend on the extent to which other farmers and 

agencies control the pest.  

o In the case where immigration is reduced by a government agency, it is a public 

benefit; 

o In the case where immigration is reduced by an individual and the farmer costs 

are reduced it is a positive externality  
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o In the case where immigration is reduced and the farmer takes no pest 

management, the farmer become a free-rider  

o In the case where migration from one farm to another increases a decision 

makers costs, this is a negative externality 

 The likelihood that populations of secondary pests will increase if populations of 

primary pests are controlled. 

 The economically optimal concentration of a pesticide assuming higher concentration 

involves higher costs (farm, health and ecosystem costs, see chapter on Externalities). 

 Optimal annual management techniques at a farm level may increase the rate at which 

pests develop resistance to pesticides 

 

From the above modelling, it is clear that farmers face many environmental uncertainties which 

affect the type of pest controls they adopt and whether or not they undertake pest control at all. 

Changing environmental conditions lead to uncertainty about the effectiveness of different 

types of pest control and to uncertainty about crop yields (Jones et al., 2006). Furthermore, 

uncertain environmental conditions influence the prices received for agricultural produce 

because there are major factors changing the (aggregate) market supplies of this produce. The 

pest control strategies adopted by farmers to respond to these uncertainties depend on their 

attitudes to risk-bearing and their economic returns. 

The farm-level models outlined above assume that the basic objective of farmers is to maximize 

their profit. Under conditions of uncertainty, this narrows the range of pest control measures 

which it is rational to adopt, and in some circumstances (as was demonstrated using the above 

models), the presence of uncertainty is irrelevant for making optimal choices. However, in 

‘straddle-type’ cases (which may be common), this is not so. In these cases, the attitudes of 

individual farmers to risk-bearing need to be taken into account and usually attention needs to 
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be paid to the nature of the probability distribution of relevant uncertain events. In these 

circumstances (but not in all, as was shown), increased risk-aversion tends to increase the 

likelihood of pest control measures being adopted, and probably favours pest control 

techniques which show greater reliability in controlling pests than other methods. However, 

the decision-making process is made more complicated by the need to take account of the 

flexibility which different techniques allow in responding to changes in environmental 

conditions which among other things, includes changes in estimates of likely levels of pest 

infestation. Although an economic premium is usually placed on flexibility (for example, if 

with the passage of time, knowledge improves about the variables which influence the 

profitability of pest controls), there are often extra costs associated with adopting techniques 

that permit greater flexibility in pest control as relevant conditions change. The costs and 

benefits therefore need to be compared, as was demonstrated by considering two types of 

GMO-based strategies for pest control, namely the planting of herbicide resistant crops (which 

permit significant flexibility in weed control) and the growing of Bt modified crops which 

result in less flexibility in pest control than possible alternatives.  

GMO crops can provide additional benefit for producers including a reduction in time allocated 

to crop management, transaction costs associated with regulations designed to internalise 

externalities, improving relationships with neighbours from using fewer chemical pesticides 

and a reduction in stress associated with worry about crop management (Back and Beasley, 

2007). However, the planting of GM crops can also add to social conflict, for example, between 

growers of GM crops and GM-free crops. 

As mentioned above economic behaviour depends on motives. In some cases, farmers may 

engage in income-satisficing behaviours rather than profit maximization. This is liable to alter 

their choice of pest control strategies (Doohan et al., 2010). These choices can be quite different 
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to those based on profit maximization. For example, suppose that a farmer seeks a particular 

level of income and no more. Then, if the price of a relevant product rises, this increases the 

likelihood that a profit-maximizing farmer will undertake pest control but it reduces the 

likelihood that the income-satisficing farmer will do so. The latter case is believed to occur in 

some LDCs. 

Note also that the most economic choice of pest control techniques is liable to differ between 

countries. In LDCs, where labour is abundant and capital is scarce, labour-intensive pest 

control techniques are likely to be more economic than in developed countries. Lack of 

availability of finance for smallholders may further reinforce this effect. It is also possible that 

in some LDCs that a greater weight will be placed on food supplies rather than on the negative 

environmental and health effects associated with the use of some pesticides if they are 

inexpensive. 

7. Industry-wide Economic Benefits of Pest Control 

Consider now an economic model which may be used to assess the net benefit of pest control 

at the industry level. This model is based on supply and demand analysis and the application 

of comparative statics. It has been used previously in the relevant literature (see, for example, 

Auld et al., 1987, Ch.8). In this modelling, the assessment of whether pest control results in a 

net economic benefit depends upon whether it increases the economic surplus of suppliers of a 

product (producers’ surplus) plus that of buyers of a product (consumers’ surplus). Producers’ 

surplus is equal to the difference between the payments they receive for their supply of a 

product and the minimum payments they would require to supply it. Consumers’ surplus is the 

difference between the maximum payments consumers would be willing to pay for the supply 

of a product and the amount they actually have to pay for it. Neoclassical economic modelling 

assumes that both consumers and producers are fully informed, and that consumers act to 
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maximize their utility and producers act to maximize their profit. 

Initial application of this neoclassical model is frequently based on the assumption that market 

failures of various kinds are absent. This includes the assumption that no adverse 

environmental spillovers occur in pest control. Also the assumption that all parties to economic 

exchange are well informed, rules out the possibility of asymmetric knowledge about their food 

purchases, for example, consumers being unaware of the presence of pesticides in their food 

purchases. Further economic analysis is then usually undertaken to allow for market failures. 

At that stage, judgment is needed to decide (particularly if public policies are to be formulated), 

how important these failures are. Moreover, some limitations of the modelling need to be taken 

into account before prescribing public policies. 

Let us consider the welfare implications of pest control when it is assessed using the basic 

neoclassical industry model. Possibly unsurprisingly, it results in the conclusion that pest 

control which is profitable for producers is bound to increase economic welfare if it is judged 

by the level of total economic surplus obtained; consumers’ surplus plus producers’ surplus. It 

implies that relative to the available technologies, economic welfare is maximized in a 

competitive market system. However, this does not occur in practice because there are 

important failures in market systems. Despite this, the neoclassical model is a very useful basis 

for comparative economic analysis by comparing the effects on economic welfare of deviations 

from the neoclassical theoretical ideal. 

With this background in mind, consider the application of neoclassical economics to the pest 

management problem. First, the case where pest control only increases the productivity of the 

industry will be considered and then the case is examined where pest control increases both 

productivity and improves the quality of the industry’s produce. Quality changes do not appear 

to have been given much attention previously in the relevant economic literature.  
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Higher productivity as a result of pest control 

Consider the welfare consequences (using the neoclassical industry model) of pest control 

which increases the yield of a crop. Let X designate the quantity of output of this crop. In the 

absence of pest control, the supply function of the output of this crop might be as represented 

by line S1S1 in Figure 9. D1D1 might represent the demand schedule for this output. In that 

case, the market equilibrium is established at E1, X1 of the product is supplied and it sells at P3 

per unit. Consumers’ surplus is equivalent to the area of the dotted triangle and producers’ 

surplus is equal to the area of the flecked triangle. Therefore, the total economic surplus is 

equivalent to the area of triangle AE1B. Now, if producers adopt a pest control strategy which 

profitably increases their yield, the industry supply schedule moves downward. It costs them 

less to supply a given quantity of produce. As a result, if there is no change in the quality of 

the produce, the new industry equilibrium is established at E2. Total economic surplus increases 

by an amount equivalent to the hatched area in Figure 9. Therefore, neoclassical economic 

analysis implies that economic welfare increases as a result of pest control. 
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Figure 9:  Illustration of community-wide economic benefits of pest control using 

neoclassical and economic modelling based on industry analysis 

 

Changes in the quality of produce as a result of pest control 

Pest control often not only affects the yield of a crop but also the quality of the produce. In 

many cases, but not all, it is believed to enhance the quality of the crop. It is possible for both 

the yield of a crop and its quality to be raised by pest control. In that case, improved quality of 

the produce adds to economic welfare. This is illustrated in Figure 9. An increase in the quality 

of the produce can be expected to increase the amount consumers are willing to pay for it. This 

results in the demand schedule shifting upward. In Figure 9, this is reflected in a shift upward 

of the demand schedule from D1D1 to D2D2. Taking this into account and given that the pest 

control raises yield, a new market equilibrium is established at E3. Quality improvement as a 
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result of pest control enables a further addition to economic surplus (equivalent to the lightly 

shaded area) to be achieved. While this is not illustrated in the case shown, improved product 

quality adds to both consumers’ and producers’ surplus. 

In some circumstances, increased yield as a result of pest control may be obtained at the 

expense of reduced quality of the products. In other cases, improved quality may be achieved 

by altering pest management at the expense of lower yield. If these changes are profitable, the 

neoclassical model implies that they will be adopted in the market system, and will raise the 

total economic surplus. The model implies that production systems respond perfectly to the 

demands of consumers. This is sometimes described as the principle of consumers’ 

sovereignty. This however, ignores all the possible sources of imperfections that can arise in 

the operation of market systems. These can be very marked for several forms of pest control, 

as is evident from other contributions in this book.  

8. Further Discussion of Community-wide Economic Benefits of Pest Control and 

Consideration of Other Issues Worthy of Attention 

The above neoclassical economic model only partially models real situations. For example, it 

assumes that the only stakeholders in pest control in an industry are producers and consumers 

of its products. However, because of the environmental spillovers from pest controls, other 

parties may have an interest in these, such as workers in the industry, those residing in 

neighbourhoods where pesticides are used, nature conservationists and those in other 

industries. Even within the same industry, producers can experience unwanted spillovers, for 

example, from the planting of GMO crops and the use of insecticides. 

In some case too, the frequency and duration of a pest control technique influences its long-

term effectiveness. In many cases, as the frequency and duration of a pest control techniques 
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increases, its effectiveness in controlling a focal pest declines. Therefore, some communal 

controls on collective use may be called for in order to achieve maximum economic benefits 

from these methods of pest control. 

It should also be noted that most social economic cost-benefit analysis adopts the Kaldor-Hicks 

criterion, also known as the potential Paretian gain criterion. If there are gainers and losers 

from a pest control strategy, the strategy is deemed to be economically desirable if the 

economic gains of those adopting the strategy exceed the economic losses of those 

disadvantaged by the strategy. However, this rule ignores the distributional consequences of 

economic change. This test of the social desirability of economic change has strong advocates, 

such as Richard Posner (1981), who favour it on the basis that it fosters economic growth. 

Nevertheless, in practice, it is often politically impossible to ignore the distributional 

consequences of different forms of pest control, even though in some cases, they may be of 

minor importance and be able to be politically ignored. For example, the introduction of the 

Calicivirus (commonly known as rabbit haemorrhagic disease) to Australia to control rabbit 

pest populations resulted in huge economic benefits for most agricultural industries, as well as 

benefits to protected areas, but it has disadvantaged commercial producers of rabbits for the 

meat trade and consumers of rabbit meat. No compensation was paid to these groups. However, 

the net economic gain from the introduction of the Calicivirus in Australia has been large, and 

greatly outweighs the losses experienced by those disadvantaged by the introduction of this 

virus. Thus, in this case, it is reasonable to argue that this pest control has resulted in a net 

social economic gain in Australia (Vere et al., 2004). 

If a pest is not already in a country or region, there is also the problem of assessing the 

economics of measures to exclude it. Furthermore, if it is introduced, the economics of 

containing or eradicating it needs to be considered. Industries established in the absence of 
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trade restrictive pests are able to gain a comparative advantage over trading rivals in terms of 

lower production costs and receive a higher price for its produce. In this case the welfare in 

both the exporting and importing country can be reduced if a biosecurity event occurs. The 

exporting country may no longer be able to supply a commodity under existing cost structures 

and may lose the price premium. While the importing country may not be able to purchase 

goods with the specification it desires. 

In extreme situations the invasion of an exotic species can prevent a country from engaging in 

international trade (e.g. Bovine spongiform encephalopathy (BSE)), increase public health 

costs (e.g. fire ants) and cause ecosystem failure (e.g. the snakehead fish and the cane toad). 

By preventing the establishment of exotic species the economic debate is centred on the 

concepts of public benefits, where government expenditure prevents market failure in control 

occurring and society as a whole benefits (Adamson et al., 2014).  

A further policy issue is the need to assess the economic risks associated with introducing an 

organism (predator) for the classical biological control of a pest. A similar problem is the risk 

that the introduction of some exotic plants from abroad could result in these becoming invasive 

with unwanted economic effects. There are also environmental risks from the release of some 

GMOs which should be considered. Economic factors need to be taken into account in 

determining whether it is wise to introduce new genetic material to a region.. 

9. Concluding Comments 

Pest management situations are very diverse in relation to the type of pests to be controlled, 

the various techniques available for their management and prevailing economic and 

environmental conditions. Moreover, several techniques may be employed in an integrated pest 

management approach to individual or multiple problems serially or simultaneously (Harker 
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and O'Donovan, 2012). In addition, pest management is frequently the source of social conflict, 

subject to communal constraints, and it is further complicated by uncertainties. Consequently, 

a variety of economic and ecological models are needed to effectively analyse the optimality 

of decisions about pest control. It has only been possible to introduce a few of these in this 

chapter. In later chapters, attention will be given to several pest management issues which 

involve market failure and which have only been touched on here. These include the 

importance of various types of environmental externalities or spillovers and the consequences 

of pest control for the supply of public (non-marketed) goods, for example, the conservation 

of wildlife. Another issue considered is the degree of awareness of consumers about the extent 

to which their purchases have been subjected to pest controls and their consequences, for 

instance, for human health. Economic analyses have been developed that do take some account 

of these issues which involve market failure.  

A major constraint on economically optimal decision-making is controlling pests in the 

bounded rationality of all parties with an interest in it. For example, farmers often have limited 

knowledge about the effects and cost-benefits of alternative methods of pest control. They are 

therefore, liable to be heavily influenced in their decisions by information provided by 

suppliers of saleable pesticides and pest control products. This information naturally tends to 

be one-sided. Some studies in China revealed that farmers were quite ignorant about the 

economic benefits of the pest controls which they had adopted (Zhao et al., 2011).  

Notes 

1. This type of economic threshold model is sometimes presented differently. An alternative 

formulation focusses on the cost-benefit ratio of pest control (Brown, 1997). If this ratio 

exceeds unity it is uneconomic to control the pest, but if it is less than this, control is 
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economic. In the relevant literature, this ratio is usually referred to as the economic injury 

level (EIL) (Brown, 1997; Peterson and Hunt, 2003). 

2. Elimination is assumed in the initial models but many controls only result in reducing the 

density of the pest. Adjustments to the basic model can be made to allow for this (see later). 

3. Cut and paint is when each stem is cut and then the residual stump is brushed with a 

herbicide. 

4. Yokomizo et al. (2009) have explored some of the economic applications of incorrect 

specification of the density-impact curve. 

5. There is also an associated economic problem, namely to find the most economic method 

of assessing the population of a pest, for example, thrips (Sutherland and Parrella, 2011). 

6. There is considerable scope for extending the analysis of the economic value of information 

gathering and dissemination in relation to pest control. In doing this, it needs to be kept in 

mind that the additional economic benefits from extra information (and its communication) 

should be weighed against the extra cost incurred (Tisdell, 1996, Ch. 1). 

7. Various economic aspects of pest resistance to controls (including the use of GM crops) 

are discussed in Tisdell (2015, Chs. 7 and 9). 

References 

Adamson, D., M.P. Zalucki and M.J. Furlong (2014), 'Pesticides and integrated pest 

management: practice, practicality and policy in Australia', in R. Pershin and D. 

Pimentel (eds.), Integrated Pest Management- Experiences with Implementation, 

Global Overview, Volume 4,  Springer, pp. 387-411. 

Auld, B.A., K.M. Menz and C.A. Tisdell (1987), Weed Control Economics, London and 

Orlando, USA: Academic Press.  

Auld, B.A. and C.A. Tisdell (1986), 'Economic threshold/critical density models in weed 



36 

 

control', Economic Weed Control, Proceedings, EWRS Symposium, 261-268. Reprinted 

in C.A. Tisdell (2003), Economics and Ecology in Agriculture and Marine Production, 

Cheltenham, UK and Northampton, MA, USA: Edward Elgar, pp. 159-169. 

Auld, B.A. and C.A. Tisdell (1988), 'Influence of spatial distribution on weeds on crop yield 

loss', Plant Protection Quarterly,  3 (2), 81.  

Back, W. and S. Beasley 'Case study analysis of the benefits of genetically modified cotton', in 

S. O’Reilly, M. Keane and P. Enright (Eds.),  Proceedings of 16th International Farm 

Management Association Congress, University College Cork, Cork, Ireland, 2007. 247-

266. 

Brown, G.C. (1997), 'Simple models of natural enemy action and economic thresholds', 

American Entomologist,  43 (2), 117-124.  

Carlson, G.A. (1970), 'A decision theoretic approach to crop disease prediction and control', 

American Journal of Agricultural Economics,  52 (2), 216-223.  

Carlson, T.P., E.P. Webster, M.E. Salassi, J.A. Bond, J.B. Hensley and D.C. Blouin (2011), 

'Economic evaluations of imazethapyr rates and timings on rice', Weed Technology,  26 

(1), 24-28.  

Doohan, D., R. Wilson, E. Canales and J. Parker (2010), 'Investigating the human dimension 

of weed management: new tools of the trade', Weed Science,  58 (4), 503-510.  

Falkenberg, N.R., T.J. Cogdill, M.E. Rister and J.M. Chandler (2012), 'Economic evaluation 

of common sunflower (Helianthus annuus) competition in field corn', Weed 

Technology,  26 (1), 137-144.  

Guillemin, J.P., A. Gardarin, S. Granger, C. Reibel, N. Munier-Jolain and N. Colbach (2013), 

'Assessing potential germination period of weeds with base temperatures and base 

water potentials', Weed Research,  53 (1), 76-87.  

Harker, K.N. and J.T. O'Donovan (2012), 'Recent weed control, weed management, and 



37 

 

integrated weed management', Weed Technology,  27 (1), 1-11.  

Headley, J.C. (1968), 'Estimating the productivity of agricultural pesticides', American Journal 

of Agricultural Economics,  50 (1), 13-23.  

Headley, J.C. (1972), 'Defining the economic threshold', in National Research Council (ed.), 

Pest Control Strategies for the Future,  Washington, D.C: National Academy of 

Sciences, pp. 100-108. 

Izquierdo, J., F. Bastida, J.M. Lezaún, M.J. Sánchez del Arco and J.L. Gonzalez-Andujar 

(2013), 'Development and evaluation of a model for predicting Lolium rigidum 

emergence in winter cereal crops in the Mediterranean area', Weed Research,  53 (4), 

269-278.  

Jones, R., O. Cacho and J. Sinden (2006), 'The importance of seasonal variability and tactical 

responses to risk on estimating the economic benefits of integrated weed management', 

Agricultural Economics,  35 (3), 245-256.  

Keller, M., G. Gantoli, J. Möhring, C. Gutjahr, R. Gerhards and V. Rueda-Ayala (2014), 

'Integrating economics in the critical period for weed control concept in corn', Weed 

Science,  62 (4), 608-618.  

Kniss, A.R., G.M. Sbatella and R.G. Wilson (2011), 'Volunteer glyphosate-resistant corn 

interference and control in glyphosate-resistant sugarbeet', Weed Technology,  26 (2), 

348-355.  

Myers, M.W., W.S. Curran, M.J. Vangessel, B.A. Majek, B.A. Scott, D.A. Mortensen, D.D. 

Calvin, H.D. Karsten and G.W. Roth (2005), 'The effect of weed density and application 

timing on weed control and corn grain yield', Weed Technology,  19 (1), 102-107.  

Naranjo, S.E., P.C. Ellsworth and G.B. Friswold (2015), 'Economic value of biological control 

in integrated pest management of managed plant systems', Annual Review of 

Etonmology,  16, 621-645.  



38 

 

Paula-Moraes, S., T.E. Hunt, R.J. Wright, G.L. Hein and E.E. Blankenship (2013), 'Western 

bean cutworm survival and the development of economic injury levels and economic 

thresholds in field corn', Journal of Economic Entomology,  106 (3), 1274-1285.  

Peterson, R.K.D. and T.E. Hunt (2003), 'The probabilistic economic injury level: incorporating 

uncertainty into pest management decision-making', Journal of Economic Entomology,  

96 (3), 536-542.  

Posner, R. (1981), The Economics of Justice, Cambridge, MA, and London, UK: Harvard 

University Press.  

Smith, R.J., Jr. (1988), 'Weed thresholds in southern U.S. rice, oryza sativa', Weed Technology,  

2 (3), 232-241.  

Stern, V.M. 'Significance of the economic threshold in Integrated Pest Control', in Food and 

Agriculture Organisation of the United Nations (Ed.),  Proceedings of FAO Symposium 

on Integrated Pest Control,  1966. 41-56. 

Sutherland, A.M. and M.P. Parrella (2011), 'Accuracy, precision, and economic efficiency for 

three methods of thrips (Thysanoptera: Thripidae) population density assessment', 

Journal of Economic Entomology,  104 (4), 1323-1328.  

Tisdell, C.A. (1982), Wild Pigs: Environmental Pest or Economic Resource?, Sydney, Oxford, 

New York: Pergamon Press.  

Tisdell, C.A. (1996), Bounded Rationality and Economic Evolution: A Contribution to 

Decision Making, Economics and Management, Cheltenham, UK and Brookfield, VT, 

USA: Edward Elgar.  

Tisdell, C.A. (2015), Sustaining Biodiversity and Ecosystem Functions: Economic Issues, 

Cheltenham, UK and Northampton, MA, USA: Edward Elgar. (in press). 

Trezzi, M.M., R.A. Vidal, F. Patel, E. Miotto, F. Debastiani, A.A. Balbinot and R. Mosquen 

(2015), 'Impact of Conyza bonariensis density and establishment period on soyabean 



39 

 

grain yield, yield components and economic threshold', Weed Research,  55 (1), 34-41.  

Vencill, W.K., R.L. Nichols, T.M. Webster, J.K. Soteres, C. Mallory-Smith, N.R. Burgos, 

W.G. Johnson and M.R. McClelland (2012), 'Herbicide resistance: toward an 

understanding of resistance development and the impact of herbicide-resistant crops', 

Weed Science,  60 (sp1), 2-30.  

Vere, D.T., R.E. Jones and G. Saunders (2004), 'The economic benefits of rabbit control in 

Australian temperate pastures by the introduction of rabbit haemorrhagic disease', 

Agricultural Economics,  30 (2), 143-155.  

Yokomizo, H., H.P. Possingham, M.B. Thomas and Y.M. Buckley (2009), 'Managing the 

impact of invasive species: the value of knowing the density–impact curve', Ecological 

Applications,  19 (2), 376-386.  

Zhao, J.H., P. Ho and H. Azadi (2011), 'Benefits of Bt cotton counterbalanced by secondary 

pests? Perceptions of ecological change in China', Environmental Monitoring and 

Assessment,  173, 985-994.  

 

 




