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Abstract. The EPICA (European Project for Ice Coring in

Antarctica) Dome C drilling in East Antarctica has now been

completed to a depth of 3260 m, at only a few meters above

bedrock. Here we present the new EDC3 chronology, which

is based on the use of 1) a snow accumulation and mechan-

ical flow model, and 2) a set of independent age markers

along the core. These are obtained by pattern matching of

recorded parameters to either absolutely dated paleoclimatic

records, or to insolation variations. We show that this new

time scale is in excellent agreement with the Dome Fuji and

Vostok ice core time scales back to 100 kyr within 1 kyr. Dis-

crepancies larger than 3 kyr arise during MIS 5.4, 5.5 and 6,

which points to anomalies in either snow accumulation or

mechanical flow during these time periods. We estimate that

EDC3 gives accurate event durations within 20% (2σ ) back

to MIS11 and accurate absolute ages with a maximum uncer-

tainty of 6 kyr back to 800 kyr.

1 Introduction

The EPICA project has provided two records in East Antarc-

tica, one at Dome C (EDC, EPICA community members,

2004), and one in the Dronning Maud Land area (EDML,
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EPICA community members, 2006). The completion of the

Dome C core was delayed when the first drilling became

stuck at 788 m in 1999. This shorter EDC96 core provided

45 kyr of paleoclimatic reconstructions (e.g., Jouzel et al.,

2001; Monnin et al., 2001). The next EDC99 drilling was

voluntarily stopped at a depth of 3260 m, about 15 m above

bedrock, above which seismic soundings suggest the pres-

ence of melt water. EDC provides the longest in time ice

core record available so far, with so far ∼740 kyr records of

Antarctic temperature (EPICA community members, 2004)

and chemical impurities in Antarctica (Wolff et al., 2006),

and ∼650 kyr records of atmospheric composition (Siegen-

thaler et al., 2005; Spahni et al., 2005). All these records are

currently being extended to 800 kyr.

An accurate age scale is the basis for the interpretation of

paleoclimatic records. We distinguish different types of ac-

curacies. First, age scales need to be accurate in terms of

absolute ages: we want the estimated age at a certain depth

to be as close as possible to the real age (with an accuracy

expressed in yr). This absolute accuracy is crucial when ex-

amining the phasing of two absolutely dated paleoclimatic

records, and with insolation variations calculated by mod-

elling of planet movements in the past (Laskar, 1990). For

example, the insolation/climate phase relationship has been

studied for terminations I and II thanks to accurate absolute

age scales (Jouzel et al., 1995; Henderson and Slowey, 2000).
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Second, sequences of events can be analysed in detail with-

out absolutely perfect age scales, provided that the studied

records are stratigraphically linked. Here a relative age scale,

(with an accuracy expressed in years) suffices. For example,

the phasing between Antarctic temperature and CO2 varia-

tions during the last deglaciation has been obtained from the

Dome C core by estimating the ice/gas bubbles age differ-

ence (Monnin et al., 2001). Other examples include the phas-

ing between Greenland and Antarctic temperature during the

last glacial period obtained by a synchronisation of those

records with the CH4 atmospheric composition, which varies

in phase at both poles (Blunier et al., 1998; EPICA commu-

nity members, 2006). Third and finally, the last important

accuracy is in the duration of climatic events (expressed in

per cent). Indeed, this duration is characteristic of the cli-

matic mechanisms involved, and will impact the frequency

analysis of the records. We can cite as an example the dura-

tion and pacing of the so-called Dansgaard-Oeschger (D-O)

events during the last glacial period which has been exten-

sively studied (e.g., Schulz, 2002).

In the absence of radiochronologic constraints, numerous

methods have been developed to date ice cores. They fall

into 4 categories: (1) counting of layers representing a known

time interval, e.g. annual layers, (2) ice flow modelling, (3)

wiggle matching on other precisely dated time series, in par-

ticular insolation variations, and (4) use of climate indepen-

dent age markers, like volcanic eruptions.

Ice flow modelling has been historically used to date ice

cores from Greenland and Antarctica. A one-dimensional

flow model was first applied to Camp Century (Dansgaard

and Johnsen, 1969), and later to GRIP (Johnsen and Dans-

gaard, 1992; Johnsen et al., 2001). The Camp Century,

Dye-3 and GISP2 cores were also interpreted by matching

the oxygen 18 isotope record of ice or air bubbles to the

SPECMAP stack (Dansgaard et al., 1985; Bender et al.,

1994), which is itself orbitally tuned. The GISP2 core was

also dated with annual layer counting (Alley et al., 1997). In

Antarctica, two-dimensional flow models were applied to the

along-flow (non-dome) drilling sites of Byrd (Johnsen et al.,

1972) and Vostok (Lorius et al., 1985; Parrenin et al., 2004).

Annual layers were counted back to the LGM at Byrd (Ham-

mer et al., 1994). The Vostok ice core has also been dated

by matching to the orbital SPECMAP scale (Bender et al.,

1994), or directly to insolation variations (Waelbroeck et al.,

1995; Shackleton, 2000). More recently, one dimensional

flow modelling controlled by other dating methods was ap-

plied to the EPICA Dome C ice core (EDC1, Schwander et

al., 2001; EDC2, EPICA community members, 2004) and

Dome Fuji ice cores (Watanabe et al., 2003).

All the above dating methods have advantages and draw-

backs. Layer counting (Andersen et al., 2007) and ice flow

modelling (Parrenin et al., 2006) are accurate in terms of

event durations because they are based on the evaluation of

the annual layer thickness. On the other hand, errors cumu-

late and the accuracy on absolute ages decreases with depth.

The new layer-counted chronology for Greenland (GICC05,

Vinther et al., 2006; Rasmussen et al., 2006; Andersen et

al., 2006; Svensson et al., 2006) uses an improved multi-

parameter counting approach, and currently extends back to

around 42 kyr BP with a maximum counting error of 4 to 7%

during the last glacial period. Unfortunately, layer counting

is not feasible in central Antarctica where annual cycles are

barely distinguishable (Ekaykin et al., 2002).

Comparison of paleoclimatic records to insolation varia-

tions (so-called orbital tuning methods) are generally appli-

cable to a whole ice core, as long as the stratigraphy is pre-

served (e.g., Martinson et al., 1987; Dreyfus et al., 2007). On

the other hand: (1) the accuracy in terms of event durations

is poor, (2) the accuracy in terms of absolute ages is limited

by the hypothesis of a constant phasing between the climatic

record used for the orbital tuning procedure and the inso-

lation variations (and, by definition, does not allow one to

infer this phasing). The advantage is that the achieved accu-

racy does not decrease with depth (assuming the underlying

mechanism stays constant). As a consequence, it is currently

the most precise method to date the bottom of deep ice cores.

Recently, the search for local insolation proxies in ice cores

as, e.g. the O2/N2 ratio (Bender et al., 2002; Kawamura et

al., 2007) or the air content record (Raynaud et al., 2007)

has opened new prospects for eliminating the reliance on this

hypothesis of constant insolation/climate phase, potentially

allowing an accuracy within 1 kyr to be achieved in the com-

ing years.

Precisely dated volcanic horizons provide important age

markers. This is the case for the last millenium (Traufet-

ter et al., 2004), but beyond that limit, only a few of them

have accurate absolute ages (Narcisi et al., 2006). In Antarc-

tic ice cores, comparison to absolutely dated paleoclimatic

records is particularly relevant for the dating of the D-O

events, which have been accurately dated in several archives,

and whose rapid transitions can be localized with a high ac-

curacy in the Antarctic CH4 record. The transfer of those

age markers to the Antarctic ice matrix requires the evalu-

ation of the ice/gas age difference with a firn densification

model (e.g., Goujon et al., 2003, and references therein).

In this article, we present EDC3, the new 800 kyr age scale

of the EPICA Dome C ice core, which is generated using

a combination of various age markers and a glaciological

model. It is constructed in three steps. First, an age scale is

created by applying an ice flow model at Dome C. Indepen-

dent age markers are used to control several poorly known

parameters of this model (such as the conditions at the base

of the glacier), through an inverse method. Second, the age

scale is synchronised onto the new Greenlandic GICC05 age

scale over three time periods: the last 6 kyr, the last deglacia-

tion, and the Laschamp event (around 41 kyr BP). Third, the

age scale is corrected in the bottom ∼500 m (corresponding

to the time period 400–800 kyr BP), where the model is un-

able to capture the complex ice flow pattern.

In Sect. 2, we first present the different age markers that
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can be found in the EDC ice core. We then describe in Sect. 3

the construction of EDC3. In Sect. 4, we compare it with

other age scales from the late Quaternary. Finally, we discuss

the accuracies of this new time scale in Sect. 5.

In this paper, the notation “yr BP” refers to “years before

AD1950”.

2 Age markers

In this section, we describe the dated horizons (so-called age

markers) that can be derived from the EDC ice core.

2.1 Dated volcanic eruptions during the last millenium

Using sulphate data (Castellano et al., 2005), several volcanic

eruptions of known age have been identified in the EDC96

ice core during the Holocene. Among these, only a few of

the most recent are independently absolutely dated (Traufet-

ter et al., 2004): Krakatau1, 8.35 m, AD1884±1; Tambora,

12.34 m, AD1816±1; Huaynaputina, 23.20 m, AD1601±1;

Kuwae, 29.77 m, AD1460±5; Unknown (El Chichon?),

38.12 m, AD1259±5; Unidentified, 39.22 m, AD1228±5;

Unknown, 41.52 m, AD1171±6.

2.2 Synchronisation onto GICC05 and INTCAL with 10Be

for the last 6 kyr

10Be and 14C are cosmogenic radionuclides, and their pro-

duction rates are modulated by solar activity and by the

strength of the Earth’s magnetic field. Therefore 10Be

records in Greenland and Antarctica, as well as atmospheric
14C reconstructions (INTCAL, Reimer et al., 2004) show

common variations.

Three methods were used independently to construct age

scales for EDC over the last 6 kyr. The first two are obtained

by wiggle matching the EDML 10Be record to either the

GRIP 10Be record dated by layer counting (GICC05, Vinther

et al., 2006), or with the INTCAL atmospheric 14C recon-

struction (Reimer et al., 2004). These age scales have been

transferred to EDC96 by volcanic synchronisation (Severi et

al., 2007). The third time scale is obtained by wiggle match-

ing to the Vostok 10Be record with INTCAL atmospheric 14C

reconstructions (Raisbeck et al., 1998). The resulting Vostok

age scale (more precisely the VK-BH1 core age scale) was

then transferred to EDC96 via the VK-BH7 core by volcanic

matching (Udisti et al., 2004).

We derive two age markers from these chronologies, at

periods of large 10Be and 14C variations (when the synchro-

nisation is robust). The three chronologies give similar ages

within 30 years for these two periods and we calculated aver-

age ages of : 2716 yr BP and 5279 yr BP for the age markers

at 107.83 m and 181.13 m, respectively.

1The identification of this volcanic eruption has actually been

revised since the study by Castellano et al. (2005).

2.3 Match to GICC05 with CH4 during the last deglaciation

During the last deglaciation, synchronisation to the NGRIP

GICC05 chronology (Rasmussen et al., 2006) is possible

with the transitions (Björck et al., 1998) that are common

to the Greenland and Antarctic high resolution methane

records, and the Greenland climate record (Severinghaus

and Brook, 1999): GS-2a/GI-1e (Oldest Dryas/Bølling),

GI-1a/GS-1 (Allerød/Younger Dryas) and GS-1/Holocene

(Younger Dryas/Holocene). In that way an age for the CH4

transitions can be obtained. This age for the gas record then

has to be transferred to an age for the ice. However, the un-

certainty in the estimation of this age difference (1age) is

large at EDC because of the low accumulation rate and the

low temperature (typical model estimates of 1age at EDC

are 2200 yr for the Holocene and 5500 yr for the LGM).

This forces us to make a detour via the EDML ice core

where accumulation rate and temperature are higher (typi-

cal model estimates of 1age at EDML are 700 yr for the

Holocene and 1800 yr for the LGM). For the rapid warm-

ings at the GS-2a/GI-1e and GS-1/Holocene transitions, the

EDML CH4 data were matched to the NGRIP stable iso-

tope record (NGRIP project members, 2004). The corre-

sponding GICC05 ages were transferred first from the EDML

gas depth-scale to the EDML ice depth-scale by subtracting

the calculated 1depth (depth difference between gas bub-

bles and ice with the same age). 1depth was obtained by

multiplying the modelled close off depth (in ice equivalent,

Loulergue et al., 2007) with the EDML mechanical thin-

ning function (Huybrechts et al., 2007). This age was fur-

ther transferred to EDC via the volcanic match between both

cores (Severi et al., 2007).

The two derived age markers are 11.65±0.32 and

14.64±0.35 kyr BP for respectively 355.34 m and 421.15 m

EDC96-depth. The uncertainty is estimated as the root mean

square sum of the GICC05 age error (the number of uncer-

tain layers given by Rasmussen et al., 2006, is taken as 2σ)

and of a 300 yr 2σ uncertainty resulting from the uncertainty

in the 1depth estimate at EDML (2σ=10 m).

2.4 Match to GICC05 during the Laschamp event

The Laschamp geomagnetic excursion gives rise to a struc-

tured peak in the 10Be records from Greenland (Yiou et al.,

1997) and Antarctica (Raisbeck et al., 2002), which can be

used to synchronise EDC96 to GRIP (Raisbeck et al., 2007),

and in turn, to NGRIP dated by layer counting (GICC05,

Andersen et al., 2006; Svensson et al., 2006). Two of the
10Be sub-peaks have been localized in the EDC96 ice core

at 735.35 m and 744.81 m, and at 2231.9 m and 2246.2 m

at GRIP. The corresponding GICC05 age for the middle

of these two peaks is 41 200 yr BP (max counting error of

1627 yr), corresponding to a depth of 740.08 m at EDC (Rais-

beck et al., 2002) and we adopt this age.

www.clim-past.net/3/485/2007/ Clim. Past, 3, 485–497, 2007
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This age of the Laschamp event is compatible (within the

uncertainties) with K-Ar and 40Ar-39Ar ages from contem-

poraneous lava flow (40.4±2.0 kyr BP, Guillou et al., 2004).

During this time period, which corresponds to D-O event 10

(Yiou et al., 1997; Raisbeck et al., 2002), GICC05 is also

in good agreement with the Hulu Cave U-Th chronology

(41.4 kyr BP, Wang et al., 2001), and with the Cariaco basin

record (Hughen et al., 2004) when its 14C ages are calibrated

following the Fairbanks et al. (2005) curve (we obtain again

an age of 41.2 kyr BP for the middle of the 10Be peak corre-

sponding to the middle of D-O 10). Genty et al. (2003) also

found a compatible U-Th age of 40.0 kyr BP for the middle

of D-O 10, though the identification of D-O 10 in this record

is more ambiguous.

2.5 The Mont Berlin ash layer

Thanks to geochemical data (major elements and trace ele-

ments), Narcisi et al. (2006) identified a volcanic ash layer

originating from a Mt Berlin (Antarctica) eruption. This

event has been dated at 92.5±2 kyr BP by an Ar/Ar method

applied on ash material collected close to the volcano.

2.6 Timing of termination II

The age of the rapid CH4 event marking the end of termina-

tion II can be found by comparison to U-Th dated speleothem

records, assuming that these fast transitions are synchronous.

We obtain 129.3 kyr BP from Dongge cave in China (Yuan et

al., 2004), and 130.9 kyr BP from Pekiin cave in Northern

Israel (Bar-Matthews et al., 2003). We took the average of

these two ages (130.1 kyr BP) and assumed a confidence in-

terval of 2 kyr. We used the 1depth estimate from the EDC2

age scale to export the CH4 depth of 1723 m to an ice depth

of 1699 m on EDC99. The uncertainty introduced by this

ice/gas depth difference evaluation is only a few hundred

years, so it is negligible compared to the uncertainty in the

absolute age.

2.7 Air content age markers 0–440 kyr BP

The total air content of polar ice may be interpreted as a

marker of the local summer insolation (Raynaud et al., 2007).

Apparently, the solar radiative power absorbed at the surface

influences the snow structure in the first upper meters and,

in turn, the porosity of snow in the bubble close-off layer.

The detailed physical mechanism is still under debate, how-

ever, the presence of a strong 41 kyr obliquity period in the

air content signal makes it appropriate for the application of

an orbital tuning method. We used 19 age markers from the

air content age scale available back to 440 kyr BP. Each age

marker corresponds to a minimum of obliquity, and the as-

sumed uncertainty is 4 kyr2.

2Since the definition of these air content age markers, the

method to reconstruct a local insolation metronome based on the

2.8 18Oatm age markers for stages 300–800 kyr BP

A relationship between the isotopic composition of atmo-

spheric oxygen (δ18O of O2, noted δ18Oatm) and daily north-

ern hemisphere summer insolation has been observed at Vos-

tok for the youngest four climate cycles. This property has

been exploited to construct various orbital age scales for

Vostok (Petit et al., 1999; Shackleton, 2000). Dreyfus et

al. (2007) used a similar approach to derive an age scale

for the bottom part of the EDC ice core (300–800 kyr BP)

by assuming that 18Oatm lags the summer-solstice precession

variations by 5 kyr with an estimated uncertainty of 6 kyr.

The selected age markers are placed at each mid-transition

of δ18Oatm (see Dreyfus et al., 2007, for more details).

2.9 The Brunhes-Matuyama reversal

The most recent of the geomagnetic inversions, referred to as

the Brunhes-Matuyama reversal, has been localized between

3161 and 3170 m in the EDC 10Be record (Raisbeck et al.,

2006). This reversal has been dated radiometrically to have

occurred 776±12 kyr BP (Coe et al., 2004), taking into ac-

count decay constant and calibration uncertainties. This tran-

sition has also been orbitally dated to be 778 kyr ago (Tauxe

et al., 1996). Several authors have also reported evidence for

a “precursor” event, 15 kyr before the B-M boundary (Brown

et al., 2004), supported by the EDC 10Be record.

3 Construction of the time scale

3.1 The EDC3 age scale

The EDC3 age scale was constructed in three stages.

First, a preliminary dating was obtained by ice flow mod-

elling alone (Parrenin et al., 2007). The ice flow model

has two components. 1) The initial annual layer thickness

(i.e. the accumulation rate) is evaluated from the deuterium

content of the ice, assuming an exponential relationship be-

tween accumulation rate and deuterium content, the later be-

ing corrected for variations in isotopic composition of the

mean ocean. 2) The vertical compression of the layers, or to-

tal thinning ratio, is evaluated with a mechanical model. The

age at a depth z is then given by:

age (z) =

∫ z

0

1

T (z′) a (z′)
dz′. (1)

where a(z) is the initial annual layer thickness and T(z) is

the compression factor. This ice flow model contains sev-

eral poorly known parameters: the average Holocene accu-

mulation rate, the slope between deuterium and logarithm

of accumulation, the basal melting, and two parameters for

EDC air content record has been improved and the final air content

age scale is slightly different.
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the vertical profile of velocity (basal sliding and internal de-

formation). The values of these parameters have been de-

termined by independent age markers, using a Monte Carlo

Markov Chain (MCMC) inverse method. 21 age markers

have been selected and are listed in Table 1. Not all those

listed in Sect. 2 have been selected, in order to prevent over-

tuning the model in certain parts which would be a detriment

to other parts. There are 8 age markers during the last cli-

matic cycle, and in particular 3 during the Holocene. It is

important to understand how this “modelled” age scale is de-

pendent on these age markers. The average Holocene accu-

mulation rate impacts the Holocene ages and is mainly con-

strained by the Holocene age markers (dated volcanoes and
10Be age markers). Then the deuterium – accumulation slope

affects the glacial ages and is mainly constrained by the age

of the Laschamp event. The basal melting influences the total

duration of the record and is mainly constrained by the bot-

tom age markers. Finally, the two parameters related to the

vertical profile of velocity only induce general trends in the

age scale and are constrained by all the other age markers.

Hence, the resulting age scale does not match perfectly the

age markers obtained by comparison to insolation variations

(obtained from the air content record).

The second stage is an a posteriori strict match of the age

scale to dated volcanoes and to the NorthGRIP GICC05 time

scale in the top part. In this part, the total thinning function

is close to 1 and thought to be well constrained by the ice

flow model. For this reason we expect the main sources of

uncertainties to come from the accumulation model. Conse-

quently we modified the modelled accumulation rate so that

the resulting age scale fits perfectly with: 1) the dated vol-

canoes of the last millenium; 2) the two 10Be age markers in

the last 6 kyr (Sect. 2.2); 3) one methane age marker during

the last deglaciation (Sect. 2.3); 4) the Laschamp age marker

at 41.2 kyr BP (Sect. 2.4). These age markers are listed in

Table 1.

The third stage is a correction of the modelled thinning

function in the bottom 500 m of the core (beyond MIS11,

∼400 kyr BP), where the ice flow model is unable to fit the

δ18Oatm age markers (Dreyfus et al., 2007). This problem

was first detected by Lisiecki and Raymo (2005), who sug-

gested a problem in the accumulation estimate. However,

Dreyfus et al. (2007) showed, by a comparison of deuterium

and CO2 variations, that this anomaly is principally due to

the presence of ice flow irregularities. They a posteriori cor-

rected the total thinning function so that the resulting age

scale fits those δ18Oatm age markers within their confidence

interval. See Dreyfus et al. (2007, Table 1) for a complete list

of the age markers used and for more details on the method.

By following this procedure, we have used the best avail-

able chronological information for each section of the core,

while still allowing the model to provide a smooth interpola-

tion of all unconstrained periods.

As stated in the introduction, two different cores have been

drilled at EDC: EDC96 extending to 788 m depth (approxi-

Table 1. Age markers used for the construction of the EDC3 age

scale. They fall into 3 categories: 1) Age markers used to control the

poorly known parameters of the modelling; 2) Age markers used for

a posteriori correction in the top part of the core (EDC3 is required

to pass exactly through those age markers); 3) Age markers used to

correct for ice flow anomalies in the bottom part.

age marker depth age error bar model top bottom

(m) (kyr BP) (kyr BP) control correction correction

Krakatua 8.35 0.066 0.001 X

Tambora 12.34 0.134 0.001 X

Huaynaputina 23.20 0.349 0.001 X

Kuwae 29.27 0.492 0.005 X

El Chichon? 38.12 0.691 0.005 X X

Unidentified 39.22 0.722 0.006 X

Unknown 41.52 0.779 0.006 X
10Be/14C 107.83 2.716 0.05 X
10Be/14C 181.12 5.28 0.05 X X

YD/Holocene 361.5 11.65 0.18 X

PB/BO 427.2 15.0 0.24 X X
10Be peak 740.08 41.2 1 X X

Mt Berlin erupt. 1265.10 92.5 2 X

term. II 1698.91 130.1 2 X

air content 1082.34 70.6 4 X

air content 1484.59 109.4 4 X

air content 1838.09 147.6 4 X

air content 2019.73 185.3 4 X

air content 2230.71 227.3 4 X

air content 2387.95 270.4 4 X

air content 2503.74 313.4 4 X

air content 2620.23 352.4 4 X

air content 2692.69 390.5 4 X

air content 2789.58 431.4 4 X
18Oatm 2714.32 398.4 6 X
18Oatm 2749.04 408.6 6 X
18Oatm 2772.27 422.0 6 X
18Oatm 2799.36 441.0 6 X
18Oatm 2812.69 454.3 6 X
18Oatm 2819.2 464.6 6 X
18Oatm 2829.36 474.8 6 X
18Oatm 2841.75 485.3 6 X
18Oatm 2856.27 495.9 6 X
18Oatm 2872.56 506.6 6 X
18Oatm 2890.33 517.6 6 X
18Oatm 2913.3 532.0 6 X
18Oatm 2921.99 545.3 6 X
18Oatm 2938.24 556.4 6 X
18Oatm 2968.08 567.6 6 X
18Oatm 2998.96 578.6 6 X X
18Oatm 3008.93 589.5 6 X
18Oatm 3017.25 600.1 6 X
18Oatm 3027.54 610.9 6 X
18Oatm 3035.41 622.1 6 X X
18Oatm 3043.01 634.4 6 X
18Oatm 3048.51 649.1 6 X
18Oatm 3056.77 660.8 6 X
18Oatm 3065.93 671.7 6 X
18Oatm 3077.74 682.3 6 X
18Oatm 3093.51 693.2 6 X
18Oatm 3112.43 704.0 6 X
18Oatm 3119.57 714.4 6 X
18Oatm 3124.27 724.4 6 X
18Oatm 3136.18 733.9 6 X
18Oatm 3143.2 741.9 6 X
18Oatm 3152.25 749.2 6 X
18Oatm 3158.91 758.1 6 X
18Oatm 3166.87 767.7 6 X
18Oatm 3174.81 777.6 6 X
18Oatm 3180.6 787.7 6 X
18Oatm 3189.83 797.5 6 X

B-M reversal 3165 785 20 X
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Fig. 1. Age difference between the EDC1 (resp. EDC2) and EDC3 time scales for the last 45 kyr.

mately back to 45 kyr BP), and EDC99 drilled down to the

bedrock. For the first ∼45 kyr, the majority of paleoclimatic

reconstructions have been obtained from EDC96. Therefore,

EDC3 has been defined on EDC96 depths on the shallow part

and on EDC99 depths in the bottom part. The age scale has

then been transferred to EDC99 in the shallow part thanks

to a volcanic synchronisation of the two cores (Wolff et al.,

2005).

Estimates of the gas-ice age difference and related discus-

sions can be found in Loulergue et al. (2007).

3.2 EDC3 exported to EDML, Dome Fuji and Vostok

The EDC3 age scale was then exported to EDML, Dome

Fuji and Vostok thanks to synchronisation of these ice cores

with EDC. The EDC-EDML synchronisation and the re-

sulting EDML1 chronology are fully described in Severi et

al. (2007) and Ruth et al. (2007). The EDC-DF and EDC-

VK synchronisations are done by matching isotopic records,

and by using common volcanic horizons (Narcisi et al.,

20053). See supplementary material (http://www.clim-past.

net/3/485/2007/cp-3-485-2007-supplement.zip) for a list of

synchronisation markers used.

4 EDC3 compared to other age scales

4.1 Comparison with EDC1 and EDC2

The former EDC1 time scale for EDC96 (Schwander et al.,

2001), and the extended EDC2 for the last 740 kyr (EPICA

3We did not use the EDC-VK volcanic synchronisation obtained

by Udisti et al. (2004), because it concerns the 5G VK core, and

not the 3G core on which the deuterium measurements have been

performed.

community members, 2004) were also built on a combination

of age markers and modelling information. As for EDC3,

a one dimensional ice flow model was controlled by a set

of age markers. There are however several important dif-

ferences. For EDC1, the time scale extended only back to

45 kyr BP, and different glaciological parameters were used

for different time periods covered by the time scale. EDC2

extended only back to 740 kyr BP and there was no a poste-

riori correction of the age scale, neither in the top part, nor

in the bottom part where the ice flow is complex. Moreover,

the ice flow model did not take into account basal sliding and

variations in ice sheet thickness, and the age markers were

mainly obtained by comparison to the oceanic Bassinot stack

(Bassinot et al., 1994).

Figure 1 compares EDC1 and EDC3 on the last 45 kyr.

EDC2 is also shown for convenience, but EDC1 was still

the official age scale for the top part of the core. EDC3 is

younger by a few decades for the last 2 kyr. Then it is older

by less than 100 yr between 2 and 8 kyr BP. The difference

increases to ∼200 yr for the early Holocene period, around

10 kyr BP. Then the difference becomes positive (EDC1 is

older) with a maximum of ∼600 yr at the LGM. The differ-

ence finally decreases roughly linearly down to –700 yr at

45 kyr BP.

Figure 2 compares EDC2 and EDC3. The difference

ranges approximately between –1.5 and +3 kyr for the last

400 kyr. EDC3 is older during the last glacial period, with a

difference of ∼3 kyr for MIS 5.5. This is due in particular to

the use of the Mt Berlin and Termination II age markers. The

difference between EDC3 and EDC2 then slowly decreases

back to MIS 10.

For the period 400–800 kyr BP, the difference is much

larger, and reaches –20 and +7 kyr. This is due to the a pos-

teriori correction in EDC3 of ice flow irregularities in the

bottom part of the core. The largest differences are for MIS

Clim. Past, 3, 485–497, 2007 www.clim-past.net/3/485/2007/
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Fig. 2. Comparison of the EDC deuterium record on the EDC2 and EDC3 time scales. The green curve represents the difference in age

between EDC2 and EDC3. Y-axes for isotopic records are normalised.
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Fig. 3. Comparison of the EDC deuterium record on the EDC3 time scale with the LR04 marine stack on its own time scale, shifted by

3 kyr towards older ages. The green curve represents the difference in age between LR04 (+3 kyr) and EDC3 assuming both records are

synchronous. Y-axes for isotopic records are normalised.

13–14 (where EDC3 is older by 15–20 kyr), MIS 15.3 (where

EDC3 is younger by ∼5 kyr) and MIS 16 (where EDC3 is

older by 10–15 kyr). Duration of MIS 15.1 has been consid-

erably shortened in EDC3, while the duration of MIS 12 is

now longer.

4.2 Comparison with LR04

The LR04 marine stack is composed of benthic δ18O records

from 57 globally distributed sites aligned by an automated

graphic correlation algorithm (Lisiecki and Raymo, 2005).

The LR04 age model is derived from tuning the δ18O stack

to a simple ice model based on 21 June insolation at 65◦ N,

with additional constraints from the sedimentation to prevent

overtuning.

In Fig. 3, we compared the EDC deuterium record on

EDC3 with the LR04 stack on its own time scale. Of course,

as a benthic record, LR04 contains a sea level part and a tem-

perature part and as a consequence is older than EDC by sev-

eral thousands of years. For an easier comparison, we thus

shifted it by 3 kyr towards older ages. This 3 kyr phase is the

observed phase of both records during the last deglaciation.

On Fig. 3 is also plotted the age difference between the two

age scales (with the 3 kyr phase lag removed). For that, we

used features that can be identified with confidence in both

curves (e.g. terminations). We preferentially placed points at

mid-transitions.

The overall agreement between both time scales is good,

with differences never exceeding 6 kyr. In contrast, the pre-

vious EDC2 time scale showed disagreements up to 20 kyr

with LR04 in the part older than 400 kyr BP (Lisiecki and

Raymo, 2005; Dreyfus et al., 2007). The age difference is

particularly small during the last 400 kyr (back to MIS11),

www.clim-past.net/3/485/2007/ Clim. Past, 3, 485–497, 2007
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Fig. 4. Comparison of the EDC deuterium record on the EDC3 time scale with the Dome Fuji δ18O record on the DFGT-2006 time scale

(Parrenin et al., 2007). The green curve represents the difference in age between DFGT-2006 and EDC3 at the depth of the synchronisation

markers. Y-axes for isotopic records are normalised.
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Fig. 5. Comparison of the EDC deuterium record on the EDC3 time scale with the Vostok deuterium record on the VK-FGT1 time scale

(Parrenin et al., 2004). The green curve represents the difference in age between VK-FGT1 and EDC3 at the depth of the synchronisation

markers. Y-axes for isotopic records are normalised.

oscillating between –1.5 kyr and 3 kyr. This age difference

may reflect either errors in the synchronisation, or may be

due to phases in the climatic system, i.e. related to the fact

that both curves do not represent the same climatic proxy.

The fact that this difference is stable is reassuring because it

shows a certain consistency between both time scales which

were derived completely independently. The glaciological

modelling method thus seems appropriate for Dome C back

to MIS11 without any additional distortion. The age dif-

ference increases to approximately 6 kyr between 450 and

600 kyr BP, then reaches its minimum at termination VII

(from MIS16 to MIS15) with –3 kyr, increases again to 6 kyr

at MIS18, and finally decreases to around –2 kyr at termina-

tion 9 (from MIS20 to MIS19). This bottom interval (beyond

MIS11) where the age difference is less stable, is where the

ice flow model becomes inaccurate (Dreyfus et al., 2007).

4.3 Comparison with DF and VK glaciological chronolo-

gies

In Fig. 4 and Fig. 5, we compare the EDC isotopic record on

the EDC3 time scale with the Dome Fuji and Vostok isotopic

record, on their respective glaciological age scales DFGT-

2006 (Parrenin et al., 2007) and VK-FGT1 (Parrenin et al.,

2004).

The age differences are always less than 1 kyr for the last

∼90 kyr. This good agreement is especially remarkable be-

cause very few age markers were used for the last glacial

part. We interpret it as the fact that the glaciological models

used are robust for the upper part of the ice sheets where the

mechanical ice flow is still predictable. It is also a proof that

the assumed relationship between isotopic content of the ice

and surface accumulation rate is valid within a few percent.

Clim. Past, 3, 485–497, 2007 www.clim-past.net/3/485/2007/
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time scale (Parrenin et al., 2007). Y-axes for isotopic records are normalised.

The age of term. II is roughly consistent in all three glacio-

logical chronologies, as can be seen in Fig. 6. Using the rapid

methane event marking the end of the deglaciation and cor-

responding to the end of the Antarctic isotope increase, we

obtain 129.2 kyr BP in EDC3, 129 kyr BP in VK-FGT1 and

129.8 kyr BP in DFGT-2006. This age is also in good agree-

ment with estimates based on coral-reef high stands (Wael-

broeck et al., 20074). The age old debate on the age of Ter-

mination II, old in a previous ice core chronology (Lorius et

al., 1985) and young in the orbitally tuned marine records

(Imbrie et al., 1984) now seems to be converging.

The age discrepancies are larger for the second climatic

cycle, where EDC3 is significantly older than both DFGT-

2006 and VK-FGT1, the difference reaching around 5 kyr.

The agreement is again better for the third and fourth climatic

cycles, with differences never exceeding 2 kyr.

Figure 7 compares the duration of climatic events in EDC3

and DFGT-2006, or in EDC3 and VK-FGT1. These three

time scales are consistent, generally within 20%. It should

be noted that differences depicted on this figure may either

reflect a real difference in the age scales, or an error in the

synchronisation process. The agreement is very good back

to ∼90 kyr BP, but then the situation for MIS5.4 to 6 is

more complex (see Fig. 6). MIS5.4 is significantly shorter

in EDC3 than in DFGT-2006 and VK-FGT1. Then, the

duration of MIS5.5 (∼16 kyr, taken at mid-transitions) is

intermediate in EDC3 between its duration in DFGT-2006

(∼14.5 kyr) and its duration in VK-FGT1 (∼18 kyr). Finally,

4Waelbroeck, C., Frank, N., Jouzel, J., Parrenin, F., Masson-

Delmotte, V., and Genty, D.: Transferring radiometric dating of the

Last Interglacial sea level high stand to marine and ice core records,

submitted, 2007.

the duration of MIS6 is significantly shorter in EDC3 than

in both other age scales. We do not know at this stage if

these discrepancies are due to poorly understood processes

in the accumulation models or in the mechanical thinning

models. A recent study on the structure of cristallographic

orientations suggests non-unidimensional flow processes for

this time period (Durand et al., 2007), and the authors sug-

gest accurately monitoring the EDC borehole to quantify the

amount of shear. A precise synchronisation between the ice

cores in both the ice and gas phases may also help distinguish

an accumulation anomaly from a thinning anomaly.

5 Confidence interval of the age scale

The confidence interval determination is a difficult task when

no robust statistical information is available. Here, we evalu-

ate it subjectively by using the comparison with the other age

scales and with the age markers.

Back to AD1600, the error in EDC3 mainly comes from

the interpolation of the dated volcanoes which we estimate

it to be 3 yr (2σ). Between AD1100-1600, the age error of

the volcanoes increases to 5 yr, and adding an interpolation

error we estimate the total error at 8 yr. The accuracy is then

constrained by the accuracy of the 10Be age markers, which

we estimate at 100 yr. We thus estimate that the 2σ error

on EDC3 increases to 100 yr at 2000 yr BP and stays stable

back to 6000 yr BP. The accuracy of EDC3 then increases to

400 yr at 14 kyr BP, which is roughly the error on the CH4

age markers. By comparison to the Dome Fuji and Vos-

tok chronologies and to the GICC05 age of the Laschamp,

we estimate the confidence interval to increase to 1 kyr at

18 kyr (Last Glacial Maximum), 1.5 kyr at 40 kyr, and finally

www.clim-past.net/3/485/2007/ Clim. Past, 3, 485–497, 2007
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Fig. 7. Durations between two consecutive synchronisation markers in EDC3 compared to durations in DFGT-2006 (left panel) or in VK-

FGT1 (right panel). Plain pink line is the 1:1 curve. Dashed pink lines represent the 1:0.8 and 0.8:1 lines.

3 kyr at 100 kyr BP. Our estimated confidence interval is con-

strained by the quality of the orbital tuning age markers from

air content or 18Oatm records; we estimate it to increase to

6 kyr at 130 kyr and to stay stable down to the bottom of the

record.

In terms of event durations, we estimate the accuracy to be

20% for the top part of the record (back to MIS11), by com-

parison to Vostok and Dome Fuji glaciological age scales.

For the bottom part (below MIS11), a more conservative esti-

mate of 40% is more appropriate because of the flow anoma-

lies (Dreyfus et al., 2007).

6 Conclusion and perspectives

We derived an EDC3 chronology for the EPICA Dome C

ice core, which was then exported to EDML, Dome Fuji and

Vostok ice cores by synchronisation of these ice cores. This

chronology has been obtained using a combination of age

markers and ice flow modelling. The good agreement be-

tween EDC, Vostok and Dome Fuji ice flow models points

to the good accuracy of EDC3 in terms of event durations,

which we estimate to be better than 20% for the last 400 kyr.

This is a significant improvement with respect to marine age

scales where the resolution is poorer and where the sedimen-

tation is less regular.

Apart from ice flow modelling improvements, further de-

velopments need to be done concerning the inverse method

used for the conjunction of models and age markers. The

method used for EDC3 is based on a so-called determinis-

tic approach, where the uncertainties in the ice flow models

are supposed to originate from poorly known physical pa-

rameters. In reality, there are other non-identified sources of

uncertainty in these models which need to be taken into ac-

count in a statistical way. A second potential improvement is

to apply this inverse method to several drilling sites simulta-

neously, to obtain a common and optimal age scale for sev-

eral ice cores, as has been done in the marine world (Lisiecki

and Raymo, 2005).

We also hope that the precision of the age markers will

increase in the coming years. The number of U-Th dated

speleothems for the last climatic cycles should increase in

the future (Henderson, 2006). New local insolation proxies

such as O2/N2 and air content are also a promising source of

accurate age markers, but the physical mechanisms involved

need to be better understood and the accuracy of these age

scales needs to be independently confirmed.
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