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Abstract

The complete symmetry groups of systems of linear second order ordinary differential
equations are considered in the context of the simple harmonic oscillator. One finds
that in general the representation of the complete symmetry group is not unique and
in the particular case of a four-dimensional system there are two distinct complete
symmetry groups. The results for general second order linear systems are indicated
in the Conclusion.

1 Introduction

The modern concept of a complete symmetry group was introduced by Krause [9] who
defined a complete symmetry group as the group underlying the algebra of the set of Lie
symmetries required to specify completely a given differential equation to within, perhaps,
arbitrary constant(s) which could be removed by rescaling or translation. To illustrate the
concept Krause used the Kepler Problem for which he found it necessary to add nonlocal
symmetries to the well-known five Lie point symmetries in order to obtain a complete
specification of the equation. These nonlocal symmetries were obtained by an elegant
Ansatz of the structure of the required symmetries. Nucci [20] demonstrated, with the
assistance of her interactive code for the computation of symmetries [18, 19], that these
symmetries and more could be calculated by means of the standard methods of the Lie
theory if one used the technique of reduction of order [21].

In an interesting development Nucci and Leach [22] demonstrated that a number of
problems related to the Kepler Problem, specifically through the possession of a conserved
vector of Laplace–Runge–Lenz form, could all be reduced to the one-dimensional simple
harmonic oscillator and a succession of first-order equations which reflected conservation
laws. In a recent work of Marcelli and Nucci [13] this elaboration of the method of
reduction has been successfully extended to other systems such as the Kowalevskaya top.
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In a separate direction of development Leach et al [11] and Andriopoulos et al [2] exp-
lored some of the properties of complete symmetry groups. In particular they established
three results. Firstly they demonstrated that the representation of the complete symmetry
group for an ordinary differential equation need not be unique. Secondly they showed the
necessity for the introduction of a requirement of minimality in the specification of the
complete symmetry group, in other words algebras of different dimension could completely
specify an equation. It was proposed that the expression ‘complete symmetry group’ be
reserved for the group of the algebra of minimum dimension. Thirdly they proved that
the dimension of the complete symmetry group of an nth-order linear ordinary differential
equation was n+ 1. (There were other results which are not of relevance to this paper.)

In this paper we provide a more formal demonstration of the nonuniqueness of the
representation of the complete symmetry group of a differential equation and provide
a partial answer to the hitherto unexplored area of the dimension of the complete symmetry
group of systems of linear ordinary differential equations. For this discussion we use
the simple harmonic oscillator as a vehicle. We conclude with some observations on the
structures of the representations of the complete symmetry group of systems of linear
second-order ordinary differential equations and directions for future research. In § 2 we
show that there are three particular representations of the complete symmetry group for
the one-dimensional simple harmonic oscillator and, since all scalar linear second-order
equations are equivalent under a point transformation, so all such equations. In § 3 we
consider the corresponding problem for the higher dimensional isotropic simple harmonic
oscillator and find that the results are quite intriguing. In § 4 we present our observations.

2 Multiple representations of the complete symmetry group
of the one-dimensional simple harmonic oscillator

The one-dimensional simple harmonic oscillator is described by the differential equation

ẍ+ x = 0, (2.1)

in which overdot denotes total differentiation with respect to the independent variable t.
The equation is chosen for its simplicity, but is representative of all scalar linear second-
order ordinary differential equations [23]. Equation (2.1) has the eight Lie point symmet-
ries

Γ1 = ∂t, Γ2 = x∂x, Γ3± = e±it∂x,

Γ4± = e±2it (∂t ± ix∂x) , Γ5± = xe±it (∂t ± ix∂x) , (2.2)

in which Γ2 is the homogeneity symmetry, Γ3± are the solution symmetries, Γ5± are the
non-Cartan symmetries and Γ1 and Γ4± are the elements of the algebra sl(2,R).

It is known that equation (2.1) possesses the three integrals1

IA = eit (x+ iẋ) , IB = e−it (x− iẋ) , IC = IA/IB, (2.3)
1IC , as it is manifestly written, is not an integral independent of IA and IB . However, it also possesses

the same algebraic properties as IA and IB . Generally functions of the elementary integrals do not possess
the same algebraic properties [4, 10].
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with the Lie point symmetries

A1 = eit∂x, A2 = ∂t − ix∂x, A3 = e2it (∂t + ix∂x) ,

B1 = e−it∂x, B2 = ∂t + ix∂x, B3 = e−2it (∂t − ix∂x) ,

C1 = x∂x, C2± = xe±it (∂t ± ix∂x) (2.4)

and that each set of symmetries is a representation of the group D ⊗s 2A1, the group of
dilations and translations in the plane. One notes that the triplets {Γ2,Γ3±} and {Γ2,Γ5±}
also possess the algebra D⊕sT2. (The representations of the integrals and the symmetries
are adapted from the trigonometric expressions given by Mahomed and Leach [12].) It is
an easy exercise to demonstrate that the application of the second extensions of the sets
{Ai}, {Bi} or {Ci}, i = 1, 3, to the general second order ordinary differential equation,
videlicet

ẍ = f (t, x, ẋ) , (2.5)

results in (2.1) being the invariant equation. Thus these are three representations of the
complete symmetry group of (2.1) and so, by extension, to all scalar second-order equations
related to (2.1) by means of a transformation not generated by one of the elements of the
corresponding algebra. We note that these three representations are equivalent since
the elements of each representation are transformed into each other by means of point
transformations which leave (2.1) invariant [12]. In addition to these representations of
D ⊗s 2A1 with their peculiar relationship to the ‘fundamental’ first integrals [4] of (2.1)
and their ratio there is a fourth representation unrelated to these integrals in addition to
the triplets {Γ2,Γ3±} and {Γ2,Γ5±} mentioned above. This is the set of symmetries

S1 = eit∂x, S2 = e−it∂x, S3 = ∂t (2.6)

which is related to the symmetries above since

S1 = A1, S2 = B1, S3 = 1
2(A2 +B2). (2.7)

Note that the transformation is not restricted to being point or contact. The only
requirement is that the initial equation and the transformed equation both be scalar second
order ordinary differential equations. A by now almost classic example is the equation

xẍ = ẋ2 + ḟ(t)xn+2 + nf(t)ẋxn+1 (2.8)

which was touted as an easily integrated equation devoid of symmetry [7] (for general f(t))
until it was shown by Abraham-Shrauner et al [1] to possess the algebra sl(3,R), the
characteristic of linear and linearisable second-order ordinary differential equations, since
it was related to that of the ‘free particle’, videlicet

d2X

dT 2
= 0 (2.9)
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by means of the nonlocal transformation2

T = t, X = log(−nxn)−
∫ t

0
nf(s)xn(s)ds. (2.10)

Whilst the possession of the algebra sl(3,R) of point symmetries is classed as maximal,
the meaning of the expression is not clear when this set of symmetries is embedded in a
sea of nonlocal symmetries. Indeed it is sufficient of a conundrum to make one question
the meaning of sets of point symmetries such as those with the algebra sl(3,R) [25]. One
of the triplets of symmetries which completely specify (2.9) consists of the symmetries

A1 = T∂X , A2 = T∂T , A3 = T 2∂T + TX∂X , (2.11)

corresponding, as the notation is intended to suggest, to the A symmetries listed for (2.1)
above to which they are related, up to scaling, by means of a point transformation which
takes (2.9) to (2.1). Under the transformation (2.10) the symmetries in (2.11) become

Ā1 = − x

n− 1
exp

[
−

∫ t

0

xds
n− 1

]
∂x,

Ā2 = x

[
log (−nxn)− n

∫ t

0
fxndt + exp

(
n

∫ t

0
fxndt

)

×
∫ t

0
fxn

(
log (−nxn)− n

∫ s

0
fxndr

)
exp

(
−n

∫ s

0
fxndr

)
ds

]
∂x,

Ā3 = ∂t +
n

(n− 1)2

{
(n− 1)fxn+1 − x exp

[
−

∫ t

0

xds
n− 1

]

×
∫ t

0

[
fxn+1 exp

(∫ s

0

xdr
n− 1

)]
ds

}
∂x (2.12)

which is a highly nonlocal representation of the algebra, A3,3 in the Mubarakzyanov clas-
sification [15, 16, 17], of the group of dilations and translations in the plane and yet is the
set of symmetries which completely specifies (2.8).

It is an elementary calculation to verify that (2.1) is completely specified by {Γ2,Γ3±}
and {Γ2,Γ5±}. There are other sets of symmetries of (2.1) which can be used to specify
completely (2.1) [2]. In the context of the definition given by Krause [9] such sets would
also be described as representations of the complete symmetry group. However, in the
more precise definition given by Andriopoulos et al as a consequence of the existence of
these other sets they are not representations of the complete symmetry group since they
are not minimal. One particular set of symmetries of some interest due to one of its
subalgebras is

Γ1 = ∂t, Γ2 = x∂x, Γ4± = e±2it (∂t ± ix∂x) (2.13)

2The calculation of the Lie Brackets of nonlocal symmetries is often a nontrivial exercise due to the
necessity of a correct identification of variables. The calculation is more than greatly simplified if there
exists an obvious transformation to point symmetries for which the calculation of the Lie Brackets is easier
if not always nontrivial. For an example see Nucci et al [24] in this volume. The preservation of the
brackets follows from application of the chain rule.
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selected from the set given in (2.2). The symmetries Γ1 and Γ4± constitute a representation
of the algebra sl(2,R) and the algebra of the symmetries in (2.13) is A1 ⊕ sl(2,R). The
set of symmetries in (2.13) is not a representation of the complete symmetry group since
there are four symmetries and not the minimal three. The interest in this particular
set of symmetries is that sl(2,R) is the algebra of the complete symmetry group of the
Ermakov–Pinney equation [3, 26]

ẍ+ x =
L2

x3
(2.14)

which, apart from its many interesting applications in the area of Ermakov systems, has
the structure of the radial equation of a higher dimensional isotropic harmonic oscillator.
(In passing we note that in the trigonometric equivalent to Γ1 and Γ4± only Γ1 and one
of the trigonometric symmetries are required to specify (2.14) up to the arbitrary value of
the rescalable constant L. However, the addition of the second trigonometric symmetry
is required to close the algebra. This feature is not exhibited by the exponential form we
have adopted in this paper.)

3 Higher dimensional isotropic oscillators

The higher dimensional isotropic simple harmonic oscillator is described by the differential
equation

r̈ + r = 0. (3.1)

In two dimensions (3.1) may be written in cartesian and plane polar coordinates as

ẍ+ x = 0, r̈ − rθ̇2 + r = 0,

ÿ + y = 0, rθ̈ + 2ṙθ̇ = 0 (3.2)

respectively. It is a commonplace that the two-dimensional isotropic simple harmonic
oscillator possesses fifteen Lie point symmetries with the algebra sl(4,R). However, our
interest is not in the total number of Lie point symmetries but in the minimal number of
symmetries required to specify the system (3.2).

The advantage of the description of the system in plane polar coordinates is that the
second equation, the angular equation, may be written as a conservation law. Thus we
may write the system as

r̈ + r =
L2

r3
, L̇ = 0, (3.3)

where L := r2θ̇. The structure of (3.3) is reminiscent of that obtained when one uses the
method of reduction of order developed by Nucci [20] except that there has been no change
of independent variable. In terms of that method one would use the angular variable, θ, as
the fairly obvious new independent variable and L as v2, ie the obvious conserved quantity.
The other independent variable is found to be v1 = 1/r. The reduced form of the plane
polar form of (3.2) is

v′′1 + v1 =
1

v3
1v

2
2

, v′2 = 0 (3.4)

in which the prime denotes differentiation with respect to the new independent variable, θ.
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Krause [9] obtained the complete symmetry group of the Kepler Problem by determin-
ing nonlocal symmetries to supplement the Lie point symmetries. Nucci [20] showed that
the method of reduction of order led naturally to those same symmetries. Consequently
we realise that there are several possible candidates to supply the symmetries required
to specify completely the pair of second-order ordinary differential equations which de-
scribed the two-dimensional isotropic simple harmonic oscillator. We have the original
representation, (3.2), with a choice of cartesian or plane polar coordinates. We can look
at the conserved form, (3.3), of the original system written in plane polar coordinates.
Alternatively we could consider the reduced system (3.4). We note that there is very little
difference between (3.3) and (3.4). The structure is the same in both cases. Only the
independent variable is different.

We commence with the system (3.4) which has the Lie point symmetries

R1 = ∂θ, R2± = e±2iθ (∂θ ± iv1∂v1) , R4 = v1∂v1 − 2v2∂v2 . (3.5)

To relate a symmetry of the original system, (3.2), (in plane polar coordinates) to one
of (3.4) we have the equivalence

τ∂t + η∂r + ζ∂θ −→ ζ∂θ +Ω∂v1 +Σ∂v2 , (3.6)

where

Ω = − η

r2
and Σ = 2ηrθ̇ + r2

(
ζ̇ − θ̇τ̇

)
. (3.7)

In the case of R1 it is obvious that η = 0 since Ω = 0. From the second of (3.7) we
have

r2θ̇τ̇ = 0. (3.8)

Consequently in R1 there is implied the symmetry ∂t as well as ∂θ. We treat the remaining
symmetries similarly. Corresponding to the set of symmetries in (3.5) we obtain for (3.2)

R̄1 = ∂θ, R̄2± = e±2iθ (∂θ ∓ ir∂r) , R̄4 = r∂r, R̄5 = ∂t, (3.9)

in which a minus sign has been removed from R̄4.
The corresponding analysis of (3.3) produces the set of symmetries

T1 = ∂t, T2± = e±2it (∂t ± ir∂r) , T4 = r∂r, T5 = ∂θ. (3.10)

The roles of t and θ have simply been interchanged. The algebra in each case is the same.
An analysis of the actions of the symmetries represented in (3.9) and in (3.10) on the

system

r̈ = f(t, r, θ, ṙ, θ̇),

θ̈ = g(t, r, θ, ṙ, θ̇) (3.11)

shows that in both cases the number of symmetries required to recover the plane polar
form for the two-dimensional isotropic oscillator is not five but four, ie the symmetry lost
in the reduction of order to the system (3.4) is not necessary to specify completely the
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polar form of (3.2). The interesting part about this is that the algebra of the symmetries
remains the same, ie A1 ⊕ sl(2,R), as we observed in the case of using sl(2,R) as the
starting point for the specification of (2.1).

The 15 Lie point symmetries of the cartesian form of (3.2) are a duplication, with the
exception of ∂t, of those listed in (2.2) with y in place of x. The obvious generalisation
of the triplets {Ai}, {Bi} and {Ci} would be the quintets with an additional two y-based
symmetries. The algebra would be A1 ⊕s {2A1 ⊕ 2A1}. It should be quite obvious that
these five Lie point symmetries would specify completely the cartesian form of (3.2) since
the process is simply additive.

Thus we have

Proposition 1. The set of symmetries

Γ1 =
n∑

i=1

xi∂xi ,

Γi± = e±it∂xi , i = 1, n (3.12)

is sufficient to specify completely the set of equations

ẍi + xi = 0, i = 1, n. (3.13)

Proof. Consider the general equation

ẍj = fj(t, x, ẋ). (3.14)

The action of Γ[2]
i+ on (3.14) is

−δij = ∂fj

∂xi
+ i

∂fj

∂ẋi
, i = 1, n (3.15)

and gives

fj = −xj + Fj1(t, x+ iẋ) (3.16)

so that now (3.14) is

ẍj = −xj + Fj1(t, u), ui = xi + iẋi. (3.17)

The action of Γ[2]
i− on (3.17) is

−δij = −δij + 2
∂Fj1

∂ui
, i = 1, n (3.18)

from which it follows that

Fj1 = Fj2(t) (3.19)

and the equation is now

ẍj = −xj + Fj2(t). (3.20)

The action of the homogeneity symmetry Γ1 forces Fj2(t) = 0, j = 1, n. Hence the
proposition follows. �
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Corollary. The set of symmetries

Z1 = xi∂xi ,

Zi± = xie±it (∂t ± ixi∂xi) , i = 1, n (3.21)

is sufficient to specify completely the system (3.13).

Naturally one wonders if the (2n+ 1)-dimensional algebra {Γ1,Γi±, i = 1, n} (equally
{Z1, Zi±, i = 1, n}) is the algebra of minimal dimension required completely to specify the
system (3.13). In Proposition I the n homogeneity symmetries are conflated into one. Can
the same be envisaged for the two sets of solution symmetries? We examine the possibility
in two dimensions. Consider the actions of

Γ1 = x∂x + y∂y, Γ2± = e±it (∂x + ∂y) (3.22)

on the system

ẍ = f(t, x, ẋ, y, ẏ), ÿ = g(t, x, ẋ, y, ẏ). (3.23)

The action of Γ[2]
2+ on (3.23) gives

ẍ = −x+ F1(t, x+ iẋ, y + iẏ, x− y),
ÿ = −y +G1(t, x+ iẋ, y + iẏ, x− y). (3.24)

The action of Γ[2]
2− on (3.24) gives

ẍ = −x+ F2(t, u, w, )
ÿ = −y +G2(t, u, w), (3.25)

where u = (x+ iẋ)/(y + iẏ) and w = x− y. The action of Γ[2]
1 on (3.25) gives

F2 = w
∂F2

∂w
, G2 = w

∂G2

∂w
(3.26)

so that (3.25) is reduced to

ẍ = −x+ F3(t, u)w, ÿ = −y +G3(t, u)w. (3.27)

Evidently the three symmetries are not sufficient to reduce (3.23) to the two-dimensional
oscillator. If we add the operator

Γ4 = x∂y − y∂x (3.28)

to the other three, we find that the action of Γ[2]
4 on (3.27) gives

G3(t, u)w = w
(
1 + w2

) ∂F3

∂u
+ (w + 2y)F3,

F3(t, u)w = −w (
1 + w2

) ∂G3

∂u
− (w + 2y)G3 (3.29)

from which it follows that F3 = 0 = G3.
This suggests
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Proposition 2. The system of equations

ẍi + xi = 0, i = 1, n (3.30)

is completely specified by the 1
2(n

2 − n+ 6) operators

Γ1 =
n∑

i=1

xi∂xi ,

Γ2± = e±it
n∑

i=1

∂xi ,

Γ4ij = xi∂xj − xj∂xi , i, j = 1, n, i �= j. (3.31)

Corollary. The system (3.30) is completely specified by similar combinations based upon
the triplets {A}, {B}, {C} and {Z}.

Another set of symmetries which specifies the cartesian form of the two-dimensional
isotropic oscillator is

Φ1α = x∂x, Φ1β = y∂y, Φ2± = e±it (∂x + ∂y) , (3.32)

which can be easily verified in a manner similar to the one presented above for the sym-
metries in (3.22). This obviously suggests

Proposition 3. The set of symmetries

Φi = xi∂xi , i = 1, n,

Φ2± = e±it
n∑

i=1

∂xi (3.33)

completely specifies the set of equations

ẍi + xi = 0, i = 1, n. (3.34)

Proof. All we have to do is apply the second extensions of the symmetries (3.33) on the
general equation

ẍj = fj(t, xj , ẋj)

in turn until we recover (3.34).
Using Φi we restrict fj to be

fj = xjFj (t, uk) , j = 1, n,

where uk = ẋk/xk, and on introducing Φ2± we obtain

−1 = Fj + xj
∂Fj

∂uk

(−uk ± i

xk

)
(3.35)

by summation on k and not on j.
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Due to the presence of xj/xk in (3.35) for k �= j (3.35) yields

∂Fj

∂uk
= 0

and for k = j (3.35) yields

−1 = Fj +
∂Fj

∂uj
(−uj ± i). (3.36)

Addition and subtraction of the two equations in (3.36) yields the system

−1 = Fj − uj
∂Fj

∂uj
,

0 =
∂Fj

∂uj
,

which simply implies that Fj = −1. Thus

ẍi = −xi

and the proposition follows. �

We have yet to generalise the results obtained after treating the two-dimensional oscil-
lator in plane polar coordinates, an important case since the number of symmetries there
was four instead of the expected five. Thus we have

Proposition 4. The set of symmetries

Ψ1 = ∂t,

Ψ± = e±2it

(
∂t ± i

n∑
i=1

xi∂xi

)
,

Ψij = xi∂xj − xj∂xi , (3.37)

with the algebra sl(2,R)⊕so(n) of 1
2(n

2−n+6) elements, is sufficient to specify completely
the n-dimensional isotropic oscillator.

It is amusing to note that, when n = 3, the algebra above is the same as that for the
equation of motion of the classical monopole [14].

We have yet to resolve the question of the complete symmetry group in the minimal
sense of Andriopoulos et al. The number of operators in Proposition 1 is 2n+1, the number
in Proposition 2 and 4 is 1

2(n
2 − n + 6) and in Proposition 3 is n + 2. The operators in

Proposition 3 are minimal if n + 2 < 1
2(n

2 − n + 6) and n + 2 < 2n + 1 ie n > 2 and
n > 1 respectively. On the other hand the operators in Proposition 1 are fewer than those
in Propositions 2 or 4 if 2n + 1 < 1

2(n
2 − n + 6) ie n > 4. We observe that in any case

the minimal number of operators required to specify completely (3.30) is given by those
in Proposition 3. However, the operators in Proposition 3 do not form a closed algebra!
Thus we need to add more symmetries in order to close the algebra and consequently lose
minimality! Furthermore this is also the case for the symmetries of Proposition 2.
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All the above considerations yield that the complete symmetry group of (3.30) is given
by the operators in Proposition 1 since they have no problems of closure under the opera-
tion of taking the Lie Bracket. The symmetries concerned are the 2n solution symmetries
and the diagonal homogeneity symmetry. If n = 2, 3, the complete symmetry group is
given by the operators in Proposition 4. If n = 4, the same number of operators is given
in both cases. We have observed before that the representation of the complete symmetry
group is not unique. Here we have an instance in which the group itself is not unique.

4 Comments

In this paper we have reported on the number of symmetries and their algebras required
to specify completely the second order system of ordinary differential equations describing
the simple harmonic oscillator. We have seen in the case of the one-dimensional system
that there are four representations of the complete symmetry group. The first of these is
based upon the homogeneity and solutions symmetries. The other three representations
are the three-dimensional algebras associated with the linear and phase integrals of the
system. In all cases the algebra is D⊕sT2, the representation of dilations and translations
in the plane. Representations of other algebras may also specify the equation completely,
but they do not satisfy the requirement of minimality introduced by Andriopoulos et al [2].
For this reason we reject algebras such as A1 ⊕ sl(2,R).

In our considerations of higher order simple harmonic oscillators the obvious route
to generalisation of the result for the one-dimensional oscillator was simply to add two
solution symmetries for each dimension added to the system. This led to the (2n + 1)-
dimensional algebra A1⊕s2nA1, which may be interpreted as a representation of the group
of dilations and translations in the (2n)-plane, ie D ⊗s T2n. In the case of the isotropic
simple harmonic oscillator there is another way to add symmetries to describe the system.
This is to conflate the solution symmetries as well as the homogeneity symmetry, thus
reducing the 2n+1 symmetries to three only, and to allow for the elements of the rotational
symmetry group represented by the generators of so(n). In the case that n = 1 the number
of elements in each is the same since there is no rotation group. For n = 2, 3 the fourth
representation is more economical in terms of the number of symmetries and so it becomes
the complete symmetry group for these two cases. For n > 4 the first representation is
more economical and so is the complete symmetry group. In the case that n = 4 both
algebras have the same number of elements and we have the interesting situation in which
there are two groups of equal validity for the complete symmetry group. This was not an
expected outcome.

The question arises, naturally one would hope, as to the situation with anisotropic
linear systems. In the case of a system of n second order linear equations [5, 6, 8] it is
known that there are four classes of Lie point symmetries which have been designated as
the b, c, d and e symmetries. With an increase in anisotropy the numbers in some classes
fall away and even classes fall away. The first casualty is the b class, the non-Cartan
symmetries, which require that the system be both isotropic and diagonal. In a similar
fashion the c class is reduced from three to one for an autonomous system and removed
completely for a general nonautonomous system. The number of d symmetries decreases
from a maximum number of n2+n+2 to a minimum of 3n+1. These symmetries have the
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nature of rescaling and their decline in number is indicative of an increasing anisotropy
of the system. What remains unchanged is the number of solution symmetries, 2n, and
the diagonal rescaling symmetry. Consequently the first representation — that given in
Proposition 1 — of the complete symmetry group remains unchanged for all of these
linear systems. With the breaking of the rotational symmetry the so(n) algebra is lost.
Obviously some subset of the full rotational symmetry algebra could be retained and this
could have an effect upon which form the complete symmetry group of a given system
would take. In general a linear system which has a rotationally invariant subspace of
two or three dimensions would be expected to have a complete symmetry group which is
a hybrid the two representations. In the case that the rotationally invariant subspace is
of four dimensions there will be two distinct complete symmetry groups.
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