The Edinburgh-Durham Southern Galaxy Catalogue - IV. The Cluster Catalogue

S. L. Lumsden, ${ }^{1,2 \star}$ R. C. Nichol, ${ }^{3}$ C. A. Collins ${ }^{2}$ and L. Guzzo ${ }^{4}$
${ }^{1}$ Astrophysics Group, Imperial College of Science, Technology \& Medicine, Blackett Laboratories, Prince Consort Road, London SW7 2BZ
${ }^{2}$ Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ
${ }^{3}$ Department of Astronomy, University of Edinburgh, Blackford Hill, Edinburgh EH9 3HJ
${ }^{4}$ Osservatorio Astronomico di Brera, Sedi di Merate, Via Bianchi 46, I-22055 Merate, Italy

Accepted 1992 February 19. Received 1992 January 29; in original form 1991 November 5

Abstract

SUMMARY We present the Edinburgh-Durham Cluster Catalogue (EDCC). This is the first machine-based, objectively selected sample of clusters of galaxies. It consists of 737 clusters or groups of all richnesses, over 0.5 sr of sky, centred on the South Galactic Pole (SGP). The primary galaxy data set for the cluster survey is the Edinburgh-Durham Southern Galaxy Catalogue (EDSGC). The EDCC was constructed using an automatic peak-finding algorithm and is complete to $m_{10}\left(b_{\mathrm{j}}\right)=18.75$. In a comparison with the Abell clusters in the same region, we detect 80 per cent of their rich clusters nominally brighter than our completion limit in addition to many new systems. This suggests that the EDCC is 90 per cent complete for Abell-type clusters. We also conclude that the Abell magnitude system is biased towards bright magnitudes for most of their clusters, and that their richness estimates are prone to a larger uncertainty than they suggest. The EDCC therefore supersedes the Abell catalogue as a data base for statistical studies of cluster properties.

Key words: catalogues - galaxies: clustering.

1 MOTIVATION

Clusters of galaxies provide a powerful probe of the form and evolution of structure on large scales and have been used in many diverse areas of cosmological study. For example, clusters provide a measure of large-scale clustering, both for the spatial correlation function (Bahcall \& Soneira 1983) and for the angular correlation function (Couchman, McGill \& Olowin 1989). The luminosity function can be used to provide evidence for the evolution of clusters. Attempts have been made to model the luminosity function of clusters in terms of some universal function (e.g. Abell 1962; Schechter \& Press 1976; Dressler 1978; Lugger 1986; Colless 1989). Clusters also provide a powerful test of the gravitational lensing hypothesis (see, for example, Ellis 1990), and hence may be useful as an unbiased source of serendipitous highredshift galaxies. Furthermore, clusters have been used in studies of streaming motions (see, for example, Aaronson et al. 1986 and Lynden-Bell et al. 1988).

[^0]There are a number of existing cluster catalogues in the literature. The most widely used is the Abell catalogue (Abell 1958) and its southern counterpart (Abell, Corwin \& Olowin 1989, hereafter ACO). Together these consist of an all-sky cluster sample supposed to be at redshifts less than 0.2 , selected from Palomar (UK Schmidt for ACO) plates. Other catalogues include the Zwicky et al. (1961-68) catalogue of clusters and galaxies and Shectman's (1985) analysis of the Shane \& Wirtanen (1967) counts from the Palomar survey plates.

The main problem with all these catalogues is that they are based on data gathered from visual inspection of the galaxy distribution with different (and largely unquantifiable) selection procedures giving rise to heterogeneous catalogues. It has been recognized for some time that the intrinsically subjective nature of the Abell catalogue gives rise to severe problems in homogeneity and statistical completeness (Postman, Geller \& Huchra 1986). Additional problems arising from projection effects within the Abell catalogue render the clustering results of Bahcall \& Soneira (1983) very uncertain (Sutherland 1988). Many of these problems can be solved or at least quantified with an objective,
machine-based catalogue. Such a data base, with accurate photometry, would prove an invaluable aid in clarifying existing uncertainties and allow substantial progress to be made in many areas of cluster research.

The main purpose of this paper is to present the first large-scale automated cluster survey using a combination of a modified Shectman approach with a modified Abell analysis. From this we determine the statistical completeness of the Abell catalogue. The structure of this paper is as follows: in Section 2, we discuss the construction of the EDCC; in Section 3, we present and describe the catalogue; in Section 4, we compare it to the Abell clusters in the same region and hence find a measure of the reliability of the Abell catalogue; and in Section 5, we summarize the results of this study.

2 CONSTRUCTION OF THE CATALOGUE

2.1 The galaxy data

The source of our galaxy data is the Edinburgh-Durham Southern Galaxy Catalogue (hereafter EDSGC: HeydonDumbleton, Collins \& MacGillivray 1989, Paper 2), which consists of COSMOS scans of 60 UK Schmidt survey plates. The EDSGC covers 0.5 sr , centred on the South Galactic Pole. Accurate calibration and star-galaxy separation have resulted in a catalogue that is 95 per cent complete to b_{j} ~ 20.5 with less than 10 per cent stellar contamination, and a plate-to-plate zero-point variation of $\Delta m \sim 0.05$. The COSMOS image analysis package (Thanisch, McNally \& Robin 1984; Beard, MacGillivray \& Thanisch 1990) also contains a powerful deblending routine which we use to discriminate between the different galaxies in rich cluster cores. This is vital for our purposes since an underestimate of the number of galaxies in a rich compact core could easily result in that cluster being overlooked. The EDSGC is therefore an ideal tool for many large-scale cosmological survey projects.

2.2 Finding candidate clusters

In this paper we utilize a similar approach to that of Abell in classifying clusters since our aim is to test the reliability of the Abell catalogue. We adopted a method of finding cluster candidates independent of any presumed cluster model and imposed the Abell classification at a later stage. We intend to consider the same candidate clusters in terms of non-Abell parameters in future papers. There are two well-established mechanisms for carrying out this task. The one we used involves binning the galaxy data, and is modified from the work of Shectman (1985). The alternative is to use a percolation analysis. We decided not to use this method since it can in principle merge nearby candidate objects into a single structure. Consideration of the computer time involved also favours the binning method.

The catalogue was binned into equal-area square bins on a true sky projection. The bin size was chosen such that the mean number of galaxies per bin was ~ 1. This procedure was carried out three times, for different magnitude limits; the actual limits and bin sizes used are given in Table 1. Each selection gave rise to a different set of candidates, although, as might be expected, there were large overlaps.

Once the data were binned, they were lightly smoothed with a Shectman (1985) filter to produce a 'Shectman' frame. This filter has the weights

$\frac{1}{16}$	$\frac{1}{8}$	$\frac{1}{16}$
$\frac{1}{8}$	$\frac{1}{4}$	$\frac{1}{8}$
$\frac{1}{16}$	$\frac{1}{8}$	$\frac{1}{16}$.

The Shectman filter was chosen since it is effectively a Gaussian filter, and hence matches the cluster density profiles well (a point that we make use of again in the Abell analysis). Over-smoothing the data (using a top-hat filter for example) reduces the likelihood of detecting real small-scale structures, and not smoothing at all would make location of a peak dependent on its location with respect to the bin. Light smoothing reduces binning noise, ensuring that a true peak is located irrespective of where it lay in the original bins. The validity of this latter point will be discussed further in Section 2.5 when the errors in the catalogue are considered.

Shectman searched for peaks above a global threshold. However, since the EDSGC gives only a two-dimensional representation of the actual galaxy density on the sky, it is impossible to find all clusters in this way. A single threshold will find all clusters, however poor, in a region of generally high galaxy density and, conversely, miss those, however rich, in regions of low galaxy density. In order to overcome this problem, the large-scale baseline was removed by following the background projected density (Dodds \& MacGillivray 1986). This background or 'sky' frame was calculated by smoothing the 'Shectman' frame using a square, mean filter of width between 1° and 2°. Tests showed that the clusters selected were actually quite resilient to the exact form of this 'sky' frame. Changing the scale on which the background is smoothed (within the range 40 arcmin to 3°), and hence changing the effective background level, causes less than a 10 per cent change in the final candidate centres. Most of the candidates that were sensitive to this change were found to be 'noise'.

The 'sky' frame was subtracted from the 'Shectman' frame. An analysis package similar to the COSMOS image analyser (Thanisch, McNally \& Robin 1984; Beard, MacGillivray \& Thanisch 1990) was used to find pixels above a given threshold in this background-subtracted image. The threshold was set according to the values given in Table 1. These values were set empirically as a compromise between rejecting real clusters while keeping the proportion of 'noise'

Table 1. Values used in the binning routines.

run no.	magnitude limit	bin size (arcmin)	threshold (galaxies/bin)	number of cands
1	18.5	8	$1.5(2.3 \sigma, \sigma=0.65)$	438
2	19.5	5	$2.5(3.9 \sigma, \sigma=0.64)$	491
3	20.5	3	$3(4.6 \sigma, \sigma=0.65)$	633

images to a minimum. The threshold varies between runs since the number of such 'noise' images increases as the bin size is decreased. If the threshold was lowered it would be possible to counteract this by including an area cut, but this was found to exclude some genuine distant clusters. Therefore, from experiments on a small area of the data, we chose thresholds which gave minimum contamination without discarding any of the clusters that we had previously detected by eye. Only 5 per cent of the objects detected definitely proved not to be clusters or groups of galaxies on a further visual inspection.

Thresholding the data is not sufficient to find all true density peaks. Clearly, neighbouring peaks can lie above the same threshold. We therefore deblended the data in density space to search for the true peaks and the saddle points between them. Failure to do this would have led to nearby groups of clusters being considered as a single unit. Applying an Abell classification to that single unit would give misleading results, since we would have no further information that there was in fact more than one peak in the density distribution at that position. Deblending before applying the Abell mechanism allows us to note that there are two or more overlapping Abell radii for the candidates, and hence to correct the counts again at a later point in the analysis. This is also the reason that we decided against using a percolation method for selecting candidate clusters. This helps to reduce the problem of projection effects which have been noted as a common occurrence in the Abell (1958) catalogue (Lucey 1983; Sutherland 1988). Since the background-subtracted frame is analogous to a galaxy density, linear thresholding was used in contrast to the COSMOS software used to deblend merged galaxy/star images in the construction of the EDSGC. We used 20 thresholds, starting at the thresholds given in Table 1 and ending at the peak in the actual structure. The other major difference between the procedure applied here and the COSMOS package was that each pixel was allocated to only one cluster. This is justified for two reasons. First, there were very few instances in which pixels were equally shared. Secondly, since we later imposed the Abell classification and then deblended again, the small richness errors arising at this stage from this simplification were irrelevant. For every candidate, the locations of all pixels belonging to that object (which by definition must be connected), and the EDSGC catalogue information on all the galaxies within those pixels were stored for future use. The numbers of candidate clusters found for the different bin sizes are given in Table 1.

2.3 The Abell analysis

The methods outlined by Abell (1958) are valuable for three reasons. They provide an opportunity to place the EDCC within a recognized framework, a method of giving additional information over that presented by the pseudo'Shectman' analysis given above, and also allow us to make a direct comparison between our catalogue and that of Abell.

The candidate cluster centres were taken as initial centroids for the true Abell cluster. The magnitude of the tenth brightest galaxy, m_{10}, was taken from the list of galaxies contained within the pixels. This magnitude was converted into an Abell radius, θ_{A}, using the formula given by ACO ; the Abell radius is the angle subtended on the sky by a circle of
radius $1.5 h^{-1} \mathrm{Mpc}$ at the cluster, ignoring cosmological corrections.
$\theta_{\mathrm{A}}=\arctan \left(\frac{150}{c z}\right)$,
where $c z$ is given by equation (11) of ACO (the well-known $m_{10}-\log c z$ relation), and a correction of
$b_{\mathrm{j}}-V=0.77$
has been made to convert from the EDSGC magnitude system $\left(b_{\mathrm{j}}\right)$ to the ACO system (V). This value was obtained from the calibration sequences used in the construction of the EDSGC (Heydon-Dumbleton et al. 1989). It should also be noted that the ACO form of the $m_{10}-\log c z$ relation is in reasonable agreement with that found by Scaramella et al. (1990) for the same clusters and using updated redshifts.

Allowance must be made for the galaxies seen in projection on the cluster before the Abell radius can be calculated. An estimate of the contamination was derived from number counts of all the galaxies in a box of $4^{\circ} \times 4^{\circ}$ centred on the original candidate. These counts were then scaled down to the cluster area. The contribution of cluster galaxies to this count on each field is negligible once the counts are scaled down. Calculating the background in this way guards against only using an unrepresentative low-density region, free from clusters (as Abell did), and so should be more reliable. Since the cluster area is a function of m_{10}, this is an iterative process, but in general it converges rapidly. For the clusters presented here, convergence was taken to be the point at which the value of m_{10} was stable to within 1 per cent between iterations.

For very distant clusters, it was sometimes the case that the 'true' m_{10} actually lay beyond the EDSGC magnitude limit. In that case, the candidate was discarded. Similarly, if the centroid moved in the iteration by more than a quarter of its initial Abell radius it was discarded (since such a cluster is likely to be too poor for the iterative process to be stable), and if the value of m_{10} failed to converge within 10 tries it was discarded. In this way 20,15 and 25 per cent of the candidates from the respective runs were removed from further consideration. The high rejection rate for the smallest bin size was largely due to candidates whose magnitudes lay very near the plate limits, and that for the largest bin size because the low threshold allowed many poor nearby groups to be considered which consequently moved the centroid in the analysis.

The centroid of the cluster was defined by using all the galaxies within the Abell radius since the background should be smooth across these scales. The richness is defined as the number of galaxies in the magnitude range [$m_{3}, m_{3}+2$], as in Abell, also corrected for the background contamination in the same manner that m_{10} was.

2.4 The final catalogue

The next step in the construction of the catalogue was to combine the data from the Abell analyses of each of the three runs using the different initial bin sizes. The first step in this process was to remove duplicate entries from the final list. Any cluster which overlapped with other clusters so that its centroid fell within another's Abell radius was flagged as
being a possible duplicate. Any isolated clusters were passed straight into the final catalogue since they required neither merging nor deblending.

We used a two-sided Kolmogorov-Smirnov (KS) test to compare the background-subtracted magnitude distributions for those clusters found to be overlapping. This can also be viewed as comparing the luminosity functions of the two clusters through their apparent magnitude distributions but, crucially, places no constrictions on the form of the distribution. It is also formally independent of the number of objects under consideration (so it is useful for the poorer systems). A more conservative approach would have been to include every cluster from the different runs in the final catalogue, but this ignores the fact that many of the candidates from different runs were clearly the same cluster. The KS test is a relatively weak constraint (see below). Since some of the distinct peaks that we locate may be due to substructure we opted for these relatively loose constraints in combining the three original catalogues.

Where the apparent magnitude distribution was found to be the same, within a given significance level, we accepted these clusters as being the same. The level of significance that we used varied according to the separation of the clusters. This was found empirically on visual inspection of the candidates to be well behaved, whereas using only one threshold gave either too few or too many blends depending on which level of significance was chosen. For those clusters where both the centroids were within each other's Abell radius, clusters had to pass at the 10 per cent level; for those where one centroid was within the other's Abell radius, clusters had to pass at the 20 per cent level; and for those where only the Abell radii overlapped (those which had been grouped through a common third cluster that lay between them for example), the requirement was that the distribution should be the same at the 40 per cent level of significance. To estimate how rigorous these limits were we selected a cluster with a richness of 40 , and $m_{10}=18$, typical of our catalogue, and then varied the magnitude and the effective richness and compared it against itself. A shift in magnitude of 0.2 (roughly a difference in redshift of 0.01), or a change in richness by 60 per cent caused a failure at the 10 per cent level. Therefore substructure on its own is unlikely to cause a failure, and only distinct clusters should be excluded by this test. Correspondingly smaller shifts would cause failure at the stricter levels for those clusters that only partially overlapped.

In cases where more than two clusters overlapped, we ranked them according to the size of their Abell radius. All the clusters were compared with the largest, and those that matched were removed. The remaining set were then compared with the remaining largest cluster in the same manner. This process continued until all the clusters had been allocated to final distinct products. These final products were then reanalysed in order to determine their Abell characteristics. In the actual data set before the KS test was applied there were 425 clusters which existed in only one run, 154 clusters which were found in two distinct runs, 89 triplets in three distinct runs, and 55 other combinations of more than three initial candidates (42 objects consisting of 211 initial candidates) or mergers where more than one of the components came from the same run (as happened for 10 triplets and three pairs). After the KS test, these numbers became

461 singlets, 178 distinct pairs, 93 triplets, and 37 others (29 complex objects consisting of 126 initial candidates and two pairs and six triplets). Only the complex combinations were affected by the KS test since the other groups have virtually the same centres in the different runs, and hence almost exactly the same magnitude distributions. Clearly, from these figures, the test has passed virtually all the clusters it should have, but has discriminated against large complex groupings which were actually blends of distinct clusters. In total, therefore, we reduced the three original runs to a final list of 769 clusters. Information on how many times a given cluster was detected in the individual runs is given in the catalogue (Table 3), from which the reliability of our procedure can be checked.

Finally, this single set of clusters was again checked for overlaps. Where overlaps were found, since the KS test had shown these clusters were distinct, deblending was applied to ensure that every galaxy could only appear in one distinct cluster. 255 clusters in 110 blended groups were treated in this way. This fraction (33 per cent) compares favourably with previous estimates (Lucey 1983) for the Abell catalogue. Only galaxies in the overlaps between clusters were tested, since testing all galaxies in a blended pair usually resulted in all the galaxies in very poor clusters being assigned to the richer system, which was found by visual inspection to be unrealistic. For simplicity, a Gaussian distribution was fitted to the density profile of every cluster in a blend, and the cluster whose Gaussian fit had the largest amplitude at the location of any galaxy was assigned that galaxy. Once all the galaxies had been allocated to clusters, the cluster properties were again reanalysed (since the values of m_{3} and m_{10} can change during the deblending process).

2.5 Error estimates

The internal errors in the Abell parameters can be estimated by comparing the output from the three separate runs. We considered those overlapping clusters which passed the KS test to be essentially separate measurements on the same intrinsic cluster. Since there were cases of multiple blends, we used only the nearest clusters from the other two runs to a cluster in a given run (this avoids problems with using clusters which effectively sample largely different areas of the data). The scatter found in this way should give a realistic estimate of the underlying error in the final cluster catalogue. Fig. 1(a) shows a comparison of the derived $m_{10} s$ for all the clusters, Fig. 1(b) that for the $m_{10} \mathrm{~s}$ when only clusters with more than 30 members were considered and Fig. 1(c) a comparison of the richness values. This information is also summarized in Table 2, where the estimated intrinsic errors in the final catalogue are also given. The average differences between runs for any of the parameters given there were effectively consistent with zero (as can be seen from Fig. 1).

Some fairly obvious points can be made about these scatter plots. The scatter in the value of m_{10} is reduced when only the richer clusters are considered, as would be expected. Also, there appears to be a correlation between the size of the original bin and the final value of the m_{10} in the sense that larger bins give rise to brighter $m_{10} \mathrm{~s}$. However, this is less evident in the richer clusters, probably indicating that some of the poorer clusters are not well defined. Note also that the scatter in the brighter magnitudes $\left(m_{1}, m_{3}\right)$ is larger than in

Figure 1. Scatter plots showing the comparison of (a) m_{10} values for all EDCC clusters, (b) m_{10} values for those with more than 30 members, and (c) richness values for all EDCC clusters. Symbols are $(+)$ for run 1 against run 2, (ロ) for run 1 against run 3, and (*) for run 2 against run 3. In all cases the lower numbered run is on the x-axis.
m_{10}, which would be expected since m_{10} is closer to the peak in the cluster luminosity function (so an error in selecting the actual tenth brightest galaxy is less likely to give rise to a large error in the magnitude). However, the scatter in richness is not reduced if only richer clusters are compared. This is largely due to a coupling between two effects. Overall, the scatter in m_{3} is smaller for richer clusters, but the induced richness error is also proportional to the richness itself. For a Schechter-style luminosity function it can be seen that such an error in m_{3} leads to an error in the richness that is
approximately equal to the product of the number of objects in the cluster and the error in the magnitude (cf. Colless 1989, equation 10). Since these two effects almost cancel we would expect the overall scatter for the richness to be approximately the same irrespective of the actual richness, as is observed.

Finally, removing those overlaps where the offset between the centroids is more than 2 arcmin reduces the scatter considerably (see the final entry in Table 2). These errors must represent the irreducible minimum errors within the

EDCC and can be seen to arise from the actual mechanics of the iteration process. Slight shifts in the initial centroid can lead to a slightly different initial value for m_{10}. The iteration procedure ends when the $m_{10} \mathrm{~s}$ between successive iterations agree to within 1 per cent, so potentially the final magnitudes can differ by 0.1-0.2 mag. Hence, the minimal scatter is consistent with that expected from the iteration procedure.

One other possible source of error was the residual effect of the binning, not adequately accounted for by the Shectman filter. In order to test whether or not residual binning noise played any part in the selection procedure, the bin centres were offset by half a bin width and a reselection made. This error might have been expected to dominate near the edge of the survey for instance, where background subtraction is more uncertain and small shifts in the centroid are more likely to have a correspondingly larger effect. In fact the resulting changes to the various cluster properties were consistent with the minimal measurement errors described above. In addition, the same density peaks were found in both the original and offset data, indicating that any residual effect of the binning was negligible.

3 THE CLUSTER CATALOGUE

Table 3 gives the measured properties for all the clusters in the EDCC. There were 769 clusters remaining after identifying duplicates. No restriction has been made on richness or distance (unlike ACO). The catalogue is based around detecting local peaks in the density distribution. Though the Abell classifications may be questionable (see below) in some cases, there were only a few instances (32 cases) in which the peak in the smoothed data did not appear to correlate with any visible cluster on the plates. Those which were judged to be outright errors are listed separately in Table 4. A computer-readable version of Table 3 is available from the authors on request, as are details of the original separate 'runs'. The table is sorted in right ascension and contains the following information. (1) Sequential EDCC cluster identification numbers. (2) Right ascension and declination (equinox 1950). (3) The magnitude of first, third and tenth brightest members $\left(m_{1} ; m_{3} ; m_{10}\right)$. (4) The number of galaxies within the Abell radius between m_{3} and $m_{3}+2$ after the background galaxies have been removed ($\left.n_{\text {clus }}\right)$. (5) The number of background galaxies within the same radius to the same

Table 2. Error estimates.

Sample	σ_{1}	σ_{3}	$\sigma_{m 10}$	$\sigma_{\text {count }}$
All clusters: run 1 v 2	0.54	0.36	0.24	10.4
All clusters: run 1 v 3	0.52	0.31	0.34	9.2
All clusters: run 2 v 3	0.42	0.31	0.26	9.5
$c>30$: run 1 v 2	0.57	0.24	0.15	10.4
$c>30$: run 1 v 3	0.60	0.24	0.19	8.2
$c>30$: run 2 v 3	0.46	0.16	0.15	9.5
Final catalogue	0.34	0.23	0.18	6.9
Final catalogue: $c>30$	0.38	0.15	0.15	6.5
Final catalogue: offset $<2^{\prime}$	0.32	0.14	0.08	4.6

magnitude limit ($n_{\text {back }}$). The actual original counts within θ_{A} can be reconstructed from $n_{\text {raw }}=n_{\text {clus }}+n_{\text {back. }}$. (6) The Abell radius $\left(\theta_{\mathrm{A}}\right)$ in degrees. (7) Schmidt J survey field number. (8) The number of times the cluster was located in each of the original runs; for example, 310 implies the cluster was found three times in run 1, once in run 2 and not at all in run 3. (9) Whether or not the cluster was deblended (d or blank). (10) Abell identification number: an identification is defined as being an Abell cluster centre within one Abell radius of an EDCC cluster. Where the Abell identification appears in brackets only the clusters' Abell radii overlap.

If the cluster entry has a zero magnitude then it implies that most of its members have been lost to a companion during deblending (so that the background-subtracted magnitude cannot be defined). If $m_{10}=0$ then the richness and background are taken to be zero by default (since the richness cannot be calculated if $\theta_{\mathrm{A}}=0$). These clusters are still included since they represent distinct peaks in the original catalogues as determined by the KS test, and also show where the centres are in a blend.

All of the clusters have been checked visually. Where a number is missing from the sequential identification described above, that cluster has been rejected on the basis of this check. Only 'obvious' errors are excluded such as residual diffraction spikes from faint stars, star-star mergers, or nearby, bright face-on spirals, where the nucleus and dense HII regions in the disc are detected as separate objects. As noted above, these objects are listed separately in Table 4. In this table the final column contains our assessment of the actual object detected.

We have also indicated possible errors in our richness and magnitude estimates in Table 3, where the visual inspection gave a clearly different result. These are flagged by a * in the m_{10} (4 clusters) or $n_{\text {clus }}$ (82 clusters) columns. A '?' against the cluster identification in general indicates that such clusters could not be distinguished from the surrounding field (43 clusters). It follows that any quoted magnitudes or richness should equally be treated with caution for that cluster. These visual assessments are of course highly subjective and should be used only as a guide and not as absolutes. Most of these possible classification errors are in the richness. Partly, this is due to the greater ease with which such errors can be spotted visually compared to magnitude errors, but it is also in accord with the scatter found previously, whereby the richness values (dependent on m_{3}) were found to be more uncertain than the m_{10} values. These assessments are also included for those clusters which are deblended; in particular, where a cluster with zero richness and $m_{10}=0$ has a flag against the richness, we assess this as being a good cluster.

The completeness of the catalogue can be estimated in several ways. The number-magnitude relation for the clusters is shown in Fig. 2. The differential and cumulative number counts for those EDCC clusters with more than 30 members and those ACO clusters with the same richness cut-off are shown. The EDCC is partially incomplete at very bright magnitudes (missing three clusters compared to ACO for $b_{\mathrm{j}}<17$). Two of these ACO clusters have been deblended in our catalogue and the third lies within a defocused region that was excluded from the EDSGC. Deblending bright large clusters can lead to them being classified wrongly since they overlap with so many other potential centres. The dashed line

$=\underset{\sim}{\sim}$
ه்
－

§见o

品

 く்
 0
U

ஷ்

$\infty \underset{\sim}{\square}$ ฝ゙
ম

O

ั்

营 n 品

§

$=\stackrel{\infty}{\mathcal{\sim}}$ 人
㞱－

 U

き

E

㐫

= 何
ฏั -

h	$\begin{aligned} & \text { R.A. } \\ & \text { m } \quad \text { en } \end{aligned}$		m_{1}	m_{3}	m_{10}	$n_{\text {clus }}$	$n_{\text {back }}$	$\boldsymbol{\theta}_{\boldsymbol{A}}$	Field	runs	Deb.	Abell
1	348.8	-36 4425.8	14.34	17.08	18.91	10	9	0.176	F353	001		
1	3449.8	-34 5824.4	17.17	18.67	19.45	23	43	0.156	F353	001		2930
1	3525.3	-26 5616.0	16.53	16.90	19.10	5	7	0.176	F476	011		
1	3926.9	-30 5023.3	17.75	19.22	19.72	29	62	0.145	F413	001		
1	3946.9	-42 2457.6	15.44	17.17	17.49	47	34	0.330	F297	110		S 180
1	4037.0	-40 2435.8	15.15	16.23	18.46	6	4	0.237	F297	100		
1	4110.0	-36 3330.0	13.91	16.44	18.17	14	7	0.249	F353	100		S 182
1	4134.6	-32 4330.6	18.74	18.83	19.73	30	49	0.152	F413	001		
1	4146.0	-35 3250.0	16.81	17.01	17.59	28	25	0.317	F353	111		S 186
1	438.5	-29 2923.9	17.79	19.07	20.06	67*	42	0.130	F414	001		
1	4336.3	-29 628.6	16.90	17.37	19.26	11	10	0.167	F414	010		S 189
1	444.6	-32 719.5	17.39	18.55	19.35	41	43	0.161	F414	001		
1	453.8	-40 196.8	17.24	17.24	18.91	16	9	0.181	F297	010		
1	463.8	-32 1016.6	18.10	18.43	19.14	74	44	0.174	F414	011		2943
1	493.5	-36 2528.6	14.27	16.34	18.59	3	4	0.209	F354	011	d	
1	4937.2	$\begin{array}{lll}-26 & 3 & 24.7\end{array}$	16.59	18.43	18.83	53	51	0.192	F477	011		0264
1	502.9	$\begin{array}{llll}-36 & 7 & 8.7\end{array}$	15.90	16.67	18.45	13*	7	0.222	F354	010	d	
1	511.7	-33 5236.5	17.89	18.28	19.33	42	34	0.163	F354	001		S 203
1	5126.0	-33 226.1	16.51	17.66	18.77	16	23	0.195	F354	011		
1	5129.8	-26 4645.0	16.19	18.35	19.21	42	34	0.161	F477	001		2950
1	522.8	-35 5556.4	14.81	16.09	18.23	4*	4	0.243	F354	011	d	2952
1	5450.3	-24 1420.6	18.69	19.17	19.85	26	45	0.137	F477	001		2956
1	5751.6	-31 2759.8	16.84	18.52	19.73	20	34	0.151	F414	001		2961
1	5827.2	-33 1115.2	17.19	17.56	17.90	45*	42	0.278	F354	120		2962
1	5849.6	-25 2034.8	14.14	16.83	19.43	5	4	0.158	F477	001		2964
1	5854.9	-40 3957.9	16.29	16.76	18.31	22	9	0.236	F298	110		2965
1	5857.8	$\begin{array}{llll}-36 & 952.1\end{array}$	17.28	17.80	18.46	44	40	0.221	F354	111	d	2963
1	5926.1	-371545.5	18.66	19.01	19.47	22*	60	0.158	F354	001		S 216
1	5943.1	$\begin{array}{llll}-36 & 314.8\end{array}$	0.00	0.00	0.00	0	0	0.000	F354	001	d	(S 219)
1	5945.4	-35 2414.9	18.10	18.14	19.12	18	36	0.172	F354	001		
1	5955.2	-25 5032.6	18.66	19.10	19.73	81	48	0.143	F477	001	d	0297
2	029.7	-34 3124.2	17.68	17.74	19.00	33	25	0.181	F354	011		
2	036.3	-28 31 1.0	17.80	18.23	18.96	21	39	0.183	F414	011		2967
2	059.0	-25 4843.8	18.68	18.98	19.71	14	50	0.144	F477	001	d	
2	119.5	-27 1452.3	16.50	17.42	17.99	45*	35	0.268	F478	110		2968
2	128.8	-41 2044.7	16.86	17.81	18.31	68	44	0.236	F298	110		2969
2	223.7	-35 5552.8	17.46	17.95	18.96	43	34	0.187	F354	001		2970
2	35.4	-32 3328.2	14.74	17.60	20.13	4	10	0.128	F414	001		
2	342.9	-27 2349.4	17.33	17.64	18.77	42	25	0.195	F478	011		2972
2	351.3	-36 2222.1	15.37	16.66	17.87	30	14	0.283	F354	100		
2	412.1	-28 3846.5	14.89	16.96	17.79	42	22	0.292	F414	110	d	
2	443.5	-28 5316.9	16.53	18.56	19.14	-6	90	0.174	F414	010	d	2975
2	53.7	-35 5614.8	14.96	17.41	18.39	24	24	0.216	F354	100		

U
嘼

Table 4. Objects misidentified as clusters. Gal: galaxy; Star: star(s); s.t.: satellite trail; d.s.: diffraction spike(s).

EDCC	h	R.A. m s	$\begin{gathered} \text { Dec. } \\ \bullet \quad \prime \end{gathered}$	m_{1}	m_{3}	m_{10}	$n_{\text {clus }}$	$n_{\text {back }}$	$\boldsymbol{\theta}_{\boldsymbol{A}}$	Field	runs	Deb.	Object
30	21	4148.8	$\begin{array}{llll}-30 & 816.9\end{array}$	15.42	16.70	18.21	16	14	0.245	F466	112	d	Gal
41	21	4610.5	-35 3051.0	18.04	18.39	18.87	50	42	0.189	F404	100	d	d.s
56	21	5236.1	-33 1448.9	16.95	18.19	19.30	17	41	0.164	F404	011		d.s.
63	21	543.2	-34 4823.3	12.89	17.52	18.89	18	25	0.188	F404	010	d	Gal
71	21	5646.1	-25 5835.2	15.93	17.26	18.80	19	19	0.193	F532	011		d.s.
74	21	5757.7	-35 424.1	16.03	18.00	19.02	14	39	0.180	F404	111		Star
109	22	949.9	-382529.5	14.57	18.39	19.79	10	37	0.140	F344	001	d	Gal
138	22	2031.3	-42 3040.4	16.84	18.11	18.72	53	47	0.192	F345	010		Gal
157	22	3078	-24 4826.6	16.99	18.92	19.24	33	68	0.168	F533	001		Star
167	22	3414.7	-25 3013.0	17.42	17.93	19.19	11	28	0.175	F534	001		Gal
193	22	4538.0	-22 3924.0	12.31	16.52	17.96	20	9	0.271	F534	100		Gal
233	22	5932.1	-39 4940.4	15.71	16.00	17.17	23	16	0.378	F346	110		Gal
238	23	05.8	-37 2215.5	14.16	18.05	18.34	47	70	0.232	F406	100		Gal
280	23	1559.9	-32 457.0	16.73	17.89	18.92	21	31	0.186	F470	011		Star
337	23	4050.6	-33 2132.3	17.16	17.37	19.40	7	13	0.158	F408	010		d.s.
340	23	$42 \quad 3.4$	-25 5545.8	17.44	18.42	19.67	1	37	0.145	F537	100	d	d.s.
364	23	5137.2	-42 3630.9	15.85	16.52	18.46	11	7	0.221	F348	100		Star
379	23	5651.0	-32 2940.3	0.00	0.00	0.00	0	0	0.000	F471	011	d	Star
467	0	3627.5	-25 5054.2	16.31	16.80	18.18	12	17	0.249	F474	110	d	Star
478	0	4439.9	-38 1651.1	18.64	18.83	20.05	17	33	0.128	F295	001		Star
491	0	5132.2	-27 2513.7	15.18	17.38	19.31	9	13	0.170	F474	001		Gal
510	0	5518.3	-27 4459.9	13.15	18.84	19.45	54	57	0.157	F411	001	d	Gal
566	1	2939.7	-33 2232.1	16.78	17.43	18.96	12	17	0.185	F353	001		Gal
674	2	3532.1	-36 2240.1	16.63	18.61	20.34	11	22	0.117	F355	001		d.s.
687	2	4345.3	-34 713.0	17.07	17.29	17.86	39	35	0.284	F356	110	d	d.s.
730	3	652.6	-32 4234.2	16.52	16.88	17.89	21	16	0.280	F417	101		s.t.
738	3	1032.3	$\begin{array}{lll}-3234 & 4.2\end{array}$	17.09	17.73	18.59	34	23	0.209	F417	001	d	Star
740	3	1044.4	-3140 17.6	16.36	17.39	19.09	11	10	0.176	F417	011		Gal
741	3	1129.9	-25 2331.0	15.61	17.63	18.15	9	34	0.252	F481	111		Gal
750	3	1432.0	-35 4512.0	15.89	16.53	17.00	60	32	0.405	F357	211		d.s.
753	3	1521.8	-41 1636.9	11.10	17.72	18.35	50	41	0.231	F301	110	d	Gal
760	3	2248.1	-36 3225.6	11.77	16.50	18.05	14	8	0.262	F357	110		Gal

shown in Fig. 2 has a slope of 0.65 , but a value as low as 0.55 or as high as 0.75 cannot be ruled out on the basis of our data alone since only small changes in the numbers of clusters with $b_{\mathrm{j}}<17$ change the slope significantly. If we were to assume that the ACO classification of the missing bright clusters in terms of richness and magnitude was accurate, then the slope will be more severely constrained around the value of 0.65 . It is encouraging that this value is close to the value of 0.6 expected for a homogeneous distribution at low redshift with minimal curvature or K-correction. We also estimate the completeness limit of the EDCC as $m_{10}\left(b_{\mathrm{j}}\right)=18.75$ since beyond this magnitude the differential counts decline. Given that a cluster must have $m_{3}+2<20.5$ for it to be found within the EDSGC, this value is in agreement with what is expected. The ACO clusters would appear to have a similar completeness limit, though the nature of the 'completeness' of the ACO catalogue will be discussed further in the next section.

The distribution of the number-richness relation is shown in Fig. 3. There is evidence from this plot for incompleteness
in ACO at counts less than 40 , since the number of clusters with fewer members declines. The expectation would be that the number should continue to increase at smaller counts. The EDCC is therefore more complete at lower richnesses than the ACO supplementary catalogue, and there is no evidence for incompleteness in the EDCC with richness for counts above zero. An explanation for this is that the ACO counts are generally overestimated. Then incompleteness in the ACO catalogue would only occur for the supplementary clusters, where no claim is made for any rigorous detection of all such clusters. This also agrees with the comparisons between the catalogues outlined below. This plot also shows that the EDCC does not suffer from any 'hidden' incompleteness such as might be expected if the poorer clusters were only found brighter than a certain magnitude, whereas the richer ones were visible to the quoted completeness limit of the EDCC.

Finally, as discussed in Section 2.2, the binning method imposes a selection criterion in terms of the size of the final cluster. The distribution of the Abell radii of the clusters

Figure 2. Number-magnitude counts for the EDCC and ACO. Differential counts are indicated by $\bullet(E D C C)$ and ${ }^{\star}(\mathrm{ACO})$. The solid line is the cumulative EDCC counts, and the dotted line the cumulative ACO counts. The dashed straight-line fit has a slope of 0.65 ± 0.05, and is fitted to the EDCC data between $b_{j} \sim 15.9$ and ~18.9. The error bars on the differential EDCC counts are Poissonian.
found for the different initial sizes is shown in Fig. 4. Also plotted is the expected number of clusters with a given Abell radius if it was assumed that the number-magnitude distribution for the clusters had a slope of 0.6 . Given the uncertainty in the actual slope of the number counts, the agreement between the observed and predicted distribution is another indication that there is no significant problem with the method adopted.

The sky distribution of the clusters is shown in Fig. 5. The clusters follow the general galaxy distribution well. Clusters within areas of low galaxy density are still located where genuine over-densities exist. There is no evidence for any systematic gradients or other effects in this plot. We therefore conclude that the EDCC has no systematic incompleteness with position. A more detailed examination of the structures seen in this plot is given in Guzzo et al. (1992).

4 COMPARISON WITH THE ABELL CATALOGUE

4.1 Comparison sample

All the Abell clusters from the 60 EDSGC fields were extracted from the ACO catalogue. These clusters included all the full ACO clusters (restricted to those clusters with richness greater than 30 and distance class less than or equal to 6: see ACO for the definition), all the supplementary ACO clusters, and those clusters that lay within the overlap region between the northern and southern catalogues. There were 339 full ACO clusters, 228 supplementary clusters and 87 within the overlap region. For the latter, both their original

Figure 3. Number-richness counts for the EDCC and ACO. Symbols as in Fig. 2.

Figure 4. Comparison of the expected size distribution of Abell clusters (dotted line) compared to that found for the EDCC. The expected size distribution of the Abell clusters was calculated assuming a slope for the differential number-magnitude counts of 0.6.

Abell (1958) classification (as tabulated by ACO) and the newer southern classifications were considered. In order to carry out the comparison between these clusters and the catalogue presented here, both the V magnitude system of ACO and the R magnitude scale of Abell (1958) were converted to the photographic magnitude b_{j}. As noted

Figure 5. Sky distribution of the EDCC clusters. Large dots have richness >30, small dots richness <30.
previously, the relation $b_{\mathrm{j}}-V=0.77$ was adopted for transforming the raw ACO V magnitudes and a correction given by $b_{\mathrm{j}}-R=1.07$ was used for the northern clusters, following equation (9) of ACO. We have ignored the extinction corrections applied by Abell to the northern catalogue. This is valid since the measured extinction at the galactic latitudes covered by the EDCC is smaller than the errors within the catalogue.

In order to make a direct comparison between the EDCC and ACO clusters a consistent definition of the Abell parameters must be applied. One aspect of the ACO catalogue which remains very uncertain is the adopted background correction. ACO adopt a global background correction, and then force agreement with the northern Abell catalogue. As noted by ACO themselves, their global background subtraction is not realistic, since it can result in negative counts. Although our aim is to compare directly the selection methods of Abell and EDCC, our information is fully digitized and we can be more flexible in the definition of cluster parameters than ACO. Therefore, we also estimated local background-corrected counts for the ACO clusters by reconstructing their raw counts (using their data and equations 1, 6 and 7 of ACO) and then calculating a new local background count from the EDSGC data. Only richness and magnitude comparisons are presented here. Comparisons with the more subjective parameters (e.g. classification of the cluster shape) quoted in ACO were not carried out.

4.2 The comparison

As described above, all the Abell clusters within the EDCC area were used in the comparison, plus those within 20 arcmin of the boundary. A match occurred when both the EDCC cluster centroid and the Abell cluster centroid lay within the other's Abell radius. Only one match was allowed per cluster. Those EDCC clusters that had fewer than 10 members after deblending were excluded (because of the impossibility of comparing magnitudes) but those ACO clusters with fewer than 10 members were included (since ACO still quote magnitudes for these clusters). In all, there were 308 matches between the combined ACO plus overlap catalogue and the EDCC.

As a test of the reliability of the comparison a maximum allowed offset, beyond which no matches were allowed, was considered. This did not seriously affect the scatter between the Abell and EDCC catalogues but did change the matching percentages. Table 5 gives values of the calculated scatter for both the complete comparison and this restricted set. This

Table 5. Comparison of EDCC and Abell catalogues.

Sample	$\sigma_{m_{1}}$	$\sigma_{m_{3}}$	$\sigma_{m_{10}}$	$\sigma_{\text {counts }}$
All ACO clusters	1.30	0.93	0.79	34.7
ACO clusters with offset < 5'	1.21	0.88	0.74	34.4
Full ACO clusters only	1.34	0.90	0.72	36.7
All Northern clusters			0.78	40.4

included 58 matches with clusters in the overlap region. When a maximum radius of 5 arcmin was imposed, the number of matches was reduced to 243 . Since the average offset is 3 arcmin, and the distribution of the offsets is approximately Gaussian, this change in the number of matches is not surprising. If more than one match was allowed per cluster, then an extra nine clusters were detected from the full ACO and northern catalogues. Therefore, the condition that any one EDCC cluster can only match one ACO cluster is valid.

Scatter plots for Abell richness against EDCC richness, and the correlation between Abell m_{10} and EDCC m_{10} are shown in Figs 6 and 7 respectively. The data are shown separately for the northern clusters, and for those classified by Olowin or Corwin. There are no clusters in the ACO sample classified by Abell. The ACO and northern magnitudes have been corrected to b_{j} using the relation given earlier. For clusters lying in the overlap region of the northern and southern catalogues both classifications have been plotted.

The obvious conclusion from Fig. 6 is the lack of any strong correlation between the richness values (though there is a weak correlation in the expected sense of overall ACO richness being proportional to ours). This is also true when the local background-corrected ACO counts are used and so this lack of correlation reflects a real difference between the catalogues. In addition, there is a systematic tendency for the ACO clusters to have higher richnesses. This seems to be particularly reflected in the northern counts and Corwin's ACO southern counts. Given the steep dependence of the number-richness counts shown in Fig. 3, this explains the apparent greater number of Abell clusters with counts greater than 30 compared to the EDCC (467 as opposed to 249). It is important to stress that this lack of correlation between our richnesses and theirs applies to all clusters. We find all bar five of the 'statistical sample' of Abell (distance class less than or equal to 4 and more than 50 members). However, of those we find, only one third have more than 30

Figure 6. Comparison of the richnesses for clusters found in common between the EDCC and Abell catalogues. - denotes a Corwin cluster, ${ }^{\star}$ an Olowin cluster, and + a northern Abell catalogue cluster.
members and only one sixth more than 50. Clearly, even this sample is prone to a large scatter, sufficient to move the clusters more than one richness class. This is contrary to the analysis of Struble \& Rood (1991) who attempt an internal analysis of the Abell catalogues, and must also place in doubt clustering statistics derived from such samples (see Postman, Geller \& Huchra 1992).

The magnitude differences between the EDCC and the ACO clusters can best be characterized by the straight-line fit shown in Fig. 7 (though the scatter about this is large, $\sigma \sim$ 0.7):

$$
\begin{align*}
& m_{10}(\mathrm{EDCC})-m_{10}\left(\mathrm{ACO}, b_{\mathrm{j}}\right) \\
& \quad=0.31+0.03\left(m_{10}(\mathrm{EDCC})-18\right) \tag{2}
\end{align*}
$$

This is effectively consistent with a slight constant offset in the ACO clusters. By comparison, the faint northern Abell clusters ($R>17$) shown in Fig. 7 follow a slope close to 45° indicating that they have almost no dependence on true magnitude. As noted by ACO, they all have magnitudes near $R \sim 17$ regardless of their correct magnitude, a value defined largely by the limit of the Palomar Sky Survey plates. This also explains the reason why so many clusters with $z>0.2$ (the nominal redshift limit of the Abell catalogue) were detected by Abell, since the $m_{10}-c z$ relation breaks down for northern catalogue clusters with true magnitudes fainter than $R \sim 17$. This difference in the magnitudes between the catalogues is also partially responsible for the much greater richnesses found in ACO. Since a change in magnitude of 0.25 is approximately equivalent to changing the Abell radius by 2 arcmin at $b_{\mathrm{j}}=17$, and the Abell radius is 20 arcmin, the change in the counting area is 20 per cent. Therefore, we would expect to see greater richnesses in ACO from this argument.

Figure 7. As for Fig. 6 except for m_{10} values. ACO V magnitudes and northern R magnitudes have been corrected to b_{j}.

Figure 8. Scatter plot of m_{10} against richness for all those Abell clusters that match up with the EDCC. The dashed lines show the limits of the supplementary catalogue. Symbols as in Fig. 6.

For the full ACO cluster list only, the number of matches found was 222 out of 416 (185 out of 416 for the 5 -arcmin matching radius). Therefore, the percentage of full clusters
found is 53 per cent and of the supplementary clusters, 36 matching radius). Therefore, the percentage of full clusters
found is 53 per cent and of the supplementary clusters, 36 per cent. Fig. 8 shows a scatter plot of m_{10} against richness for those clusters detected which are in common between the EDCC and Abell catalogues, Fig. 9 shows a plot of those Abell clusters not found, and Fig. 10 a plot of those EDCC

Figure 9. As for Fig. 8 except for those clusters in the Abell catalogue that do not match up with the EDCC. Symbols as in Fig. 6.
clusters not found within the Abell catalogue. The magnitudes of the northern clusters have been transformed into the V band using equations (8) and (9) of ACO. Since the magnitude scale is unreliable beyond $R \sim 17$, it is not surprising that this transformation leaves many northern clusters fainter than $V \sim 20$. The supplementary catalogue limits are marked as dashed lines. In Figs 8 and 9 the values plotted for magnitude and richness are taken from ACO [using their corrected richness but uncorrected $m_{10}(V)$ data].

Fig. 11 shows the percentage of ACO clusters found to any given magnitude within four richness bands. At the nominal completeness limit of the ACO catalogue ($V \sim 17$), 70 per cent of the rich ACO clusters are found within the EDCC. All bar two of the bright $(V<16)$ rich clusters are found. In total, 65 per cent of all ACO clusters brighter than the completeness limit of the ACO catalogue are located within the EDCC. Within the completeness limit of the EDCC (assumed to be $V \sim 18$), 80 per cent of the full ACO cluster list are still found (though the rate of detections is dropping rapidly at the limit as shown in Fig. 11). Many of the Abell clusters are considerably fainter in the EDCC survey (since if the EDCC clusters are restricted to b_{j} ~ 17.75 and this comparison carried out again, then only 30 per cent of the ACO clusters are found and 38 per cent of the northern clusters). This is consistent with the relation between the ACO and EDCC magnitude systems derived above. However, the overall detection rates for all clusters only drop sharply for magnitudes fainter than the completeness limit of the EDCC. The overall detection rate of the northern clusters is 70 per cent. This rate does not vary strongly with magnitude given the problems with the northern Abell magnitude system.

By comparison, truncating the EDCC at our completeness limit and comparing with the total ACO catalogue results in only 42 per cent of the EDCC clusters being found. Even if

Figure 10. As for Fig. 9 except for those clusters in the EDCC that do not match up with the Abell catalogue. ${ }^{*}$ denotes an EDCC cluster.

Figure 11. The detection rate of ACO clusters with different richnesses (where richness is denoted by c). The data have been binned into 1 mag wide bins.
only clusters with more than 30 members within the EDCC are considered, this value only rises to 58 per cent. Clearly, there are many more new clusters in the EDCC that are not in the Abell catalogue.

We have visually checked all those missing ACO clusters with $n_{\text {clus }}>30$ and distance class less than 5 (see table 2A of ACO for the definition of distance class - the limit corre-
sponds approximately to 17.9 in V for clusters near the SGP). Most of these are either close to the threshold used in the peak-finding algorithm (Section 2.2) or distant. Some of those clusters examined are near areas removed from the EDSGC (satellite trails or bright stars near the centre of the cluster field), or were found to be marginal detections (in terms of finding a peak above the local background). Others also appear to have wildly inaccurate magnitude estimates and may actually lie outside the completeness limit of the EDSGC. In a few cases, no cluster was evident on the plate.

The richnesses for the ACO clusters were also corrected to a local background as described above and a second comparison carried out. This is shown in Table 6. Corwin has systematically larger richnesses (as in Fig. 6 for the global background: a fact they note themselves in ACO in their internal comparisons), whereas for Olowin's clusters the scatter has no systematic trend. The large scatter still found in the richness after correcting to local background counts is partly due to the difficulties of transforming from b_{j} counts to V counts; however, it is likely that much of the error arises from the quoted errors both for the EDCC and the ACO catalogues (which predict a scatter of about 23 counts - the residual discrepancy between this value and that given in Table 6 is probably due to the difficulties in background estimation). The difficulty in estimating richness for a purely visual survey such as ACO should not be underestimated (see also Scaramella et al. 1990, for a discussion of the richness of ACO clusters).

There are also indications that the Corwin clusters have larger true scatters in their magnitude estimates. The scatter is larger than might be expected purely from the quoted errors in the ACO and EDCC surveys. One might expect, for example, a scatter of 0.35 mag for the m_{10} comparison from the estimates of Table 5 . Even allowing for a large intrinsic scatter in the galaxies' colours, the $b_{\mathrm{j}}-V$ correction cannot explain the observed discrepancy. However, this may be partly due to chance, since the actual distribution of the most outlying points on the scatter diagram for the Abell/Corwin clusters is mostly the same as that for the Olowin clusters. Part of the scatter in m_{10} probably arises from the difference in definition of m_{10} between ACO and the methods presented here (especially the iterative background-removal procedure). Table 7 gives our final estimates of the internal errors in the ACO catalogue from the comparison carried out above.

5 CONCLUSIONS

The EDCC is the first automated, objectively selected cluster catalogue. Its success rate in finding 80 per cent of the full

Table 6. Comparison of EDCC and Olowin and Corwin clusters.

Sample	$\sigma_{m_{1}}$	$\sigma_{m_{3}}$	$\sigma_{m_{10}}$	$\sigma_{\text {counts }}$ (local)
Olowin's clusters (local counts)	1.24	0.87	0.56	38.7
Corwin's clusters (local counts)	1.55	1.26	0.98	50.6

Table 7. Estimates of the internal errors in the ACO catalogue.

Sample	$\sigma_{m_{1}}$	$\sigma_{m_{3}}$	$\sigma_{m_{10}}$	$\sigma_{\text {counts }}$
All clusters	1.28	0.98	0.82	33.0

Abell clusters in the ACO catalogue suggests that, within the quoted completeness limit, the EDCC is at least 90 per cent complete for the Abell subsample (assuming that 10 per cent of all Abell clusters are seriously in error in their classification, as appears to be the case from the visual check carried out of those bright ACO clusters not found in the EDCC as described in Section 4.2). By comparison, almost 70 per cent of the clusters in the EDCC brighter than the completeness limit of $m_{10}\left(b_{j}\right) \sim 18.75$ are new clusters. This lends credence to the idea (already stated by both Abell and ACO) that the Abell catalogue is not useful as a statistical data base.

Furthermore, we find magnitude and richness errors in the Abell catalogues which are sufficient to move such clusters by more than one richness or distance class (in terms of their Abell (1958) definition). This clearly makes the Abell catalogue unsuitable for calculating any large-scale clustering properties. In contrast, the EDCC is statistically complete within the limits and for the selection procedures described.

The extent of the data available will also allow tests of non-Abell classification schemes, or of modifications to the Abell classification scheme (e.g. Sutherland 1989; McGill \& Couchman 1990). This will be discussed in detail in a future paper. In order to utilize this new catalogue to its fullest extent, we have also undertaken a large redshift survey programme, using a slightly modified Abell method for our selection. 100 of the richest clusters with $m_{10}<18.75$ have been observed. On average, 10 redshifts per cluster were obtained. This will enable a rigorous determination of the spatial correlation function (Nichol et al. 1992), free from many of the contaminating projection effects notable in previous estimations (e.g. Bahcall \& Soneira 1983). The wealth of redshift information will also enable a major analysis of the cluster LF. Since the EDCC covers 5 per cent of the whole sky, it will allow advances in the statistical study of clusters. All these aspects of the catalogue will also be discussed in future papers.

ACKNOWLEDGMENTS

We would like to thank Harvey MacGillivray for his comments on an early draft of this paper, and the anonymous referee for valuable comments which helped us to clarify the text. We would also like to thank Neil Heydon-Dumbleton for his contributions to the early stages of this project. RCN thanks Roberto Scaramella for enlightening discussions. SLL is grateful to the Royal Observatory, Edinburgh for providing the facilities with which much of this work was carried out and would like to thank Bob Joseph for allowing him to carry on the work at Imperial College. SLL acknowledges receipt of an SERC postdoctoral fellowship during the latter stages of this work and RCN acknowledges receipt of an SERC studentship.

REFERENCES

Aaronson, M., Bothun, G., Mould, J., Huchra, J., Schommer, R. A. \& Cornell, M. E., 1986. Astrophys. J., 302, 536.
Abell, G. O., 1958. Astrophys. J. Suppl., 3, 211.
Abell, G. O., 1962. In: Problems of Extragalactic Research, IAU Symp. No. 15, p. 213, ed. McVittie, G. C., Macmillan, New York.
Abell, G. O., Corwin, H. G. \& Olowin, R. P., 1989. Astrophys. J. Suppl., 70, 1.

Bahcall, N. A. \& Soneira, R. M., 1983. Astrophys. J., 270, 20.
Beard, S. M., MacGillivray, H. T. \& Thanisch, P. F., 1990. Mon. Not. R. astr. Soc., 247, 311.

Colless, M., 1989. Mon. Not. R. astr. Soc., 237, 799.
Couchman, H. M. P., McGill, C. \& Olowin, R. P., 1989. Mon. Not. R. astr. Soc., 239, 513.
Dodd, R. J. \& MacGillivray, H. T., 1986. Astr. J., 92, 706.
Dressler, A., 1978. Astrophys. J., 223, 765.
Ellis, R. S., 1990. In: Gravitational Lenses, p. 236, eds Mellier, Y., Fort, B. \& Soucail, G., Springer-Verlag, Berlin.
Guzzo, L., Nichol, R. C., Collins, C. A. \& Lumsden, S. L., 1992. Astrophys. J. Lett., 393, L5.
Heydon-Dumbleton, N. H., Collins, C. A. \& MacGillivray, H. T., 1989. Mon. Not. R. astr. Soc., 238, 379.

Lucey, J. R., 1983. Mon. Not. R. astr. Soc., 204, 33.
Lugger, P. M., 1986. Astrophys. J., 303, 535.
Lynden-Bell, D., Faber, S. M., Burstein, D., Davies, R. L., Dressler, A., Terlevich, R. J. \& Wegner, G., 1988. Astrophys. J., 326, 19.

McGill, C. \& Couchman, H. M. P., 1990. Astrophys. J., 364, 426.

Nichol, R. C., Collins, C. A., Guzzo, L. \& Lumsden, S. L., 1992. Mon. Not. R. astr. Soc., 255, 21p.
Postman, M., Geller, M. J. \& Huchra, J. P., 1986. Astr. J., 91, 1267.
Postman, M., Geller, M. J. \& Huchra, J. P., 1992. Astrophys. J., 384, 404.

Scaramella, R., Zamorani, G., Vettolani, G. \& Chincarini, G., 1990. Preprint.
Schechter, P. \& Press, W. H., 1976. Astrophys. J., 203, 557.
Shane, C. D. \& Wirtanen, C. A., 1967. Publs Lick Obs. Bull., No. 22, Part 1.
Shectman, S. A., 1985. Astrophys. J. Suppl., 57, 77.
Struble, M. F. \& Rood, H. J., 1991. Astrophys. J., 374, 395.
Sutherland, W., 1988. Mon. Not. R. astr. Soc., 234, 159.
Sutherland, W., 1989. PhD thesis, University of Cambridge.
Thanisch, P., McNally, B. V. \& Robin, A., 1984. Image Vis. Comp., 2, 4.
Zwicky, F., Herzog, E., Wild, P., Karpowicz, M. \& Kowal, C. T., 1961-68. Catalogue of Galaxies \& Clusters of Galaxies, 6 volumes, California Institute of Technology, Pasadena.

[^0]: ^ Present address: Astrophysics Department, University of Oxford, Keble Road, Oxford OX1 3RH.

