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P eer-to-peer designs have evolved in part as a re-
sponse to the technical censorship of early re-
mailer systems such as Penet (see http://wfmu.
org/~davem/docs/penet.html) and early file

distribution systems such as Napster.1 These sorts of cen-
tralized architectures make it possible to legally compel
system owners to revel user identities and suppress certain
kinds of material. Peer-to-peer systems, however, distrib-
ute functionality across the network, thus avoiding single
points of failure that could make them vulnerable to legal
or technical attacks.

Two main paradigms in peer-to-peer systems have
emerged during the past few years. The first is to scatter
resources randomly across all nodes, hoping that doing so
will increase the attacker’s censorship costs (we call this
the random model). The theory holds that censorship in-
conveniences everyone in the network—even nodes that
aren’t interested in the censored material—which in-
creases the number of nodes that will need to be attacked
for censorship to succeed. Eternity Service, Freenet, and
Mojo Nation follow this strategy;2–4 structured peer-to-
peer systems, including distributed hash-table-based sys-
tems,5 scatter files around in a deterministic way on ran-
dom nodes, which achieves a similar effect.6

The second paradigm lets peer nodes serve any con-
tent that users have downloaded for personal use without
burdening them with random files (we call this the discre-
tionary model). Gnutella and Kazaa are popular real-world
examples of such systems.7 Newer designs incorporate
distributed information retrieval techniques in an at-
tempt to assist users in finding what they’re looking for.8

Any comparison of these two paradigms necessarily
concentrates on system and network engineering effi-

ciency in terms of
the cost of search,
retrieval, communications, and storage. In this article,
we’ll compare the two paradigms’ ability to resist censor-
ship, which was the original intention of peer-to-peer
systems. Our model of censorship and censorship resis-
tance is inspired by conflict theory and economic analy-
sis. It takes into account the peer nodes’ heterogeneous
interests and establishes the cost of the attack.9

A red–blue utility model
Before talking about censorship, we first need to define
the preferences of the nodes in the network. Let’s con-
sider a network of N peer nodes. Each node ni has a dif-
ferent set of interests from other nodes: it might prefer
news articles to political philosophy essays, for example,
or nuclear physics to cryptology. Nodes might even have
different political views from each other. We model this
by considering two types of resources: red and blue. (We
follow the economics tradition of only considering two
goods. Real-life preferences have finer granularity, and
our results also apply to n goods.) We assign to each node
ni a preference for red ri � [0, 1] and a preference for blue
bi = 1 – ri (note that ri + bi = 1).

Each node likes having and serving resources, but it
prefers to have or serve a balance of resources according
to its preference ri and bi. For this reason, the utility func-
tion (which represents satisfaction) of a node holding T
resources out of which R are red and B are blue (where T
= R + B) is

Ui(R, B) = –T(R/T – ri – 1)(R/T – ri + 1). (1)
As we see in Figure 1, this quadratic function has its

maximum at R = riT, scaled by the overall number of re-
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sources T that node ni holds. This utility function in-
creases with the total number of resources, but it’s also
maximal when the balance between red and blue re-
sources matches the node’s preferences. Other unimodal
functions with their maxima at riT, such as a normal dis-
tribution, give broadly similar results.

Our model diverges from traditional economic analy-
sis of peer-to-peer networks, in which peers have no in-
centives to share a priori.10 Although this assumption
might be true for copied music, it doesn’t hold for other
resources such as news, political opinions, or scientific pa-
pers. A node with left-wing views, for example, might
prefer to read and redistribute 80 percent of the articles
from The Guardian and 20 percent from The Telegraph (ri =
0.8, bi = 0.2), one in the middle of the political spectrum
might want to read and redistribute them equally (ri =
0.5, bi = 0.5), and one on the right might prefer 80 per-
cent from The Telegraph and 20 percent from The
Guardian (ri = 0.2, bi = 0.8). The nodes’ respective utility
will increase the more they can distribute this material in
volumes that align with their political preferences.

Discretionary and 
random distribution utility
Let’s examine the utility of network nodes when they can
choose which files to store and help serve. Assuming that
a node has the ability to serve T files in total, its utility is
maximized for a distribution of red and blue resources
that perfectly matches its preferences: R = riT and B =
biT. Our proposed utility function Ui is indeed maximal
for Ui(riT, biT) at each node ni.

Distributed hash tables and architectures such as
Eternity scatter the red and blue resources randomly
across all nodes ni, so what is each node’s average or ex-
pected utility? If the system has a total of R red resources
and B blue resources, we can define a system-wide dis-
tribution of resources (rs, bs) that each node in the system
will hold on average:

. (2)

On average, each node ni will have a utility equal to
U(rsT, bsT). The utility each node will attain in the ran-
dom case is always lower or equal to the utility a node has
under the discretionary model:

Ui(riT, biT) � Ui(rsT, bsT). (3)

For this reason, we prefer the discretionary peer-to-
peer paradigm, given the choice and absence of other
mechanisms.

Let’s explore in more detail the implications of the
lower utility provided by the random distribution model.
The equality Ui(riT, biT) = Ui(rsT, bsT) is true when rs = ri
and bs = bi—in other words, when the system’s distribu-

tion of resources aligns with a particular node’s prefer-
ences. However, this can’t hold true for all nodes unless
they share the same preferences. Moreover, it’s in every
node’s self-interest to try to tip the balance of R and B to-
ward its own preferences. With a utility function slightly
more biased toward serving—sometimes called an “evan-
gelism utility”—the network could be flooded with red
or blue files according to preferences.

An alternative is subversion. Red-loving nodes that
consider the network overly biased toward blue could just
as easily try to deny service of blue files—in the extreme
case, they could even try to deny general service. Distrib-
uted hash tables and systems such as Freenet are quite
prone to flooding, of both the evangelism and denial-of-
service variety.

Several other systems, including Free Haven,11 Mojo
Nation, and Eternity, recognize that where the utility
function places more value on consumption than service,
nodes have an incentive to take a free ride, by download-
ing as many resources as they can. Eternity proposed—
and Mojo Nation tried to implement—a payment mech-
anism to align the incentives for storing and serving files.
By performing these functions, nodes acquire mojo, a no-
tional currency that lets them get service from other
nodes. Due to implementation failures, poor modeling,
and inflation, Mojo Nation provided substandard service
and didn’t take off.4 Free Haven used a reputation system,
in which peers could rate the quality of service they pro-
vide each other and then prioritize their service to good
providers. Perhaps we could use such a system to rate
nodes: some collaborative mechanism could establish rs

bs = +
B

R Brs = +
R

R B
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Figure 1. Utility model for discretionary, random, and censored dis-
tribution. The utility of a node with ri = 0.7 in a system following the
discretionary model (Ui), the random model with rs = 0.5 (Us), and
under censorship rc = 0.1 (Uc) follows an increasing curve.
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and bs via voting and then rate peers in accordance with
their closeness to this social norm. This isn’t trivial; voting
theory, also known as social choice theory, tells us that it’s
hard to create a voting system that is both efficient and
equitable.12,13 The additional constraints of peer-to-peer
networks—nodes frequently joining and leaving, tran-
sient identities, and decentralization—make a “democra-
tic” system even more complex to implement in practice.

Some systems attempt to hide their stored or served
resources from nodes via encryption or dispersion. This is
thought to protect the nodes by giving them plausible de-
niability in the face of censorship, but it also prevents the
nodes from deleting any resources they don’t like. In our
framework, such techniques amount to hiding from the
nodes the actual distribution of red and blue resources
they hold, and can even go as far as hiding the system’s
overall distribution rs and bs. Unfortunately, hiding this
information makes these systems very expensive. The ef-
fects of the participating nodes’ state of uncertainty on
their incentives to participate honestly in such a network
should be the subject of further study.

Censorship
So far, we’ve compared the utility of nodes in the random
versus discretionary models, and learned that the latter al-
ways provides as good or higher utility for all nodes in the
absence of censorship. Let’s examine how the nodes react
to censorship. 

We assume the attackers are exogenous—that is, ex-
ternal to our system. We model censorship as an external
entity’s attempt to impose a particular distribution of files
rc, bc on a set of nodes. The censor’s effect isn’t fixed;
rather, it depends on the amount of resistance the affected
nodes offer.

Assume a node that isn’t receiving attention from the
censor can store up to T resources. A node under censor-
ship can choose to store fewer resources (T – t) and invest
an effort level t to resist censorship. We define the proba-
bility that a node will successfully fight censorship (and
reestablish its previous distribution of resources) as P(t).
With probability 1 – P(t), the censor will prevail and im-
pose the distribution rc, bc.

Let’s first consider the discretionary case, in which
nodes select the content they serve. Knowing the nodes’
preferences ri, bi, the censor’s distribution rc, bc, the total
resource bound T, and the probability P(t) that it defeats
the censor, we can calculate the optimal amount of re-
sources a node will invest in resisting censorship. The ex-
pected utility of a node under censorship is the probabil-
ity of success, times the utility in that case, plus the
probability of failure times the utility in that case:

U = P(t)Ui(ri(T – t), bi(T – t)) + (1 – P(t))Ui(rc(T
– t), bc(T – t)). (4)

Our utility functions Ui are unimodal and smooth, so,
assuming that the functions P(t) are sufficiently well-be-
haved, we can find an optimal investment in resistance t in
[0, T] by setting dU/dt = 0.

We’ll start with the simplest example—namely, where
the probability P(t) of resisting censorship is linear in the
defense budget t. Assume that if a node invests all its re-
sources in defense, it will definitely prevail but won’t have
anything left with which to actually serve files. At the
other extreme, if the node spends nothing on lawyers (or
on any other relevant mode of combat), the censor defi-
nitely prevails. Therefore, we define P(t) as

. (5)

By maximizing Equation 4 with P(t) as defined in
Equation 5, we find that the optimal defense budget td
will be

. (6)

The node diverts td resources from the file service to resist
censorship. We also assume, for now, that the attack’s cost
to the censor is equal to the node’s defense budget t.

Let’s look at what happens when we scatter resources
randomly around the network, with each node expect-
ing to hold a mixture of files rs, bs. As in the previous ex-
ample, the utility of a node under censorship depends on
its defense budget t, the censor’s choice of rc, bc, and the
system’s distribution of files rs, bs:

U = P(t)Ui(rs(T – t), bs(T – t)) + (1 – P(t))Ui(rc(T
– t), bc(T – t)) (7)
We follow an approach similar to the one in Equation

6 to derive each node’s optimal defense budget t:

. (8)

Not all nodes are motivated to resist the censor—
some will find that Ui(rsT, bsT) � Ui(rcT, bcT), which
means their utility under censorship increases. This
isn’t an improbable situation: in a network in which
half the resources are red and half are blue (rs = 0.5, bs =
0.5), a censor that shifts the balance to rc = 0 will bene-
fit the blue-loving nodes; if they’re free to set their own
defense budgets, they’ll select t = 0, which means no
resistance.

Who fights censorship harder?
We derive the defense budgets of a node in a discre-
tionary and in a random network as td and ts, respectively
(see Figure 2). They also equal the censor’s costs in the
two types of network. The aggregate defense budget,
and thus the cost of censorship, is greater in the discre-
tionary model than in the random one, except in the
case in which all nodes have the same preferences (case
equality holds).
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For the maximum value of the defense budget t to be
positive in the interval [0, T], the following condition
must be true:

. (9)

In other words,
2Ui(rc, bc) < Ui(rs, bs). (10)

When this is not true, a node maximizes its utility by not
fighting at all and choosing t = 0 (see Figure 3).

Given these observations, it follows that

. (11)

Whatever the attacker’s strategy, it is at least as much or
more costly to attack a network’s architecture via the dis-
cretionary model instead of the random model. Equality
holds when td = ts for each node, which in turn means
that ri = rs. This is the case for homogeneous preferences,
but in all other cases, the cost to censor a set of nodes is
maximized when resources are distributed according to
preferences rather than randomly.

Discussion
The model of heterogeneous preferences and censorship
that we present here is very simple, but it still gives some
important initial insights into the economics of censor-
ship resistance. Censorship is an economic activity; the
censor faces costs, regardless of whether a particular kind
of material is repressed via criminal or civil law, or mili-
tary force. Furthermore, the target’s defense expendi-
tures (for lawyers, lobbying, technical protection mea-
sures, or even armed conflict) can diminish the censor’s
prospect of success.

Most research on censorship resistance views censor-
ship as a binary matter: a document is either proscribed
by a court or it isn’t, a technical system is either vulnera-
ble to attack or it isn’t. Such models are as unrealistic as
the global adversary sometimes posited in cryptography
(an opponent can record or modify all the messages on
network links). All-powerful opponents that make cen-
sorship uninteresting as a technical issue because resis-
tance would be impossible. Similarly, assuming that no-
body can censor any nodes provides little intuition into
real systems.

Technology changes greatly affect parameters. The
introduction of moveable type printing, for example,
made it much harder to suppress books thought to be
heretical or seditious, a change in the underlying eco-
nomics that helped usher in the modern age. However,
developments such as online publishing and trusted com-
puting might make censorship easier again. We can only
guess the effects such changes will bring, which is why
trying to analyze the cost of both censorship and resis-
tance to it is important.

Preferences and utility
Modeling a node’s preferences provides important in-
sights. Simply assuming that all nodes will fight censor-
ship for an abstract notion of “freedom of speech” re-
stricts the model to a fraction of potential real-world
users. Think of the online tussles between Scientologists
and people critical of their organization compared to the
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Figure 2. Defense budgets. The defense budget for discretionary (td)
is larger than random (ts), where ri represents the node’s prefer-
ences, rs the random model parameter, and rc the censor’s imposed
distribution.
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Figure 3. Zero defense budget. Nodes won’t fight censorship unless
their utility is halved. Instead, they will invest in different resources.
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sexual material that is legal under California law but ille-
gal in Tennessee. The average Scientology critic might
not care that much about sexual freedom, while a collec-
tor of erotic literature might be indifferent to religious
disputes. Although some individuals would take a stand
for freedom of speech on a broad range of issues, many
more are prepared to defend it on a specific issue.

On the other hand, assuming that nodes will meekly
surrender any disputed documents or photographs is also
unfaithful to real-world experience. Allowing nodes to
express heterogeneous interests in—and preferences
for—material they want to promote and protect helps us
enhance the system’s stability and security. It also enables
us to defend against certain types of denial-of-service at-
tacks. When Eternity was initially implemented and
opened for public use, one of the first documents placed
in it (by an anonymous poster) advocated sex between
men and underage boys. Although some people de-
fended such speech, many felt reluctant to use a system
that expressed it. A discretionary peer-to-peer system can
deal with such issues, much as ISPs currently decide
which Usenet newsgroups to support depending on local
laws and client preferences. Objectionable content need
not provide a universal attack tool.

Our model provides a framework for thinking about
such issues. In particular, we’ve found that in the presence
of heterogeneous preferences, systems that distribute ma-
terial randomly across all nodes are less efficient at resist-
ing censorship than those that allow storage according to
node preferences. As this inefficiency increases with het-
erogeneity, we expect random distribution to be more
successful in groups with roughly homogeneous inter-
ests. When interests diverge, systems should let users
choose their resources, or they’ll tend to be unstable.
Nodes will prefer to form alternative networks that better
match their preferences.

Our model can be extended in several ways. We use
red and blue resources as a simple example, but nodes
must be able to express arbitrary and much finer-grained
preferences; accordingly, the results we present can be
generalized to unimodal multidimensional utility func-
tions. We chose to model node utility locally, and didn’t
take into account a resource’s “global” availability
throughout the network. Forming a global view of avail-
ability is hard in many peer-to-peer systems, because no-
body has a total view of network membership and the
state of all its nodes. We also ignore the costs associated
with search and retrieval. Some systems, such as distrib-
uted hash tables, allow very efficient retrieval but at a high
search cost; other systems are more balanced or less effi-
cient overall. Our model is simple and flexible enough to
be extended to describe various specific attacks on peer-
to-peer systems.

Random distribution can introduce social choice
problems that discretionary distribution avoids. It de-

scribes explicit mechanisms to determine rs and bs, the
relative number of red versus blue files that a typical node
is asked to serve, on average. Nodes have incentives to
shift these system parameters toward their own prefer-
ences, so they might be tempted to manipulate the voting
or reputation systems in use. Making these systems robust
is a separate topic of research.

Censorship model
We carefully chose our model so as not to introduce addi-
tional social choice issues. The censor targets a set of indi-
vidual nodes, with the success of the attack depending
only on the targeted nodes’ defense budget. Of course,
where nodes are subject to legal action, a victory against
one node might create a precedent that makes enforce-
ment against other nodes cheaper in the future. Defense
could thus take on some of the aspects of a public good.
This approach’s ultimate success will depend on whether
the level of defense depends on the least effort, the great-
est effort, or the sum of all nodes’ efforts.14

Our model also assumes that a censor wishes to impose
a certain selection of resources on nodes, which might be
appropriate when modeling censorship of the press, but
maybe not for online music. The music industry’s strategy
in such cases is to increase the cost of censorship resistance
to match the music’s retail price. In this context, our
model suggests that it would be much harder for the in-
dustry to take on a diffuse constellation of autonomous fan
clubs than it would be to take on a monolithic file-sharing
system. Some performers might be unwilling to alienate
their fans by too-aggressive enforcement.

Our particular censorship model provides some fur-
ther insights. For both random and discretionary distrib-
ution, the censor meets resistance from a node once its
activities halve its utility because a node reacts to mild
censorship by investing in other resources instead of en-
gaging in combat. Mild censorship might provoke a small
reaction, but at some point, nodes will start to fight back,
starting with those nodes whose preferences differ the
most from the censor’s.

U nder our model’s assumptions, discretionary distrib-
ution is better. The more heterogeneous the prefer-

ences are, the more it outperforms random distribution.
In a discretionary model, nodes don’t have to collectively
manage the network’s overall content, which gives them
fewer incentives to subvert control mechanisms, which
in turn allows for simpler network designs that don’t re-
quire election schemes, reputation systems, or electronic
cash. The discretionary model also leads to a more stable
network because each node can better maximize its util-
ity and is less likely to leave the network to seek a better
deal elsewhere.

In our work, we haven’t modeled the censor’s incen-
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tives or tried to find its optimal strategy in attacking a
network. Better attack models will require more detail
about network architecture and operation. Ultimately,
we feel our model might have wider implications.
Rather than fighting against government regulation and
for market freedom in the abstract, firms are more likely
to invest effort (through trade associations) in fighting for
the freedoms most relevant to their own particular trade.
Current debate also centers on whether increasing social
diversity will necessarily undermine social solidarity.15,16

Our model’s relevance to such issues is a matter for dis-
cussion elsewhere. 
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